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Abstract 

Computer vision is the subfield of artificial intelligence that deals with how computers can gain a 

high-level understanding from images. Examples of this include face detection and recognition 

systems, line tracking systems that are currently implemented on self-driving cars and 

authentication of documents such as passports or drivers’ licenses. The area of interest of this 

project revolves around the field of emotion recognition.  

This dissertation thesis outlines the development of a Web-Application that can run natively on a 

Raspberry pi with the main functionality of detecting emotions in an input video stream. Different 

solutions to this problem are compared and the most lightweight one is implemented, 

demonstrating that the modern minicomputers are capable of carrying out tasks as complex as this 

one. The emotion detection module of the system is comprised of a face detection and extraction 

algorithm in series with a face recognition algorithm trained to recognise emotions. During the 

development two face detection algorithms and three face recognition algorithms are compared, 

and the best performing algorithms are utilised.  

Results show that the system that has been developed can recognise emotions in an input video 

stream in real time, but when ran natively on the Raspberry Pi the limitations of the processing 

power impact the performance of the system. Emotion recognition works for pre-recorded video 

clips, but in real time the frame rate at which emotion detection happens is reduced.   
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Chapter 1 

 

Introduction:  

Over the past few decades the fields of computer vision and machine learning have been advancing 

exponentially. With the advance in these fields, computers can now process information and gain a 

better understanding of their surroundings than ever before. An example of this is a computerised 

system that can recognise the emotions expressed by a human face in a video feed. There are multiple 

solutions to this task, but the aim of this project is to develop one such system that is lightweight 

enough to be deployable to embedded devices such as the Raspberry PI. The Raspberry Pi is a low 

cost, minicomputer that can fit into a pocket. This device was selected as the embedded system 

utilised by this project because of how easy it is to configure and the processing power offered by it 

compared to its price.  

Objective:  

The primary objective of this project was to develop an emotion recognition web-application that was 

capable of recognising emotions expressed by people in a video stream but could also be deployed to 

run natively on embedded devices. Current solutions revolve around deep learning techniques which 

require a great deal of processing. This means that when embedded devices are used, they function 

primarily as an input video source for a remote server that carries out the processing.  

The web-application developed had to be capable of recording a video stream and detecting the 

emotions expressed in it. The detected emotions had to then be displayable in a meaningful manner 

in order to give insights into the emotions expressed by people being recorded. This could then be 

used by marketing professionals to gain truthful information about how people feel when watching 

an advert or having a product demonstrated to them. 

Outcome:  

Upon completion of this project, a fully functioning web-application was developed that could detect 

emotions in real time, record the emotion detection procedure and store it to a library. The library 

could display its contents, and when a video from the library was selected it could be played within 

the application. Statistics detailing how long each emotion was detected for the duration that emotion 

detection was running could also be displayed. This was deployed to a Raspberry Pi, and although the 

performance was impacted due to the limitations of the Raspberry Pi’s processing power, the 

functionality of the application was still reflected on the embedded device.  
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Report Structure:  

The following chapters of the report detail the procedures followed to implement the proposed 

solution. Chapter 2 examines existing solutions and related work, from which the methodology used 

to detect emotions is determined. Chapter 3 gives information regarding the requirements gathering 

of the system. Chapter 4 lists the technology necessary for the implementation before giving 

information about the architecture of the proposed solution. Chapter 5 then elaborates on the design 

and demonstrates how the solution was implemented, with chapter 6 explaining how the developed 

solution was tested. Chapter 7 re-visits the requirements of the system defined in Chapter 3 and 

verifies that the required functionality was successfully implemented. Finally, Chapter 8 gives a 

reflection on the development carried out, before providing information regarding the future of the 

application and finishes with a conclusion of the project.  
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Chapter 2  

 

Real World Applications:  

Emotion detection has multiple real-world applications that are currently being researched in the 

hopes that this technology can be deployed in the near future. Car manufacturers are working on 

emotion recognition systems for “smart” cars. By monitoring the emotional state of the driver, safety 

can be increased as the car can react better to the emotion of the driver. For example, an angry driver 

would be more likely to drive recklessly, so the car could adapt to this and minimize the control over 

the car that the driver has.  

An article on linked in explained that Automated Teller Machines (ATM) could implement this 

technology, and when the person withdrawing money is expressing fear, the ATM machine could 

refuse to dispense money as this could likely be associated with a robbery. 

This technology could be implemented in the healthcare sector in a few ways. Aiding autistic people 

understand emotions through a smart device that gives feedback according to the emotion detected 

in the person in front of them. Doctors can better understand how patients feel about their treatments 

and attempt to make treatment a better experience for patients.  

Other applications include interview systems, where video interviews can be analysed, and the 

candidate can be evaluated based on their reactions to interview questions. This can give insights as 

to whether or not the applicant is a good fit for the company by comparing how current employees 

react to questions with how the applicant does.  

Another example of an application that uses this technology is the system that is being built. An 

application that can aid in marketing research by replacing interviews and questionnaires. With such 

a system, truthful information can be extracted and used by companies when deciding on what 

changes to make to a product or which advert out of a selection they would like to air.  
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Literature Review  

Related Work  

The following section of the report documents the research into existing solutions to emotion 

detection. I started by examining work related to emotion detection in real time. I wanted to make 

sure that emotion detection could be implemented on a Raspberry Pi too, so I made sure to examine 

existing literature related to this too. Once the literature has been examined, I should have had an 

idea of the methodology that would be followed to develop my solution.    

Emotion Detection:  

Emotion Detection in Real Time:  

In the first section of the literature review, the most relatable literature was examined. As the 

intention was to build a system that could detect emotions in a video stream in real time, this is the 

type of literature that was reviewed.  

Bartlett et al., 2003 built a real time face detection and emotion recognition system. Their system 

detects a face and then the emotion corresponding to the detected face. The first stage of the system 

uses the Viola Jones (Haar Feature-based Cascade Classifiers) face detector. This is one of the first real 

time object detection algorithms, developed by Paul Viola and Michael Jones. Although it can be 

trained to detect any object, it is primarily used to detect faces. Once a face has been detected it is 

passed to a Support Vector Machine (SVM) Classifier, an algorithm that that creates a line that 

separates data into classes. The face that is detected is then matched against known emotions 

(Classes) and the one with the highest match is selected as the emotional state of the face. They then 

implement a combination of Adaboost, a boosting algorithm that converts a set of weak classifiers 

into a strong one with SVM for emotion recognition. The addition of Adaboost to the system allows 

for the system to function in real time. (Bartlett et al., 2003)  

Ghandi, Nagarajan and Desa developed a system that detects emotions in faces using a modification 

of the Particle Swarm Optimisation (PSO) algorithm, an algorithm that optimises a problem by 

implementing different solutions in an iterative manner. They call their modified algorithm the Guided 

PSO algorithm. Their algorithm tracks the movements of different points of the face to distinguish 

emotions and works well on pre-recorded video streams because it relies on pre-processing a video 

for the algorithm to function. They then apply the Lucas-Kanade optical flow algorithm, an algorithm 

that basically computes a vector pointing from each pixel in a video frame to the corresponding pixel 
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in the next frame of the video. This allows them to track the movements of the face in real time and 

therefore allows them to detect emotions in real time. (Ghandi, Nagarajan and Desa, 2010) 

Emotion Detection in images:  

In the literature examined above, at a first stage Bartlett et al., used the Viola Jones face detection 

algorithm to detect a face prior to attempting to detect an emotion in that face. The Viola Jones 

algorithm is an algorithm that detects a face in images and not videos, but as a video is essentially a 

series of images it made sense that literature related to emotion detection in images should be 

explored.  

Singla and Bansal used the FisherFace algorithm (see Chapter 5) to detect different emotions in 

images. The FisherFace algorithm is a face recognition algorithm based on Principal Component 

Analysis (PCA) that is a technique used to extract features. They use an emotion database which 

contains images of faces with their corresponding Action Units and Labels. This allows them to train 

their algorithm and determine the classifier that can be used to identify an emotion in an input image. 

They show that their implementation has a correct detection rate of around 86%, which indicates that 

this approach can be used to successfully identify emotions in images. They didn’t need to detect faces 

in images, because they only used images of faces. (Singla and Bansal, 2011) 

Beltrán Prieto and Komínkova-Oplatková compared the performance of two emotion recognition 

implementations. Both implementations rely on the Viola Jones face-detection algorithm to detect a 

face, and once a face has been detected it is passed to the two emotion recognition systems. The first 

system was built by adapting the FisherFace technique to recognise emotions instead of faces through 

OpenCV, an open source computer vision library. Whilst the second was a C# application that makes 

requests to a Cognitive Services API, an external library that includes artificial intelligence features. 

Their research showed that the OpenCV based implementation had the best results regarding correct 

detection rate. (Beltrán Prieto and Komínkova-Oplatková, 2017) 

Thuseethan and Kuhanesan used the EigenFace algorithm (see Chapter 5), another face recognition 

algorithm also based on PCA to recognise emotions instead of faces in images. They used the Japanese 

Female Facial Expressions (JAFFE) database, which is a database of images of Japanese females 

expressing emotions to train and evaluate their implementation. They achieve an emotion recognition 

rate above 75%. (Thuseethan and Kuhanesan, 2014) However, their tests are carried out on images of 

Chinese or Japanese faces in controlled environments (perfect lighting and face looking directly at the 

camera), so it is unknown how this would perform in uncontrolled environments with different 

ethnicities.   
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Farahani, Sheikhan and Farrokhi implemented emotion recognition using the Gravitational Search 

Algorithm (GSA), which is a population search algorithm. Their emotion recognition algorithm 

recognises emotions from eyes and mouth features of coloured images. They use a Matlab image 

processing library to detect faces and extract the features that are passed to the GSA algorithm. Their 

tests show an accuracy of around 72% for their solution. (Farahani, Sheikhan and Farrokhi, 2014) 

Emotion Detection on a Raspberry Pi:  

One of the goals of this project was for the solution to be implemented on an embedded device 

(Raspberry Pi), so in the next section of the literature review, solutions implemented on the Raspberry 

Pi where examined.   

Lee, Chen and Wei developed an IoT based emotion recognition system by using a Raspberry Pi and 

Microsoft’s Emotion API. They use the Raspberry Pi with a camera module as the input to the system, 

this is then passed through the Viola Jones faces-detection algorithm to detect a face. Once a face has 

been detected it is sent via WIFI to a PC running Microsoft’s Emotion API to detect the emotion in the 

face. The corresponding emotion is then sent back to the Raspberry Pi for a controlling action to be 

taken such as ringing a buzzer or lighting an LED. (Lee, Chen and Wei, 2018) 

Sajjad et al., developed a facial expression recognition system using a Raspberry Pi. Their approach is 

to use the Raspberry Pi camera module for capturing video streams, the captured video stream is then 

passed through the Viola Jones Algorithm in order to detect a face. Once a face is detected feature 

extraction is carried out using an SVM Classifier Algorithm. The features are then sent to a cloud 

service that carries out the facial expression recognition in real time. (Sajjad et al., 2019)  

Suchitra, Suja P. and Tripathi developed an emotion recognition system using a Raspberry Pi, but 

unlike others in this literature, their solution carries out the processing on the actual Pi. They use the 

Viola Jones face detection algorithm for face detection. The detected face is then passed through an 

Active Shape Model (ASM), a statistical model that shapes objects from the input and tries to match 

the shape to a known shape. This is used for feature extraction, with the extracted features passed 

through an Adaboost Classifier for classification of emotions. They claim an emotion detection 

accuracy of 94% and a computational time of 120ms. (Suchitra, Suja P. and Tripathi, 2016) 

 

Face Detection:  

Face Detection in Real Time:  

All the literature examined above has a common theme prior to attempting to detect the emotional 

state of the person detected in a video or image. In order to detect the emotion of the person in the 
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image, first their face must be detected. If a face is detected, then an emotion corresponding to that 

face can be determined. So the next section of the literature review is oriented around face detection, 

starting with face detection in real time. Again, because the solution that was developed was intended 

to run in real time.  

Yang and Waibel developed a real time face tracker and follower capable of tracking a face in a video 

stream at a rate of 30 frames per second. Their system is comprised of three stages, first a face is 

detected, then a model that estimates the motion of the face in the image and finally a camera 

controller used to control the motion of the camera. In their solution, face detection is carried out 

using a stochastic model to characterise skin colour distribution in human faces. (Yang and Waibel, 

n.d.) 

