
 
 

 

 

Front-end development of a modern CRM 

web application using React. 

 

 

Alan Wallace Ross 

 

 

This dissertation was submitted in part fulfilment of 

requirements for the degree of MSc Software Development. 

 

 

Dept. of Computer and Information Sciences 

University of Strathclyde 

 

 

August 2019 

 



 
 

DECLARATION  

This dissertation is submitted in part fulfilment of the requirements for the 

degree of MSc of the University of Strathclyde.  

 

I declare that this dissertation embodies the results of my own work and that it 

has been composed by myself. Following normal academic conventions, I have 

made due acknowledgement to the work of others. 

 

I declare that I have sought, and received, ethics approval via the 

Departmental Ethics Committee as appropriate to my research. I give 

permission to the University of Strathclyde, Department of Computer and 

Information Sciences, to provide copies of the dissertation, at cost, to those 

who may in the future request a copy of the dissertation for private study or 

research.  

 

I give permission to the University of Strathclyde, Department of Computer 

and Information Sciences, to place a copy of the dissertation in a publicly 

available archive. (please tick) Yes [ ] No [ ]  

 

I declare that the word count for this dissertation (excluding title page, 

declaration, abstract, acknowledgements, table of contents, list of illustrations, 

references and appendices is 16623. 

 

I confirm that I wish this to be assessed as a Type 1 2 3 4 5  

 

Dissertation (please circle)  

 

Signature:  

 

Date: 17/08/2019



I 
 

 

Abstract 

 

This project documents the front-end development of a customer relationship management 

(CRM) web application to replace the CRM system of a client that is currently using Microsoft 

Dynamics 2011. The aim of this new software is to help better integrate all of the client’s 

business units, offer them flexibility of staff resources to cover other business areas (as the 

CRM and customer journey will be similar), and cost savings due to efficiencies made from 

the customer journey process. To achieve this, an initial training period was needed where 

Javascript and React tutorials were used for around 2-3 weeks before work finally began on 

an existing base of code that was taken from a previous project of the company I work for. 

This project will hence involve topics such as the development model of the application, the 

design phase of the application, the implementation of the application, the testing of the 

application. Due to the size of this application however, the project won’t actually be 

completed before the deadline of this dissertation and so while there are user testing 

deployments, this dissertation won’t be able to discuss the final deployment of the 

application. 

 

 

 

 

 

 

 

 



 
 

II 
 

 

Acknowledgement: 

 

I would like to acknowledge my supervisor Konstantinos Liaskos for his support and 

guidance over not only the course of the project but over the course of the degree too. I 

would also like to thank my colleagues at work for their support and advice over the course 

of the project too. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                  
 

 



 
 

III 
 

Contents 
1 Introduction ................................................................................... 1 

1.1 Objectives: ................................................................................................................... 1 

1.2 Outcome: ..................................................................................................................... 2 

1.3 Report Structure: ......................................................................................................... 2 

2 Related Work ................................................................................. 3 

2.1 History: ........................................................................................................................ 3 

2.2 Motivation: .................................................................................................................. 4 

3 Problem Description and Specification .......................................... 5 

3.1 Problem Description: .................................................................................................. 5 

3.2 Organisation requirements: ........................................................................................ 6 

3.3 Other requirements .................................................................................................... 7 

3.3.1 Customers: ...................................................................................................................... 7 

3.3.2 Users: .............................................................................................................................. 8 

3.3.3 Single Sign On .................................................................................................................. 9 

4 System Design ............................................................................. 10 

4.1 Design and Development Methodology: .................................................................. 10 

4.2 System Structure: ...................................................................................................... 13 

4.3 Final Design Outcome: .............................................................................................. 14 

4.4 UI Design: .................................................................................................................. 14 

5 Detailed Design and Implementation .......................................... 17 

5.1 Learning: .................................................................................................................... 17 

5.2 Development Technologies Used: ............................................................................ 18 

5.2.1 Javascript: ...................................................................................................................... 18 

5.2.2 HTML/JSX: ..................................................................................................................... 19 

5.2.3 CSS: ................................................................................................................................ 19 

5.2.4 SCSS: .............................................................................................................................. 19 

5.2.5 React: ............................................................................................................................ 19 

5.2.6 React Router: ................................................................................................................ 19 

5.2.7 React Redux: ................................................................................................................. 20 

5.2.8 Axios: ............................................................................................................................. 20 

5.2.9 Semantic UI: .................................................................................................................. 20 

5.2.10 Validate.js package: ...................................................................................................... 20 



 
 

IV 
 

5.2.11 Node: ............................................................................................................................. 20 

5.2.12 NPM: ............................................................................................................................. 21 

5.2.13 Webpack: ...................................................................................................................... 21 

5.2.14 Git: ................................................................................................................................. 23 

5.2.15 Gitlab: ............................................................................................................................ 23 

5.2.16 Postman: ....................................................................................................................... 23 

5.2.17 Visual Studio Code: ....................................................................................................... 23 

5.2.18 Microsoft Teams: .......................................................................................................... 23 

5.2.19 Jira: ................................................................................................................................ 23 

5.2.20 Aceproject: .................................................................................................................... 24 

5.2.21 Google Chrome Developer Tools: ................................................................................. 24 

5.2.22 Amazon Web Service: ................................................................................................... 24 

5.2.23 Amazon API Gateway: ................................................................................................... 24 

5.2.24 Amazon DynamoDB: ..................................................................................................... 24 

5.2.25 Amazon Cognito: ........................................................................................................... 25 

5.2.26 AWS Lambda: ................................................................................................................ 25 

5.3 Organisations User Story Features:........................................................................... 25 

5.3.1 Initial Setup of Organisation’s List, Edit and Create Pages: .......................................... 25 

5.3.2 DatePicker: .................................................................................................................... 29 

5.3.3 RequestFeedback: ......................................................................................................... 29 

5.3.4 Validation and DatePicker: ............................................................................................ 31 

5.3.5 Validate.js: ..................................................................................................................... 32 

5.3.6 Multiple Contact Table: ................................................................................................. 36 

5.4 Users User Story Features: ........................................................................................ 42 

5.4.1 User Roles and Geography: ........................................................................................... 42 

6 Verification and Validation .......................................................... 44 

6.1 Front-end testing:...................................................................................................... 44 

6.2 Back-end Request Testing: ........................................................................................ 47 

6.3 Integration Testing: ................................................................................................... 49 

6.4 Q/A Testing: ............................................................................................................... 49 

6.5 User Evaluation: ........................................................................................................ 51 

6.6 Limitations: ................................................................................................................ 51 

6.7 Future work: .............................................................................................................. 51 

7 Conclusion ................................................................................... 52 



 
 

V 
 

8 Bibliography ................................................................................. 53 

9 Appendix: .................................................................................... 54 

9.1 Folder Structure Tree: ............................................................................................... 54 

9.2 Image of Organisation Form: .................................................................................... 59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



 
 

VI 
 

List of figures: 
 
Figure 1: JIRA's kanban board ............................................................................................................... 11 

Figure 2 Organisations Dashboard ........................................................................................................ 14 

Figure 3 Organisations Create Page ...................................................................................................... 15 

Figure 4 Organisation's View Page ........................................................................................................ 15 

Figure 5 Organisation's Edit Page ......................................................................................................... 16 

Figure 6 Validation messages when all fields are empty ...................................................................... 16 

Figure 7 Postcode and Email validation messages when value is invalid. ............................................ 17 

Figure 8:Excerpt from package.json file ................................................................................................ 22 

Figure 9: An array of options of what type of an organisation, an organisation can be ...................... 26 

Figure 10: Form Dropdown component being rendered if in create or edit mode and a Form Input 

being rendered if not in them modes. .................................................................................................. 27 

Figure 11: Dropdown shown in front-end ............................................................................................ 28 

Figure 12: File with list of strings to be used by other files. ................................................................. 28 

Figure 13: RequestFeedback component ............................................................................................. 30 

Figure 14: Proptypes ............................................................................................................................. 30 

Figure 15: Proptypes console warning .................................................................................................. 31 

Figure 16: Incomplete constraints object ............................................................................................. 33 

Figure 17: When page renders, form is read by "getElementById" so that attributes could be set 

directly to the DOM. ............................................................................................................................. 34 

Figure 18: A case statement inside the reducer file showing how a Reason would be returned as a 

result. .................................................................................................................................................... 34 

Figure 19: Complete constraints file ..................................................................................................... 35 

Figure 20: Initial single contact form .................................................................................................... 36 

Figure 21: Final Organisation's form involving contacts. An enlarged version can found in the 

Appendix. .............................................................................................................................................. 37 

Figure 22: Appearance of form halfway through developing multiple contacts. ................................. 38 

Figure 23: Constraints for multiple contacts ........................................................................................ 40 

Figure 24: With NR manage (a non-admin role) selected, it was possible to select "Both NRNE and 

NRS" as a geography. ............................................................................................................................ 42 

Figure 25: A user with the role of NR Manager is now limited to only NRS or NRNE geography. ....... 42 

Figure 26: With NRS Mentor picked (a non-admin role) but specific to NRS, all geographies were 

allowed. ................................................................................................................................................. 43 

Figure 27: With the update to the logic, now the selection of a NRS mentor meant that "NRS" was 

preselected in the dropdown field and the dropdown was disabled. .................................................. 43 

Figure 28: Unit tests for ComponentHeader ........................................................................................ 45 

Figure 29: Front-end test results .......................................................................................................... 46 

Figure 30: Snapshot of Component Header ......................................................................................... 47 

Figure 31: Postman sending a request to retrieve a list of organisations ............................................ 48 

Figure 32 Screenshot of steps for a test on creating an organisation that a Q/A has written up and 

followed. ............................................................................................................................................... 50 

Figure 33: Enlarged version of Organisation form ................................................................................ 59 



1 
 

 

1 INTRODUCTION 

With businesses aiming to maximize the efficiency of their business processes, one studied 

way of doing this is by introducing CRM (customer relationship management) software 

according to Howard (2019). The role of this software is to be able to manage relationships 

with customers. As time has progressed, CRM’s have progressed as well [2], they are capable 

of storing all of the customer’s data in an organized and easily accessible database that allows 

staff to carry out their business functions.  

CRM’s aren’t just databases though, they provide other uses as well. The business can ask for 

business feature’s to be included in the CRM and a software company like Pulsion Technology 

can also help in guiding what is really needed as well as making sure the specifications of the 

software are detailed enough to ensure the client will be satisfied with what they are getting. 

This CRM is what has been worked on for the past two months and will continue to be worked 

on until November before it will be released. This project will document the development of 

the front-end of this CRM, specifically the Organisation’s User story which in total had one 

person responsible for it while at the same time was part of a team of four.  

This team of four was developing this CRM because their client’s current system is based on 

old technology (Microsoft Dynamics)1 and wasn’t custom built for their business functions 

and so is very limited in what functions it can carry out as well as lacking in performance. The 

aim of this new software is to help them better integrate all of their business units, offer 

flexibility of staff resources to cover other business areas (as the CRM and customer journey 

will be similar), and create cost savings due to efficiencies made from the customer journey 

process. 

 

1.1 OBJECTIVES: 
For the purposes of this dissertation my main objectives were to learn languages, libraries as 

well as web services. Furthermore from a more practical perspective, the development of the 

                                                           
1 https://dynamics.microsoft.com/en-gb/ 

https://dynamics.microsoft.com/en-gb/


 
 

2 
 

“Organisations” section of the CRM project. This section which could also be called a User 

story  is responsible for the CRM being used to record organisation details so that the clients 

can keep track with what organisation’s they have engaged with and when. 

As part of learning new languages, libraries and web services my objectives were as follows: 

1. Learn JavaScript 

2. Learn React 

3. Learn more about AWS and how to use it. 

4. Learn other web related languages such as HTML and CSS. 

 

And as part of developing the Organisation’s section of the CRM: 

1. Develop a page where you can create an organisation. 

2. Develop a page that lists these organisations. 

3. Develop a page where a selected organisation’s details can be viewed as well as edited. 

 

1.2 OUTCOME: 
Through my initial training as well as learning throughout applying the pages, I will be able to 

develop the pages mentioned. Through these pages, system administrators will be able to 

view what organisation’s there are through a table form factor, create an organisation based 

on the form data that the CRM requires to create one and then have the ability to select an 

organisation to view that organisation’s details, have the choice to edit that data as well being 

able to “de-activate” that organisation.  

