

MACHINE LEARNING ALGORITHMS FOR SPORTS’ RESULTS PREDICTION

ANDRES IGEA

This dissertation was submitted in part fulfilment of requirements for the degree
of MSc Software Development

DEPT. OF COMPUTER AND INFORMATION SCIENCES
UNIVERSITY OF STRATHCLYDE

AUGUST 2019

ii

Declaration

This dissertation is submitted in part fulfilment of the requirements for the degree of MSc of the
University of Strathclyde.

I declare that this dissertation embodies the results of my own work and that it has been
composed by myself. Following normal academic conventions, I have made due
acknowledgement to the work of others.

I declare that I have sought, and received, ethics approval via the Departmental Ethics Committee
as appropriate to my research. – N/A

I give permission to the University of Strathclyde, Department of Computer and Information
Sciences, to provide copies of the dissertation, at cost, to those who may in the future request a
copy of the dissertation for private study or research.

I give permission to the University of Strathclyde, Department of Computer and Information
Sciences, to place a copy of the dissertation in a publicly available archive. (please tick) Yes [
"#]
No []
I declare that the word count for this dissertation (excluding title page, declaration, abstract,
acknowledgements, table of contents, list of illustrations, references and appendices is 21,348
words.

I confirm that I wish this to be assessed as a Type 1 2 3 4 5 Dissertation (please circle)

Signature: Date: 25th of August 2019

iii

Abstract

The forecasting of football matches’ results has proved to be a difficult task for which many

attempts have been made. The use of traditional statistical models and their results produced

until now have been relatively poor. However, better predictive accuracies have been claimed by

some authors using machine learning models built with informative features derived from

previous matches.

Is it possible to predict the outcome of football-matches using machine learning just like some

other authors claim to do? Is it possible to outperform those models?

An ambitious aim of this dissertation is to produce a model able to surpass the accuracies

achieved by the sports betting operators. The positivism research paradigm is adopted in this

study. There are a myriad of factors influencing the results of football games and this project has

defined some of these important features and assessed them. It has been found that using the

author’s models, football players’ ratings obtained from the EA Sports video game FIFA (Borjigin,

2019) show a higher forecasting ability than other more ‘sport related’ features derived from

previous games such as the number of shots on target, corners, yellow cards, goals, etc.

Using pipelines that combine pre-processing of data, engineering and selection of features, as

well as the selection of the best hyper-parameters for several machine learning algorithms, the

model designed has been able to outperform the book-makers during the 2011/2012 and

2012/2013 seasons of the German Bundesliga. For the remaining seasons (2010/2011,

2013/2014, 2014/2015), the project’s model was able to obtain an equal performance in the

2013/2014 season and a slightly inferior performance in the 2010/2011 and 2014/2015 to that

of the sports betting operators.

The project also discusses that different predictabilities apply to different football leagues and

seasons, and that for the season 2015/2016 of the German Bundesliga the author obtains a

prediction accuracy of 51%. This performance is slightly lower than the five betting companies

studied.

iv

Acknowledgements

The author would like to express his gratitude to his supervisor Dr. Kostas Liaskos for his

unconditional guidance, advice and support throughout the preparation of this project until its

completion.

I gratefully acknowledge the friendly support that I received from all the staff members in the CIS

support team as well as all the lecturers whom I was fortunate enough to learn from.

Special thanks to my family for their patience and encouragement during the completion of this

work.

v

Table of Contents

Declaration ... ii

Abstract ... iii

Acknowledgements ... iv

List of illustrations ... viii

1 Introduction ... 1

1.1 The background of this project and the problem to solve .. 1

1.2 The problem formulation .. 3

1.3 The objectives of the project ... 3

1.4 The structure of this report ... 4

1.5 Summary of the chapter .. 5

2 Literature review .. 6

2.1 Previous work: related work documents ... 6

2.2 Previous work: engineered features for football results prediction 10

2.2.1 Strength, form, psychology and fatigue .. 10

2.2.2 Players’ overall ratings and potential ratings .. 10

2.2.3 Team virtual features .. 11

2.2.4 Static and dynamic features .. 11

2.2.5 ELO ratings of a team .. 13

2.2.6 ‘Streakiness’ of a team .. 14

2.3 Project motivation ... 15

2.4 Summary of the chapter .. 16

3 Theoretical background - machine learning algorithms ... 17

3.1 Introduction to machine learning algorithms .. 17

3.2 Learning paradigms .. 17

3.2.1 Supervised learning ... 18

3.2.2 Unsupervised learning ... 19

3.2.3 Reinforcement learning (RL) ... 20

3.3 Types of supervised machine learning algorithms ... 20

3.3.1 Linear models .. 21

3.3.2 Decision trees .. 22

3.3.3 Naïve Bayes classifiers ... 24

vi

3.3.4 The K-nearest-neighbours (KNN) .. 25

3.3.5 Support vector machines (SVMs) .. 27

3.3.6 Artificial neural networks (ANNs) .. 28

3.3.7 Gradient boosting algorithms ... 31

3.4 Summary of the chapter .. 33

4 Methodology .. 35

4.1 Software engineering methodology ... 35

4.1.1 An Agile method: variant of Scrum ... 35

4.1.2 An Agile method: variant of test-driven development ... 36

4.1 The dataset ... 37

4.2 The software, libraries and tools employed .. 37

4.3 The high-level overview of the machine learning workflow .. 38

4.4 The pre-processing of the data .. 39

4.4.1 The first attempt at the data wrangling .. 40

4.4.2 The second attempt at the data wrangling ... 44

4.4.3 Feature selection and engineering .. 51

4.5 Machine learning ... 54

4.5.1 Automated machine learning .. 54

4.5.2 Implementing machine learning models (one step lower in the level of abstraction) 56

4.5.3 Automatic Feature Selection ... 59

4.5.4 Evaluating the performance of machine learning models .. 62

4.5.5 Pipelines .. 64

4.6 Summary of the chapter .. 65

5 Presentation and evaluation of results .. 67

5.1 Which features of the data available have more predicting ability? 67

5.1.1 Virtual set feature importance values ... 67

5.1.2 Real set feature importance values ... 70

5.2 Can data collected from EA Sports (regarding player ratings) outperform real-world
historical data in order to predict the outcome of football-matches? 71

5.3 Which machine learning algorithms produce more accurate predictions? Which
parameters should be used when using those algorithms to predict soccer match results? .. 74