Shakhnarovich, Viola and Moghaddam attempted to adapt the Viola Jones face-detection algorithm 

in order to detect the gender and ethnicity of the faces in images. They use the Viola Jones algorithm 

to detect faces, and then put the detected faces through a demographic classifier, which is their 

adapted Viola Jones algorithm based on the same architecture as the face detector. They show that 

the process is successful and can achieve face and demographic detection at a rate of 10 frames per 

second. (Shakhnarovich, Viola and Moghaddam, n.d.)  

Wati and Abadianto developed a face detection and recognition system implemented on a MyRIO 

1900 that is a combination of Field Programmable Gate Array (FPGA) and a Microcontroller. An FPGA 

is essentially a matrix of configurable logic gates that can be programmed to function as required by 

the system it is used in. They detect faces using Template Matching, which is a technique that matches 

sections of an input image with a known template. They then recognise the person in the face using 

the PCA algorithm. Their solution can detect and recognise faces in real time at distances up to 240cm 

away from the camera. (Wati and Abadianto, 2017) 

Face Detection in images:  

For the same reason that emotion detection in images was examined, face detection in images had to 

also be examined. The idea being that if a face can be detected in an image, then it can also be 

detected in a video prior to attempting to detect the emotion of the person in the video.  

Face Detection using Viola Jones:  

The majority or solutions to emotion detection implemented on the Raspberry Pi use the Viola Jones 

face-detection algorithm, to detect faces prior to detecting emotions, so I had to examine this in more 

detail.  
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Viola and Jones essentially developed a face detection framework that achieves a high detection rate 

in a rapid timeframe. Their framework works using a representation of an image called the “Integral 

Image”, which based on the sum of the pixel intensity vales. They generate the integral image for 

different sections of the input image and return possible features very quickly. Once a feature is 

detected, it gets passed through a classifier built on the AdaBoost learning algorithm that selects 

critical features from a set of potential features. They then combine classifiers in cascade allowing for 

background regions of the image to be discarded and only the face like region to remain. (Viola and 

Jones, 2004) 

Next I decided to examine face detection implementations using the Viola Jones algorithm, and it 

turned out that although the Viola Jones algorithm is widely used, there are some shortcomings when 

building a system that utilises it.  

Laytner, Ling and Xiao explain that dark skin coloured faces or badly illuminated faces are the biggest 

cause of faces not being detected when using the Viola Jones face-detection algorithm. They 

developed their own face detection algorithm consisting of Histogram analysis, Haar Wavelet 

transformation and Adaboost learning techniques. They then compared their algorithm to the 

“Classic” (Viola Jones) algorithm and showed that the lighting and illumination issue can be partially 

overcome with some image pre-processing prior to face detection. (Laytner, Ling and Xiao, 2014) 

Magalhaes, Ren and Cavalcanti carried out research regarding variations in illumination of facial 

images. Instead of pre-processing images and then passing them to a face detection model, they 

applied the GradientFaces technique before training their face detection model. The GradientFaces 

algorithm is a facial recognition algorithm that transforms the image into the gradient domain, making 

the image illumination insensitive. They re-trained the Viola Jones face-detection algorithm using pre-

processed (GradientFaces) images and then compared it to the “Classic” (Viola Jones) algorithm. Their 

results show that this approach is more robust than other methods of dealing with the issue of varied 

illuminations. (Magalhaes, Ren and Cavalcanti, 2012) 

Face Detection not using Viola Jones:  

The authors above, show that the biggest shortcoming of the Viola Jones algorithm is when attempting 

to detect faces in environments without ideal lighting conditions which led to the question of what 

other methods of detecting a face are possible?  

Li et al. recognise that when dealing with face detection algorithms, one of the main issues that must 

be overcome is the variation in pose of faces in images or partial occlusion (Someone wearing glasses 

or a hat). They explain that “Classic” approaches to facial recognition fail to overcome this and attempt 
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to deal with this by using deep learning, a form of machine learning inspired by the structure and 

function of the human brain. With deep learning, different layers can be used to extract different 

features. They conclude that illumination variance can be overcome using deep learning but occlusion 

is a more difficult task. (Li et al., 2015) 

Laboreiro, Maia and de Araujo use a decision tree-based approach to detect faces in images. A decision 

tree is basically a decision support tool modelled on a tree like graph, where all possible decisions and 

outcomes are mapped to different branches. They explain that for real time applications face 

detection is typically carried out by partitioning the image into two classes: face and non-face but they 

attempt a multistage segmentation instead. They use a decision tree by segmenting a facial image into 

7 different classes: eyes, nose, mouth, eyebrows, hair, facial skin and background. Although this 

approach is more computationally intense, it doesn’t require any previous knowledge, so it is a 

method of unsupervised learning that can be used to detect faces in images. Unsupervised learning is 

a section of machine learning that refers to algorithms that learn from input data without prior 

training.  (Laboreiro, Maia and de Araujo, 2012) 

Comparison:  

Before I made any conclusions about what face detection technique should be used in my system, I 

examined literature that compared different face detection algorithms.  

Dang and Sharma carried out experiments to compare different face detection algorithms regarding 

their accuracy. They compared the Viola Jones face-detection algorithm, SMQT Features and Snow 

Classifier, Neural Network Based Face Detection and Support Vector Machines-Based face detection. 

They concluded that the Viola James algorithm was the most accurate one from the algorithms 

compared in their study. (Dang and Sharma, 2017) 

Sharifara, Mohd Rahim and Anisi gave a general review of face detection algorithms, explaining that 

face detection is a complex task because images of faces vary with regards to facial characteristics but 

also environmental conditions such as illumination. They explain that computational speed is a major 

factor to consider when developing a face detection algorithm and demonstrate that the Viola Jones 

face-detection algorithm is the most computationally efficient. However, there is a trade-off between 

computational speed and false detection rates. Because of this the authors recommend using the Viola 

Jones algorithm in parallel with a deep neural network, giving high speed and low false detection rates. 

(Sharifara, Mohd Rahim and Anisi, 2014) 

The authors above show that the fastest and most computationally efficient algorithm is the Viola 

Jones face detection algorithm. They explain that the issues regarding false detection rates can be 
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overcome by combining the Viola Jones algorithm with a deep neural network. So, depending on how 

much face detection accuracy is an issue for any project that utilises the Viola Jones algorithm, there 

are methods that can overcome the shortcomings of it. For example, a face recognition system in a 

university building doesn’t require as high accuracy as a face recognition system in a government 

building. The university building may not necessarily need an implementation using a deep neural 

network, whilst the government build probably would.  

Face Detection on a Raspberry Pi:  

The final stage of the literature review focuses on implementations of a face detection algorithm on 

the Raspberry Pi. The findings show that most solutions are implemented using OpenCV, because 

OpenCV offers a pre-trained Viola Jones face detection algorithm on installation meaning that face 

detection can be implemented with minimal effort.     

Bhanse and Jaybhaye used OpenCV on a Raspberry pi to implement the Viola Jones face-detection 

algorithm to detect and track a face in a video stream. They explored how running the Viola Jones 

algorithm at different resolutions impacts the performance of video capture and found that the 

Raspberry Pi could detect faces in a video with a resolution of 1080x720 at a framerate of 15FPS and 

with a resolution of 320x240 at a framerate of 25FPS. (Bhanse and Jaybhaye, 2018) 

Tripathy and Daschoudhury also carried out research regarding the framerate of face detection on the 

Raspberry Pi. However, they found that using OpenCV with the Viola Jones face-detection algorithm 

they could carry out face detection and tracking at a framerate of 30FPS. (Tripathy and Daschoudhury, 

2014)  

Arva and Fryza carried out a study on existing motion and object detection algorithms that can be 

implemented on the Raspberry Pi. The examined the available face detection algorithms of OpenCV, 

as this is the most common used Computer Vision library for the Raspberry Pi. OpenCV has uses the 

Viola Jones face-detection algorithm for face detection but allows for this to be trained either using 

Haar Cascade classifiers or Local Binary Patterns (LBP) (See Chapter 5). LPB is an algorithm that 

matches the binary equivalent of an input image to that of a known set of images. The authors show 

that when training using LBP it takes around a quarter of the time than the Haar Cascade Classifier 

does. (Arva and Fryza, 2017) 

Daryanavard and Harifi carried out research regarding face detection from an Unmanned Aerial 

Vehicle (UAV) system such as a drone. Their system was built on a Raspberry Pi that used the Viola 

Jones face-detection algorithm via OpenCV. They used a UAV facial image dataset to train the 

algorithm and found they had 98%, 93%, 86% and 80% True Positive for 1.5, 3, 4 and 5 meters height 
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of the camera from the ground respectively. However, their experimental results were not evaluated 

on a real time system. (Daryanavard and Harifi, 2018) 

Umm-e-Laila et al. compared different face recognition algorithms that are available via OpenCV that 

can be implemented on a raspberry pi. They concluded that the Raspberry Pi is fast enough processor 

wise to detect and recognise faces in real time, but they don’t comment on the frame rate, resolution 

or speed at which this is achieved. (Umm-e-Laila et al., 2017) 

Gupta et al implemented a face detection and recognition system that could run on a Raspberry Pi. 

They used the Viola Jones face-detection algorithm to detect faces, and then passed the detected faces 

through a PCA based model in order to recognise faces. They claim that their solution can run in real 

time, but they don’t comment on framerate, resolution or achieved detection speed. (Gupta et al., 

2016) 

 

Conclusions 
The task of detecting the emotional state of a person in a video frame is somewhat complex, but there 

are many different solutions to this. A common theme between implementations is the detection of 

a face prior to attempting to recognise the emotion in the face. A commonly used face detector is the 

Viola Jones face detection algorithm because of its simplicity and computational efficiency. In the 

literature above, multiple solutions utilise either the FisherFace or EigenFace technique to detect 

emotions once a face has been detected.  

Almost all of the solutions on the Raspberry Pi examined above rely on the Viola Jones face detection 

algorithm for face detection. With this being run on the Raspberry Pi, but the resulting face is then 

sent to a more powerful machine for processing and emotion recognition.  Most of these solutions 

implement the Viola Jones algorithm through OpenCV. OpenCV is an open source computer vision 

library that can run on the Raspbery Pi.  

As the aim of this project is for the solution to be implementable on a Raspberry Pi, I wanted the 

Raspberry Pi to do the processing without developing an IoT based solution. After examining OpenCV 

I realised that it offers both a face detection and recognition module, with the detection module 

implementing the Viola Jones Algorithm, and the recognition module implementing either the 

FisherFace technique, the EigenFace technique or LPB. This led to the assumption that I could develop 

a system that can run natively on the Raspberry Pi based on OpenCV. Face detection could be carried 

out with the Viola Jones algorithm, and emotion recognition could be carried out by adapting any of 

the techniques available in the facial recognition module of OpenCV. As it is all implemented utilising 
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OpenCV, it should be deployable natively to the Raspberry Pi. (Assuming that it is computationally 

powerful enough to run the solution in real time) 
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Chapter 3 

 

Problem Description and Specification  

Problem Specification:  

The first stage of this project was clearly specifying the problem that I aimed to solve. The project 

proposal gives an outline of the necessary functionality of the system. This is a starting point for 

requirements gathering, that could be expanded on. The project proposal follows:  

“The aim of this project is to develop an application that can recognize emotions from facial features 

and display these in a meaningful manner (Statistics, Charts, etc.) These can then be used to replace 

questionnaires and interviews that are currently used as a market research tool to determine users’ 

opinions on new products. This will be developed using an embedded device (Raspberry Pi) to carry 

out the emotion capture and detection in order to demonstrate that portable solutions that don’t 

require excessive processing power can be developed for this type of system.”  

Requirements:  

The project proposal highlights four essential functions required by this system. The system must:  

1. Recognise emotions in an input video stream  

2. Display the recognized emotions in a meaningful manner (Have a User Interface)  

3. Make use of an embedded device  

4. Process an input video stream  

Although the expected functionality of the system was outlined, it wasn’t nearly enough to start 

thinking about how the system would be designed, so requirements gathering had to be carried out. 

This would determine the functional requirements of the system, which is what the design of the 

system is based on.  

User stories:  

Gathering requirements can be done in many ways, but in the case of my system I didn’t have a 

customer or a specific user that I could interview or ask to fill in a questionnaire. This meant that I had 

to utilize a requirements gathering technique that didn’t rely on interaction with a potential user. The 

technique I followed was to develop User Stories, a tool that is commonly used in industry to 

determine additional requirements, remove assumed requirements that cannot be justified or help to 

restructure existing requirements. The form of the user stories I developed was: “As <type of user>, I 

need <functionality> so that <outcome of functionality>”. It is clear that by doing this any 
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requirements determined by the user stories have to be justified, meaning that they are all necessary 

for the system.  