1.3 REPORT STRUCTURE: 
The following sections in this dissertation will document the methods and processes followed 

for the development of this project. There will also be a discussion on what related work has 

been done in terms of history, motivation and technology. Following on from that, the 

project’s problem description and specification will be discussed along with the system design 

of the software as well as the methodology. With the methodology covered, the training, the 



 
 

3 
 

technologies and the detailed design and implementation of the system will be documented. 

Then the verification and validation of the system and finally the conclusion of the project. 

2 RELATED WORK 

2.1 HISTORY: 
CRM’s back in the 1980’s weren’t known as CRM’s back then. In fact, back then, what existed 

was only digital rolodexes and database marketing (applying statistical methods to analyse 

and gather customer data). The digital rolodex allowed for efficient storage and organization 

of customer contact information and was known as “contact management software” (History 

of CRM Software, 2019). 

It wasn’t actually until the 1990’s before digital rolodexes and database marketing were 

merged together to offer “sales force automation” (SFA). SFA refers to software applications 

that aids in sales management by providing automated workflows that create a simple sales 

process to manage business leads, sales forecasts and team performance. 

As SFA’s progressed through the 1990’s, SFA and contact management continued to offer 

more and more automation of business tasks like inventory control as well as being able to 

provide much more useful customer information, that by 1995, they closely resembled a 

modern CRM software and it was by the end of 1995 that the term CRM was given to this kind 

of software (History of CRM Software, 2019). 

From there, CRM’s continued to evolve and provide even a broader range of services as more 

and more competition was provided by emerging technology companies.  

Then came the end of the 90’s with the launch of Software as a Service (SaaS) which was more 

suited to smaller businesses.  

After the bursting of the dot-com bubble in the 2000’s though, a lot of technology companies 

suffered, and hence the CRM industry were one of the industries that were affected the most. 

CRM’s didn’t stop evolving though, and the purpose of CRM’s grew to also manage all 

business relationships as well and companies such as Microsoft entered the CRM market by 

introducing their Dynamics CRM software alongside other giants also clamouring for control 

over the CRM industry. 

Since then, CRM software has also moved to being cloud-based and Social CRM’s were also 

invented which embraced the use of social media to interact with their customer’s instead 

(History of CRM Software, 2019). 

With products like the Microsoft Dynamics and Salesforce CRM, they are an easy solution for 

businesses that are starting up and want to take advantage of the benefits that a CRM can 

provide but as a business grows and matures, the business can outgrow that one size fits all 

kind of CRM and needs a CRM that is fully customized specifically to the needs of the business. 



 
 

4 
 

The above only gives a brief history of Customer Relationship Management software though.  

 

2.2 MOTIVATION: 
The motivation behind Customer Relationship Management is that it “characterises a 

management philosophy that is a complete orientation of the company towards existing and 

potential customer relationships” as said by Raab (2008). This is important because according 

to Peppers and Rogers(2011), there seems to be a global trend in customer relationship 

management that points to a shift from a transactional model where it’s based on each 

transaction between the business and a customer, to a relationship model where it is about 

a customer journey and not about transactions, this involves aspects of a business such as 

customer support which has a large impact on the customer’s satisfaction with a company. 

What this means is that it can be argued that it’s not enough for businesses to only have 

transactional relationships with their customers anymore to be able to ensure that the 

business will see long-term growth. 

Pepper and Roggers(2011) also says that if long-term relationships with customers are not 

aimed for by businesses, that businesses are less likely to maintain loyalty from customers as 

well as flexibility of customers when it comes to customer’s increasing expectations. 

Mathur (2010) helps back up the notion of how important customer relationship 

management software is by providing a large range of customer relationship techniques that 

are used by multinational businesses.  

Also according to Nucleus Research (2019) CRM’s pay back $8.71 for every dollar spent, and 

this has actually increased from 2011 where it used to be only $5.60 for every dollar spent.  

Another finding based on a survey by Ivey at Software Advice (2019) is that a large majority 

said that their CRM system offered improved access to customer data. 

With all this motivation for a business having a CRM, what features can a CRM provide then? 

Well it depends on what kind of CRM is needed. It can be an Operational CRM, one in which 

helps streamline processes, an Analytical CRM that helps source big data so to provide the 

business with insights on customers and then there is the Collaborative CRM, these are 

designed to improve communication and teamwork among the business staff. Of course, it 

doesn’t need to be that only one can be chosen, functionality can be added from other parts 

to provide a hybrid CRM. According to Cleveroad Inc (2019), the main features of a CRM are:  

1. Managing Contacts 

2. Setting Reminders 

3. Editing calendars 

4. Managing tasks 

5. Generating simple reports 

Pulsion Technology has already did many of these type of customer relationship management 

systems in the past with older software using technologies such as C#, SQL and PHP, and only 



 
 

5 
 

recently they have been using new technologies to implement them. The reason for this was 

to break away from the previous monolithic architecture that was being used to one where 

everything was separated and could be re-used. It is actually these past projects which 

provided the wire-frame for the project that’s being documented in this dissertation since it 

has the same basic architecture as what the other projects had. The technologies that have 

been used in the front-end are Javascript, React, CSS and HTML while in the backend, a 

microservice architecture has been adopted using Javascript (Node), Amazon Web Services 

(AWS) and Serverless. 

One of the reasons for this shift is that Javascript can be used for both the front-end and the 

back-end and so it is much easier for people to switch between developing the front-end and 

back-end since they don’t need to learn another language or have to remember the subtle 

differences between how two languages deal with syntax, or semantics. This in turn also saves 

on costs of time spent training. Another reason would be the fact that JavaScript is the most 

popular language now and so not only is it easier for recruitment purposes but at the same 

time there it is seeing a lot of work and support going into it. It’s also the standard 

programming language of the web too so it only makes sense for a company building web 

application’s to deviate towards it. 

And to further elaborate on why the client asked for a custom CRM as opposed to their 

current Microsoft Dynamics solution was that Microsoft Dynamics couldn’t be set up to 

automate the complicated processes that the client had, for example for this application, an 

“entity” has to be created based on the creation of another “entity” however there is various 

conditional behaviour around this functionality as well which Microsoft Dynamics just didn’t 

support. 

To give a better example of what an “entity” is, it can be considered a Referral or an 

Organisation, or a Customer or something else. There is a process for a Referral that must be 

followed however it is a complex process that can lead to a customer but might not and then 

data has to be handled properly so that if the referral doesn’t become a customer, then only 

a limited amount of data on the referral should be stored.  

 

 

3 PROBLEM DESCRIPTION AND SPECIFICATION 

3.1 PROBLEM DESCRIPTION: 
As stated before in the description, the problem that this project aims to solve is primarily the 

issue of keeping the different departments of a business connected so that they can organize 

all their different departmental information into one cohesive system that the users (the 

users of the CRM will be the staff associated with the client) of that business can easily access 

and take advantage of at any time. This then makes it easier than ever for departments to 



 
 

6 
 

coordinate with one another and at the same time make it possible to offer each customer a 

personalized customer journey. 

 

 

3.2  ORGANISATION REQUIREMENTS: 
When first starting this project, the User Stories document had nearly 160 pages, and over 

the course of development so far, the number of pages has increased to 177. In these 177 

pages, there are 59 different sections, each containing their own story as well as a priority 

level of High, High/Medium, Medium/Low and Low. This dissertation is mostly concerned 

with User story 14 which focusses on Organisations and is a high priority requirement. The 

description for this story is as follows: “As an administrator I want to be able to record details 

of an organisation so that specialists can link the customer records to them when they have 

been involved in the journey so that we can track when we have engaged with different 

organisations.” 

The acceptance criteria is as follows: 

“ 

 Fields to record 

o Organisation Name 

o Address 1 

o Address 2 

o Local authority area 

o Postcode 

o Phone 

o Email  (global) 

o Contact Name (multiple) 

o Contact Phone (linked to contact) 

o Contact email (linked to contact) 

o Type of organisation 

o If certain type of organisation, record SIC code (look up) 

o Last contact (date) 

o Last contact (programme) 

o Last contact by whom (name) 

 Ability to display last contact information over the last two months 

 Ability to search on local authority area 

 Ability to migrate data from spreadsheet into organisations record 

Notes: 

Going forward with other programmes, there will be additional ‘type’ options and likely a 

secondary ‘type’. 



 
 

7 
 

Requirements here may change as other programmes are added to the CRM.” 

 

The way Organisation’s was done was through first replicating the content on the User’s page 

on the Organisation’s page and then replacing User variables with Organisation variables as 

well as using other endpoints for the use of different microservice instances. As well as that, 

organisation’s included a more complex form that required the use of an external date-picker 

package that was installed from NPM2. The multiple contacts part of the Organisation form 

was the most complex piece of the Organisation form though and while it wasn’t mentioned 

in the Organisation’s user story, implementing the form validation was also required and was 

also not simple. 

3.3 OTHER REQUIREMENTS 
There was also times where work was done on other User Stories too including the User page 

and the Customers page that will be discussed in the implementation chapter. To give better 

context to the CRM here are the requirements for them too: 

3.3.1 Customers: 
“Description 

As an organisation I want to create a global contact record accessed across the organisation so that 

customers can be supported across all areas of the business (i.e referred to other areas of the 

business for support) 

 

Acceptance Criteria 

 Fields will be Name>Address>Phone 1>Phone 2>Email>NI Number>Consent to store 

data>Latest risk rating (overall) 

 Basic customer record will have various programme records associated with it (it is likely the 

programme record will be created first to generate this information, this is to be confirmed 

with Pulsion. 

 Ability to attach a customer photograph to the record 

 Referral mechanism between programmes from the contact record (as more projects are 

built into CRM this may be an email to a shared inbox or an in system alert) 

 Fields: 

o WG Programme Referred to (as more CRM systems are built there will be a list of 

contacts supplied who will deal with referrals by project – assume in system at this 

point but potentially via email) 

o Referral from (WG programme list – tbd as they are built) 

                                                           
2 https://www.npmjs.com/ 

https://www.npmjs.com/


 
 

8 
 

o Referral to (WG programme list – tbd as they are built) 

o Date of referral 

o Referral information (currently free text, as other programmes are built on CRM 

there will be more defined requirements here) 

o Outcome of referral: accepted/unsuitable/follow up 

 

Notes 

The global contact record should contain a high level outline of the customer’s time with the WG 

from point of first contact (or referral in), to programmes engaged with and start/end dates.  

There should be a mechanism that allows cross referral on programmes (e.g. New Routes can refer 

to an employability programme (yet to be developed on the new CRM) through the basic customer 

record. 

Governance Manager: confirmed they will ensure privacy notice reflects this requirement and 

include the photo request” 

 

3.3.2 Users: 
“Create Users 

Description 

As an ICT Co-ordinator I want the system to integrate with the Wise Group active directory active 

directory so that assigning a user to a specific AD group will automatically assign them a 

corresponding security role. 

Acceptance Criteria 

 Ideally, there is no need to separately provision a user account within the application; the 

creation of a user in Active Directory (and it’s assignment to an AD group) and the 

synchronisation between AD and the application is sufficient for that user to access the 

application. 

Within a short, pre-defined time period of assigning a user to an AD group (ideally no more than 1 

hour; preferably 15 mins. or less), the user is able to authenticate into the application and has the 

expected access rights of the role assigned. 

Notes  

Ideally, user access rights should be assignable by ICT whilst not allowing staff access to customer 

data. 

Partners will not as a matter of course be added to the active directory, although there may be some 

instances, in the future, where we wish partners to be part of the AD and access single sign on. 

 



 
 

9 
 

3.3.3 Single Sign On 
Description 

As a user I want to use my windows password to sign in to the CRM so that I don’t have to sign in 

multiple times (and remember multiple passwords)  

 

Acceptance Criteria 

 Logging in to the application redirects the user to the active directory sign-in page for 

authentication 

The authentication process honours / fully works with 2-factor authentication 

Notes 

The login process should be simple for the user whilst allowing the enforcement of IT security 

requirements. 

After 15 minutes of inactivity the user will be logged out (timeout user story) 

Single sign-on will not be a function available to partners (they should access through a link and 

create username and password) at present, but this may change in the future so please be aware of 

this potential future requirement. 