5.4 Do the models developed improve the predicting capacity that existing models claim to
obtain? ... 76

vii

5.5 Summary of the chapter .. 82

6 Conclusions and recommendations for further work .. 83

6.1 Conclusions .. 83

6.2 Recommendations for further work .. 84

6.2.1 Further work on acquiring more data ... 84

6.2.2 Further work on feature extraction and engineering ... 85

6.2.3 Further work on ensemble methods ... 88

6.2.4 Further work on hyper-parameter optimization ... 89

6.2.5 Automation of the feature obtention ... 90

6.3 Summary of the chapter and lessons learnt .. 90

6.4 Project’s recapitulation .. 92

Appendix A ... 99

Appendix B ... 102

Appendix C ... 119

Appendix D ... 121

Appendix E ... 124

viii

List of illustrations

Figure Title Page

Fig.2.1 SVM algorithm error rates versus 𝑓𝑜𝑟𝑚 length 𝑥 . Reproduced from Ulmer

and Fernandez (2013) ………………………………………………………………………………… 15

Fig.3.1 Number of home wins, draws and away wins in the German Bundesliga

dataset……. 19

Fig.3.2 Reinforcement Learning Paradigm (En.wikipedia.org, Reinforcement

Learning, 2019) ……………………………………………………………………………………………. 20

Fig.3.3 Random Forest and its assembling technique explained (O’Reilly, Scala

Machine Learning Projects, 2019) ……………………………………………………………….. 23

Fig.3.4 Decision boundaries for increasing number of neighbours…………………………… 26

Fig.3.5 SVM model, two classes and the decision boundary…………………………………….. 27

Fig.3.6 Two connected neurons (Anon, 2019) …………………………………………………………. 28

Fig.3.7 Perceptron: Preprocessor and Processor……………………………………………………… 29

Fig.3.8 Artificial neural network with two hidden layers………………………………………….. 30

Fig.4.1 High level view of the scrum process. Icons downloaded from: (Noun Project,

2019) ……. 35

Fig.4.2 Test-driven development…………………………………………………………………………….. 36

Fig.4.3 High-level overview of the machine learning workflow. Icons downloaded

from: (Noun Project, 2019) ………………………………………………………………………… 39

Fig.4.4 Overview of the dataframe new_matches, in yellow null data, in purple non-

null data……………………………………………………………………………………………………….. 41

Fig.4.5 Standard deviations for the distribution of players’ ratings within a football

team……….. 49

Fig.4.6 p values for the distribution of players’ ratings (Anderson-Darling test) ……. 50

Fig.4.7 Error log produced for the second trial………………………………………………………… 55

Fig.4.8 The trade-off between overfitting and underfitting……………………………………… 57

ix

Fig.4.9 Controlling the complexity of the KNN classifier by varying the number of

neighbours ’parameter………………………………………………………………………………… 58

Fig.4.10 Recursive feature elimination (reproduced from Medium, Feature Selection

Methods in Machine Learning, 2019) ………………………………………………………… 60

Fig.4.11 Recursive feature elimination with cross-validation (virtual dataset) ………….. 61

Fig.4.12 Test data and non-test data…………………………………………………………………………. 62

Fig.4.13 Forward chaining…………………………………………………………………………………………. 63

Fig.5.1 Feature importance values for the virtual dataset…………………………………………. 68

Fig.5.2 Correlation matrix heatmap for features in the virtual dataset……………………… 69

Fig.5.3 Feature importance values for the real dataset……………………………………………… 70

Fig.5.4 Correlation matrix heatmap for features in the real dataset………………………….. 71

Fig.5.5 A visual summary of the accuracies obtained with the pipelines of machine

learning models deployed…………………………………………………………………………….. 73

Fig.5.6 A visual summary of the accuracies obtained by previous researchers and the

author…….. 76

Fig.5.7 Football leagues’ predictability (Kaggle.com, The Most Predictable League,
2019) ……... 78

Fig.5.8 Test-set accuracies season 2015-2016………………………………………………………….. 79

Fig.5.9 Accuracies per season in the German Bundesliga for each entity…………………. 81

Fig.6.1 Different boundaries learnt by the same Nearest Neighbour Classifier with

23 data-points and 50 data-points……………………………………………………………….. 85

Fig.6.2 Principal Component 2 vs Principal Component 1 for the different

datapoints in the machine learning real – dataset………………………………………… 86

Fig.6.3 Principal Component 2 vs Principal Component 1 for the different

datapoints in the machine learning virtual dataset………………………………………. 87

1

1 Introduction

1.1 The background of this project and the problem to solve

Several factors, such as the growing media coverage have recently increased the popularity of

numerous sports. In particular, soccer (also called association football, and sometimes in this

project simply football) is now followed by around half of the global population (B. Sawe, World

Atlas, 2019).

Nowadays, the most popular sport in the world is soccer. The area of influence of this sport is

global and 4 billion people follow the sport to some degree (B. Sawe, World Atlas, 2019). The

‘Beautiful Game’ as it was once described by the Brazilian footballer Pelé, is the sport most

watched on television, with the most expensive television rights, the highest paid sportsmen and

competitions, and the most popular teams on the social media (Highlights et al., 2019).

Several reasons may be behind the forecast of football matches’ results, curiosity and economic

reasons are often the motivating forces that impulse soccer fans to predict the matches’ results.

The soccer enthusiasts sometimes actuate propelled by the pursuit of economic benefit, betting

either online or in the high street betting shop. At other times, the attempt to predict the results

of the games simply correspond to an attempt to obtain information that allows for an interesting

conversation with some friends or work peers after the weekend.

Machine learning (ML) algorithms may be used to forecast the results of soccer games. The ML

algorithm is trained using a data set consisting of a significant number of data points (matches).

For each match this training data includes features relevant to the games such as the players, the

number of corners, penalties, yellow and red cards, etc. of the match. The results of each match

are also part of this training data. Prediction models may be built using the training data. The

models produced may be assessed comparing the results predicted by the model for a testing set

of matches with the actual results of those matches.

2

The first successful attempts to predict the results of football matches by quantitative methods

were made towards the middle of the last century. Moroney (1956) describes a statistic process

to forecast soccer’s results. As at that time, limited computer power was available, solving the

problem was a very tedious and time-consuming task.

Using Data Science techniques to forecast results of soccer games is becoming increasingly

popular. Football clubs now employ data analysts trying to gain a competitive edge. According to

Ian Graham, the Liverpool’s Director of Research, each football match comprehends thousands

of players’ actions, but the research department can only assess the downloadable ones included

in the football stat sheets and forms. Graham I. adds that the data the research department

manage is very limited, and that he is working in improving the mathematical model of the games

using video tracking. As more and more features are added to the model, improved models of a

soccer match can be created. More complete models will produce predictions of higher accuracy

(Nytimes.com, 2019).

At this stage, in order to avoid a possible disappointment of the reader, it is important to point

out that the prediction of results of specific matches constitutes a difficult challenge. This is due

to two main reasons, one is the random component that is introduced in each game by the

number of goals that each team scores, and as a consequence, the final result of the match. The

other reason is the fact that three different results are possible (home win, draw and away win)

with the prediction of draw being difficult issue. There is an apparent dichotomy. It is not hard to

predict which teams will be successful by the end of the league but developing a model able to

predict the result of a specific game proves to be a complex task. The accuracy that may be

expected from the models developed for soccer will not reach the percentages of correct results

obtained in other sports where the only possible outcomes are win or lose (Dixon and Coles,

p.267, 1997).

Aoki, Assuncao and Vaz de Melo (2017) emphasize on the random component present in the

results of the following sports: basketball, handball, soccer and volleyball. The authors suggest a

probabilistic graphical model able to disentangle the relative components of the skills of the

3

teams and randomness during the match. Their results show that out of the four analyzed sports,

soccer is the one with a greater component of ‘luck’ in the final results. They justify this fact due

to the relatively small number of points scored during the soccer games (average per match 2.62).

They also demonstrate that for the leagues from 2007-2008 to 2015-2016, if the teams Real

Madrid and Barcelona were removed from the Spanish Primera División, the predictable results

for the final positions of the teams in the La Liga ranking would be totally random.

1.2 The problem formulation

This project aims to develop and assess a Machine Learning model able to predict results of

football matches.