The User stories that I developed follow:  

• As a User I need to know what the users being tested are feeling, so that I don’t need to ask 

them their opinions.  

• As a User I need to be able to store the recording of the video before and after the processing 

so that I can re-examine what the people like or dislike from what they see.  

• As a User I need to be able to view statistics of how people that have seen the clip/product 

feel about it overall.   

• As a User I need to log in to the application, so that I can protect the privacy of people being 

recorded.  

• As a User I need to be able to see emotions of people in real time so that I can ask them about 

the things they didn’t like (So that I know what they would like me to change).   

• As a User I need to be able to export the overall results so that I can use them in market 

research.  

• As a User I need to be able to view a library of stored videos so that I can replay the ones I 

choose.  

• As a User I need to be able to test multiple people at the same time so that I can save time.   

• As a User I need to be able to delete stored videos so that I can deal with mistakes.  

• As a User I need to be able to take the application with me so that I can carry out Demos in 

different places. (Need a Portable solution)   

 

Once the User stories had been developed, the functional requirements of the system could be 

derived as any requirement now being determined would be justified. 

Functional Requirements: 

A list of functional requirements based on the User stories was now determined, and the functionality 

of the system was determined as developing an application that would:  

1. Recognise emotions in an input video stream in real time   

2. Recognise emotions in a pre-recorded video stream   

3. Display the recognised emotions in a meaningful manner   

4. Make use of an embedded device (Portability)   

5. Record a video stream  

6. Store the recorded video stream (Create a Library)   
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7. Delete stored videos (From the Library)*    

8. Display the emotions of users in a video stream as the video is being displayed. (either real 

time or pre-recorded video clip   

9. Save an edited copy of the input video stream that displays the emotion detected.   

10. Display statistics of the emotions a user in the video shows for the duration of the video. 

(happy 56% of the time they were in the video)  

11. Allow the creation of sub-libraries of videos (For individual projects)* 

12. Generate an overall statistic of the emotions shown by multiple users in a library. (For one 

marketing project, 10 users where tested. These 10 Users appeared to be happy for 43% of the 

time they were in the video) *   

13. Export statistics so they can be used out with the application*   

14. Be capable of recognising emotions of multiple people at once 

15. Have a User-friendly Interface  

16. Have User accounts*   

 

These 16 requirements outlined the necessary functional requirements of the complete system, but 

at the current time some of them were deemed out of scope simply because of time restrictions. All 

requirements marked with a (*) are deemed out of scope at the current time. Out of the requirements 

that were going to be implemented, prioritization was required to determine the most important 

functionality. The most important features would be implemented before any “non-high priority” 

requirements. 

Requirements Prioritisation:   

In order to prioritise the requirements of the system, the MoSCoW method was used. This is 

essentially a technique that splits the requirements into “Must Haves”, “Should Haves”, “Could Haves” 

and “Wont Haves (at this time)”. The way that the requirements where prioritized was based on what 

would prove that this concept would be feasible. So, the “Must Have” (highest priority) requirements 

where the ones that where necessary for the system to function and demonstrate that the concept is 

indeed feasible. The “Should Haves” were the requirements that would aid in solidifying the proof of 

concept but where not necessary for the system to function. The “Could Haves” were any additional 

features that would be nice to have but didn’t necessarily change the functionality of the system. The 

“Wont Haves” where the requirements that were deemed as additional features that where 

unnecessary for the system at the current time.  

The way that the requirements where prioritized is demonstrated below:  
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Must Have:  

1, 2, 3, 4, 5, 6, 8, 15 

Should Have: 

7*, 9, 10, 14 

Could Have:  

11*, 12*, 13* 

Won’t Have: 

16*  

It was important to prioritise the requirements as the project was ambitious, and it would be 

extremely hard to satisfy all requirements in the available time frame. By prioritizing the requirements 

as mentioned above, it was possible to determine when the project would be “finished”. If all “must 

have” requirements are met, then the project would be in an acceptable state to prove that the 

concept is viable.  

Development Methodology:  

In the first stage of development, the project was split into submodules to be developed individually 

and then encapsulated into a web-application. Once individual modules were identified, an iterative 

approach to development was utilized, allowing for testing of individual components alongside 

development. Unit testing was carried out throughout ensuring that the expected output from 

individual components was the actual output.  
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Chapter 4 

 

System Design:  

This section of the report details how the system was designed before development commenced. In 

this section, the high-level design, low level design and system architecture are detailed. To begin 

with, high level design was tackled, allowing for sub-modules of the system to be identified. The low-

level design covers the languages, frameworks and libraries that were used in development, but also 

justifies their selection. Finally, the system architecture is documented, which explains in more detail 

how sub-modules identified in the high-level design would interact.   

High Level Design: 

At this stage, in order to produce a high-level design, the requirements that where determined earlier 

were revisited. The requirements determined the functionality of the system, which made it easier to 

produce a list of submodules that would implement this. This stage of development was vital because 

it essentially determined which modules would be developed to tackle each task.  

Below is the list of identified submodules to carry out each task:  

• Module that carries out Emotion Recognition: 

o Submodule for Face Detection  

o Submodule for Emotion Recognition  

• Library Module: Record, Store, Delete video clips, Create additional sub-libraries  

• Module that displays the results of the emotion recognition in video during playback  

• Module that displays statistics of emotions shown for the duration of a video clip  

• Module for exporting Statistics to usable format out with of the application  

• Module of User Accounts: Create, Add, Delete, Log in  

• User Interface Module  

• Video Input Module (Either through a camera feed or a pre-recorded video clip) 

• Video Recording Module  

Low Level Design:  

It is important to remember that the solution being designed needed to be deployable on a Raspberry 

Pi too. This partially determined the development languages, tools and libraries that would be utilised 

in the development of the system, as everything needed to be compatible with the Raspberry Pi.  
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Programming Languages:  

Python:  

Python is a high-level, interpreted general purpose programming language. The selection of Python as 

the programming languages was made for a few reasons. Python is a language commonly used in Data 

Analytics, Machine Learning and Computer Vision, meaning that there would be lots of support 

available if needed. OpenCV has a python interface, so importing OpenCV to the project would be 

easy to do. Having the Raspberry PI in mind, the language needed to be compatible with this and 

Python is pre-installed out of the box with Raspbian (Raspberry Pi’s operating system).   

HTML: 

Hypertext Mark-up Language (HTML) is the standard language used to design how webpages are 

displayed in a web-browser. HTML is the language that was chosen to develop the user interface as it 

has cross-browser support, it is relatively simple to understand and interfaces with Flask and Jinja2 

templates.  

Jinja2:  

Jinja2 is a Python templating engine that is used by flask and is necessary for flask to run.   

JavaScript:  

JavaScript is an interpreted object-oriented scripting language used to create effects within web-

browsers.  JavaScript was used to interact between different sections of the application. Specifically, 

for handling requests to start and stop recording the emotion detection. The statistics that have been 

developed utilised a JavaScript library too.  

Libraries & Frameworks:  

OpenCV: 

OpenCV is an open source computer vision library that was used for the Computer Vision Section of 

the system. It has been developed over time and is currently in a maturity stage where there is a big 

enough community so resources can be found with ease. Many of the projects examined in the 

literature review use OpenCV, and I have used this in the past so I was familiar with this and preferred 

it over other Machine Learning libraries that could be adapted for Computer Vision tasks.  

Flask: 

Flask is a lightweight python web application framework that is designed to get a simple web 

application running quickly and easily. As the focus of this project was oriented towards emotion 

detection in real time, this was the ideal framework for the task.   
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Chartist: 

Chartist is a JavaScript chart building library that was very simple to set up and implement on the 

system.  

Hardware:   

PC-MacBook Pro:  

For the development of the project although it would have been possible to develop entirely on the 

Raspberry Pi, I didn’t want to rely only on this especially when it came to re-training facial recognition 

algorithms. This is because although the Raspberry Pi model that I used was computationally powerful, 

the processing power of it couldn’t compare to that of the processor in any modern-day computer.  

Raspberry Pi 3b+: 

The Raspberry Pi is a microcomputer that is small enough to fit in a pocket, meaning that a solution 

implemented on this would be portable. The Raspberry Pi is used by many hobbyists and researchers 

because of how lightweight and affordable it is. This means that there is a large community offering 

lots of support when needed.   

Raspberry Pi camera:  

The need for video input to the system led to the purchase of a Raspberry Pi camera module. This can 

easily be installed and set up and is affordable yet also produces video at a high enough quality to be 

used for the system. The Raspberry Pi camera has an 8 megapixel native resolution sensor, and 

supports video capture at resolutions of 1080p, 720p and 640x480 at framerates of 30, 60 and 90 FPS 

respectively.  

Development Tools:  

PyCharm:  

PyCharm is a Python Development Environment used industry wide that I am familiar with and 

comfortable using, so it made sense to use this as the IDE for developing and debugging any code.  

System Architecture:  

Once the high-level design had been completed, I knew what submodules existed within the system 

and could therefore determine how they interacted between each other. Figure 1 below shows the 

interactions between the different modules of the system. This was helpful to understand how 

internal components of the system would be integrated and how the development of each would be 

implemented as it showed what dependencies exist between submodules.  
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Figure 1 - Interaction of the systems Sub-Modules 

As seen in Figure 1, the Video input module is used as an input source. The video that is inputted to 

the system can be sent to the emotion recognition module or the video recording module. The 

emotion recognition module uses the inputted video and attempts to recognise the emotion 

expressed by the person in the input. This can then be sent to the video recording module that saves 

the video clip to the library. The statistics module takes the output from the emotion recognition 

module and calculates the statistics of the emotions expressed in the throughout the duration of the 

video clip. The statistics can either be displayed to the user through the user interface module, or sent 

to the module in charge of exporting the statistics to a format that can be used out with the 

application. The library module holds all of the recorded video clips, either directly from the video 

input module or from the emotion recognition module. The contents of the library can be displayed 

in the user interface, but when a video clip is selected, it can be played in the video playback module, 

which is then displayed in the user interface. The module that holds the user accounts only interacts 

with the user interface module, as its only purpose is to authenticate the users attempting to use the 

system. As expressed in the requirements section of this report (See Chapter 3) the User Accounts 

Module and the Module that exports the statistics will not be developed at this time. (Any modules 

flagged with a (*) is out of scope at the current time) 
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Chapter 5 

 

Detailed Design and Implementation:  

In this section of the report, the system design and implementation are explained. The biggest 

challenge of this project was to successfully develop an emotion detection module that could run in 

real time and be deployed to the Raspberry Pi. This meant that the design had to be split into two 

sections, the Emotion detection module and the Web-Application and for them to be developed 

separately. 

Emotion Detection:  

The literature review examined earlier showed that multiple solutions to the emotion detection 

problem were implemented using deep learning, the FisherFace or the EigenFace algorithms. 

Choosing OpenCV as the computer vision library to be utilised for this project meant that I had access 

to both face detection and recognition algorithms. For face detection, deep learning or the Viola Jones 

algorithm can be used whilst for recognition, either the FisherFace, EigenFace or LBP algorithms can 

be used. My goal at this point was to retrain the face recognition module to recognise emotions rather 

than any individuals face.  

Methodology:  

The literature review showed that the methodology followed by many of the authors when attempting 

to recognise emotions is the same. There are 6 essential steps that are taken:  

1. Split video clip into individual frames for processing  

2. Individual Frame gets passed to face detector.  

3. Face is detected and extracted by the face detector.  

4. Extracted face is passed to emotion recognition module.  

5. Emotion recognition module identifies current emotion of face passed to it.  

6. Repeat from step 1. 

It made sense for me to follow the same steps as the authors in the literature, as I was attempting to 

build a system that could carry out the same tasks as theirs. 

Face Detection:  

The first step in tackling the problem of emotion recognition is face detection. I was using OpenCV, so 

I searched and found the algorithms that are available and pre-trained to tackle this task. I found that 
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there are two available, the Viola Jones face detection algorithm and a deep learning algorithm 

adapted for detecting faces.  

Viola Jones:  

The Viola Jones algorithm is based on Haar-Cascades classifiers, and OpenCV comes with both a Haar-

Cascade trainer and detector. This means that it is possible to train your own classifier to detect any 

object that you like, but also run the object detector that implements the model that has been trained. 

The nice thing about OpenCV is that with installation, several pre-trained classifiers are installed and 

can be used by the Cascade Classifier module. Upon inspection of the pre-trained classifiers available 

with installation, I found that there are 17, of which 5 are face detection classifiers. For this project, I 

used the default face detection classifier, as posts and blogs such as 

https://www.pyimagesearch.com/, https://towardsdatascience.com/ and reddit that I had read 

regarding this seemed to find that this was the most reliable one.  