 

Timeout 

 

Description 

 

As the ICT role I want CRM access to timeout after 15 minutes of inactivity so that access to large 

volumes of sensitive data is minimised 

Acceptance Criteria 

 Inactivity by user for 15 minutes = system timeout  

 Autosave function included (to ensure system does not timeout when users are typing if 

they have not saved within 15 mins) 

Notes 

 Must not clear content of CRM (i.e. users do not lose work entered onto CRM even if not 

saved), but timeout means you must enter password again” 

 

 

 



 
 

10 
 

4 SYSTEM DESIGN 

In this chapter, the design and development methodology of the system is documented as 

well as the system’s structure. Since this dissertation is mostly focussed on the front-end 

development of a web application that already had an architecture in place as well as UI that 

was already decided between the graphic designer and the client, there is a limited discussion 

on why the system was designed the way it was. 

 

4.1 DESIGN AND DEVELOPMENT METHODOLOGY: 
For this project, the basic building blocks were taken from the most recent previous project 

that had been completed. The decision behind this is that the company had invested money 

into developing systems that would be more made of separate components rather than 

monolithic systems and to see a return on this, you need to reuse what has already been built. 

The issue with this is that the first time the system was developed in React as well as AWS 

and Serverless, people were not very experienced with the technology and so there are some 

flaws in the design of this system but the methodology behind this is that with each project 

there will be incremental improvements in the separate components so that as time goes by, 

systems will become more and more refined and also be quicker to build as people build more 

experience with the technology.  

As for why React was chosen over Vue or Angular was mostly because it’s not too difficult a 

learning curve compared to Angular but at the same time it also boasts a much more larger 

and mature community than the likes of Vue. React is also just a library for creating UI’s (View) 

rather than a fully-fledged framework that handles everything such as the Model, View and 

Controller. As for why AWS was picked over Azure, is the fact that at this time AWS is the 

dominant web service provider out of all the cloud service providers with almost twice as 

much marketshare as Azure which comes in 2nd place (Canalys.com 2019). Due to the 

dominance some of the services AWS provides are much cheaper than some of the services 

Azure provides, for example, Amazon’s elastic search service might cost £30 a month 

compared to a different service on Azure that provides the same functionality but in a 

different form factor. Amazon’s elastic search provides search functionality for our 

DynamoDB tables, something that DynamoDB lacks by itself. 

For the development of such a large project, a combination between a traditional 

methodology and an agile methodology was followed. 

The explanation behind this is that a large bulk of the requirements were there from the 

beginning and then the analysis was done as well as the design. For the most part, these three 

aspects of the software development life cycle have only seen minor change. There still has 

to be a user acceptance test though so the above could change in the future. So far, there has 

only been a cycle between coding and testing. Overall though, there has been a roadmap 

from since the start for the project and so there has been a certain amount of structure which 

is associated with the waterfall method. 



 
 

11 
 

From a day to day standpoint, there is a daily stand up at 11:30am where each member of 

the team tell the rest of the team three things. 1. What they did yesterday  2. What they are 

doing today, and 3. If anything is blocking their progress. These standups can be finished in 5 

minutes or they can last for 15 minutes depending on what is being worked on, as sometimes 

discussions about the design of a certain feature are brought up. The team also has JIRA 

tickets who are responsible for creating and moving along on our Kanban board. The flow the 

team has for the board is as follows: The initial tasks/stories are put in the backlog and then 

tasks/stories are chosen from that back-log into the to-do column. The next column is the 

selected or development column and to the right of that again is the “in progress” column. 

Then it is the “awaiting client feedback” column and then then “ready for test” column. After 

that, is ofcourse the “in test” column and then once it has been tested, it moves onto the 

“ready for user acceptance test (UAT)” column and once it is time for the UAT, they are moved 

to the “UAT” column. Finally, if there are no problems with that task or story, it would move 

to “done”. This won’t always be the case though and some of these tasks/stories may go back 

to the start in the form of bugs or even due to a change in the client’s mind on what behaviour 

they want. In this case, the process of the task moving to the right of the board would start 

all over again. The idea behind using a board like this is to make it easier to see what tasks are 

making progress and just as importantly, what tasks aren’t seeing progress:

 

Figure 1: JIRA's kanban board 

In Jira it was also common practice to make child tickets within the original tickets due to the 

fact that original tickets would be associated with a User Story and user stories tend to have 

more than just one requirement for the user story to be fulfilled. So different engineers could 

make children tickets out of that original ticket and once all the children tickets were 

completed, then the original ticket could move to the next stage. 

From a week to week standpoint, there is now also a Weekly Planning Session each Monday 

as an extension to the daily standups where the team discusses what is hoped to be 

implemented by the end of the week. These meetings tend to take up an hour now due to 



 
 

12 
 

the initial team of four increasing to seven due to the start of another project and a new 

approach the head of project delivery proposed. This new approach would separate the entire 

team in to two teams: front-end and back-end developers. The front-end and back-end 

developers would go between projects depending on what tasks on each project took priority. 

This dissertation will only focus on the work carried out in the initial project though. 

Once there are enough features that have been implemented over a period of time (decided 

by the project manager and the senior software engineer, the system will be then deployed 

for testing purposes and at that stage, our QA tester thoroughly tests all the features of the 

application and any bugs that are caught are posted as a ticket onto Jira. 

Moving on to GitLab, is the version control repository. As part of this project the workflow 

was to branch off from master and if it was a bug the branch was called 

“bug/nameOfBugHere-JiraTicketNumber” or if it was a feature then it was called 

“feature/nameOfFeature-JiraTicketNumber”. That bug was then fixed or that feature was 

then implemented.  

While that was being done, changes are staged, committed and then pushed onto Gitlab. Any 

changes were always pushed at the end of the day to ensure that team members could always 

access the most recent changes made to that in case the person who implemented the 

changes were off the next day.  

Once the engineer was satisfied that their code does what it said, a merge request was then 

created where a description of what the branch implemented or fixed was included in the 

merge request and a maintainer was assigned to be responsible for checking it over and 

merging it. The person who opened the merge request was also responsible for tagging other 

team members in the description so they were made aware of the merge request.  

Once the merge request was open, it was time for the other team members to look over the 

changes in the code and also check it out on their local system to test that it worked as 

expected and to catch any bugs. If any bugs were caught, a discussion was brought up on the 

merge request which would be used to highlight a piece of code they wanted to discuss or 

point out an issue with it.  

It was then up to the team member that opened that discussion to have resolved that 

discussion once the person responsible for the code resolved the issue that was brought up. 

Once discussions had been resolved and everyone was satisfied with the code, the merge 

request could then be merged with the master branch.  

After the merge request had been merged, everyone then needed to pull from their master 

branch to ensure their master branch code was up to date. They also checked out the 

branches they were working on and pulled the new updates from the recently updated 

master too. Sometimes conflicts occurred and these needed to be carefully resolved. 

Besides this, my supervisor and I tried to skype once a week, during my lunch where I let him 

know how I was progressing with the application as well as discussing matters such as 

copyright and privacy as since the company owns the software and the clients have reasons 

to remain anonymous, I am not at liberty to share details of the business the CRM is for. 



 
 

13 
 

 

4.2 SYSTEM STRUCTURE: 
When the client came to Pulsion Technology looking for a CRM system, they already had 

decided they wanted the medium for the system to be a web application so that while they 

could access it through a desktop, the application would also be mobile friendly so if they 

were working out in the field, they could still access it through an Ipad. 

All data records such as Organisation records, Customer Records and User records were 

stored in a dynamoDB database hosted by Amazon Web Service where each developer had 

set up their own development environment with their own databases so that our systems 

were completely seperate. The way the CRM reached the database as well as the other 

services such as Cognito was through an API that went through AWS’s API gateway and then 

through AWS’s lambda functions which executes code written by the back-end team which 

then makes use of microservices such as DynamoDB or Cognito. 

The way the application works is that a user needs to be created on the system by an admin 

user, that user can then login with their given username and password (this will change once 

it leaves development). Once the user logins, they land on the dashboard called “My work” 

which is currently an empty page still to be developed.  

However on the left of a screen is a collapsible sidebar that has various routes that the user 

can go in. If Organisation’s is clicked,  the user is then directed to the Organisation’s list page 

which contains a table with all the organisation’s the user has created along with columns 

showing details of that Organisation.  

Depending on what user role the user had been given, the user may not actually have 

permission to see the Organisation’s page though and if the user did have permission to see 

the Organisation’s page, the user may not be able to create a new organisation or modify an 

existing organisation (the buttons are hidden). The way a user can create an organisation 

though is through clicking the “New organisation” button which presents the user with a form 

that the user needs to fill out, and if the user forgets to fill in a field or doesn’t fill it in correctly, 

validation messages attached to the bottom of the field inputs would appear.  

Once a form has been successfully filled in, a modal appears to confirm the creation of a new 

organisation with them details. In the case that the user does confirm the creation, the user 

is then led back to the list page with the new organisation now being present in the table. The 

user can then click this organisation entry in the table and this will lead the user to the view 

page of that organisation.  

On this page, if the user has the permission to do so, they can click the edit button and this 

allows the user to edit any of the fields If they user didn’t have permission though, based on 

their user role, the edit button would be hidden. In the future, users will need to send 

approval requests to modify certain fields. 

Once the user has edited fields though (given they are valid changes) the user can then submit 

the changes which will again open a modal up for them to save or cancel the changes. If the 



 
 

14 
 

user saves the changes, the user stays on the organisation page, however if the user wanted 

to go back to the list page, there is a button at the top that the user can click to direct them 

back.  

 

 

 

4.3 FINAL DESIGN OUTCOME: 
As Organisation’s progressed, insight into the Organisation’s user story grew, when the form 

was initially completed, there was no field to record a “Standard Industrial Classification” (SIC) 

code, there was no field to record the local authority area as well as the only being able to 

have one contact for each Organisation with their own name, email address and phone 

number, however the Organisation’s form now has the ability to record a SIC code, record a 

local authority area as well as having the ability to record multiple contacts for each 

Organisation. 

 

4.4 UI DESIGN: 
Through weeks of communication between the clients and the graphic designer, this is the 

general layout and appearance the clients wanted. The general layout of the Organisation’s 

was very much similar to all the other pages, the only difference is that the Organisation’s 

form was more complex as it had the ability to add multiple contacts. 

In the first picture, the Organisation’s dashboard is shown. 

 

Figure 2 Organisations Dashboard 



 
 

15 
 

When the “New Organisation” button is clicked in the right-hand corner, then the Create page is 

shown in figure 2. 

 

Figure 3 Organisations Create Page 

 

If instead, one of the organisations are clicked inside the table, then the View page is shown like In 

figure 3. 

 

Figure 4 Organisation's View Page 

 

Then if the edit button is clicked, the form fields now allow you to edit them. 



 
 

16 
 

 

Figure 5 Organisation's Edit Page 

 

If the user goes to submit the filling in all the fields, you will get validation error messages as shown 

below. 

 

Figure 6 Validation messages when all fields are empty 

 

And even if fields are filled in, for the likes of the email and postcode, there is regex checks to ensure 

it is a valid email address or a valid UK postcode. 



 
 

17 
 

 

Figure 7 Postcode and Email validation messages when value is invalid. 

 

5 DETAILED DESIGN AND IMPLEMENTATION 

This chapter will focus on the detailed design and implementation of the development of 

the Organisation page along with any other work that was carried out relating to the 

application. This will include the documentation of all the technologies utilized and learned 

in as well as the main features of each page of the Organisation’s and how they were 

implemented along with the issues that were encountered in developing them. 

5.1 LEARNING: 
To get started, these courses were used to learn about AWS, Serverless, HTML, CSS, 

Javascript and React: 

1. Codecademy3 Introduction to HTML: This was a short course that introduced the 

basics of HyperText Markup Language (HTML) and how to start building and editing 

web pages.  

2. Codecademy Introduction to CSS: This was a short course that introduced how HTML 

could be organized and styled with Cascading Style Sheets (CSS). 

3. Codecademy Introduction to Javascript: This was a longer course that taught the 

fundamentals of Javascript which also included the newest features of Javascript 

ES6. 

4. Codecademy Learn ReactJS: Part 1: This course introduced JSX which is a syntax 

extension for Javascript. It was written to be used with React and it looks a lot like 

HTML. The course also introduced the idea of components as well as props which is a 

                                                           
3 https://www.codecademy.com/learn 

https://www.codecademy.com/learn


 
 

18 
 

way of passing information from one component to another and state which is 

dynamic information stored by a component. 

5. Codecademy Learn ReactJS Part 2: This course introduced the relationship between 

stateless and stateful components, styling of the components and component’s 

lifecycle methods. 