The project also provides answers to the following research questions:

• Which features of the data available have more predicting ability?

• Can data collected from EA Sports (regarding player ratings) outperform real-world

historical data in order to predict the outcome of football-matches?

• Which machine learning algorithms produce more accurate predictions? Which

parameters should be used when using those algorithms to predict soccer match results?

• Do the models developed improve the predicting capacity that existing models claim to

obtain?

1.3 The objectives of the project

This project was carefully conducted with all the knowledge acquired throughout the year and

tries to adhere to the best software engineering practices. As per the proposal for this piece of

research, the following objectives were set using the software development prioritization

technique called MOSCOW. The objectives of the project were divided according to their

obligatoriness: must haves, should haves, could haves and won’t haves (Igea, 2019, p.5).

4

• Must have: Machine learning models able to predict the results of sport games should be

built. The models’ accuracies should be assessed. Answer the research questions shown

in the problem formulation and evaluate them.

• Should have: a web page in which registered users can take advice about which bets may

have a greater return of investment (bets for which greater discrepancies are found

between predictions of owned model and betting agencies forecasts).

• Could have: A web page in which registered users can search information about betting

odds and places (with links to them) where bets can be placed for their sports of interest.

During the unfolding of the project, using a variant of the Scrum Agile Methodology, it was found

that the objectives shown above did not constitute a final contract between the author and the

supervisor.

De facto, from the original set of objectives, due to the time constraints imposed on this

dissertation and the setting of overly optimistic and ambitious objectives, only the first bullet

point, that is the ‘must have’ is addressed in the text that follows.

1.4 The structure of this report

The project has been structured according to the following chapters:

In this first chapter, the ‘Introduction’ to the project is presented. In the second chapter, a review

of the research about football results predictability prior to the commencement of this project,

‘Literature Review’, may be found. The chapter describes the previous related research works

and contains an overview about the previous work on engineered features for soccer results

prediction. Chapter three contains a brief overview of the ‘theoretical background of the main

machine learning algorithms’, their advantages and disadvantages. The ‘Methodology’ followed

during the project is presented in chapter four. In chapter five of the project, the ‘Presentation

and evaluation of results’ may be found. Lastly, in chapter six, the project’s conclusions are

presented, further work and enhancement of this project is proposed.

5

1.5 Summary of the chapter

This first chapter of the project explains the initial motivation, background and problem to be

solved. A description of the objectives and structure of the project is also provided.

The following chapter reviews the research about prediction of football matches’ results prior to

the commencement of this project.

6

2 Literature review

The purpose of this section is to review the research in the prediction of football matches’ results

prior to this project. The section is divided into two parts, the first will briefly describe the main

documents of related work and the second has an emphasis in the previous work on engineered

features applicable to machine learning for soccer results prediction.

2.1 Previous work: related work documents

The eldest reference found about modelling the results of a soccer game during this project’s

literature review, (Moroney, 1956), predicts the number of scores in a game using as input the

number of goals of previous matches. The distribution of scores is initially fitted using a Poisson

distribution, but the author sustains that improved results can be obtained using a negative

binomial distribution.

Reep, Pollard and Benjamin (1971) use a negative binomial distribution to fit a model with the

scores of the soccer game, but conclude that the game is dominated by a random component

due to the significant amount of noise included in the data, and as a result, no successful

predictions can be expected.

In spite of the above, Hill (1974) was able to demonstrate significant correlation when performing

simple comparison tests for predictions of final football league placings. Hill’s findings

encouraged other researches to investigate the challenging field of predicting soccer results

through statistical techniques.

An important step forward was taken by Maher (1982). The author used Poisson distributions to

model independently home and away teams’ scores from attack and defense parameters of the

teams that were based on the soccer teams’ performance in previous matches. The approach

was able to provide estimates of maximum likelihood.

7

Dixon and Coles (1997) describe a parametric model able to produce maximum likelihood

estimates for the English cup and league in the period 1992 to 1995. A Poisson regression model

is enhanced by the introduction of time-dependent teams’ performances and parameters

optimization. Authors claim the model can be used to formulate a betting strategy in which they

obtain positive return.

Rue and Salvesen (2000) propose a model to predict the results of the English Premier League

and Division 1 of the season 1997-1998. The authors use the Markov Chain Monte Carlo

technique to produce an iterative simulation that estimates the time dependent features of all

the teams in the league simultaneously. Authors sustain their model suggested bets that

produced significant pay-offs.

Joseph, Fenton and Neil (2006) compared the accuracy of the forecasts of a Bayesian net with

the accuracies provided by the following Machine Learning techniques: K-nearest neighbour,

decision trees (MC4), Naïve Bayesian and Data Driven Bayesian learners. According to the

authors, Bayesian nets provided excellent accuracies (59.21%) predicting the results of the

matches played by the Tottenham Hotspur Football Club in the period 1995-1997.

Another author that claims can beat the bookmakers’ odds is Buursma (2011). The author

describes in detail the betting strategies used and the performance of the different classifiers.

Different football related features are used. This paper provides details of the list of features used

in the author’s investigation and shows the performances of the models he builds when using

different selections of features.

The model built by Constantinou, Fenton and Neil (2012) generated predictions for the season

2010-2011 using training data from 1993 to 2010. The model uses four engineered features called

strength, form, psychology and fatigue for both the home and the away teams. A deeper

explanation of those four engineered features is provided in the next section. Using a Bayesian

network model, and the four time-dependent engineered features (which include objective and

subjective information) named above, the authors demonstrate that the subjective information

8

can improve the accuracy of the results’ prediction and that their model generates profit via

longshot bets.

Ulmer and Fernandez (2013) predict soccer results in the English Premier League. The authors

trained several machine learning algorithms with the data of the seasons from 2002-2003 to

2011-2012. They predicted the results of the matches played during the seasons 2012-2013 and

2013-2014. The best accuracy (0.50) they obtained was using the Support Vector Machine model

with a Gaussian kernel and parameters optimized using Grid Search. The paper explains how the

authors solved several issues related to the use of a feature they defined to assess the

‘streakiness’ of a team.

Yezus (2014) uses the data of English Premier League and produces predictions using four

different machine learning algorithms. The author claims that using a Random Forest model she

was able to obtain an accuracy of 0.634. The author suggests several engineered features that

will be analysed in the following section.

The problem of soccer match results prediction is approached by Shin and Gasparyan (2014) in

an innovative manner. The paper of the authors used as features what they call ‘virtual data’ (33

features per player) collected from the video game FIFA 2015. The paper predicts the results of

the football matches of the Spanish ‘Primera Liga’ using the ‘virtual data’ collected from the Sofifa

website (Borjigin, 2019). Using several machine learning algorithms, the results found using as

features the ‘virtual data’ are compared to the results found using as features ‘real data’ (24

parameters per match such as red cards, penalties, goals, corners, etc.). The three-class

classification problem of predicting the result of a match (home win, draw, away win) is redefined

as three bi-class classification problems. The authors claim they obtained accuracies of around

0.75 both when they used the ‘virtual’ and the ‘real’ data.

Tavakol, Zafartavanaelmi and Brefeld (2016) forecast the results of Euro 2016 tournament using

a linear model that predicts probabilities of the three possible outcomes (win, lose or draw).

Authors use as part of their data set the information that the FIFA provides about the players’

ratings.