 

Figure 2 - Available Haar Cascade Classifiers 

Deep Learning:  

The Deep Learning module of OpenCV is based on the “tiny-dnn” framework, which is a dependency 

free C++ open source deep learning library. The deep learning module of OpenCV also comes with 

some pre-trained models such as object detection, text detection and face detection. Again, the model 

of interest for this project is the face detector, so in order to access the pre-trained model, I had to 

run a script located in the installation files of OpenCV on my machine. This script basically initiated a 

https://www.pyimagesearch.com/
https://towardsdatascience.com/
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download for a file containing the calculated weights of the Deep Learning module that had been 

trained for face detection.  

 

Figure 3 - Available deep learning models 

 

Emotion Detection:  

At this stage of development, it was clear that I would need to re-train a face recognition algorithm to 

recognise emotions instead of face, so before diving into this I had to do some background research 

on machine learning. In summary, machine learning is the science of teaching a computer to learn 

from data. (Géron, n.d.) There are many different machine learning algorithms, and different 

algorithms are fit for different tasks, but regardless of the algorithm, they all have common elements:  
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- Data: All machine learning algorithms rely on data, as this is used to train the system. (Paluszek 

and Thomas, 2017) In my case, the training data was pictures of faces expressing an emotion.   

- Model: The model of a machine learning algorithm is a mathematical framework developed 

for learning. (Paluszek and Thomas, 2017) In my case, the model was either one of the three 

face recognition algorithms provided by OpenCV.   

- Training: In the sense of machine learning, training is the task of modifying the model so that 

for a given input, an output can be mapped. For example, a face detection algorithm can be 

fed thousands of pictures of faces (training data) and be told that these pictures all contain 

faces. Then it can be fed thousands of pictures of anything but faces and be told that these 

pictures do not contain any faces. Once the training has finished, the model should be 

modified so that when a new picture is input to the system it should be able to tell on its own 

if this picture contains a face. (Paluszek and Thomas, 2017) 

 

Figure 4 - Machine Learning training and Predicting (Onix-systems.com, 2019) 

For the emotion recognition module of the system as no model is included, a dataset was needed, the 

algorithm was provided and then the training needed to be carried out. The adopted approach was as 

follows. First data must be collected, this needed to be images of people’s faces expressing an 
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emotion. The data needed to be sorted, so that subsets of data could be produced that contained an 

emotion. For example, a subset was “happy” and this contained pictures of people that were happy. 

Next the faces needed to be detected and extracted from the dataset and fed into the face recognition 

algorithm with its labels. So, all faces extracted from the “happy” subset were fed to the face 

recognition algorithm with the label of happy. Once training had finished, when a new happy face was 

fed into the system, it should have given an output indicating that “happy” was detected. In a sense I 

attempted to “trick” a face recognition algorithm, by telling it that every happy face corresponds to 

an individual labelled happy.  

Data Collection:  

The first step in training the emotion recognition model was collecting data that could be used for 

training. This had to be images of people that would clearly show the emotions that they are feeling, 

for example someone that was feeling angry needed to be frowning and indicating that they are 

indeed angry. Luckily, this area of research is not new, so there are several existing datasets that are 

freely available for academic research. After some online searching, I came across a website called 

www.face-rec.org, which is essentially a website with lots of information regarding face recognition, 

with lots of source code, examples and academic literature related to this field. It also has lots of 

academic datasets that are available to download and use for academic research. A lot of the datasets 

require proof that this will be used for academic purposes, so a sign up with a university email address 

is needed to access the dataset. The sets of data that I used in my case are:  

- The Cohn-Kanade (extended) facial expression database: This is a database developed by 

Takeo Kanade, Jeffrey F. Cohn and Yingli Tian, that contains labels of emotions expressed by 

the subjects in images along with their facial action units. (Kanade, Cohn and Yingli Tian, n.d.) 

Facial action units refer to actions taken by the face when expressing an emotion. For 

example, when smiling people’s mouth, cheeks and eyes tend to move. The database contains 

593 images and is available here: http://www.consortium.ri.cmu.edu/ckagree/ 

- The Japanese Female Facial Expression Database: This is a database developed by Michael J. 

Lyons, Shigeru Akemastu, Miyuki Kamachi and Jiro Gyoba, that contains images of Japanese 

females expressing different emotions. Each picture has an explanation of the current 

emotion shown by each subject in the name of the file corresponding to the picture, so all 

pictures of people expressing happiness had the tag “HA” in their file names. The database 

contains 214 images and is available here: http://www.kasrl.org/jaffe.html 

- A database developed by Paul van Gent, that contains images found using google image search 

that he shared in a blog post about an emotion detection project. He was kind enough to share 

the dataset with the public, which meant that it could be downloaded and used by anyone. 

http://www.face-rec.org/
http://www.consortium.ri.cmu.edu/ckagree/
http://www.kasrl.org/jaffe.html
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The database contains 181 images and is available here: 

http://www.paulvangent.com/2016/04/01/emotion-recognition-with-python-opencv-and-a-

face-dataset/  

- The FACES dataset: This is a dataset developed by Natalie C. Ebner, Michaela Riediger, and 

Ulman Lindenberger, that contains images of six individuals, three male and three female. Of 

each of these three male and female subjects, one is young, one is middle aged and one is old. 

The dataset contains images of each individual expressing 6 emotions (neutrality, sadness, 

disgust, fear, anger, and happiness) twice, for a total of 72 images. This dataset is publicly 

available here: https://faces.mpdl.mpg.de/imeji/collection/IXTdg721TwZwyZ8e?q=  

Data Sorting:  

Now that I had access to data, it was time to sort the data so that it could be used to train the emotion 

recognition algorithms.  

The Cohn-Kanade database contains 593 images, but only a subset of these have labels for the 

emotions expressed in the images. This meant that the database had to be sorted so that only the 

images expressing emotions were used. To do this, I adapted a script written by Paul van Gent that 

would do just this. When downloading the Cohn-Kanade database, there is a folder that contains the 

images and a folder that contains the emotion code for the corresponding image (if that image has an 

emotion code). The emotion codes are: 0=neutral, 1=anger, 2=contempt, 3=disgust, 4=fear, 5=happy, 

6=sadness, 7=surprise. This meant that for each subject, the corresponding emotion is recorded, and 

therefore by looping through the two directories, images can be moved to directories that correspond 

to emotions. For example, I could copy all images with the emotion code 1 to a directory named 

“Anger”. The adapted script can be found in Appendix B  

The JAFFE database was much easier to sort, as the name of the file gave the emotion of the individual 

in that picture. This meant that in order to find all images of happy people, I could just search the 

directory containing the images for all files with the characters “HA” in their names. I then manually 

copied these into new directories corresponding to each emotion, so that they matched the structure 

of the sorted Cohn-Kanade dataset.  

The FACES dataset could be downloaded in batches of each emotion, so when downloading the images 

they were pre-sorted by emotion expressed by individual meaning that no further sorting was carried 

out.  

The database developed by Paul van Gent was already sorted into subdirectories, so no additional 

sorting was necessary.  

http://www.paulvangent.com/2016/04/01/emotion-recognition-with-python-opencv-and-a-face-dataset/
http://www.paulvangent.com/2016/04/01/emotion-recognition-with-python-opencv-and-a-face-dataset/
https://faces.mpdl.mpg.de/imeji/collection/IXTdg721TwZwyZ8e?q=
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The difference between the datasets is that the Cohn-Kanade dataset contains images of people 

expressing contempt whilst the other three do not. For the system being developed, I deemed that 

contempt is unnecessary, because faces expressing contempt closely resemble those expressing 

anger. Additionally, the other three datasets didn’t contain images of people feeling contempt, so 

there would be an uneven number of images in the training data. All datasets contained images of 

people feeling the following 6 emotions: neutrality, anger, disgust, fear, happiness, sadness and 

surprise. Therefore, these were the emotions that were selected to be detected in the system.  

Face Detection and extraction: 

The next step in developing the emotion recognition module was to extract the faces from the 

datasets so that they could be used for training the emotion recognition model. Faces needed to be 

extracted from the datasets because the approach to emotion recognition relies on extracting a face 

from an image and then the corresponding emotion of that face to be detected. This means that the 

model expects a specific sized image of a face. So, in order to ensure that all images of faces were the 

same size I used the different algorithms available with OpenCV to detect and extract faces.  

 

Figure 5 - Original face 
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Figure 6 - Extracted face 

As previously explained, with the installation of OpenCV there are two pre-trained face detectors, the 

Viola Jones Haar Cascade-Classifier and the Deep learning model adapted for face detection. For it to 

be possible to implement either of these methods, and make sure that they were usable to detect 

faces, at first I wrote two simple face detection scripts, that would open a camera feed, break the 

video clip into individual frames then detect a face in the frame and draw a rectangle around the face. 

Once I was sur that these scripts ran successfully, I adapted them so that they would extract the face 

detected in the input image. This was done by cropping the input image to the dimensions of the 

rectangle containing the face at the coordinates of the rectangle in the image.  

All three face recognition algorithms expect a specific input image size for a detected face, which 

meant that when cropping the images, I had to specify the size of the extracted face. If the sizes didn’t 

match, then there would be errors when attempting to re-train the face recognition algorithms.  

Viola Jones:  

Once I had successfully adapted the scripts mentioned above, I was in a position to carry out the face 

extraction for each image in the datasets that I had acquired. When using the Viola Jones face 

extraction script, for each input image a corresponding output image was created. This meant that 

the Viola Jones face extraction script had a 100% success rate, which was optimal for the system.   

Deep Learning:  

Next I ran the face extraction script that used deep learning to detect faces in images and extracted 

all the faces detected in the previously acquired datasets. I found that the deep learning module failed 

to detect faces in many of the input images, and also wrongfully detected faces in many of the input 

images. 

Figures 7 and 8 below demonstrate an example of a wrongfully extracted face.  
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Figure 7 - Original face 

 

Figure 8 - Wrongfully extracted face 

Before extracting faces using either of the algorithms, I expected that the Deep Learning face detector 

would outperform the Viola Jones algorithm, but when it came to detecting faces in images the Viola 

Jones algorithm appeared to be superior. It was interesting to see this because initial tests using the 

two face detectors showed that the Deep Learning face detector was more robust than the Viola Jones 

when detecting a face in a video stream. The Deep Learning face detector handled differences in 

lighting and occlusion of the face better than the Viola Jones when testing it with a video input. As the 

methodology that I was adopting to detect emotions in a video stream relied on splitting the video 

into individual frames, and then detecting the face in the frame before any further processing was 

carried out, the decision was made not to use the Deep Learning face detector for the project. The 

deep learning module also required more processing than the Viola Jones algorithm and as this project 

was intended to be as lightweight as possible, it made sense to use the Viola Jones algorithm.   

Emotion Detection Training:   

Now that I had extracted the faces from the original datasets, I was left with four new datasets 

containing images of faces expressing emotions with the images sorted into their corresponding 



30 
 

directories. The next step in the process was to train the face recognition model to recognise emotions 

with the “newly” obtained datasets. The face recognition module of OpenCV comes with three pre-

trained face recognition algorithms. These are:   

- EigenFaces: This is a technique that extracts the variance in facial features for each image in 

the training set. Then when the model is used, it tries to match the features extracted from 

the training set to the actual input data’s features.  

- FisherFaces: Fisherfaces works in a similar way to EigeinFaces, but with the difference that 

with the FisherFaces technique, instead of extracting the variance in facial features, it extracts 

the features that differentiate one person from another.  

- LBPH: This is a technique, where a 3x3 filter is passed over each pixel in an image that returns 

the binary equivalent value of the pixels within the filter. This binary value is dependent on 

the intensity value of each individual pixel. Then a Histogram is created that holds all the 

binary values for each face used in the training set. Then when a face is to be recognised, once 

it is passed through the LBP recognition model, the model attempts to match the current 

face’s LPBH with one from the training set.  

The training plan:  

In order to develop the best performing emotion recognition module, I had to train a series of different 

models with different training data. This way I could evaluate the performance of the algorithms and 

determine the best combination for the application. Initially, I intended on using both face detection 

modules to see which one would yield in better results, but as explained above the deep learning 

module wrongfully detected too many faces, so it wasn’t possible to use this as the face detector of 

the system. What was left to compare was the different face recognisers and different combinations 

of datasets.  