6. Official Reactjs tutorial4: In this tutorial, the game of tic-tac-toe was programmed. 

7. Udemy.com: React – The Complete Guide (incl Hooks, React Router, Redux)5: This 

course/tutorial also went over the fundamentals in a much thorough way, it went 

through different ways of doing things and at the same time walked through the 

development of a “Burger Building App”. 

8. TylerMcginnis.com6: This website focusses on modern Javascript and React, where 

things are updated so that nothing is ever 6 months out of date. This course really 

helped explain a lot of the fundamentals of React and how React apps should be 

built. 

9. AWS WildRydes7: This course introduced AWS’s microservices such as AWS Lambda, 

Amazon API Gateway, Amazon S3, Amazon DynamoDB and Amazon Cognito. It 

introduced these services by showing how to create a simple serverless web 

application that enables users to request unicorn rides from the “Wild Rydes” fleet. 

The application presents users with an HTML based user interface (Amazon S3) for 

indicating the location where they would like to be picked up. The application 

interfaces on the backend with a RESTful web service (Amazon API Gateway, AWS 

Lambda, DynamoDB) to submit the request and dispatch a nearby unicorn. The 

application also handles users registering with the service and requiring users to log 

in (Amazon Cognito) before requesting unicorn rides. 

5.2 DEVELOPMENT TECHNOLOGIES USED: 

5.2.1 Javascript:  
Javascript8 is a high-level, interpreted language programming language that conforms to the 

ECMAScript specification9. Javascript has curly-bracket syntax, dynamic typing, prototype-

based object-orientation and first-class functions and was used throughout the entire front-

end with the help of React to provide the interactivity of the CRM web application as well as 

the back-end in the form of Node.js. 

Serverless: 

                                                           
4 https://reactjs.org/tutorial/tutorial.html 
5 https://www.udemy.com/react-the-complete-guide-incl-redux/ 
6 https://tylermcginnis.com/ 
7 https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-
dynamodb-cognito/ 
8 https://www.javascript.com/ 
9 https://www.ecma-international.org/publications/standards/Ecma-262.htm 

https://reactjs.org/tutorial/tutorial.html
https://www.udemy.com/react-the-complete-guide-incl-redux/
https://tylermcginnis.com/
https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://www.javascript.com/
https://www.ecma-international.org/publications/standards/Ecma-262.htm


 
 

19 
 

The Serverless Framework10 is a free and open-source web framework written using 

Node.js. It was used in building the web application due to the fact that our web 

applications back-end runs on Amazon Web Services (AWS). This was used to deploy back-

end code to AWS Lambda. 

5.2.2 HTML/JSX: 
Hypertext Markup Language11 is the standard markup language that dictates how a web 

page should be displayed in a browser as well as telling what elements should be loaded. 

Apart from being used in the index page, HTML wasn’t directly used. Javascript has syntax 

extension called JSX which looks like HTML but isn’t HTML. It can be seen from the 

screenshot below in figure 10 in subchapter 5.3.1 where there is html looking syntax: 

<Form.Dropdown attributes=…/>. 

5.2.3 CSS: 
Cascading Style Sheets (CSS)12 is the standard way of styling HTML. It modifies the way in 

which HTML is displayed on a page. For example, it can decide the location of where HTML 

is displayed, whether it is hidden or not, the colour of it, the size and much more. A lot of 

CSS was done in the forms of classes, where a class of CSS styles were associated with a 

certain component and its sub components. There was a template that most engineers took 

from though and if needed, it would be tweaked to suit a page but most of it was kept the 

same to keep the look of the pages consistent. 

5.2.4 SCSS:  
Sass13 (SCSS) is an extension to CSS which increases the features and abilities of CSS and is 

approved by industry. Sass was what was used when it came to making the styles like 

mentioned for CSS. 

5.2.5 React:  
React14 is a declarative, efficient and flexible JavaScript library that’s used for building user 

interfaces. The main philosophy of it is that complex UIs can be created from using small 

and isolated blocks of code called “Components” that can interact with one another by 

passing information. 

5.2.6 React Router: 
React Router15 is the standard routing library that is used for React. It was used to help keep 

the UI in sync with the URL’s that were used to ensure the correct components were being 

rendered on the correct URL pages as well as ensuring that if a link button was clicked to 

another page, that the other page would be landed on. 

                                                           
10 https://serverless.com/ 
11 https://html.com/ 
12 https://en.wikipedia.org/wiki/Cascading_Style_Sheets 
13 https://sass-lang.com/ 
14 https://reactjs.org/ 
15 https://reacttraining.com/react-router/ 

https://serverless.com/
https://html.com/
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://sass-lang.com/
https://reactjs.org/
https://reacttraining.com/react-router/


 
 

20 
 

5.2.7 React Redux:  
Redux16 is mostly used for complex web applications, where passing state information in the 

form of props, from one component to another is not very elegant. For example, if a 

component needs to access some information based on another component but that other 

component is maybe 8 components away, it is exhaustive passing props through all of them 

components that are inbetween. What Redux does is create a container for this state that 

can accessed directly from any component. Since the CRM was a large web app, it made 

sense to make use of Redux however, it is unnecessary when it comes to simple actions like 

UI changes which the local state of a component can handle fine. 

5.2.8 Axios: 
Axios17 is yet another Javascript library that was used in the development of the web 

application. This library helps make HTTP requests from node.js which is used in the back-

end code as well as supporting the Promise API that’s part of Javascript ES6. In the context 

of this project, Redux actions would call functions from the API class, and these functions 

would use axios to make requests to the AWS API Gateway which would then send a 

response back which axios would handle. There was four different requests, “post” which is 

used for when something is to be created, “put” can also be used to create but also update, 

“get” is used when information is needed to be retrieved, and “delete” is for when it’s 

desired to delete information. Depending on how things are set up though, Post could even 

be used to retrieve information as shown in figure 27 in the verification and validation 

chapter. 

5.2.9 Semantic UI: 
A design decision made from the start was to use a UI package called Semantic UI18 that has 

its own Elements (button, icon, input etc.), Collections (Form, Grid and Message etc.), Views 

(Comments, Feed and Card), Modules (Dropdown, Modal, Search etc.) and more. This saved 

a lot of time by not having to create UI components from scratch. The dropdown shown in a 

later screenshot is an example of this. 

5.2.10   Validate.js package: 
Validate.js19 is a javascript package used for validating Javascript objects. The main benefit 

of this package is that it provides a cross framework and cross language way of validating 

data and so the validation constraints by which objects are validated on, can be shared 

between clients and the server. It was used to validate all of the fields of an Organisation as 

well as for Users and Customers etc. 

5.2.11   Node: 
Node.js20 is an open source server environment that allows javascript to run outside a 

browser environment. Node.js was needed from the beginning to use NPM and set up the 

                                                           
16 https://react-redux.js.org/ 
17 https://github.com/axios/axios 
18 https://semantic-ui.com/ 
19 https://validatejs.org/ 
20 https://nodejs.org/en/ 

https://react-redux.js.org/
https://github.com/axios/axios
https://semantic-ui.com/
https://validatejs.org/
https://nodejs.org/en/


 
 

21 
 

application on the system. This was used in the back-end to create functions to handle 

requests from axios. 

5.2.12   NPM: 
NPM21 is an online package manager for JavaScript and is the default package manager for 

Node.js hence why Node.js was required. NPM is what allowed for libraries like React and 

packages like React-Router, Axios and Semantic UI to be installed and used as part of the 

web application. 

 

5.2.13   Webpack:  
Webpack22 is a module bundler. Its purpose is to bundle JavaScript files for usage in a 

browser but it also supports many other assets such as CSS and images. This was used to 

help build the application using the package.json file which let’s webpack know which 

packages/dependencies the application requires to be installed and what version. A small 

part of it is shown below: 

                                                           
21 https://www.npmjs.com/ 
22 https://webpack.js.org/ 

https://www.npmjs.com/
https://webpack.js.org/


 
 

22 
 

 

Figure 8:Excerpt from package.json file 

Each line in the above figure represents a package that webpack will read and then fetch from the 

web. Not only that but with “scripts” as shown, webpack can enable a project to be ran, built, tested 

and ejected. If a project is ran, it just means it runs on a browser, this happens during development. 

Once it is production ready, it is then built, when built, not all packages are needed, when tested, 



 
 

23 
 

test packages will run and when the project has been ejected, all of these packages can be seen, 

which has already been done. 

5.2.14   Git:  
Git23 is a distributed version-control system for tracking changes in source code during 

software development. It is designed for coordinating work among engineers, but it can only 

be used to track any kinds of documents. This was used extensively throughout 

development. 

5.2.15   Gitlab: 
Gitlab24 is a web-based DevOps lifecycle tool that provides a Git-repository manager 

providing wiki, issue-tracking and continuous integration/continuous delivery pipeline 

features. The project’s source code was stored on a repository on this website. 

5.2.16   Postman: 
Postman25 allowed for sending API requests to AWS and receiving responses without having 

to use the front-end of the application. This came in useful when testing the back-end and 

couldn’t rely on the front-end. 

5.2.17   Visual Studio Code: 
Visual Studio Code26 is a source-code editor developed by Microsoft. It includes support for 

debugging, embedded Git controls and GitLab, syntax highlighting, intelligent code 

completion, snippets and code refactoring. It also features excellent extensions such as 

Prettier which formats your code so that it is more readable as well as an extension called 

GitLens which shows who has coded the selected line as well as when. 

5.2.18   Microsoft Teams: 
Microsoft Teams27 is a collaboration tool used for office communication and this is used 

throughout the development of the project so that developers can post questions, see that 

merge requests have been opened as well as merged and also see updates others have 

posted on projects. 

5.2.19   Jira: 
Jira28 helps the team plan by allowing developers and others to create user stories and 

issues, as well as plan sprints and distribute tasks across the software development team. 

Not only that, but it helps developers and others track what is going on as well as prioritize 

and discuss the team’s work in full context with everything else visible. As mentioned in the 

methodology, Jira was used extensively to track the progress of the project. 

                                                           
23 https://git-scm.com/ 
24 https://about.gitlab.com/ 
25 https://www.getpostman.com/ 
26 https://code.visualstudio.com/ 
27 https://products.office.com/en-us/microsoft-teams/group-chat-software 
28 https://www.atlassian.com/software/jira 

https://git-scm.com/
https://about.gitlab.com/
https://www.getpostman.com/
https://code.visualstudio.com/
https://products.office.com/en-us/microsoft-teams/group-chat-software
https://www.atlassian.com/software/jira


 
 

24 
 

5.2.20   Aceproject: 
Aceproject29 is a web-based application that Pulsion Technology uses to track time spent on 

projects and User Stories within projects and at the end of the day, the time spent on a user 

story was recorded on to the corresponding task on AceProject. 

5.2.21   Google Chrome Developer Tools: 
The developer tools30 found in Google Chrome are very powerful inspection tools for 

observing many parts of a web application. It provides a very useful way for identifying the 

document object model (DOM), the firing of events, console logs, monitoring of network 

activity as well as having the ability to be extended so that it is also possible to analyse the 

web application’s Redux store as well as looking at the local state and props of components 

in React. Not only that but it also provides the ability to inspect the CSS of elements as well 

as the ability to temporarily modify the CSS so that it doesn’t need to be changed in the 

code editor and redeployed. 

5.2.22   Amazon Web Service: 
Amazon Web Service31 (AWS) is a cloud platform that can provide 165 different services 

[ref] from data centres across the glove. Cloud computing provides on-demand delivery of 

computing power, databases, storage, applications as well as many other features. AWS is 

what is used to provide the storage, databases, back-end functionality and security for the 

CRM.  

5.2.23   Amazon API Gateway: 
Amazon API Gateway32 is a fully managed service that made it easy for API’s to be created, 

published, maintained, monitored and secured. It allowed for the application to access data 

as well as business logic which was code running on AWS Lambda. This was what axios 

interacted with. 

5.2.24   Amazon DynamoDB: 
Amazon DynamoDB33 is a fully managed proprietary NoSQL database service that supported 

all the data stored in the CRM web application. It stores Organisation’s as well as other 

entities in a document format. For example each Organisation is stored in the form of an 

object data-structure as part of a table of Organisations. 

 

                                                           
29 https://www.aceproject.com/ 
30 https://developers.google.com/web/tools/chrome-devtools/ 
31 https://aws.amazon.com/ 
32 https://aws.amazon.com/api-gateway/ 
33 https://aws.amazon.com/dynamodb/ 

https://www.aceproject.com/
https://developers.google.com/web/tools/chrome-devtools/
https://aws.amazon.com/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/dynamodb/


 
 

25 
 

5.2.25   Amazon Cognito: 
Amazon Cognito34 is a service that handles user authentication and access for mobile 

applications on internet-connected devices. It allowed for the web application to easily have 

user sign-up, sign-in and access control and was what handled users for the CRM. 