9

Razali et al. (2017) suggest a Bayesian Network to classify results in the categories home win,

draw and away win. Outcomes of the matches of the English Premiere League from 2010 to 2013

are forecasted. Authors claim a predicting accuracy of 75.09%. Even though Razali et al. provide

a list called ‘Main Factors in Football Match Prediction’ they do not inform about which

engineered features were used for prediction if any. It seems possible that the surprisingly high

accuracy of the model was perhaps due to the fact that the model might use some data of a

specific match to predict the result of this same match. Another possible reason for the high

accuracy may be that the authors predict results for each of the three seasons studied

independently. This makes the teams’ features to be more homogeneous within a season than

they would be if the data of three seasons was used simultaneously.

Klyuchka et al. (2017) predicted the result of the match of the English Premier League between

the Manchester United and the Tottenham Hotspur celebrated the 28th of October 2017. Three

different methods were used: a method based on the Poisson distribution, a method based on

the weighted sum of indicators and a method based on forecasting rules. Authors claim that they

obtained accuracies of 83.5%, 77.6% and 70.4% respectively.

Dubitzky et al. (2018) explore the limits of the predictability using advanced machine learning.

Their paper provides the results found during the 2017 Soccer Prediction Challenge. The rules of

the challenge require to use as data the Open International Soccer Database. The method the

authors use to assess the predictions is the rank probability score (RPS). Authors provide in this

paper a very detailed explanation of the RPS concept and how it is calculated.

Wunderlich and Memmert (2018) build a model using data from English and foreign leagues of

the seasons starting from 2007-2008 to 2016-2017. The model is based on the ELO rating system

and betting information publicly available. According to the authors, this new ELO based model

shows improved accuracy than the classic ELO rating models. The paper also provides a detailed

explanation of the process of parameters’ calibration required by the ELO models.

10

2.2 Previous work: engineered features for football results prediction

2.2.1 Strength, form, psychology and fatigue

These engineered features were suggested by Constantinou, Fenton and Neil (2012). The

authors’ model uses four engineered features called strength, form, psychology and fatigue for

both the home and the away teams. The first feature (strength), due to its significant objective

content is called objective component, whereas the last three features (form, psychology and

fatigue) are called subjective components.

• The team strength is calculated using previous information (points obtained in the last

five seasons, weighted higher for closer seasons) and current information (total points

during the current season also weighted higher for closer matches). It is optional to also

include a component of subjective information (the strength rating provided by an expert).

• The form of a team measures the actual performance of the team versus its expected

performance during the last five matches. Closer matches are weighted higher. Higher

values of form mean the team is performing better than expected and lower values of

form mean that the team is performing worse than expected.

• The psychology feature of a team includes subjective concepts such as their team spirit,

motivation, head to head biases and managerial issues.

• The fatigue feature of a team considers concepts such as the number of days from the

previous match, how tough that match was, how many of the players that play a specific

match rested in the previous match, etc.

2.2.2 Players’ overall ratings and potential ratings

Tavakol, Zafartavanaelmi and Brefeld (2016) use the player Stats Database by FIFA

(Fifaindex.com, 2019). This database provides players’ overall ratings (OVR) and potential ratings

(POT). Past data is available in the Kaggle European Soccer database (Mathien, Kaggle.com,

2019). The authors do not detail which engineered features were produced after the extraction

of the players’ ratings, but the information available allows the previously mentioned data to be

11

arranged to engineer ratings for the team attack, defense and global abilities. This time-

dependent data can also infer some other indicators about the morale and team momentum that

are otherwise very complex to gauge as they may require subjective assessment.

2.2.3 Team virtual features

Shin and Gasparyan (2014) suggest representing a team by the function team_virtual_features.

Any player on the field is represented by a vector of 33 components. Each of these components

is an integer in the range from 1 to 100. The 33 features are divided into the following six

categories: attacking, defending, skill, movement, power, mentality and goalkeeping. Each

category has five features, being the only exception, the category defending for which only three

features are described in the Sofifa website (Borjigin, 2019). To build by aggregation the function

team_virtual_features, for each category, only the top performers of the team for that specific

category are chosen. The function is calculated following the eq.2.1 below.

𝑇𝑒𝑎𝑚_𝑉𝑖𝑟𝑡𝑢𝑎𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠	=

⎩
⎪⎪
⎨

⎪
⎪
⎧ 6𝑡𝑜𝑝	4	𝐴𝑡𝑡𝑎𝑐𝑘𝑖𝑛𝑔 , ∈ [0, 2000]

6𝑡𝑜𝑝	4	𝐷𝑒𝑓𝑒𝑛𝑑𝑖𝑛𝑔 , ∈ [0, 1200]

6𝑡𝑜𝑝	1	𝐺𝑜𝑎𝑙𝑘𝑒𝑒𝑝𝑖𝑛𝑔 , ∈ [0, 500]

6𝑡𝑜𝑝	5	𝑆𝑘𝑖𝑙𝑙,𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡, 𝑃𝑜𝑤𝑒𝑟,𝑀𝑒𝑛𝑡𝑎𝑙𝑖𝑡𝑦 , ∈ [0, 2500]

Eq.2.1

2.2.4 Static and dynamic features

Yezus (2014) defines several engineered features for the teams. Some of the features she defines

are static (features that do not depend on the rival teams) and other are dynamic features (they

depend on both teams). All the suggested features are normalized (their value fluctuates

between 0 to 1).

12

• Static feature ‘Form’

The variable 𝑟𝑒𝑠O represents the result of the 𝑖 match. The values that the variable 𝑟𝑒𝑠O takes

are 0, 1 or 2 depending on the result: lose, draw or win respectively.

The value of 𝑓𝑜𝑟𝑚 is calculated according to the following equation:

𝐹𝑜𝑟𝑚 =	
1
106𝑟𝑒𝑠O

Q

ORS

 Eq.2.2

• Static feature ‘motivation’

A derby is a soccer game between local rivals. In this case 𝑑𝑒𝑟𝑏𝑦 = 1 , otherwise 𝑑𝑒𝑟𝑏𝑦 = 0.

The key positions for motivation are the highest and lower positions in the league ranking:

{1, 2, 3, 4, 5, 6, 17, 18}.

𝑑𝑖𝑠𝑡 , is the distance to the closest ‘key position’.

𝑙𝑒𝑓𝑡 , is the number of tours left to the end of the season.

𝑡𝑜𝑢𝑟 = 1	𝑖𝑓	𝑙𝑒𝑓𝑡 < 6, otherwise 𝑡𝑜𝑢𝑟 = 0

The value of 𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is then defined as:

𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑖𝑛(𝑚𝑎𝑥 X1 −
𝑑𝑖𝑠𝑡

3 ∗ 𝑙𝑒𝑓𝑡 , 𝑑𝑒𝑟𝑏𝑦,
𝑡𝑜𝑢𝑟 + 𝑑𝑖𝑠𝑡

2] , 1) Eq.2.3

• Dynamic feature ‘goal difference’

The difference between goals scored by each team is called 𝑑𝑖𝑓𝑓 .

13

There is a match for which the value of the variable 𝑑𝑖𝑓𝑓 takes a maximum value. That value

is called max	 _𝑑𝑖𝑓𝑓.