FisherFaces vs EigenFaces vs LBP:  

In the first stage of training the emotion recognition model, I started out by using the entire dataset 

to train all three facial recognition algorithms. This way, I would be able to determine the best 

performing algorithm and use this as my emotion recognition model. So as stated above, I now had a 

training dataset that contained all the images of all the emotions in their respective folders (folder 

named happy contained all the images of happy faces, folder named sad contained all the sad faces, 

etc.) What was left to do was to train the emotion recognition algorithms and compare their 

performance. Figure 9 below shows the method by which this was carried out. All algorithms were 

trained using the same datasets to make the comparison fair. Once the algorithms were trained, I was 

left with three emotion recognition models that could be tested.  
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Figure 9 - Training emotion detection model 

 

The approach to training the algorithms was as follows. First all the images for each emotion are 

shuffled and split into two separate sets, a test set and a training set. Then the training set is passed 

to the face recognition trainer with the corresponding label of each emotion in the set. Once the 

training has finished, the now trained model is used to try and predict the emotion in the prediction 

set. If the prediction is correct it is added to a variable that holds the correct prediction score, if it is 

incorrect then it is added to a variable that holds the incorrect prediction score. This is then used to 

calculate the accuracy of the algorithm. The process is repeated 10 times to make sure that the 

calculated prediction score is consistent. Finally, the emotion detection model is saved. The script that 

was run to train the models can be found in Appendix C. 

The output of the system once the training was complete is shown in figure 10 below.  

 

Figure 10 - System output after training 
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It can be seen that the FisherFaces algorithm outperforms the other two by roughly 20%. This is a 

significant number especially when the correct prediction rate jumps from around 55% to 75%. This is 

a difference of 1 in 5 predictions, which is significant for this system. Because of this big variance in 

results, the decision was made to only use the FisherFaces based model for the system. I believe that 

this is justifiable simply because a correct prediction score of around 55% means that the system will 

predict the wrong emotion around half of the time, which would make the system useless. Even if the 

correct prediction rate can be increased by changing the training set, the difference in results would 

not be significant enough to justify using either of the other two algorithms for this system.  

Entire Dataset vs (Entire Dataset – JAFFE): 

The next step was to attempt and increase the performance of the emotion recognition algorithm. At 

the current time, the only way that this could be done is by changing the training dataset. I made the 

assumption that the JAFFE database was responsible for some of the wrong predictions when training 

the algorithm, simply because of the difference in appearance of Japanese faces in comparison to 

those of Caucasian people. So, in order to test this hypothesis, I retrained the emotion detection 

algorithm, but this time by removing the JAFFE database from the training set. This meant that I had 

to restructure my training dataset and retrain my emotion detection model again, but at this time I 

had already decided that I was only going to use the FisherFace algorithm as this gave the best results 

in my previous tests. I tweaked the training script, so that it would be the same as the original, but 

with the difference of only training one algorithm rather than three.  

The output of the newly trained algorithm is shown in Figure 11 below.  
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Figure 11 - System output after training 

The performance increase when removing the JAFFE database from the equation was not significant, 

as seen above. However, in real life test scenarios the emotion detection system seemed to perform 

better when this was removed. I suspect that this is because I had only tested the outcome of the 

algorithm on myself, a Caucasian. I believe that by removing the Japanese dataset, it made it easier 

for the algorithm to make predictions because it was only trained with pictures having similar facial 

features as the people testing it (Myself).  

More improvements:  

The reliability of a machine learning algorithm usually depends on the dataset that is used to train it. 

Typically, with more data the algorithm gets better, but at this time, I couldn’t get hold of more 

training data and therefore could not attempt to increase its performance by growing the dataset. 

Another way that this could be improved is to remove data that is similar or merge it into one section 

of the dataset. For example, someone looking surprised can easily be confused with somebody looking 

happy, or somebody looking disgusted could be confused with someone looking angry. As 

demonstrated in Figures 12 and 13 below. 
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Figure 12 - Surprised face 

 

Figure 13 - Happy face 

However, by removing similar emotions from the set, or by merging the data in the subsets again it 

would take away from the performance of the system as a whole. There is a trade-off between correct 

detection rate and number of emotions that can be detected, but I was happy with a correct detection 

rate of around 60%, so I deemed it unnecessary to remove emotions from the datasets. The purpose 

of this application was to prove that this concept is achievable, so developing a system that predicts 

the emotion correct 3 out of 5 times still does just this. 

Final Emotion Detection Module:  

Once I was happy with the performance of the emotion recognition model, I had to incorporate it to 

the system, which meant that I had to develop the subsystem that would be in charge of emotion 

detection. As shown by Figure 14 below, the general idea was for this module to accept an input video 

stream, or an input from the camera. From this input the face detector detected and extracted faces 

that were fed to the emotion recogniser. This then output the (predicted) recognised emotion of the 
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face detected in the video input. Figure 14 below shows how the emotion detection module of the 

system functions.  

 

Figure 14 - Emotion detection methodology 

 

This was then re-structured, so that instead of it being an executable script it became a class that could 

be imported by other modules of the system, by creating an emotion detection object and calling its 

subsequent methods.  

Web Application:  

As stated at the start of this chapter, the development methodology was geared around developing a 

two-part system, with the second part of the system being based on the first. This meant that now 

that I had the emotion recognition section complete, I could move on to develop the Web-Application 

that housed the entire system.  

Methodology:  

As this was a web-application system, it meant that it had to be split up into a front and back end. The 

back end of the system is where all the functionality of the modules identified in the design chapter 

would go, with the front end allowing for interaction between modules or displaying the systems 

outputs.   

Back end:  

The back end of the system was comprised of the following sub-modules:  

- Emotion detection module: This was the module that had just been developed. It was in 

charge of detecting emotions from a given input video stream.  

- Video recording module: When first developing this module of the system, it seemed like a 

fairly straightforward task because OpenCV offers the functionality of recording the output 

video stream after image processing has been carried out. However, with OpenCV the method 

of stopping the recording is with a hardware instantiated interrupt (usually pressing the ‘q’ 

key). In order to adapt this so that it could be stopped with a software instantiated action, I 

had to run the recording module on a second processing thread. This meant that when I 
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wanted to start recording, I would start the second thread and to stop recording I would end 

the process of the second thread.  

- Library module: For the prototype system, the library module was a local directory that was 

used to store the recordings of the video recording module. This was essentially a directory 

containing video clips that could be accessed by the Video Playback Module.  

- Video Playback module: This module was in charge of playing the recorded video clips. It 

would take the file-path of the desired video clip to be played and would play the video clip 

using OpenCV. This was the chosen method of playing a video clip as it meant that I didn’t 

have to import any additional libraries to deal with video playback.   

- Statistics module: As the name suggests, this module was in charge of outputting the statistics 

of a recorded clip. In the current version of the system, the emotion detection module saves 

the times that each emotion is detected in the input stream to an array that is returned once 

emotion detection has finished. The array that is returned holds the timings of each emotion 

displayed in an index that corresponds to each emotion. For example, index 0 was used to 

hold the overall duration that the neutral emotion was detected in the input stream. This local 

array was then accessed by the statistics module and a chart would be built using chartist, a 

JavaScript library designed to build interactive charts very easily. 

Front end:  

The front end of the system was a HTML based front end, used to switch navigate different pages of 

the system. JavaScript was used to deal with interaction between the front and back end of the 

system. Specifically, to handle a request to start and stop recording the output of the emotion 

recognition module. There were 5 pages developed for the front end of the system:  
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- Home Page: At the current time, the homepage was a page that contained navigation 

buttons to the other pages of the system with a title explaining what page it is. 

 

Figure 15 - Home page 

- Emotion Detection Page: This is the page that emotion detection was carried out on. On this 

page, real time emotion recognition is carried out and the output of it is displayed on the page. 

There are also two additional buttons, one to start recording and one to end it. Because the 

output of the emotion detection is displayed on this page, it meant that the video clip 

currently being recorded was displayed as it was being recorded.   

 

Figure 16 - Emotion detection page 
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- Library Page: For every video clip stored in the library a HTML button was generated that 

would redirect the application to the video playback page, where the video that was clicked 

on would be played in the browser.  

 

Figure 17 - Library page 

- Video Playback Page: This page was generated once a video was clicked on in the library. If no 

videos existed in the library, then no video playback pages existed either. Once a video was 

clicked on and this page was displayed, it contained a video player in the browser that would 

play the video that was selected.   

 

Figure 18 - Video playback page 
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- Statistics Page: This is the page where the duration of each emotion felt was displayed in a bar 

chart. The X axis of the chart displayed the different emotions that could be detected, with 

the Y axis displaying the time duration that emotions had been detected.  

 

Figure 19 - Statistics page 

By using Flask to build the system, I was able to use the so called “Jinja2” template engine. This meant 

that I could build a HTML page that other HTML pages inherited from. I used this to build the 

homepage and then each other page in the system would inherit from it. As it only contained the 

navigation buttons, it meant that all subsequent pages of the system would now contain the 

navigation buttons too.  

Integration of back end with the front end:   

Flask was used to build the web-application, as this allowed for the system to be hosted on a local 

web-server without the need of much configuration. As previously explained, Flask was chosen to 

develop the web-application because of how lightweight and straightforward it is to set up. Because 

this is a python web-application framework it meant that I could import and run all of my previously 

developed python code, without having to change too much of the code.  

The development approach followed an MVC pattern, which is a development pattern that splits an 

application into three components, the Model, the View and the Controller as seen in Figure 20. With 

MVC, the model represents all of the back-end functionality of the system, where any operations on 

data are carried out. The View represents all of the front-end functionality, which is essentially the 
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user interface. And the controller is basically an interaction method between the model and the view. 

In the case of the system that I developed, the Model was all the back end modules of the system, the 

View was the front end modules, and the controller was the Flask application, as this would handle 

user requests and share data between the back and front end.  

 

Figure 20 - MVC architecture (Firebirdsql.org, 2019) 

Raspberry Pi Development:  

The requirements specified that this system needed to be deployable to an embedded device, as I had 

selected the Raspberry Pi to act as the embedded device of the system it meant that I had to develop 

for this. Initially, development started on the Raspberry Pi, so I had installed all of the necessary 

libraries for the task and ran a couple of tests (face detection scripts) to verify that the Raspberry Pi 

was powerful enough for the task. However, at this stage of development, I didn’t have access to an 

external monitor which meant that any development on the Raspberry Pi was carried out through the 

remote command line via SSH. I also used VNC, which is a Virtual Desktop tool that allowed me to view 

the desktop of the Raspberry Pi through the network. Unfortunately, this meant that the output 

displayed on the desktop of the Raspberry Pi was restricted by the Network capabilities, which were 

not fast enough to display video playback in real time. So, any tests that I had ran with regards to face 

or emotion detection would run with huge delays. This made it impossible to continue developing 

natively on the Raspberry Pi.  

Because of the issues outlined above, I transferred all of my code to my MacBook pro and continued 

developing on that for the remainder of the time. When transferring code from Raspberry Pi to the 

MacBook Pro, there were no configuration errors. This led to the assumption that anything developed 

on the MacBook Pro could then be re-transferred to the Raspberry Pi and the performance of the 

system could be evaluated when a monitor was available to connect to it.   
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Chapter 6  

 

Verification and Validation:  

This section of the report gives details about how the system was verified and tested against the 

defined requirements of the application. As an iterative development methodology was followed, unit 

tests were carried out alongside development, but what follows is the final acceptance testing.  The 

system was developed as two separate builds, the emotion detection module and the web application 

module. This meant that the first tests carried out had to ensure that the emotion detection module 

met the specification. Once the required functionality of the emotion detection module was 

developed, a Flask web-application was built that could stream the emotion detection module to 

ensure integration between the developed module and a Flask web-application was achievable. This 

was also done for the face detection sub-module of the emotion detection module. When this was 

successful, the entire web-application could be developed and then both integration and unit tests 

could be carried out on the complete system.  

Test Plan Overview:  

There were two types of tests carried out on the system, Unit Testing and integration testing. First 

Unit testing was carried out and then integration testing. This way I could ensure that individual 

components of the system (Units) functioned as necessary before incorporating them into the 

complete system. Once all components were integrated into the complete system, integration testing 

could be carried out to ensure that components interact successfully.   

Unit Testing:  

Unit testing was carried out on each individual module that the system was comprised of. Although 

Python has an automated Unit testing framework (Unittest), this was not used to test modules 

because it would not have been possible to test the actual output of some of the modules of the 

system against the expected output. For example, it would not have been possible to write an 

automated test to test that when a face is detected by the face detection module that it is indeed a 

face. It would not be possible to test that when an emotion is detected by the emotion detection 

module that the emotion detected is the correct emotion. This meant that Unit testing was carried 

out manually for this system. Unit testing was predominantly carried out on the Emotion detection 

module.   
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Integration Testing:  

Integration testing was carried out once Unit testing had finished, as the modules of the system 

needed to be verified before attempting to integrate them into a complete system. Integration testing 

was predominantly carried out on the web-application, as this is where all the sub-modules of the 

system interacted between themselves.  