5.2.26   AWS Lambda: 
AWS Lambda35 let the back-end of the web application to be ran without provisioning or 

managing servers. It is very cost effective way of hosting a web application as only the 

compute time consumed needs to be paid for and can be scaled without having to upgrade 

an existing server. For this project, there was back-end code that was stored on the 

computer however, to get that code running on AWS Lambda, Serverless would deploy the 

code on to AWS Lambda for AWS Lambda to then be able to execute that code when the 

application was running. 

 

5.3 ORGANISATIONS USER STORY FEATURES: 
This chapter will delve into each area of what was done within the Organisation’s user story 

where each part will be discussed as to how it was developed, how it functions and explains 

the approach taken.  

5.3.1 Initial Setup of Organisation’s List, Edit and Create Pages: 
At this point, the main application had already been set up with Redux, Router and the 

User’s page had already had enough functionality to create, edit, view and delete Users. 

There was also a sidebar that showed a list of routes the user could click on such as 

“Customers” and “Organisations”. These pages could be clicked on however they only led to 

an empty page. What was done then for Organisation’s was all the code that was currently 

in User’s was copied and pasted over into the Organisation’s folder within the project’s 

folder directory.  

The first time this process was carried out, it was done in a way that each subfolder was 

copied and pasted one at a time and then refactored in such a way that all occurrences of 

the word “User” was replaced with the word “Organisation” or “users” with “organisations” 

as well as other variations. Once this was completed, the application was still not working 

and it was decided that it would be easier to start again and so this time the whole Users 

folder was copied as a whole and pasted inside the Organisation’s folder and then Visual 

Studio Code’s powerful search functionality was used to scan the files for occurrences and 

this time, the refactoring had been done properly and the Organisation page now had the 

same functionality as the User’s page had. What had to be done now was adapt the User’s 

page to what was required of Organisation’s as dictated in the User Stories. 

                                                           
34 https://aws.amazon.com/cognito/ 
35 https://aws.amazon.com/lambda/ 

https://aws.amazon.com/cognito/
https://aws.amazon.com/lambda/


 
 

26 
 

One mistake that was made near the start of the project was that the Active property was 

removed from the Organisation’s because it was assumed that an Organisation doesn’t 

need an active property like a User does. However this was a wrong assumption to make 

and the Active property was brought back for Organisation’s. 

At this stage in the development of the web application, despite having went through 

various tutorials, it was still very hard to navigate and understand what was doing what. The 

structure of the application was very large and complex compared to all the projects that 

had been seen before and at the same time, there was also a lot of code repeated 

throughout the source folder too.  

The application also handled Router and Redux very differently from what had been seen 

before too and it was very difficult to make sense of it all. To help explain why this is, the 

project structure has been displayed in the appendix. At this point though, what had to be 

done was to change the form within the Create Organisation and Edit Organisation page so 

that it would record Organisation data rather than User data and that’s what was focussed 

on to start with. 

So at the start, instead of the form having a dropdown component for Roles, there was now 

a dropdown component for Organisation Types which required creating a dropdown options 

file within Resources and then creating an array like shown below: 

 

Figure 9: An array of options of what type of an organisation, an organisation can be 

It’s helpful to note that the curly brace “{“ is the beginning of an object and “}” is the end of 

an object. It’s also helpful to note that “[“ and “]” is also the beginning and the end of an 

array, so it is then clear that the above array, has multiple objects in it. 

The key in each object would be used as a way to uniquely identify each object in the array, 

the “value” would be what value would be recorded in the database if that row was 

selected and the text is for display purposes in the front-end as will be shown in figure 11 

below where a dropdown is shown, displaying the text options displayed in figure 9. If “S SS” 

was selected, then the value “sSS” would be stored as what type of Organisation it is. 

This array would then be imported into the ModifyOrganisation file and then referenced as 

the options for the Form.Dropdown component that is part of Semantic UI. The reason for 

the check at the start to check whether the mode is create or edit is because if it’s in view 

mode, the dropdown should be disabled however for some reason the dropdown 

component doesn’t disable so when view mode is on, the component is actually rendered as 

a Form.Input, another component from Semantic UI which is just an ordinary text input.



 
 

27 
 

{this.props.mode === "create" || this.props.mode === "edit" ? ( 

              <Form.Dropdown 

                label={strings.form.label.mainType} 

                name="mainType" 

                onChange={this.props.handleChange} 

                placeholder={strings.form.placeholder.mainType} 

                selection 

                required 

                options={organisationTypeOptions} 

                value={this.props.selectedOrganisationData.mainType || ""} 

                width={8} 

              /> 

            ) : ( 

              <Form.Input 

                label={strings.form.label.mainType} 

                name="mainType" 

                placeholder={strings.form.placeholder.mainType} 

                required 

                value={ 

                  this.props.getOrganisationTypeNameFromValue( 

                    this.props.selectedOrganisationData.mainType 

                  ) || "" 

                } 

                width={8} 

              /> 

            )} 

 

 

Figure 10: Form Dropdown component being rendered if in create or edit mode and a Form Input being rendered if not in 
them modes. 

In the above screenshot, there are properties given to both the <Form.Dropdown /> and 

<Form.Input /> component. These properties are “label”, “name”, “onChange”, “placeholder”, 

“selection”, “required”, “options”, “value” and “width”. 

The “label” property is simply the label given to the Dropdown. In this case the text that has been 

passed into the “label” property is “Organisation Type”, as shown in the label in figure 11. Next is 

“name” and that helps identify the component. The “onChange” property passes in a function that 

allows data to be changed in the dropdown. The “placeholder” property simply displays text in the 

dropdown when no value has been selected. The “required” property enforces that the form can’t 

be submitted unless it has been filled. The “value” property is the value that is stored in the 

dropdown. The “width” property simply tells the Dropdown or Form.Input component how wide it 

should be. 

With this code and “options” in dropdown being set to equal the array from the previous 

screenshot, there is now a dropdown field displaying in the form as shown below: 



 
 

28 
 

 

Figure 11: Dropdown shown in front-end 

 

This part of the project was simple enough to do without having to understand too much of 

the larger picture. 

Another simple part of the project was opening up the strings folder where strings were 

imported into other folders from and changing the strings to suit the Organisations page. To 

give a better idea of what this is, here is a screenshot of a part of it: 

 

Figure 12: File with list of strings to be used by other files. 

Another change that was made that had to be discarded was a change in how the form was 

structured. An assumption was made that the form should be more spread out so that 

certain pieces of information such as address information was grouped together while other 



 
 

29 
 

information was separate however this change was not liked due to the fact it made the 

screen scrollable and so some fields were not visible unless the page scrolled down. 

5.3.2 DatePicker: 
One headache that was had was the DatePicker36. It was assumed that implementing a 

simple component that let a date be selected would be relatively easy but it wasn’t. One 

issue was that when selecting a day of the calendar, only 12 days were available to click as 

for some reason it was taking that as the month. The datepicker documentation was 

scrutinised and various solutions were tried in the front-end to solve this issue as another 

problem the datepicker had when trying to correct it was that it would randomly break the 

application. Due to it being random, the datepicker was thought to be working until later 

on. 

5.3.3 RequestFeedback: 
There was also plenty of times during the project where if something was changed in the 

Users or Customers pages, the changes had to be reflected in Organisation’s as well. One of 

these changes that occurred was the feedback messages that would be shown. Initially the 

application had feedback messages that were only based on a Boolean value of false or true 

however due to an issue with the wrong feedback message being sent in some edge cases, 

the value of “undefined” was also required to be used for the variable “requestStatus” when 

the CRM was processing a request. In addition to these changes, variable names and 

function names were made more consistent and meaningful as well as styling changes and 

                                                           
36 https://www.npmjs.com/package/semantic-ui-calendar-react 

https://www.npmjs.com/package/semantic-ui-calendar-react


 
 

30 
 

making RequestFeedback its own component as shown here: 

 

Figure 13: RequestFeedback component 

These were reasonably simple changes to make however with the complexity of the 

application itself, it was easy to make mistakes and then it would require some amount of 

time to try and find and fix the issue.  

One way of helping find mistakes was through the use of PropTypes: 

 

Figure 14: Proptypes 



 
 

31 
 

PropTypes declares what props, the RequestFeedback component is to expect and so if for 

example no prop called “requestMade” was passed in to the RequestFeedback component, 

a console log warning would appear on chrome dev tools like this: 

 

Figure 15: Proptypes console warning 

When initially adding validation, the validation was done entirely within the 

OrganisationCreateContainer and OrganisationEditContainer, so this involved having a list of 

requiredFields as well as adding objects called policies that would be used for regex checking against 

values to ensure they were in the correct format. 

5.3.4 Validation and DatePicker: 
With the introduction of validation to the forms came another issue with the datepicker. 

Each form field was to raise a validation message if left empty when the save button was 

clicked and until these fields were no longer empty, it wouldn’t be possible to save. This was 

because there was an additional on-click function that validated the form based on logic 

that had been added to validate fields. For some reason though, if the datepicker was never 

clicked on, it wasn’t being seen as part of the form so when the form was sent, the API 

rejected the form due to the lack of that piece of information.  

One solution was to revert to using Form.Input and setting it to type “date” which made use 

of HTML’s own datepicker however by looking at the website “https://caniuse.com/” it was 

found that Safari IOS as well as IE had bad support for it and so the original datepicker was 

reverted back to. It was eventually found that the value attribute should contain the string 

representation of the date instead of the date object that was being returned by moment.37 

                                                           
37 https://www.npmjs.com/package/moment 

https://caniuse.com/
https://www.npmjs.com/package/moment


 
 

32 
 

Overall it took a while for this issue to be resolved however it had been put on standby 

while other tasks were carried out. 

Another thing that was required was the adding of an html novalidate attribute that was 

needed for the organisation form itself due to the validation being carried out by javascript 

rather than html. This was done through the ability to read the DOM by carrying out 

document.getElementById(“organisationForm”) where “organisationForm” was the value 

given to the id attribute of the form. 

5.3.5 Validate.js: 
It was around this time that a meeting was had with the head of project delivery that a 

package that could be shared between the back-end and the front-end was to be desired for 

carrying out validation as having it in two separate places increased complexity and caused 

issues. This resulted in looking for a third party library that had a standardised approach to 

validation and a way to do this was through a package that the owner of Pulsion Technology 

had done some research into and this package was called validate.js.  

This package allowed for a “constraints” JSON object that could then be shared by both the 

back-end and the front-end if wrapped inside an NPM package that was published by 

Pulsion Technology and it meant as future projects were done, more constraint files could 

be added and some could be reused. This required the validation that had already been 

done to either be taken out or refactored to make use of this new package that was now 

being used. It took some time to understand the documentation of the package and how it 

worked so that it could be implemented but it was deemed an investment for the future. 

The constraints file for Organisations looked like this:  



 
 

33 
 

 

Figure 16: Incomplete constraints object 

Where within the constraints object, there was an object for each form field property and 

then within that object there was either a “presence” object which checked for whether a 

field was empty and if it was it would return a message or a “regex” object which checked 

whether a string matched a particular regular expression where a regular expression is a 

pattern that can be matched with. If a string didn’t match the regular expression (pattern) 

then a validation message would be shown. 

With these changes for validation, Form.Input, Form.Dropdown and Form.DateInput were 

extracted out into standalone components called ValidatedFormInput, ValidatedDropdown 

and ValidatedDateInput so future objects could also use these components in the future. 

After this some further refactoring was required in various places where the form had to be 

set to valid in the case that the changes made were cancelled. Furthermore, autocomplete 

was also set to off for the validatedDateInput as an autocomplete popup was covering the 

popup of the validatedDateInput, for some reason that can’t be recalled, this was done by 



 
 

34 
 

using getElementsByName which had be fixed to getElementById which made sense as it 

suited the way how the form had been read before to add the “novalidate” attribute: 

 

Figure 17: When page renders, form is read by "getElementById" so that attributes could be set directly to the DOM. 

Another refactoring was also carried out within the reducer so that the feedback messages 

being displayed were given by an attribute called “Reason”: 

 

Figure 18: A case statement inside the reducer file showing how a Reason would be returned as a result. 

  

This was again to help make the code more consistent and understandable. These types of 

changes did not often take long to carry out and it didn’t take long to open a merge request 

and get it merged into the master branch. 