The value of the feature ‘goal difference’ is defined by the following equation:

𝑔𝑜𝑎𝑙	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 	
1
2 +

𝑑𝑖𝑓𝑓
2 ∗ max	 _𝑑𝑖𝑓𝑓	

Eq.2.4

2.2.5 ELO ratings of a team

The ELO system (Wunderlich and Memmert, 2018) was named after its creator A. Elo. It was

initially used to assess the relative strength of chess players (but it may also be applied for

assessing football teams). According to A. Elo, the difference of ELO ratings between two players

can be used to predict the result of a chess match. In this system the ELO ratings of the players

are updated after each match. Points are transferred after each match from the player who loses

to the player who wins. The amount of points transferred from the loser of the match to the

winner of the match depends on the difference of rates between them.

The eq.2.5 below was suggested by Leung and Joseph (2014):

𝑁𝑒𝑤_𝐸𝐿𝑂_𝑝𝑙𝑎𝑦𝑒𝑟_𝐴 = 𝑂𝑙𝑑_𝐸𝐿𝑂_𝑝𝑙𝑎𝑦𝑒𝑟_𝐴 + 	𝐾	(𝑆g − 𝐸g) Eq.2.5

In the above equation the value of 𝐾 normally taken is 32.

𝑆g is the actual score in the match (1 if the player A wins, 0.5 if the player A draws and 0 if the

player A loses).

𝐸g is the expected result of a match. It is calculated using the difference between the ELO ratings

before the match of both players with the eq.2.6 below.

14

𝐸g =
1

X1 + 10
hijklhijm

noo]
 Eq.2.6

Where 𝐸𝐿𝑂p and 𝐸𝐿𝑂g are the ELO ratings for players B and A respectively.

It can be noticed that when both players have the same ELO rating the expected outcome is 0.5,

assuming the system a draw result. For significant positive differences of ELO ratings favorable

to player A, expected outcomes significantly greater than 0.5 are obtained and when the player

A has a lower ELO rating than his rival, expected outcomes are smaller than 0.5, meaning that

the predicted result is the defeat of player A.

2.2.6 ‘Streakiness’ of a team

Ulmer and Fernandez (2013) engineer a feature called by the authors 𝑓𝑜𝑟𝑚 that is used as an

assessment parameter of the ‘streakiness’ of a team. The feature 𝑓𝑜𝑟𝑚 is related to the results

the team obtained during the last 𝑥 matches. When calculating the parameter, two different

problems were found by the authors.

The first problem is to determine the value of the parameter 𝑓𝑜𝑟𝑚 that should be imputed to

the first 𝑥 matches of the season. For those matches there is not enough information to calculate

the parameter 𝑓𝑜𝑟𝑚. The authors tested the errors found under two possible approaches, a first

approach is not to include in the training data the first 𝑥 matches (this was called in the paper

the Ignore Procedure), an alternative approach is to attribute to the value of 𝑓𝑜𝑟𝑚 during the

first 𝑥 weeks values calculated using equations that consider the number of weeks with

information actually available (Scaling Procedure).

The second problem authors faced was to define the value of weeks 𝑥 to be considered for the

calculation of the value of 𝑓𝑜𝑟𝑚.

15

Ulmer and Fernandez (2013) calculated the error rates of the algorithm when using different

values of the number of weeks 𝑥 during the calculations. Calculations were produced for both

procedures (Ignore and Scaling). Figure 2.1 below shows the results they found when using the

machine learning algorithm Support Vector Machines.

Fig.2.1: SVM algorithm error rates versus 𝑓𝑜𝑟𝑚 length 𝑥. Reproduced from Ulmer and
Fernandez (2013).

As it may be seen in the Fig.2.1 above, authors found that ignoring the first 4 matches of the

season and using the Scaling Procedure considering the last 4 matches led to smaller errors when

using the SVM algorithm.

2.3 Project motivation

The main motivation of this project is to investigate the gaps found in the above literature review.

For instance, it was found that some authors did not employ forward chaining as their cross-

validation technique for determining the machine learning models hyper-parameters. This fact

could have led to a sub-optimal choice of a machine learning’s model accompanying parameters,

0.505
0.51

0.515
0.52

0.525
0.53

0.535
0.54

0.545
0.55

0 1 2 3 4 5 6 7 8 9

Er
ro

r R
at

e

Form Length

Scaling and Ignore Procedure vs. Form Length

Scaling Procedure Ignore Procedure

16

thus weakening or most likely overestimating its generalization performance and consequently

negatively affecting the results claimed by these authors. What results can be obtained by

applying forward chaining? (this is a more appropriate statistical technique for validating the

results of the time-series domain problem of predicting the outcome of a football match).

On the other hand, other authors exclusively focused on a few select machine learning models.

The natural question arises. Were the best models chosen for the explored problem?

2.4 Summary of the chapter

An intrinsic motivation towards this project was to determine whether in the allocated timeframe,

a superior model that resulted in better accuracies achieved than those by the online gambling

giants could be produced.

To be able to produce a high-quality predicting model it is necessary to understand the machine

learning algorithms already available and their underlying theory. This chapter also reviews the

features that have been previously used by researchers to produce models for predicting the

results of football matches. It is only by having a full understanding of the existing models and

features that the previously described task can be successfully attempted.

The following chapter contains a brief overview of the existing machine learning algorithms

applicable for football matches’ results forecasting.

17

3 Theoretical background - machine learning algorithms

3.1 Introduction to machine learning algorithms

Machine learning algorithms may be used to predict football match results. If a machine learning

algorithm is provided with a large set of data from previous matches, it will be able to predict the

result of matches that are not part of the originally provided data set.

The data provided to the algorithm is called the training set as it is used to train the algorithm

that creates a model able to predict the results of matches that are not part of the training set.

The data set supplied to the machine learning algorithm includes two types of data: features and

labels. In football, some relevant features are the ratings of the players of the match, the number

of penalties, the number of corners, etc. The labels are the results of the matches.

Using mathematical language, as shown in eq.3.1 below, the features would be variables ‘𝑋’ or

inputs, the labels would be outputs ‘𝑦’ (home win, draw, away win) and the machine learning

algorithm builds the model or function ‘𝑓’.

𝑦 = 𝑓(𝑋) Eq.3.1

Increasing the number of matches and the number of relevant features included on the training

set generally increases the accuracy of the model ‘𝑓’ when predicting results, but often leads to

longer training and predicting times.

3.2 Learning paradigms

The most important Learning Paradigms are the Supervised, Unsupervised and Reinforcement

algorithms. Each of these paradigms is used for a specific learning task.

18

3.2.1 Supervised learning

In supervised learning, the algorithm is trained using a set of data (training data-set) which

includes both, the features and the results or labels to be predicted. Using those pairs of data, a

model able to produce results for a new set of data defined only by their features is produced.

Using the mathematical language introduced in the previous section, in supervised learning the

pairs (𝑋, 𝑦) of the training data are known and the aim is to build a model whose function 𝑓

minimizes the error of the model when it predicts for previously unseen data.

The machine learning algorithms used for predicting football results use data sets including

inputs (features) and outputs (labels or results) therefore, they are supervised algorithms. To

build a model able to predict outputs, the algorithms will be first trained with pairs of inputs and

outputs.

Classification and regression algorithms

The supervised machine learning algorithms can be divided into two groups, the regression and

the classification techniques. In football, a classification technique could predict a result such as

home win, draw or away win (class results). A classification technique may also predict the

number of goals (integers) scored by the home team and the away team, for example (2,0).