Emotion Detection Tests: 

Before tests were carried out on the emotion detection module, the requirements were re-visited, so 

that I could be certain that the module functioned as the expected by the specification. The 

requirements related to the emotion detection module are:  

- Recognise emotions in an input video stream in real time   

- Recognise emotions in a pre-recorded video stream   

- Be capable of recognising emotions of multiple people at once  

- Display the emotions of users in a video stream (either real time or pre-recorded) as it is being 

played back   

However because of the architecture of the emotion detection module, (see Figure 14) the first section 

of the emotion detection module is a face detector, so this also needed to be tested to make sure that 

it would function as required for the emotion detection module. The requirements of the face 

detector are:  

- Detect a face in an input video stream in real time  

- Detect a face in a pre-recorded video stream 

- Be capable of detected multiple faces at once  

The face detector had to also be able to extract the face that was detected so that it could be sent to 

the emotion detection algorithm. This meant that the face detector had to be able to crop a frame 

containing a face to the dimensions of the face that had been used to train the emotion detection 

algorithm. This formed the first integration test of the emotion detector. The face detector and 

extractor had to integrate with the emotion detector successfully before the emotion detector could 

run. Both the face detector and the emotion detector needed to be able to be streamed to a web app, 

to make sure that this could be incorporated into the complete system. Streaming the face detector 

and emotion detector to a web app were the other two integration tests at this time.  

The complete list of test cases relevant to the emotion detection module follows: 
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Module Test Title: Description Pass/

Fail 

Test 

type  

FD  Detect Face Live Detect a face in a live video input  Pass UT 

FD Detect Face Pre-

recorded 

Detect a face in a pre-recorded video 

input  

Pass UT 

FD Detect Multiple Faces 

Live  

Detect multiple faces in a live video input  Pass UT 

FD Detect Multiple Faces 

Pre-recorded 

Detect multiple faces in a pre-recorded 

video input  

Pass UT 

FD Export Cropped Face Export a cropped image containing only a 

face  

Pass UT 

FD Detect Face – Lighting  Detect a face with variance in lighting  Pass UT 

FD Detect Face – 

Occlusion  

Detect a face when it is occluded (wearing 

glasses or a hat or both)  

Pass UT 

FD Detect Face – Pose  Detect a face with varied poses (45-degree 

angles)  

Pass UT 

FD Stream Face Detector Stream the output of the Face Detector to 

a web-application page 

Pass IT 

FD&ED Detect Face & 

Emotion 

Detect a face, crop it to the emotion 

detector size and detect the emotion in 

the face  

Pass IT 

ED Detect Emotion Live  Detect the emotion expressed in a face in 

a live video input  

Pass UT 

ED Detect Emotion Pre-

recorded 

Detect the emotion expressed in a face in 

a pre-recorded video input  

Pass UT 

ED Detect Emotion 

Multiple Faces Live 

Detect the emotion expressed in multiple 

faces in a live video input  

Pass UT 

ED Detect Emotion 

Multiple Faces Pre-

recorded 

Detect the emotion expressed by multiple 

faces in a pre-recorded video input  

Pass UT 

ED Detect Emotion – 

Lighting  

Detect the emotion expressed in a face 

with variance in lighting  

Pass UT 
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ED Detect Emotion – 

Occlusion  

Detect the emotion expressed in a face 

when the face is occluded (wearing 

glasses or a hat or both)  

Pass UT 

ED Detect Emotion – 

Pose  

Detect the emotion expressed in a face 

with varied poses (45-degree angles)  

Pass UT 

ED Stream Emotion 

Detector 

Stream the output of the Emotion 

Detector to a web-application page  

Pass IT 

Table 1 - Emotion detection acceptance tests 

  

FD = Face Detector, ED = Emotion Detector, FD&ED = Face Detector and Emotion Detector, UT = Unit 

Test, IT = Integration Test  

Details of tests:  

Additional information regarding the success criteria of the Validation tests of the Emotion Detection 

module follows.  

Face Detection:  

For face detection, all tests were carried out on myself or images from within the training dataset. For 

detection of multiple faces in a live video input I held a picture of a face in the frame, so that the 

detection would have to be carried out on my face and the second face in the video frame. The success 

criteria for detection was a detection rate above 70% and was evaluated using timers. Evaluation of 

exporting a face was carried out manually by comparing an input image to an output image and was 

carried out both on images and video clips. Evaluating the integration of the face detection module 

with a Flask web-application was done by manually examining that the output of the face detector 

was streamed to the page and displayed in real time.  

Emotion Detection:  

For emotion detection, again all tests were carried out on myself or images taken from the training 

dataset. Multiple faces were evaluated using myself holding a picture of a face expressing an emotion. 

The success criteria were a correct detection rate above 50%, this is because when training the 

algorithm, the predicted success rate was around 70% meaning that the expected real-life success 

rate would have to be lower than 70%. Integration between the face and emotion detection modules 

was evaluated by checking that the emotion detector would detect an emotion (regardless of whether 

the detected emotion is correct) for every face detected in an image. Evaluating the integration of the 

emotion detection module with a Flask web-application was carried out manually by examining that 
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the output of the emotion detection module was successfully streamed to the page and displayed in 

real time.    

Once the tests mentioned above had been completed and all test cases passed successfully, I was left 

with a fully functioning Emotion Detection Module that could be streamed to a web application. This 

meant that the rest of the system could be developed, and the emotion detector could be 

incorporated into it. In the design section of the report, it is explained that the emotion detector 

module had been transformed into an emotion detection class, so by importing the emotion detection 

class to the complete system all I needed to do was create an emotion detection object and call its 

methods to start or stop the emotion detection in the web application.  

Web application Tests:  

In the same way that the test strategy for the emotion detector was developed, so was the test 

strategy for the Web-Application. This meant that the requirements were re-visited before forming a 

series of test cases. The requirements related to the Web-application not including the emotion 

detector are:  

- Display the recognised emotions in a meaningful manner  

- Record a video stream  

- Store the recorded video stream  

- Display the emotions of users in a video stream (either real time or pre-recorded) as it is being 

played back  

- Store an edited video stream that displays emotions of users as the video is being played back  

- Display statistics of the emotions a user in the video shows for the duration of the video  

- Have a User-Friendly Interface  

At this time, because additional modules had to be developed to meet the requirements of the system, 

each additional module (such as the module that saved the recorded video stream to file) had to be 

unit tested, then integration tested when added to the complete system.  

The complete list of test cases relevant to the web-application follows:  

Module Test Title: Description Test 

type  

UI  Display Page  Display the front-end page for each page of the 

corresponding functionality of the system  

UT 
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UI Navigation Navigate between different pages of the front 

end  

IT 

SV  Save to file Save a video clip to file. (In this case, in the 

directory of the library) 

UT 

SV Save to file – Web  Save a video to file using the web-application  IT  

LIB Save to Library Use the Save Video module to store the video 

saved in the directory of the library  

IT 

LIB Display videos – Web Display the videos currently stored in the library 

directory in the web-application  

UT/IT 

PV  Play video from file Play a video saved in the library directory  UT/IT 

PV Play video – Web Play a video saved in the library directory and 

stream it to the web application  

IT 

ED Detect Emotions – Web Detect emotions in a video stream and display 

the results in the web-application  

IT 

STAT Record Statistics Record statistics related to the emotions 

detected (Duration that each emotion is 

detected) 

UT 

STAT Display Statistics Display the recorded statistics in the Web-

Application  

IT  

Table 2 - Web-Application acceptance tests 

UI = User Interface, SV = Save Video, LIB = Library, PV = Play Video, ED= Emotion Detector, STAT = 

Statistics, UT = Unit Test, IT = Integration Test   

Details of tests: 

All modules of the system undertook integration testing, where a manual test was carried out to 

ensure that all individual modules of the system integrated with one another. As seen Table 2 above, 

each individual module undertook Unit tests too. Explanations of the validation tests follow. 

User Interface:  

The User Interface’s Unit test evaluated the functionality of the User Interface. The User Interface had 

to display the contents of each page to the User as well as the outputs of each individual functional 

unit. To verify this, I navigated between each page and examined the contents of the page 

The User Interface’s Integration test evaluated the interaction between the User Interface and the 

corresponding functionality of the system. For example, clicking on a video from the Library page was 

expected to navigate to a page that displayed the video being played. 
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Save Video:   

The Save Video modules Unit test evaluated the functionality of the Save Video module. This had to 

record a video and save the video clip to the library directory. To evaluate this, I recorded a video and 

checked that the new video was in the library directory, and was the video that I had just recorded.  

The Integration test carried out on the Save Video module evaluated that the module integrated with 

the system. To evaluate this, the same Unit test as above was carried out, but this time in the Web-

Application. 

Library:   

The Library modules Unit test was developed to evaluate its functionality. This had two functions, to 

display the videos currently stored in the library. To evaluate this, I recorded a video clip and then 

navigated to the library page to see if it was displayed. This was done three times, and if all three 

videos were displayed in the directory then test was successful.  

The Integration tests carried out on the Library module were intended to verify that the functionality 

tested above was reflected in the web-application. So, the same test as above was carried out in the 

Web-Application, and if the results were as expected (Display the videos recorded using the Save 

Video module in the Library page) then the module functioned as expected.  

Play Video:   

The Play Video module was evaluated by playing a video from the library directory first in a separate 

window that the module would open, and then in the web-application. If the selected video was 

played (In a window and in the Web-Application) then this test was successful.   

Emotion Detector:  

The Emotion Detection module had already been Unit Tested, so only an integration test was carried 

out that would ensure that the emotion detection module could interact with the save video module 

and the user interface. To evaluate this, when opening the Web-Application, first the emotion 

detection page was visited. This would initiate emotion detection and display the resulting video on 

the page. Then, the record video module was used to save a video clip of the emotion detection that 

was running in real time. Finally, the library page was visited to ensure that the video clip that had 

been recorded was the emotion detection that had just commenced.   

Statistics:   

The Statistics Module recorded the durations that different emotions were detected, and used these 

values to display the duration an emotion was detected in the User Interface. The Unit test that was 

carried out on the Statistics Module was created using timers. The duration that an emotion was 
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expressed was timed and then the results of the statistic module were compared to the recorded 

values. If they were the same then the functionality was implemented successfully. The integration 

test tested that the results recorded by the module were displayed in the Web-Application. This was 

done by first visiting the Emotion Detection page, then recording a video clip from that page and 

finally, navigating to the statistics page to verify that the results were displayed on the Statistics page.  

Upon completion of the test cases stated above, I had a fully functioning prototype of the application 

that met the requirements that were defined previously. All the user stories and requirements were 

met, and the different modules within the application integrated successfully. All submodules were 

developed separately and tested as individual scripts before being transformed into classes that could 

be imported and ran by the web-application. Using Flask allowed me to create the different objects 

corresponding to the classes, and then display the output of these classes in the web application.   

Raspberry Pi Tests:  

The final step in the verification and validation process was to test the application on the Raspberry 

Pi. In the design document, it is explained that development did not happen natively on the Raspberry 

Pi but instead on PC, with the assumption that because the Raspberry Pi had been set up the same 

way that the PC had with regards to Python Versions, OpenCV versions and Flask version, the 

application should be compatible with the Raspberry Pi. The only change that would have been 

needed to be made was the input source, but as OpenCV’s default video input source is the camera 

module of the device that it is running on, this wouldn’t be an issue. On PC the default input source is 

the web-camera, and on the Raspberry Pi the default input source is the camera module of the 

Raspberry Pi (assuming that a camera module has been successfully installed). So, the only thing left 

to do was to run the application on the Raspberry Pi natively and see if the Raspberry Pi had enough 

processing power to successfully run the application in real time. If this was not the case, then the 

system would have to be re-designed so that video capture and face detection could be carried out 

on the Raspberry Pi, with the extracted face being sent to a server for processing.   

To determine that the application ran successfully on the Raspberry Pi, a few test cases were 

developed that would test all of the functionality of the application. At this time, the test cases are in 

the form of User Tests, but with the difference that the tests were run by the developer and not an 

external user. The steps followed to test that the application could run on the Raspberry Pi are:   

1. Switch between different pages in the application – This tested that navigation functioned as 

required  
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2. Navigate to the emotion detection page and examine the output of real time emotion 

detection – This tested that emotion detection could run in real time and be streamed to the 

web-application  

3. Click the “record” button, detect emotions then press the “stop recording” button in the 

emotion detection page – This tested that emotion detection could be recorded and stored 

to the library.  