Throughout these merge requests sometimes redundant code was spotted and commits 

were made to remove or improve on it. It helped to be a bit more careful before opening a 

merge request so that less of these discussions were made on the merge request so that 

less time was spent on focussing on getting rid of maybe a console.log or comment that was 

accidently left in rather than true problems with the code. 

By this point of the implementation, a better understanding of the code with regards to the 

Containers and ModifyOrganisation component had been built up however it still wasn’t 

understood how Redux was working. 

It was then discovered that to prevent a user from accessing an edit container that had 

already been deleted, the API had to be used in the container. The reason for this was that it 

would check whether the api call fails or not, if the call fails, a message would be shown on 

the list page and if otherwise you would navigate to the view page as normal. 



 
 

35 
 

Moving on from that, more work was assigned for finding out how to do validation 

messages properly because despite using the validate.js package, its ability to create 

messages were not being used and instead, the messages from the strings file was still being 

used. It wasn’t too hard to make this change and it also allowed for dynamic messages to be 

shown where it could show the current value that was invalid. For example if the email 

“test@gmail” was submitted, the user would then be faced with a validation message which 

would say along the lines of “’test@gmail’ is not a valid email. Please enter a valid email”. 

These changes were made throughout not only Organisations, but also Customers and 

Users. All these changes were made in around 2 days. Here is the complete version of 

constraints: 

 

Figure 19: Complete constraints file 

It was at this point a tooltip was then needed for the Postcode field so that users were told 

what formats of postcode were acceptable.  



 
 

36 
 

5.3.6 Multiple Contact Table: 
The next task was to finally go from an Organisation only having one contact who had a 

name, phone number and email address as shown below: 

 

Figure 20: Initial single contact form 

 to an Organisation that could have multiple contacts (as many as desired) with these 

attributes: 



 
 

37 
 

 

Figure 21: Final Organisation's form involving contacts. An enlarged version can found in the Appendix. 

 The initial step in implementing this was in actually rendering a list of three fields “name”, 

“phone” and “email”. The basic functionality was copied initially from the internet however 

with still a lack of understanding in how everything worked exactly as well as a lack of 

practice when it came to methods such as map and manipulating objects within an array 

that is within an object, there was still a long windy path in trying to get this to work where 

a lot of different ideas were tried and then discarded as well as time spent looking on google 

to try and find a solution to the problem as well as even looking at third party forms that 

might be able to handle this sort of complex form easily.  

Initially it took a while to get the rendering to work but when that worked, it was then time 

to try and handle how the information that was entered in them rendered fields to be saved 

into the selectedOrganisationData object that contained the selected organisation that was 

clicked from the table or the organisation that was to be created.  

The focus was to initially get it working for the Edit container first. Since the back-end didn’t 

support multiple contacts yet, the edit container had to invoke a function that would 

instead insert a placeholder object with the desired properties and structure that the 

multiple contacts could render.  

The idea was to remove the properties “contactName”, “contactEmail” and “contactPhone” 

that was already there to support a single contact and instead have a property within the 

object called “contacts” which would be an array that would store objects that had the 

properties “contactName”, “contactEmail” and “contactPhone” so that if there was 2 

contacts for that organisation, it would look like [{“contactName”:””, “contactPhone”:””, 

“contactEmail”:””}, {“contactName”:””, “contactPhone”:””, “contactEmail”:””}]. Before this 

was done though within the EditContainer, this was temporarily done within the 



 
 

38 
 

ModifyOrganisation component which is bad form since the pattern of containers and 

components within React is that containers handle state which I had within my component 

and also I had functions in my component that also should be passed down from the 

container. This was ofcourse fixed though so that all the local state (not redux state) as well 

as functions were stored within the container. 

These functions were mostly “addContact”, “removeContact” and “handleContactChanges” 

which are quite self-explanatory. “addContact” simply pushed another contact object on to 

the array, “removeContact” removed the last contact to be added from the array and 

“handleContactChanges” was responsible for what was being entered in the fields to be 

reflected in the corresponding contacts and properties of them contacts, during the middle 

of the development of multiple contacts, the form looked like this: 

 

Figure 22: Appearance of form halfway through developing multiple contacts. 

.  

The plan initially was to make it so that when the form was submitted, the “contacts” array 

would be updated locally and then only when the save button was being pressed, that it 

would send the contacts information to redux. That would be the ideal solution however the 

way that the project had been set up was that each key press in a field updated Redux 

which wasn’t as simple due to the dynamic nature of contacts. Actions and Reducers were 

then created for updating Redux with the array.  



 
 

39 
 

This was still not something totally understood and some time was spent trying different 

things and debugging however no progress was really made with it. 

This task was put on hold so I could refactor my previously existing “Last Contact 

Programme” field to be a dropdown instead as well as also implementing a field called “SIC 

Code” where SIC stands for “Standard Industrial Classification”. This field would only allow 

numerical characters as well creating validation constraints for the field so to enforce the 

rule that it had to be 5 characters long.  

The field was also implemented to only be shown if the Organisation was an employer too 

due to SIC being a way to identify what kind of work an employer did and it didn’t make 

sense to include it if it wasn’t. This task offered a short breath of fresh air due to it not being 

as tricky as the task of implementing the feature of having multiple contacts. 

Once multiple contacts was being worked on again, a day or two more was spent on trying 

to make it so that the corresponding values in the contacts array was being updated when 

the fields were being updated before finally being able to get it working. Once that had 

been done, the attempt to update Redux with the whole array started.  

The way it was being done was that the whole array was being sent each time a field 

received a key press, so it wasn’t very efficient way of updating data, however the project 

was already not efficient because ideally form information is kept locally to that component 

rather than having each key input being sent to the redux store. The redux action and 

reducer that was created seemed to work though as the “selectedOrganisationData” object 

was being updated as it should have been however it was noted that for some reason 

“initialOrganisationData”, the object that stores data that is stored before any changes are 

made was being updated as well which wasn’t supposed to happen because, the 

“initialOrganisationData” object was used so that if you pressed cancel, the information 

within the fields would be reset to what the information was there before. The save button 

also had logic attached to it so that it would only be pressable if there was a difference 

between “selectedOrganisationData” and “initialOrganisationData”.  

For now this concern was left aside to change the way contacts were removed, how the 

contacts were displayed and how to actually validate multiple contacts due to the dynamic 

nature of it due to the possibility of fields being added and removed and how a static JSON 

object would be used to validate these fields. 

It was realized that the way contacts were removed was quite inflexible due to the fact 

there only being one button and that would remove the last contact added but what if it 

was only desired to remove the first contact that was added rather than the 3rd? It wouldn’t 

be very user friendly, so the remove button was refactored so that a bin icon was rendered 

for each contact so if that button was pressed, that contact would be deleted, the contrast 

in this can be shown in figure 20 and figure 19. 

It was also decided that the list of contacts could look a lot better and so a semantic UI table 

component was used instead to render the multiple contacts and that is shown in figure 19 

too. 



 
 

40 
 

Once these two things were done, it was then time to work on the validateForm function so 

that it would validate the multiple contacts as well. The constraints for contacts looked like 

this: 

 

Figure 23: Constraints for multiple contacts 

The way these constraints were applied was done was by initialising a local variable called 

“contactResults” with an empty array and then the function would check whether the 

“contacts” property within the “selectedOrganisationData” object was truthy. If so, then it 

would loop through each of the contact objects in the array using the “forEach” method and 

within that loop, it would push the result of the validate function on to contactResults. If the 

value in the field passed the validation, the returning value would be pushed would be 

“undefined” however if it failed the validation, the message that would be pushed would be 

the related validation message.  

Once that was done, a variable called “resultInvalid” was declared and the “contactResults” 

would be looped through and each value would be checked if it was undefined, if a value 

wasn’t undefined then it means that an invalid result came from the validation function and 

“resultInvalid” would be set to true.  

The next part was to check whether “resultInvalid” was truthy and if so, the validation 

results would only then append the “contactResults” because in Javascript, an array of 

undefined values is considered truthy whereas the value “undefined” itself, is considered 

falsy and so it was causing the final validation “results” variable to be truthy meaning that 

the form was invalid when in fact it was valid.  

Another change also had to be made in ModifyOrganisation’s where the validationResult 

attribute had to check whether the contacts property of validationResults was truthy and 

only then would it then check if that specific contact within the contacts property was truthy 

and only once that was truthy then the specific property (e.g contactName) of the specific 

contact (e.g of index 1) could be set as the value of that attribute.  



 
 

41 
 

If these checks weren’t in place then trying to access the index of an undefined value that 

didn’t exist or trying to access the property of an undefined value would result in a 

TypeError that would break the application. 

With these changes in place, the validation now worked perfectly for multiple contacts and 

an assumption was made that the keys given to each contact to identify them had to be 

permanent rather than having it be based on the contact’s index due to the fact that it can 

cause problems if you have a dynamic list of items (Pokorny, 2019). The problem was 

though that it wasn’t desired to have permanent id’s for these organisation contacts and 

there wasn’t any other way to give them unique keys without using the index of the map 

function.  

There was also the fact that the way the contacts were added and removed from the list 

would never cause an issue index wise and cause unexpected behaviour. The only way 

unexpected behaviour would occur would be if it was possible to add contacts to the start of 

the array rather than at the end so a key of greater than 0 would never be at the index 0. 

For these reasons, the index remained as the key however if in the future, this is to be 

changed, each contact will need to be given a permanent id. 

With that decision decided, the issue still remained that changes to the multiple contacts 

fields could not be saved unless one of the other fields were changed. This was due to 

somehow the multiple contact data being updated within the “initialOrganisationData” 

object as the same time the multiple contact data within the “selectedOrganisationData” 

object was being updated in redux as observed by the Redux plugin for chrome dev tools.  

This was very confusing and the first assumption that was made was that the new action 

and case statement that was created for updating Redux with the whole array was not 

behaving as it should and so instead, the Redux action and reducer case statement that was 

used for the other form fields was to be used to fix the problem. Once redux was eventually 

being updated again with that action and reducer case statement in place, the same issue 

was still there.  

The only reason left now for this happening was that somehow the object 

“initialOrganisationData” was copying by reference the “selectedOrganisationData” object 

somewhere however the way “initialOrganisationData” was being set was through a 

setState function that was using destructuring which was the known way to create a clone 

and not a copy by reference. Some googling helped to clarify that actually destructuring was 

only for shallow copies than deep copies. This meant that any nesting properties were being 

copied by reference rather than having an actual copy of the actual values and this made 

sense due to the fact that the other fields weren’t being updated in 

“initialOrganisationData” too.  

What was required to create a deep copy of another object was the following: 

“initialOrganisationData = JSON.parse(JSON.stringify(selectedOrganisationData))” where 

JSON.stringify would expand the entire object out including the nested properties into a 

JSON string and then JSON.parse would read that JSON string and turn it into an object 

again. With this revelation, multiple contacts now fully worked. The new redux action and 



 
 

42 
 

reducer wasn’t put back in use though because the current action and reducer was more 

efficient than the other one that updated Redux with the entire contacts array. 

After a bit more polishing such as making validation box sizes consistent, fixing some regular 

expressions, the decision was made to try and unit test some components which will be 

mentioned in the verification and validation chapter. 

While implementing some unit tests, there was other tasks in other pages such as 

Customers and Users that had to be done. 

 

5.4 USERS USER STORY FEATURES: 

5.4.1 User Roles and Geography: 
One such task was simply adding another dropdown field in Customers upon further 

communication with the client as to how Users would interact with Customers. It was found 

that Users and Customers would be given an area attribute so that only Users from that 

area could see Customers from that area unless they were an admin user and in that case 

they could see customers from all areas.  

Area was then also added to Users too which then caused for some conditional logic to then 

be applied. 

The issue was that it was possible to assign a user a non-admin role while at the same time 

the ability to view Customer’s from both area’s which shouldn’t be allowed to happen. This 

also meant if you assigned a User with the ability to see both Area’s, the user then shouldn’t 

be allowed to be assigned a non-admin role. So initially it looked like this where NR Manager 

is a non-admin role: 

 

Figure 24: With NR manage (a non-admin role) selected, it was possible to select "Both NRNE and NRS" as a geography. 

But it was changed so NR Manager and other non-admin roles could only see NRS or NRNE: 

 

Figure 25: A user with the role of NR Manager is now limited to only NRS or NRNE geography. 