However, a regression algorithm may predict as a result of the same football match a pair of

rational numbers (1.9,0.3) for the goals scored by the home and away teams respectively and

therefore a home win result.

Predicting the result of a football match is a multiclass (home win, draw, away win) classification

problem with imbalance seen between the classes. This is because home wins, draws and away

wins are not equally likely to occur as evidenced by fig.3.1 below.

19

Fig.3.1: Number of home wins, away wins and draws in the German Bundesliga dataset.

3.2.2 Unsupervised learning

In unsupervised learning, the algorithm is built using only the features of a data set (input data),

as there is no known output. Using the mathematical language introduced in the previous

section, in unsupervised learning, only the features 𝑋 of the training data are known and the

algorithm is asked to provided knowledge out of the supplied data.

In the context of this project, unsupervised learning can be used for dimensionality reduction.

Many features such as the rating of the twenty-two players of the game, the number of shots,

the distances and angles of the shots, the number of penalties, fouls etc. may be available.

Unsupervised learning may summarize the most important characteristics using a smaller

number of features. This would help to reduce the training time of a supervised algorithm, and

the predicting time for the model. Unsupervised learning in football may also be used to divide

matches, teams or players into similar groups or clusters likely to behave in a similar manner.

20

3.2.3 Reinforcement learning (RL)

In this machine learning paradigm, an agent evaluates the current state of the environment,

performs an optimal action with the intention of maximizing returns, and after, each action gets

feedback from the environment (Vaibhavi, MarkTechPost, 2019). This process is called Markov

Decision Process and it is illustrated in Fig.3.2 below.

Fig.3.2: Reinforcement Learning Paradigm (En.wikipedia.org, Reinforcement Learning, 2019).

Some of the fields where the RL paradigm is successfully applied currently are: traffic light

control, robotics, web system configuration, chemistry, personalized recommendations, bidding

and advertising, games and deep learning (Medium, Applications of Reinforcement Learning in

Real World, 2019).

In the context of this dissertation, a possible application of this paradigm could be devising a

betting strategy with the intention of maximizing the return on bets placed.

3.3 Types of supervised machine learning algorithms

In this section, some important supervised machine learning algorithms are introduced.

21

3.3.1 Linear models

The linear algorithms assume that the labels or outputs are linked to the inputs or features

through a linear function.

Using mathematical language in matrix notation (En.wikipedia.org, Linear Regression, 2019):

𝑦 = 	𝑋𝛽 + 𝜀 Eq.3.2

In the above equation, for a training set of 𝑛 matches, and 𝑝 features:

• 𝑦 is an 𝑛 -dimensional vector with the results or data labels for the training data.

• 𝑋	is a matrix of 𝑝 + 1 columns and 𝑛 rows in which the first column is a vector with all its

elements equal to 1. The 𝑝 columns after the first, gather one feature per each column

(e.g. each element of a specific vector column is the number of corners shot by the away

team in each team).

• 𝛽	is a vector of dimension 𝑝 + 1. The first column of this vector is the intercept, the next

columns are the regression coefficients for each feature.

• 𝜀 is an 𝑛 -dimensional vector called the error term. The error term collects the influences

of other features that are not part of the matrix 𝑋.

The Linear Regression machine learning algorithm, using the least squares method, calculates the

vector 𝛽 from the data labels 𝑦 and the matrix 𝑋 that includes the values of the features.

The Linear Regression machine learning model is therefore defined by the vector 𝛽 and it predicts

the results of 𝑋𝛽 for an input set 𝑋. The output of the linear regression model would be a vector

𝑦 whose elements are real numbers.

In some classification problems, the output can only take two possible values (the output belongs

or does not to a predefined class). A football prediction machine learning algorithm that would

consider only two possible outcomes, i.e. home win (𝑦 = 1) versus home does not win (𝑦 = 0)

(this would include away win and draw), would be a binary classification algorithm. Such a

22

problem may be solved building a Logistic Regression Classification model. Mathematically, the

problem would be expressed as:

 𝑦 = 1 𝑖𝑓											𝑋𝛽 + 𝜀
 Eq.3.3

 𝑦 = 0 𝑒𝑙𝑠𝑒

And the construction of the model would consist in finding the 𝛽 values that best fit the above

equation. The output of the Logistic Regression model would be a vector 𝑦 whose elements are

categoric labels.

Advantages and disadvantages of the linear models may be found on the table 3.1 below.

Table 3.1: Linear Models, advantages and disadvantages (Muller and Guido, 2018, p.67)

Advantages Disadvantages

Model easy to build.

Once the coefficients of the model 𝛽 are

obtained, it becomes easy to interpret which

features are more important and if they

influence positively or negatively the

outcome.

If there is no linearity between the input

variables 𝑋 and the outcome 𝑦 in the model’s

working range, predictions of the model will

be poor.

The model performs poorly if several input

variables are significantly correlated.

The library Scikit-learn includes the modules LinearRegression and LogisticRegression able to

build linear machine learning classifiers.

3.3.2 Decision trees

Decision Trees are machine learning models used for both classification and regression problems.

Using the training data, decision trees algorithms infer a hierarchy of if and else questions that

lead to the outcome vector 𝑦.

23

The algorithm is called the Decision Tree as it may be graphically represented using a tree. The

tree has nodes that split for the different values of a specific feature. The tree also has edges

(branches) that are outcomes of a split and go to the next feature or nodes. The root is the node

where the first split is performed and the tree also has leaves that are the terminal nodes which

predict the outputs of the problem.

In the Random Forest algorithm (fig.3.3), the training-data is split in several subsets and each of

these subsets is used to train a specific tree of a ‘forest’ made of a large number of trees. When

the Random Forest is solving a classification problem, the final output is the class that has been

found as the solution in the greatest number of trees. For regression problems, the final output

is the mean of the outputs found for all the trees.

Fig.3.3: Random Forest and its assembling technique explained (O’Reilly, Scala Machine

Learning Projects, 2019).

Advantages and disadvantages of decision trees based algorithms may be found on the table 3.2

below.

24

Table 3.2: Decision Trees, advantages and disadvantages (Muller and Guido, 2018, p.82-83)

Advantages Disadvantages

Easy to interpret graphical results.

The algorithm supplies an array called

‘feature_importances_’ with a rating in

the range from 0 to 1 for each feature. A

feature with 0 rating means that the tree

does not consider it, and a feature with

rating 1 means that it fully predicts the

label.

The Random Forest algorithm reduces

the tendency to overfitting by averaging

the outputs and injecting randomness

into the ensemble of trees.

To avoid overfitting of the model:

• before the decision tree gets too deep and

complex, its growth has to be limited (pre-

pruning).

• after building the tree, it is often required to

remove the nodes (features) with little

information (post-pruning).

Random Forest algorithms are slower than linear

models and require more memory.

The library Scikit-learn includes the modules DecisionTreeClassifier, DecisionTreeRegressor,

RandomForestRegressor and RandomForestClassifier able to build decision tree machine learning

models.

3.3.3 Naïve Bayes classifiers

During the training process that the algorithm undertakes, the Naïve Bayes Classifiers defines

parameters looking at each feature individually and it collects for each feature simple per-class

statistics. The Naïve Bayes classifiers are applicable for continuous data and store the average

values as well as the standard deviations of each feature for each class (Muller and Guido, 2018,

p.69). An example in football prediction would be to have data for many shots (rows) and two

features of the shots that may be the angle and distance to the goalposts. The algorithm collects

statistics of the mean and standard deviations for shots that resulted in a goal and also for the

25

shots that did not result in a goal. Hence, the Naïve Bayes Classifier algorithm produces a model

able to predict if a shot from a defined distance and angle results in a goal or not.