4. Navigate to the library page and examine the files currently in library – This ensured that the 

previous test was successful.  

5. Click on the video currently in the library to watch the video in the browser – This tested that 

the newly recorded video clip could be played and displayed in the web-application.  

6. Navigate to the statistics page and examine the statistics – This tested that the statistics 

module would run successfully.  

When following the test steps mentioned above, there were mixed results on the Raspberry Pi. The 

User Interface was displayed as it was on PC and navigation between pages was successful. When 

navigating to the emotion detection page, where emotion detection in real time was displayed the 

system could display the video file being processed, with a rectangle around the face that was 

detected, and the emotion detected was also displayed. But the framerate at which this was 

happening seemed to be reduced (Around 15FPS) compared to that of the system running on a PC. 

Videos could be recorded using the “record” and “stop recording button”. The library page then 

displayed the videos that were recorded, but when the video that had just been recorded was 

displayed, it was played with a normal framerate (Around 30FPS), but appeared to be sped up because 

of the reduced video frames outputted from the emotion detection module. A video recorded at 15 

FPS, when played at 30FPS has half the duration of the original video clip. Then when navigating to 

the Statistics Page, it correctly displayed the statistics as they were displayed on PC.   
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Chapter 7  

 

Results and Evaluation:  

In this section of the report, the final application is evaluated with regards to the original specification 

and requirements. To begin with, the final application is evaluated by first inspecting the user interface 

and then the functionality of the system. Next, the Emotion detection module is evaluated separately. 

This is the only submodule individually evaluated because the entire system relied on this being 

successfully developed. Finally, the original specification is examined again, and evaluation is carried 

out to ensure that all the requirements were met upon completion of the project.  

Final Application:  

Upon completion of this project, a fully functioning prototype of the web-application was developed. 

The focus of this project was the emotion detection, therefore the User Interface that was 

implemented was basic but functional. The appearance of it was not of concern at this time, which is 

why testing was revolved around functionality and integration rather than end Users. The aim was to 

develop a user interface that could be used to navigate between different pages of the application 

and display the outputs of the different modules within the system in order to demonstrate that the 

system functioned as expected.  

User Interface/Front end:  

In order to evaluate the User interface, three aspects of it were reviewed. Its ability to display the 

results of the back-end functionality, its ability to navigate between pages and its ability to initialise 

back end functionality from within the user interface.   

Display Results:  

In order to evaluate the User interfaces ability to display results, each page that would be used to 

display, or render anything from the back end had to be evaluated. The evaluation procedure for each 

page follows:  

- Emotion Detection Page: First the emotion detection page was visited as this would display 

the results of emotion detection in real time upon navigating to this page. This successfully 

displayed the input from the web-camera or camera module, with the emotion detection 

being carried out in real time. See Figure 21 below:  
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Figure 21 - Output of emotion detection 

- Library Page: Next, the library page was visited. The library already contained videos that had 

been previously recorded, so upon navigating to it the buttons corresponding to each file in 

the library had been created. To evaluate this, the library directories contents were compared 

against those displayed. Every file in the library appeared as a button on the library page. See 

Figure 22 below:  

 

Figure 22 - Output of Library page 

- Play Video from Library: When visiting the library page, buttons corresponding to each video 

on the file should have been created. When each of these buttons are clicked, the Web-

Application then navigates to the Video Display page of the file corresponding to the button. 
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On this page, the video that has been selected is played. To verify that this functionality was 

implemented successfully, I populated the library with four video clips. Then I checked all files 

could be played in the web-application. This was a form of boundary testing, where the files 

at the beginning end and middle of the directory were tested.  See Figure 23 below  

 

Figure 23 - Output of Video display page 

- Statistics Page: Finally, the statistics page had to be visited to ensure that the statistics 

recorded could be displayed. Upon opening this page one of two thing happened: If a video 

had been recorded in the current session then the statistics associated with it were displayed. 

If a video had not been recorded in the current session, then the statistics page would appear 

to be empty. To verify that the statistics being displayed were the same as those being 

recorded, I printed the statistics that were recorded in the terminal that the application was 

running in and evaluated based on the printed output. See Figure 24 for successful output and 

Figure 25 for unsuccessful output. 
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Figure 24 - Successful Output of Statistics page 

 

Figure 25 - Unsuccessful Output of Statistics page 

Evaluating the applications ability to display results was successful, except from the statistics page 

that would function as required if a video had been recorded in the current session whilst if no video 

had been recorded then it would not.  

Navigation:  

In order to evaluate the applications navigational abilities, the navigation buttons of each page were 

tested. The expected outcome of navigation was the same for every page because the buttons were 
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inherited from the base.html file. This meant that if the navigation from the homepage did not work, 

it would not work in any of the other pages either, but if it did work then it was expected to work for 

all of the other pages too. Figure 26 below shows the navigation section. To test the navigation 

functioned as expected, each button was clicked from each page which resulted in navigation between 

pages as required. This was unnecessary because all pages inherited from the base.html file, but I 

wanted to make sure that the inheritance was successful as I had not come across inheritance in HTML 

before.   

 

Figure 26 - Navigation section 

 

Recording a video clip:  

Evaluating the user interface on its ability to control back end functionality from the front end meant 

that the buttons used to start and stop recording had to be evaluated. These were the only buttons 

with functionality other than navigation associated with them. All other actions start with navigation 

to the page responsible for that action. To evaluate the outcome of these buttons, once the Emotion 

Detection page was visited, the buttons were clicked and the results of clicking them were recorded. 

When the Emotion Detection page is loaded, the “Stop” button is unavailable as seen in Figure 27 

below. Once the “Record” button is pressed, the “Record” button becomes unavailable and the “Stop” 

button becomes available as seen in Figure 28 below. This meant that it was not possible to start 

recording whilst recording was currently running or to stop recording if no recording was currently 

running. So, the only thing left to evaluate was if by pressing the record button and then the stop 

recording button a video clip was actually recorded. To do this, the application was navigated to the 

library page after a video had been recorded, and as expected the library page displayed a new 

recording. Once this new recording was played back it was confirmed that it was indeed the video clip 

recorded by using the buttons. For my tests, I recorded different lengths of video clips, spanning from 

10seconds to 10 minutes. The system was designed without any limitation of length of video clips, but 

with the intention of video recordings having a maximum duration of 10 minutes. This is because the 

system is intended to be used as a replacement for interviews and questionnaires that typically take 

this long to conduct.  

 

Figure 27 - Unavailable Stop button 
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Figure 28 - Unavailable Record button 

Functionality/Back end:  

The next section of evaluation with regards to the final application was to evaluate the back-end 

functionality. The functionality implemented by the back end is:   

- Emotion Detection in real time 

- Record emotion detection from input camera  

- Display a list of recorded video clips  

- Play any video clip from the library  

- Display the statistics of the emotion detection  

When evaluating the User Interface, the back-end functionality was also evaluated as the User 

Interface relied on this to function. The functionality of the internal components was evaluated, but 

not their performance. This meant that the performance of the Emotion Detection and Face Detection 

had to be evaluated.  

Emotion Detection: 

The next step in evaluating the developed system was to evaluate the Emotion Detection module. The 

methodology adapted to evaluate this was to first evaluate it on its ability to detect a face in a video 

stream. Next, if a face is detected to evaluate whether an emotion is detected for every face that is 

detected and finally to evaluate if the detected emotion is correct.  

Face Detection:  

The Face Detection module was evaluated during development, as it had 100% success rate in 

detecting and extracting images from the training data set, this did not have to be re-evaluated on 

images. When detecting a face in a video stream I found that it met the requirements in ideal 

conditions (lighting, pose, etc.) but in non-ideal conditions it had a success rate of around 70%, which 

was acceptable for the application.  

Emotion Detection:  

Next, I had to evaluate if the Emotion Detection module actually detects an emotion for every face 

detected in the video stream. In order to do this, I displayed the emotion that was detected in the 

rectangle surrounding the face that was detected. I found that every time a face was detected an 

emotion associated with it was also detected.  
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Emotion Detection Performance: 

To evaluate the success rate of the emotion detection module, different evaluations were carried out. 

First, I would express an emotion towards the camera module. This was then recorded and an attempt 

to detect the emotion expressed was carried out. The initial test was undertaken in perfect conditions 

(perfect lighting and face looking directly at the camera). The outcome of the emotion detection was 

then evaluated. I found that the emotion detector was successful most of the time when testing under 

ideal conditions.  

Next, I carried out the same tests as above, but with varied lighting and facial pose. I found that the 

emotion detector did not perform well under non-ideal conditions. Figures 29 and 30 below show 

examples of incorrectly detected emotions due to variance in illumination and pose.  

 

Figure 29 - Wrongfully identified emotion due to variance in pose 

 

Figure 30 - Wrongfully identified emotion due to variance in illumination 

Finally, I carried out the same tests again, but this time wearing glasses. I found that at this time, under 

ideal conditions the emotion detector would work almost as well as the first tests undertaken. I also 

found that when there was a glair on my glasses due to the reflection of my monitor the face detector 

couldn’t detect my face correctly as shown in Figure 31 below.  



57 
 

 

Figure 31 - Wrongfully identified emotion due to monitor reflection on glasses 

 

Comparison with Specification:  

The final section of the evaluation is to compare the developed system with the original specification 

and requirements. The list of requirements is re-visited below, alongside the outcome of 

development.  

Requirement Result 

Recognise emotions in an input video stream in 

real time   

Successfully Implemented 

Recognise emotions in a pre-recorded video 

stream   

 

Successfully Implemented 

Display the recognised emotions in a meaningful 

manner   

 

Successfully Implemented 

Make use of an embedded device (Portability)   Successfully Implemented 

Record a video stream Successfully Implemented 

Store the recorded video stream (Create a 

Library) 

Successfully Implemented 

Display the emotions of users in a video stream 

as the video is being displayed. (either real time 

or pre-recorded video clip)   

Successfully Implemented 

Save an edited copy of the input video stream 

that displays the emotion detected.  

Successfully Implemented 
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Display statistics of the emotions a user in the 

video shows for the duration of the video. (e.g., 

happy 56% of the time they were in the video)  

Partially implemented. The output of the 

statistics module was only displayed if a video 

was recorded in the current session. 

Be capable of recognising emotions of multiple 

people at once 

Successfully Implemented 

Have a User-friendly Interface  Un-Evaluated. No User tests were carried out 

because the focus of this project was emotion 

detection.  

Table 3 - Evaluation of requirements 

From the originally specified requirements, all requirements were met except from the ones that were 

deemed as out of the scope of the project at this time. The statistics module was partially 

implemented, and how this could be fully implemented is discussed further down in this report (See 

Chapter 8) The User Interface had still to be evaluated because User Tests were not carried out at the 

current time, but in the future a user centred approach would be followed when designing the 

Interface.  
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Chapter 8 

 

Summary and Conclusions:  

In this chapter of the report, a reflection on the project as a whole is given, then reflection on the 

emotion detection module. Future work is discussed including ideas regarding improving the current 

system and finally, a conclusion.  

Summary/Reflection:  

Project as a whole: This project was developed with great emphasis given to the requirements, as 

these outlined the features and functionality required by the project. Overall, the requirements that 

were inside the scope for the project were successfully satisfied. A web-application that can carry out 

emotion recognition in real time but can also record and save a video clip of the emotion detection 

was developed. This included a library page that contained all the recorded video clips recorded by 

the emotion recognition module. It also had playback functionality for files within the library. And 

finally, a chart that displays the statistics recorded by the emotion detection module. The solution was 

proven to be deployable to the Raspberry Pi too, even though the performance of real time emotion 

detection was impacted by the limitations of the Raspberry Pi’s processing power. In theory by 

upgrading to the newest model of the Raspberry Pi (Currently Raspberry Pi 4 Model B), the increase 

in processing power should allow for the real time emotion recognition system to run at an acceptable 

framerate.  

Emotion Detection module: The emotion detection module was highly accurate in ideal conditions 

despite being lightweight. This was essentially a face recognition algorithm trained to recognise 

emotions rather than faces. The methodology for detecting faces once the model had been trained 

was relatively straightforward. If a face was detected in a frame of a video clip, it was extracted, resized 

and passed through the (re-trained) emotion detection model, and the emotion expressed in the face 

was matched to a known emotion of the model. When a face was detected under uneven lighting, or 

with a pose slightly off-centred from the camera, the emotion detection module struggled to predict 

the correct emotion expressed by the face, but this could be overcome with more training of the 

model.  