 
 

43 
 

 

The other issue was that there was two roles that could be assigned but each one was tied 

to each of the area’s and so the idea was that if one of these roles were assigned then the 

corresponding value in the dropdown would be preselected and the dropdown would be 

disabled. The beginning of this functionality was being done with the actual form’s 

attributes however it became clear that the complexity of it required for functions to be 

created in the Container instead and for them functions to be passed down to the form 

components themselves through props. 

So initially it looked like this when you picked a NRS mentor: 

 

Figure 26: With NRS Mentor picked (a non-admin role) but specific to NRS, all geographies were allowed. 

 

And then looked like this with geography field preselected and disabled: 

 

Figure 27: With the update to the logic, now the selection of a NRS mentor meant that "NRS" was preselected in the 
dropdown field and the dropdown was disabled. 

Upon further reflection it was realized that the name of these two roles where the area was 

appended at the end could actually be changed so that the preselection logic was redundant 

so this logic was removed later on. 

 

 

 



 
 

44 
 

6 VERIFICATION AND VALIDATION 

When a client is paying Pulsion Technology to build a software system, it is absolutely vital for 

Pulsion Technology to ensure that the system is working as the client is expecting it to. That 

is why the requirements document is more than 100 pages long so to specify the details of 

what they want and at the same time, more and more is being added as development is being 

carried out and questions are arising about the precise workflow of how entities such as a 

Customer is created with regards to a Referral which according to the client, the creation of 

a Referral should create a Customer. It is subjects like these that require the client to come in 

and meet with the senior software engineer to discuss the exact process of these issues so 

that the senior software engineer can then guide the rest of the team in the right direction. If 

the code isn’t working as it should, the company loses money and if the company loses money 

then there isn’t enough money to pay wages and then there could be loss of jobs so this is 

why verification and validation is absolutely essential for a company like Pulsion Technology. 

Pulsion Technology hasn’t been a champion of unit testing for a while, however recently there 

has been efforts to try and integrate it into development. There are even lunches dedicated 

to Clean Code videos by Robert “Uncle Bob” Martin38 which include videos on Test Driven 

Development and now tutorials are in place for people to start practicing how to go between 

unit testing and development as it’s often so tempting to just take 5 steps at a time in 

development rather than one step at a time to make sure that one step doesn’t break 

anything. Front-end unit testing is something that has also became of interest and packages 

such as Jest and Enzyme allow for front-end components to be tested.  

There are several ways to test the front-end but the method of best practice is to shallow 

render the components because that gets rid of the need to render dependencies which 

would otherwise require many more mock functions and data to be required. The other ways 

opposed to shallow rendering was attempted however after trying it and running into 

problem after problem, it was decided that time was better spent on development or shallow-

rendering other components however this may be returned to in in future work. With 

shallow-rendering, snapshots of what is being rendered can be generated. 

 

6.1 FRONT-END TESTING: 
Another person on the front-end team had already did research into front-end unit testing 

and had been tasked with writing a document on it, so this document came in use when unit-

testing other components. Some components have more depth though and shallow-

rendering by itself wasn’t able to test that without the use of a function called “dive” which 

allowed child components to be seen as well and this allowed for two tests to be done that 

checked whether a component was rendered or not based on a Boolean value. One of 

components tested was the ComponentHeader component and the tests done for these was 

                                                           
38 https://cleancoders.com/ 

https://cleancoders.com/


 
 

45 
 

a mix between snapshot tests, normal shallow rendering tests to see if props are being passed 

in and also a test to check if an on-click event works:  

 

Figure 28: Unit tests for ComponentHeader 

In the above figure, there is code that runs before each test so to pass in props (data) that is 

required for the components to function. The first test involves shallow rendering and then 

expecting the “ComponentHeader” component to match the snapshot that has already been 

generated from a past run of the test. 

To better explain what a snapshot is, a typical snapshot test case would be when there is code 

that renders a UI component. The test then takes a snapshot (an image) and then compares 

the snapshot to a reference snapshot file which is stored inside the test folder, next to the 

test. The test will fail if the two snapshots don’t match. This then means either of two things: 

either the change is unexpected, or the reference snapshot needs to be updated to suit the 



 
 

46 
 

new version of the UI component. An issue that can arise is when something like Date() is 

used. This is because Date() returns a new Date each time it’s called as expected and so if a 

snapshot is used of a component involving Date(), the snapshot will always fail: 

 

Figure 29: Front-end test results 

 

 

 

 

 

 

 

 



 
 

47 
 

The snapshot of ComponentHeader looks like this: 

 

Figure 30: Snapshot of Component Header 

In the above snapshot of the Component Header file, It shows all the components at the very top 

layer of the component that have been rendered as well as elements like <div></div> that are a 

layer below the components such as <GridColumn></GridColumn> 

 

6.2 BACK-END REQUEST TESTING: 
Also another form of testing would be testing the back-end through Postman. If there was no 

information being presented in the front-end after a request for data, or the data appears to 



 
 

48 
 

be wrong, Postman is a way to send requests and retrieve that data back while skipping the 

need to use the front-end which might not work, and by using this, it could then be 

determined whether it is the front-end that isn’t working or it is the back-end that isn’t 

working where the top body shows body of request and the bottom body shows the response 

from AWS: 

 

Figure 31: Postman sending a request to retrieve a list of organisations 

There is a lot of information presented in figure 31, however the request is “List Organisations” 

as can be found at the top left, to send this request to the AWS server, you click the bright 

blue “Send” button near the top right. This sends the object in the top body of code 

“{ “query_string”: “”, “size”: 10}” and this code is handled by the server, telling  the server to 

only send 10 organisation’s back, if there are more than 10 organisations. This then sends 

back the object that starts with “Status: SUCCESS”. If the back-end isn’t working though, an 

error is often seen.  

The reason for why only 10 organisation’s are returned is to keep server costs down, as the 

more data returned back from AWS, the more AWS charges Pulsion so limits are put in place 

to keep costs down. 



 
 

49 
 

6.3 INTEGRATION TESTING: 
Aside from unit-testing, there is quite a lot of integration testing that is undertaken when 

merge requests are made. Every time a merge request is opened, the team is tagged in the 

merge request description so to let people know a merge request has been opened because 

if a person is tagged, they receive an email. The process is then to pull from master so to make 

sure the most up-to-date version of that branch is on the computer to then check out locally. 

When checked out, the entire system is being ran and then it is time to tinker around as much 

as reasonable with the new feature that has been added, if it is a functional feature, and try 

and break it if possible. 

It is not always so simple though as there are two repositories, a front-end repository and a 

back-end repository. Sometimes the front-end won’t work properly without also having to 

make sure you have checked out the correct branch and made sure it’s on the latest version 

too. And then once that is done, each service needs to be entered into through “cd 

<service_name>” and then have “npm install” called to make sure all the packages have been 

installed for the code to work and then “serverless deploy” to make sure that the code in the 

repository is synced with the code that is being hosted on AWS Lambda so that the updated 

code is actually the code executing on AWS. Before this is done however, sometimes all 

currently existing Users, Customers and Organisation’s would have to be deleted if there was 

a change in how the back-end processed these entities and so these entities would need to 

be deleted so that new default entities could replace them when “serverless deploy” is called. 

The reason for why it doesn’t work sometimes and that previous “entities” like Organisations 

have to be deleted is due to the back-end or the front-end needing to change the structure 

of the object of an entity such as Organisation to solve a problem and so the code to handle 

this new structure needs to be changed. If the code changes to handle this new structure, 

entities with the older structures will not be handled properly and so the application wouldn’t 

behave properly by not showing “entities” properly or breaking on compile. 

Sometimes there are problems and this process of checking out can take longer than expected. 

There can also be cache issues where a browser caches the previous version of the web app 

so that even though the web app has been updated, the browser still runs the out-of-date 

version. The easy way to tell if it is a cache issue though is by running the web application 

through Chrome’s incognito browser which doesn’t cache anything. 

Aside from just checking out a branch, a team member can also inspect the code on GitLab 

and quote code snippets asking for the reason why the code is the way it is and this helps 

verify that the code is doing what it is supposed to be doing but also to make sure that the 

code’s purpose is in line with the requirements. 

 

6.4 Q/A TESTING: 
After a sufficient amount of progress has been made through branches being merged with 

the master branch, it is then time for an in-house test release where in-house testers write 

up tests solely from the User Stories and while they test separate functions they also do things 



 
 

50 
 

like end to end testing making sure the application behaves as expected throughout which is 

called positive testing as well as also doing negative testing where they check that they can’t 

do things they’re not supposed to be able to do. Overall a much more rigorous test since 

engineers can’t afford the time to go through all test cases, for example there are multiple 

permissions for different roles of user and so it is important to make sure that a user with a 

certain role can only do what’s expected, nothing more and nothing less. 

An example of a test by the in-house testing staff can be shown below where a functional test is being 

written up with a priority of the user story being high, and an estimate of how long the test should 

take. There is also a reference to the ticket shown on Jira as well. Below that is the preconditions, for 

example, what user was logged in as, what pages were clicked to arrive at the steps that were being 

tested. The below test was the testing of creating an organisation where there are multiple steps to 

creating one shown. 

 

 

Figure 32 Screenshot of steps for a test on creating an organisation that a Q/A has written up and followed. 

Once any bugs that have been brought up by the testers have been fixed, then it is time for 

them to test again and if there are no bugs, then it can then be time for an user acceptance 

test (UAT) to take place. Each test release and UAT release has an accompanying document 

which documents what changes have been made as well as the version number. A user 

acceptance test hasn’t been released yet so this part of the validation and verification can’t 

be discussed as in-depth as the other testing done however it would be quite similar in the 

sense that any bugs caught would be brought up as a ticket for the engineers to fix and then 

once done, the cycle continues to the test release and then to the UAT again. It’s also to be 

expected that a user acceptance test will provide a lot more validation feedback than 

verification feedback. 



 
 

51 
 

 

6.5 USER EVALUATION: 
One example of user evaluation feedback that was given was based on a question posed 

around multiple contacts. As part of the requirements, a table of multiple contacts was to be 

developed and so it was developed. There was no detail on how many contacts a table should 

have though. The question of how many contacts a table should then have was raised to the 

senior software engineer who then asked the client. Once they asked the client, the senior 

software engineer gave back the feedback and it turned out that an Organisation can have 

zero contacts as a minimum and 3 contacts as a maximum. This hasn’t yet been applied due 

to other work being higher priority however the change is planned and has been added as a 

ticket on Jira. 

Limitations and Future Work 

6.6 LIMITATIONS: 
Due to priorities, not all functionality has been totally implemented in the Organisation’s 

page. This is mainly due to the back-end team having other things to work on such as Search 

functionality rather than being focussed on adding API’s that would feed some form 

components data, for example, the SIC code field should let a user type in numbers and 

based on them numbers, display what kind of Organisation that is. Both address lines should 

also be filled based on a postcode API that would offer addresses based on what postcode 

was entered. 

 

6.7 FUTURE WORK: 
As part of future work for this particular CRM, there is a lot more work to do however there 

is no set deadline compared to another project that does and so commands a higher priority.  

For Organisation’s alone, it still hasn’t been completely finished. There is still no ability to 

display last contact information over the last two months, no ability to search on local 

authority area and the ability to migrate data from spreadsheet into an organisation’s record 

has still not been implemented. In addition to that, when assigning an organisation its address, 

there should be an API that retrieves the Postcode as well as the local authority area of that 

postcode so that these values are automatically inserted. Going forward, there might also be 

additional ‘type’ options for programmes as well as a secondary ‘type’, further adding 

complexity to the application.  

On top of organisation’s, there is Task Management, Risk Assessment, Baseline Assessment, 

Diary Management 

1. Task Management – an area of the CRM to tell the user what upcoming tasks they 

have for the week so that no tasks are missed. 



 
 

52 
 

2. Baseline Assessment – the ability to record baseline assessments for customers so that 

their needs can be identified. 

3. Diary Management – the ability to record meetings in a diary so that the user’s team 

knows where they are 

4. Sharing Records – the ability to share records between partner organisation’s 

5. Audit history – the ability to see when any field has changed on the system so that 

changes can be tracked to identify mistakes or potential fraudulent activity 

6. System features – the ability to take a picture of a form that contains a customer 

signature and be able to attach a copy of the picture to the customer record 

7. System features – the ability for the system to allow the user to use a report builder 

and download results to a document on an excel spreadsheet so that the user can 

manipulate data if needed. 

8. Mail merge – The ability to produce mail merge letters for weekly contact so that a 

user can stay in touch with customers who do not have a phone and do not attend 

meetings. 