The advantages and disadvantages of the Naïve Bayes Classifiers may be found on the table 3.3

below.

Table 3.3: Naïve Bayes Classifiers, advantages and disadvantages (Muller and Guido, 2018,

p.70)

Advantages Disadvantages

Algorithm is very fast to train and prediction with

the model is also fast.

Good performance for large number of features

(>100).

For sparse data sets (where for plenty of the

features the value is 0 most of the times)

performance is high.

In general terms, the Naïve Bayes

classifiers have lower generalization

performance than the linear classifiers.

The library Scikit-learn includes the module GaussianNB able to build Naïve Bayes Classifying

machine learning models.

3.3.4 The K-nearest-neighbours (KNN)

This machine learning algorithm builds a model by storing the training data supplied. Given the

features of a new data point, the prediction for its label is performed by finding the labels of the

closest points found in the training data.

The parameter 𝑘 defines the number of closest neighbours to be taken in order to find the label

of the input data. The K-nearest-neighbours algorithm may perform classification and regression.

When performing classification, the label predicted for the input is the class label most common

26

among the 𝑘 closest neighbours. When carrying out regression, the output predicted for the

input is the average of the values of the 𝑘 closest neighbours.

Fig.3.4: Decision boundaries for increasing number of neighbours.

Fig.3.4 above shows data points of three classes (represented by the red, green and blue colours)

and the decision boundaries defined by a KNN algorithm. The decision boundaries separate the

plot in three areas of different colors (pink, light green and light purple). It can be noticed that

for 𝑘 = 1 the boundaries followed are very close to the points, and when the number of

neighbours 𝑘 is increased, the decision boundary becomes smoother. The advantages and

disadvantages of the K-nearest-neighbours models are illustrated on the table 3.4 below.

Table 3.4: K-nearest-neighbors, advantages and disadvantages (Muller and Guido, 2018, p.44)

Advantages Disadvantages

Easy to understand.

Building the model is fast, it just

consists in storing the training data.

Predictions are slow if training-set is large either in

number of features or in number of data points.

For large number of features (>100) performance is

poor.

For sparse data sets (where for plenty of features the

value is 0 most of the times) performance is poor.

The library Scikit-learn includes the modules KNeighborsClassifier and KNeighborsRegressor able

to build k-nearest-neighbours machine learning models.

27

3.3.5 Support vector machines (SVMs)

The SVMs are supervised algorithms that can be used for both classification and regression.

Given a training data set where the data points are all labelled as belonging to one of two classes,

the SVM algorithm produces a model that assigns the new points to one of those two classes.

The SVM produces a non-probabilistic binary linear classifier.

The SVM models map data points in a multi-dimensional space (as many dimensions as there are

features), and the points that belong to each class are separated by gaps that are as wide as

possible. The decision boundaries are called hyperplanes. If the number of features is two, the

hyperplane is a line, if it is three it is a plane, but if the number of features is four or more, it is

not possible to visualize it.

The class of a new sample point is predicted by the side of the boundary it falls onto when it is

plotted in the model’s map. Fig.3.5 below shows the scatter plot of points that belong to two

different classes (represented by red and yellow points). Data points have only two features

(Feature 1 and Feature 2), therefore the hyperplane is a line (continuous grey line in the plot).

This hyperplane becomes the decision boundary. The two yellow points circled define the vector

of the direction of the hyperplane. The two grey dotted lines define the margins.

Fig.3.5: SVM model, two classes and the decision boundary.

28

Advantages and disadvantages of the Support Vector Machines may be found on the table 3.5

below.

Table 3.5: Support Vector Machines, advantages and disadvantages (Statinfer.com, 2019)

Advantages Disadvantages

It works well for a high number of

features.

It also works well for data such as text

and images.

If the training data-set is large, the training takes

long.

The final model is difficult to understand, and it is

also difficult to tune some parameters.

It does not give the probability of belonging to a

class, it gives the predicted class as ouput.

The library Scikit-learn includes the modules svm.SVC (classifier) and svm.SVR (regressor). They

are able to build Support Vector Machine models.

3.3.6 Artificial neural networks (ANNs)

Artificial Neural Networks (ANNs) are often used for problems within the reinforcement learning

paradigm. Neural Networks are designed to emulate biological neural networks and learn in a

manner similar to how human brains learn (reinforcement learning).

Fig.3.6: Two connected neurons (Anon, 2019).

29

The fig.3.6 above illustrates how a human brain works. The dendrites receive inputs and based

on those inputs the neuron’s cell body produces an electrical output that is transmitted through

the axon to the dendrites of the next neuron. Neurons are connected forming a network with the

axon of a neuron connected to the dendrites of several neurons.

Based on biological neural networks, computer experts have designed artificial neural networks

to solve problems that may be considered simple for human beings but difficult for computers,

such as image recognition.

The basic unit of the artificial neural network is the perceptron. Fig.3.7 below illustrates the

functioning of a perceptron. The perceptron receives inputs (input 1 and input 2) in their

dendrites. The different inputs and the bias first get weighted and thereafter added together in

the preprocessor of the perceptron body. The addition of the weighted signals is passed through

a nonlinear activation function in the processor, generating the output. This is called the feed-

forward process.

The two different activation functions that are most often used are the hyperbolic tangent and

the rectified linear unit. The rectified linear unit or relu function provides values of 𝑦 = 0 for

values of 𝑥 ≤ 0 and values of 𝑦 = 𝑥 for values of 𝑥 > 0 (Muller and Guido, 2018, p.107). Usual

weights are in the range [-1,1]. The bias is introduced to avoid having outputs equal to zero if the

input 1 and the input 2 are both equal to zero.

Fig.3.7: Perceptron: Preprocessor and Processor.

30

The training of the perceptron is carried out according to the following steps: the perceptron is

given inputs for which the answer is known, an answer is required from the perceptron, the error

(difference between known answer and answer provided by the perceptron) is calculated and

weights are adjusted according to the error. This iterative process is repeated starting from the

first step until the error decreases to reach a predefined value.

In a similar manner in which neurons in a human brain are connected to each other, outputs of

some perceptrons can be connected to the inputs of other perceptrons forming artificial neural

networks. Fig.3.8 below shows an artificial neural network built by linking four layers of

perceptrons together. The inputs of the perceptrons on the left column (blue) are the features

of the neural model and the output of the perceptron on the right column (green) represent the

result. The fact that the activation function of the perceptrons is nonlinear allows the artificial

neural ensemble to build more complicated models than a linear network could (Muller and

Guido, 2018, p.106).

Fig.3.8: Artificial neural network with two hidden layers.

31

The whole artificial neural network can also be trained in a manner similar to the one in which

perceptrons are trained. However, in this case, the error term is distributed through the layers

by modifying the weights at the nodes (Nielsen, 2019). This process is called backpropagation.

Advantages and disadvantages of the Artificial Neural Networks are explained on the table 3.6

below.

Table 3.6: Artificial Neural Networks (ANNs) advantages and disadvantages (Muller and Guido,

2018, p.117-118)

Advantages Disadvantages

Neural networks can be used to build

very complex models.