Overall, this was a successful project that completed all the predefined goals and objectives and 

showed that although emotion detection and recognition is a complex task, there are relatively 

lightweight solutions that can be developed and deployed to portable computers. The system that 
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was developed is robust enough to be used as a proof of concept but would need some further work 

to be carried out before it could be released for commercial use.    

Future Work:  

In this section an insight into the next steps of the project, along with ideas to improve its performance 

are discussed.  To begin with, the requirements that were out of the scope of the current project 

would have to be implemented. The highest priority requirement, which would need to be completed 

next is the statistics module. As it stands it is implemented but would require some form of database 

that could store the data regarding the statistics. Next, the user accounts module would need to be 

created. As a database would have already been implemented, it would be easy to add a table that 

could hold the user account credentials. This would then have to be encrypted to keep the details of 

user accounts private. 

Web Application:  

The current version of the web-application is good enough to prove the concept but needs to be made 

visually appealing and user friendly. So, this would be the next step in development of the web-

application. As far as the functionality of the web-application is concerned, everything works nicely. 

The main scope for improvement and development that exists for the web-application revolves 

around the appearance of the application. User testing would need to be conducted in order to 

determine potential future users’ requirements with regards to design.  

Emotion Detection:  

The next steps regarding the emotion detection module are based on improving its performance. The 

functionality of the module meets the requirements of the specification, and no additional features 

need to be added. As far as improving the performance of the module, the first step is to increase the 

training data sets. More images for each emotion need to be added to the set, including images of 

each emotion in different poses towards the camera and under different illumination conditions. This 

should in theory make the current system more robust. Another approach is to re-develop the system, 

either by training a deep learning model to detect emotions or exploring different available algorithms 

that could be fit for the purpose of this project. However, by increasing the complexity of the algorithm 

being used, an increase in processing power would be required. So, in a sense there is a trade-off 

between algorithm robustness and necessary processing power. Different implementations of the 

emotion recognition system need to be tested in order to determine how well they perform when 

deployed to a portable computer.  
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Conclusion:  

This was a successful project, where all the requirements for the current time were met and there is 

now proof that the concept is viable. The emotion recognition module works well under ideal 

conditions, and the whole system was deployable to the Raspberry Pi. This shows that the solution is 

lightweight enough to be deployed to portable computers and embedded devices. There are 

improvements that could be made with some suggestions documented in the report.  
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Script adapted from: van Gent, P. (2016). Emotion Recognition With Python, OpenCV and a Face Dataset. 

A tech blog about fun things with Python and embedded electronics. Retrieved from: 

http://www.paulvangent.com/2016/04/01/emotion-recognition-with-python-opencv-and-a-face-dataset/ """ 

 

import glob 

import natsort 

from shutil import copyfile 

 

# All directories are the directories in which my files are stored, and would change accordingly. 

 

emotions = ["neutral", "anger", "contempt", "disgust", "fear", "happy", "sadness", "surprise"] #Define emotion 

order 

participants = glob.glob("/Users/yenji/Desktop/Emotion-Detection/source_emotions/*") #Returns a list of all 

folders with participant numbers 

print(participants) 

for x in participants: 

    part = "%s" %x[-4:] #store current participant number 

    print("Current Participant:", part) 

    for sessions in glob.glob("%s/*" %x): #Store list of sessions for current participant 

        for files in glob.glob("%s/*" %sessions): 

            current_session = files[60:-30] 

            print(current_session) 

            file = open(files, 'r') 

            emotion = int(float(file.readline())) #emotions are encoded as a float, readline as float, then convert to 

integer. 

            imagesPath = natsort.natsorted(glob.glob("/Users/yenji/Desktop/Emotion-

Detection/source_images/%s/%s/*" % (part, current_session))) #get path for images and sort them 

            sourcefile_emotion = imagesPath[-1] #last image in directory contains the emotion 

            sourcefile_neutral = imagesPath[0] #first image in directory contains neutral image 

            dest_neut = "/Users/yenji/Desktop/Emotion-Detection/sorted_set/neutral/%s" %sourcefile_neutral[63:] 

#Generate path to put neutral image 

            dest_emot = "/Users/yenji/Desktop/Emotion-Detection/sorted_set/%s/%s" %(emotions[emotion], 

sourcefile_emotion[63:]) #Do same for emotion containing image 

            copyfile(sourcefile_neutral, dest_neut) #Copy file 

            copyfile(sourcefile_emotion, dest_emot) #Copy file 
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Appendix C 
 

Model training scripts:  

Model training script – multiple: 
""" Script that trains the Fisherface, EigenFace and LPBH Algorithms. This runs 10 times and stores the trained 

Models that have been adapted to recognise emotions instead of faces. 

Script adapted from: van Gent, P. (2016). Emotion Recognition With Python, OpenCV and a Face Dataset. 

A tech blog about fun things with Python and embedded electronics. Retrieved from: 

http://www.paulvangent.com/2016/04/01/emotion-recognition-with-python-opencv-and-a-face-dataset/ 

""" 

 

import cv2 

import glob 

import random 

import numpy as np 

emotions = ["neutral", "anger", "disgust", "fear", "happy", "sadness", "surprise"] #Emotion list - Removed 

Contempt 

fishface = cv2.face_FisherFaceRecognizer.create() 

eigenface = cv2.face_EigenFaceRecognizer.create() 

lpbh = cv2.face_LBPHFaceRecognizer.create() 

data = {} 

 

 

def get_files(emotion): #Define function to get file list, randomly shuffle it and split 80/20 

    files = glob.glob("/Users/yenji/Desktop/Emotion-Detection/datasetHaar1/%s/*" %emotion) 

    random.shuffle(files) 

    training = files[:int(len(files)*0.8)] #get first 80% of file list 

    prediction = files[-int(len(files)*0.2):] #get last 20% of file list 

    return training, prediction 

 

 

def make_sets(): 

    training_data = [] 

    training_labels = [] 

    prediction_data = [] 

    prediction_labels = [] 

    for emotion in emotions: 

        training, prediction = get_files(emotion) 

        #Append data to training and prediction list, and generate labels 0-7 

        for item in training: 

            image = cv2.imread(item) #open image 

            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #convert to grayscale 

            training_data.append(gray) #append image array to training data list 

            training_labels.append(emotions.index(emotion)) 

        for item in prediction: #repeat above process for prediction set 

            image = cv2.imread(item) 

            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

            prediction_data.append(gray) 

            prediction_labels.append(emotions.index(emotion)) 

    return training_data, training_labels, prediction_data, prediction_labels 

 

 

def run_recognizers(): 

    training_data, training_labels, prediction_data, prediction_labels = make_sets() 

    print("training FisherFace, EigenFace and LBPH classifiers") 
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    print("size of training set is:", len(training_labels), "images") 

    fishface.train(training_data, np.asarray(training_labels)) 

    eigenface.train(training_data, np.asarray(training_labels)) 

    lpbh.train(training_data, np.asarray(training_labels)) 

    print("predicting classification set") 

 

    cnt = 0 

    correct = 0 

    incorrect = 0 

 

    correct_fisher = 0 

    incorrect_fisher = 0 

 

    correct_eigen = 0 

    incorrect_eigen = 0 

 

    correct_lbph = 0 

    incorrect_lbph = 0 

 

    for image in prediction_data: 

        pred_fisher, conf_fisher = fishface.predict(image) 

        pred_eigen, conf_eigen = eigenface.predict(image) 

        pred_lpbh, conf_lbph = lpbh.predict(image) 

 

        if pred_fisher == prediction_labels[cnt]: 

            correct_fisher += 1 

        else: 

            incorrect_fisher += 1 

        fisher_score = ((100* correct_fisher)/(correct_fisher + incorrect_fisher)) 

 

        if pred_eigen == prediction_labels[cnt]: 

            correct_eigen += 1 

        else: 

            incorrect_eigen += 1 

        eigen_score = ((100* correct_eigen)/(correct_eigen + incorrect_eigen)) 

 

        if pred_lpbh == prediction_labels[cnt]: 

            correct_lbph += 1 

        else: 

            incorrect_lbph += 1 

        lpbh_score = ((100 * correct_lbph) / (correct_lbph + incorrect_lbph)) 

        cnt += 1 

 

    return fisher_score, eigen_score, lpbh_score 

 

 

#Now run it 

metascore_fisher = [] 

metascore_eigen = [] 

metascore_lbph = [] 

 

for i in range(0,10): 

    correct_fisher, correct_eigen, correct_lbph = run_recognizers() 

    #print ("got", correct, "percent correct!") 

    print ("Got ", correct_fisher, "(FisherFace) percent correct. Got ", correct_eigen, "(EigenFace) percent correct. Got 

", correct_lbph , "(LBPH) percent correct") 

    metascore_fisher.append(correct_fisher) 

    metascore_eigen.append(correct_eigen) 
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    metascore_lbph.append(correct_lbph) 

 

print("\n\nend score:(fisher)", np.mean(metascore_fisher), "percent correct!") 

print("\n\nend score:(eigen)", np.mean(metascore_eigen), "percent correct!") 

print("\n\nend score:(lbph)", np.mean(metascore_lbph), "percent correct!") 

fishface.save('/Users/yenji/Desktop/Emotion-Detection/emotion_detection_model_Haar(fisher).xml') 

eigenface.save('/Users/yenji/Desktop/Emotion-Detection/emotion_detection_model_Haar(eigen).xml') 

lpbh.save('/Users/yenji/Desktop/Emotion-Detection/emotion_detection_model_Haar(lbph).xml') 

 

Model training script – individual:   
""" Script that trains the Fisherface, EigenFace and LPBH Algorithms. This runs 10 times and stores the trained 

Models that have been adapted to recognise emotions instead of faces. 

Script adapted from: van Gent, P. (2016). Emotion Recognition With Python, OpenCV and a Face Dataset. 

A tech blog about fun things with Python and embedded electronics. Retrieved from: 

http://www.paulvangent.com/2016/04/01/emotion-recognition-with-python-opencv-and-a-face-dataset/ 

""" 

 

 

import cv2 

import glob 

import random 

import numpy as np 

 

emotions = ["neutral", "anger", "disgust", "fear", "happy", "sadness", "surprise"] #Emotion list 

fishface = cv2.face_FisherFaceRecognizer.create() #Initialize fisher face classifier 

data = {} 

def get_files(emotion): #Define function to get file list, randomly shuffle it and split 80/20 

    files = glob.glob("/Users/yenji/Desktop/Emotion-Detection/datasetHaar/%s/*" %emotion) 

    random.shuffle(files) 

    training = files[:int(len(files)*0.8)] #get first 80% of file list 

    prediction = files[-int(len(files)*0.2):] #get last 20% of file list 

    return training, prediction 

def make_sets(): 

    training_data = [] 

    training_labels = [] 

    prediction_data = [] 

    prediction_labels = [] 

    for emotion in emotions: 

        training, prediction = get_files(emotion) 

        #Append data to training and prediction list, and generate labels 0-7 

        for item in training: 

            image = cv2.imread(item) #open image 

            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #convert to grayscale 

            training_data.append(gray) #append image array to training data list 

            training_labels.append(emotions.index(emotion)) 

        for item in prediction: #repeat above process for prediction set 

            image = cv2.imread(item) 

            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

            prediction_data.append(gray) 

            prediction_labels.append(emotions.index(emotion)) 

    return training_data, training_labels, prediction_data, prediction_labels 

def run_recognizer(): 

    training_data, training_labels, prediction_data, prediction_labels = make_sets() 

    print ("training fisher face classifier") 

    print ("size of training set is:", len(training_labels), "images") 

    fishface.train(training_data, np.asarray(training_labels)) 

    print ("predicting classification set") 
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    cnt = 0 

    correct = 0 

    incorrect = 0 

    for image in prediction_data: 

        pred, conf = fishface.predict(image) 

        if pred == prediction_labels[cnt]: 

            correct += 1 

            cnt += 1 

        else: 

            incorrect += 1 

            cnt += 1 

    return ((100*correct)/(correct + incorrect)) 

#Now run it 

metascore = [] 

for i in range(0,10): 

    correct = run_recognizer() 

    print("got", correct, "percent correct!") 

    metascore.append(correct) 

print ("\n\nend score:", np.mean(metascore), "percent correct!") 

fishface.save('/Users/yenji/Desktop/Emotion-Detection/emotion_detection_model_Haar_Fisher1.xml') 

 

 

 

 

 