There are 59 of these user stories in total and in the requirements document they are detailed 

much more and so to say 8 of these or more may be done in the future as an individual in a 

team may be a fair amount to do considering there are only 4 people doing the front-end. 

The work for the client is ideally to be finished by December/January 2020 so there is a lot 

more of development to be done.  

In the future, there will be more specification on how React components should look like, as 

there are different types of components, there are components that are Classes and can have 

lifetime cycle functions that are called at specific times of their lifetime, e.g 

componentDidMount, componentShouldUpdate, componentDidUpdate and 

componentDidUnmount which are quite self-explanatory however these functions add 

complexity, and need to be treated carefully or else an infinity loop of rendering can be 

caused. There are also components called functional components that’s only function is to 

render a UI component and so if there a component that is made from a Class but there is no 

need for that component to hold state or to have lifetime cycles apart from “render” then 

that component can be made into a more readable form with less code. This was spotted a 

lot throughout some of the code and due to time constraints, not all code has been refactored 

to reflect best practice according to the React community.  

 

7 CONCLUSION 

To conclude, it is best to refer to the objectives that were set at the start of this paper. 

With regards to learning, which was the first part of the objectives set, the basics of JavaScript, 

React, AWS as well as languages such as HTML and CSS have been learnt. With the basics 

learnt, and 3 months in, a deeper understanding of the languages is slowly but surely coming. 

Not only have languages been learnt though but a lot of other things such as following the 



 
 

53 
 

practices of a company that has stand-ups each day, how to write JIRA tickets, how to write 

descriptions of merge requests, the process of deploying an app, and much more has been 

learnt too or still in the progress of learning. Overall enough has been learnt to be able to 

contribute to the project and so this objective could be considered to be completed. 

Following the objective of learning, was the objective of developing the Organisation’s section 

of the CRM. Based on the fact that all three pages of the Organisation’s section have been 

developed as well as functioning correctly, this objective can also be considered completed. 

Overall React is very fast and provides the ability for developers to provide users with a lot of 

responsiveness. React has also been quite intuitive as it has been easy to learn and 

understand the main principles and patterns of building a React application. The use of 

microservices as well seems to be the way forward as the way user verification is handled can 

be copied over and also at the same time avoiding the need to invest in physical architecture 

which isn’t as easy to scale as a cloud solution can. So with all that said, these technologies 

are perfectly suited to being able to develop CRM systems that involve a lot of replicated 

themes such as create, read, update and delete (CRUD) operations as well as permissions and 

having a dashboard to show what work a user has to do for that week or month and with 

React’s ability to create components, a lot of re-use should occur. 

With stand-ups every day, there is plenty of communication on what everyone is doing and 

enough progress is being made based on the estimates that are devised by the head of project 

delivery as well as the senior software engineer so while it is still early, it seems like the project 

is going to be a success. 

 

8 BIBLIOGRAPHY 

Howard, M. (2019). 14 CRM Stats That Sales Professionals Need to Know | Nutshell. [online] 

Nutshell. Available at: https://www.nutshell.com/blog/crm-stats/ [Accessed 30 Jul. 2019]. 

http://comparecamp.com/history-of-crm-software/. (2019). History of CRM Software. 

[online] Available at: http://comparecamp.com/history-of-crm-software/ [Accessed 30 Jul. 

2019]. 

Raab, G., Ajami, R.A., Gargeya V. & Goddard, G.J. (2008) “Customer relationship 

management: a global perspective” Gower Publishing 

Peppers, D. & Rogers, M. (2011) “Managing Customer Relationships: A Strategic 

Framework” John Miley & Sons 

Mathur, U.C. (2010) “Retail Management: Text and Cases” I.K. International Pvt Ltd 

Nucleusresearch.com. (2019). CRM pays back $8.71 for every dollar spent – Nucleus 

Research. [online] Available at: https://nucleusresearch.com/research/single/crm-pays-

back-8-71-for-every-dollar-spent/ [Accessed 7 Aug. 2019]. 



 
 

54 
 

Ivey, J. (2019). CRM Software UserView | 2014. [online] Softwareadvice.com. Available at: 

https://www.softwareadvice.com/crm/userview/report-2014/ [Accessed 7 Aug. 2019]. 

Cleveroad Inc. - Web and App development company. (2019). How to Create a CRM System 

for Your Business [An Extensive Guide]. [online] Available at: 

https://www.cleveroad.com/blog/how-to-build-your-own-crm-system-avoiding-common-

mistakes#benefits-of-custom-crm-development [Accessed 7 Aug. 2019]. 

Canalys.com. (2019). Canalys Newsroom- Cloud market share Q4 2018 and full year 2018. 

[online] Available at: https://www.canalys.com/newsroom/cloud-market-share-q4-2018-

and-full-year-2018 [Accessed 3 Aug. 2019]. 

Pokorny, R. (2019). Index as a key is an anti-pattern. [online] Medium. Available at: 

https://medium.com/@robinpokorny/index-as-a-key-is-an-anti-pattern-e0349aece318 

[Accessed 4 Aug. 2019]. 

 

 

9 APPENDIX: 

 

9.1 FOLDER STRUCTURE TREE: 
C:. 

│   index.js 

│   index.scss 

│   serviceWorker.js 

│   tree.txt 

├───App 

│   │   App.js 

│   │   App.scss 

│   │   App.test.js 

│   │   routes.js 

│   ├───assets 

│   │   └───images 

│   │           logo.png 

│   │           logo_dark.png 

│   │           logo_small.png 

│   │           logo_tiny.png 

│   ├───classes 

│   │       index.js 

│   │       SystemHeaders.js 

│   │       User.js 

│   ├───components 

│   │   │   ComponentHeader.js 

│   │   │   index.js 

│   │   │   RequestFeedback.js 

│   │   │   SemanticModal.js 

│   │   │   ShowIfAuthorised.js 

│   │   │   TableFunctions.js 



 
 

55 
 

│   │   ├───Layout 

│   │   │   │   index.js 

│   │   │   │   Layout.js 

│   │   │   │   ResponsiveContainer.js 

│   │   │   └───css 

│   │   │           Layout.scss 

│   │   │           ResponsiveContainer.scss 

│   │   ├───Navigation 

│   │   │   │   PrivateRoute.js 

│   │   │   ├───Footer 

│   │   │   │   │   Footer.js 

│   │   │   │   └───css 

│   │   │   │           footer.scss 

│   │   │   ├───Menu 

│   │   │   │   │   TopMenuBar.js 

│   │   │   │   └───css 

│   │   │   │           topMenuBar.scss 

│   │   │   ├───NotFoundPage 

│   │   │   │       NotFoundPage.js 

│   │   │   └───Sidebar 

│   │   │           AppSidebar.js 

│   │   │           CollapsableMenuItem.js 

│   │   │           Sidebar.scss│            

│   │   ├───validation 

│   │   │       index.js 

│   │   │       ValidatedDateInput.js 

│   │   │       ValidatedFormDropdown.js 

│   │   │       ValidatedFormInput.js 

│   │   │       ValidatedMultipleContacts.js 

│   │   └───__tests__ 

│   │       └───__snapshots__ 

│   ├───containers 

│   │   ├───Login 

│   │   │   │   index.js 

│   │   │   │   Login.js 

│   │   │   │   Logout.js 

│   │   │   │   PasswordReset.js 

│   │   │   └───css 

│   │   │           login.scss 

│   │   └───ResetPassword 

│   │           index.js 

│   │           ResetPassword.js 

│   ├───resources 

│   │       AppPermissions.js 

│   │       DropdownOptions.js 

│   │       Enums.js 

│   │       index.js 

│   │       Strings.js 

│   ├───services 

│   │       auth.service.js 

│   ├───store 

│   │   │   index.js│    

│   │   ├───actions 

│   │   │       app.actionTypes.js 

│   │   │       auth.actions.js 

│   │   │       auth.actionTypes.js 

│   │   └───reducers 

│   │           app.reducer.js 



 
 

56 
 

│   │           auth.reducer.js 

│   └───styles 

│           react-table.scss 

│           _colours.scss 

├───Customers 

│   ├───components 

│   │   │   CustomerTable.js 

│   │   │   index.js 

│   │   │   ModifyCustomer.js 

│   │   ├───css 

│   │   │       CustomerComponents.scss 

│   │   └───validation 

│   │           index.js 

│   ├───containers 

│   │   │   index.js 

│   │   ├───CustomerCreateContainer 

│   │   │       CustomerCreateContainer.js 

│   │   │       index.js│        

│   │   ├───CustomerEditContainer 

│   │   │       CustomerEditContainer.js 

│   │   │       index.js 

│   │   └───CustomerListContainer 

│   │       │   CustomerListContainer.js 

│   │       │   index.js 

│   │       └───css 

│   │               CustomersTable.scss 

│   ├───resources 

│   │       DropdownOptions.js 

│   │       index.js 

│   │       Strings.js 

│   ├───services 

│   │       API.js 

│   │       axios-customers.js 

│   │       index.js 

│   ├───store 

│   │   ├───actions 

│   │   │       customer.actions.js 

│   │   │       customer.actionTypes.js 

│   │   └───reducers 

│   │           customer.reducer.js 

│   └───styles 

│           _colours.scss 

│           _components.scss 

│           _list.scss 

├───Organisations 

│   ├───components 

│   │   │   index.js 

│   │   │   ModifyOrganisation.js 

│   │   │   OrganisationTable.js 

│   │   ├───css 

│   │   │       OrganisationComponents.scss│        

│   │   ├───validation 

│   │   │       index.js 

│   │   └───_tests_ 

│   │       └───__snapshots__ 

│   ├───containers 

│   │   │   index.js 

│   │   │    



 
 

57 
 

│   │   ├───OrganisationCreateContainer 

│   │   │       index.js 

│   │   │       OrganisationCreateContainer.js 

│   │   ├───OrganisationEditContainer 

│   │   │       index.js 

│   │   │       OrganisationEditContainer.js 

│   │   └───OrganisationListContainer 

│   │       │   index.js 

│   │       │   OrganisationListContainer.js 

│   │       └───css 

│   │               OrganisationsTable.scss 

│   ├───resources 

│   │       DropdownOptions.js 

│   │       index.js 

│   │       Strings.js 

│   ├───services 

│   │       API.js 

│   │       axios-organisations.js 

│   │       index.js 

│   ├───store 

│   │   ├───actions 

│   │   │       organisation.actions.js 

│   │   │       organisation.actionTypes.js 

│   │   └───reducers 

│   │           organisation.reducer.js 

│   └───styles 

│           _colours.scss 

│           _components.scss 

│           _list.scss 

├───Programmes 

│   └───containers 

│           Programmes.js 

├───Referrals 

│   └───containers 

│           Referrals.js 

├───Reports 

│   └───containers 

│           Reports.js 

├───Users 

│   ├───components 

│   │   │   index.js 

│   │   │   ModifyUser.js 

│   │   │   UserTable.js 

│   │   ├───css 

│   │   │       UserComponents.scss│        

│   │   └───validation 

│   │           index.js 

│   ├───containers 

│   │   │   index.js 

│   │   ├───UserCreateContainer 

│   │   │       index.js 

│   │   │       UserCreateContainer.js 

│   │   ├───UserEditContainer 

│   │   │       index.js 

│   │   │       UserEditContainer.js 

│   │   └───UserListContainer 

│   │       │   index.js 

│   │       │   UserListContainer.js 



 
 

58 
 

│   │       └───css 

│   │               UsersTable.scss 

│   ├───resources 

│   │       DropdownOptions.js 

│   │       index.js 

│   │       Strings.js 

│   ├───services 

│   │       API.js 

│   │       axios-users.js 

│   │       index.js 

│   ├───store 

│   │   ├───actions 

│   │   │       user.actions.js 

│   │   │       user.actionTypes.js 

│   │   └───reducers 

│   │           user.reducer.js 

│   └───styles 

│           _colours.scss 

│           _components.scss 

│           _list.scss 

├───Work 

│   └───containers 

│           Work.js 

├───_axios 

│       interceptors.js 

├───_config 

│       aws.js 

│       index.js 

│       systemHeaders.js 

├───_store 

│       rootReducer.js 

│       store.js 

└───_styles 

        _colours.scss 

        _components.scss 

        _list.scss 

        _react-table.scss 

         

 



 
 

59 
 

9.2 IMAGE OF ORGANISATION FORM: 
 

 

Figure 33: Enlarged version of Organisation form 