If enough data, training time, and

computer power is available, results may

be better than when other machine

learning algorithms are used.

Some of these algorithms usually do not run on

Windows machines.

They require long training times.

They work well with homogeneous data, that is,

features of similar kinds, but if features are

nonhomogeneous, then tree-based algorithms are

preferable.

Tuning of parameters such as number of

perceptrons per layer and number of layers is

complex.

The library Scikit-learn includes the modules neural_network.MLPRegressor and

neural_network.MLPClassifier able to build Artificial Neural Networks machine learning models.

3.3.7 Gradient boosting algorithms

Gradient Boosting Algorithms can be used for both classification and regression problems. A

gradient boosting algorithm is a powerful algorithm formed with an ensemble of other not so

powerful algorithms (weak learners). Usually, the ensemble is made of individual decision trees,

but this algorithm is different from the random forest algorithm. In the random forest algorithm,

32

the final output is the class that has been found as the solution in the greatest number of trees.

For regression problems, the final output in the random forest algorithm is the mean of the values

found for all the trees.

However, the gradient boosting algorithm builds a model assembling trees in series. In this

ensemble, each tree is used to try to correct the mistakes of the previous tree (Muller and Guido,

2018, p.88).

The Random Forest algorithm injects randomness into the ensemble of trees by means like

bootstrapping. In the Gradient Boosting Algorithm, by default, no randomness is injected, but

significant pre-pruning is applied to avoid an ensemble of trees too deep and complex. The depth

of trees built in gradient boosting algorithms is usually limited to a maximum of five leaf nodes,

making the model fast and limiting the amount of memory required to run it.

Advantages and disadvantages of the gradient boosting algorithms may be found on the table

3.7 below.

Table 3.7: Gradient boosting algorithms, advantages and disadvantages (Muller and Guido,

2018, p.91-92)

Advantages Disadvantages

The algorithm supplies an array called

‘feature_importances_’ with a rating

in the range from 0 to 1 for each

feature. A feature with 0 rating means

that the tree does not consider it, and

a feature with rating 1 means that it

fully predicts the label.

Predictions are fast.

Memory consumption is small.

To avoid overfitting of the model:

• before the decision tree is too deep and complex

its growth has to be limited (pre-pruning) using

the parameter max_depth.

• The parameter called learning_rate has to be

optimized. This parameter controls the strength

with which each tree corrects the mistakes of the

previous tree.

• Training time may be long.

33

The library Scikit-learn includes the modules ensemble.GradientBoostingRegressor and

ensemble.GradientBoostingClassifier. They are able to build gradient boosting machine learning

models.

3.4 Summary of the chapter

In this chapter, it has been learned that predicting the outcome of a football match could be done

either through a supervised machine learning regression algorithm (where the number of goals

to be scored by each team is predicted) or a supervised machine learning multi-classification

model (where the outcome of a match: home win, draw or away win is determined). In this

dissertation a multiclassification domain problem is dealt with. However, it should be noticed

that the problem can be also solved through a regression driven model to determine the number

of goals scored by each team and therefore the final result of the football match (class label).

After analyzing several machine learning models in this section (the list presented above is by no

means fully comprehensive), it was decided to use the following supervised machine learning

models for the prediction of the outcome of a football match:

• K nearest neighbours.

• Logistic Regression.

• Gaussian Naïve Bayes.

• Decision trees.

• Random forests.

• Gradient boosted decision trees.

• Support vector machines.

The observant reader with a keen eye for detail will have noticed that despite their current

popularity, artificial neural networks, are not among the chosen models. Not using neural

networks was an explicit decision made. Neural networks, also referred as deep learning (a

subfield of artificial intelligence) are a craft on their own, and optimizing their hyper-parameters

is an art by itself (Medium. Is Optimizing your Neural Network a Dark Art?, 2019).

34

The chapter that follows discusses the various steps taken throughout the course of this project

which led to predict the outcome of football matches occurring in the German Bundesliga

2015/2016 season.

35

4 Methodology

The methodology of a project are the processes and resources that are used to plan and deploy

the project from the project definition to its termination. This section describes the methodology

followed during this project.

4.1 Software engineering methodology

4.1.1 An Agile method: variant of Scrum

The project has followed an Agile Methodology. A variant of Scrum consisting of one-week sprints

followed by meetings with the supervisor was used. In this variant, the supervisor acts as the

customer and during the weekly meetings assesses what has been done, performs a gap analysis

between what has been done and what should have been done, and provides priorities for the

next week. The author of this project acts as a hybrid developer and scrum master, as he is

responsible for the project. During these meetings, the author explained the weekly increments

(achievements of the period), the difficulties faced and how they were overcome. Figure 4.1

below is used to illustrate the variant of the Scrum methodology used.

Fig.4.1: High level view of the scrum process. Icons downloaded from: (Noun Project, 2019).

36

4.1.2 An Agile method: variant of test-driven development

The software life cycle model is the set of activities performed during the software development

process. To successfully complete this project, it is necessary to choose a suitable life cycle model.

The life cycle model defines the sequence of software activities and transitions between them.

Given the project’s lead time, the interaction with my customer (supervisor), resources available

and my level of expertise, an Agile type of software development methodology called Test Driven

Development (TDD) was chosen (Igea, 2019, p.38).

Fig.4.2: Test-driven development.

The process of test-driven development can be explained using the fig.4.2 above. The process is

iterative and incremental. The process starts by writing a test that will be used to check a piece

of code that has not been written yet. Afterwards, code that is able to pass the test is written.

Following the successful completion of the test, refactoring of the code is carried out, so the code

becomes more maintainable and readable. More loops are performed adding new requirements,

and the iterations continue until the project is successfully completed (Igea, 2019, p.39).

During the project, the Pandas ‘info’ and the ‘head’, ‘tail’ and ‘describe’ methods were

extensively used throughout the process of software development to ensure that the code

written produced what the author intended to do.

37

4.1 The dataset

The main data-set used in this project was downloaded from the Kaggle dataset ‘European Soccer

Database’ (Mathien, Kaggle.com, 2019). This data set was collected and refined mainly from the

three following sources:

• Information from bookmakers about betting odds, http://www.football-data.co.uk/

(Football-data.co.uk, 2019).

• Information about the players, https://sofifa.com/ (Borjigin, 2019).

• Information about events, line-ups, scores: http://football-data.mx-api.enetscores.com/

(Fifaindex.com, 2019).

The dataset includes information for eleven countries’ leagues ranging from 2008-2009 to 2015-

2016 seasons. The data includes:

• more than ten thousand players with information that includes their ratings throughout

the seasons.

• more than twenty-five thousand matches with their results, team line-ups, etc.

• betting odds from several bookmakers.

• events occurred during the matches such as number of goals per team, number of

penalties, fouls, corners, shots. Events are time-stamped and the locations of the football

ground where events happened are also available.

4.2 The software, libraries and tools employed

The high-level programming language used in this project is Python 3.6. Python and its libraries

are frequently used to solve Data Analysis, Data Science and Machine Learning problems.

The notebook environment used is Jupyter Notebook. The Jupyter Notebooks may be easily

shared after being saved as a ‘ipynb’ file. Jupyter Notebooks may also be shared, and version

controlled using GitHub.

38

Python has its own standard library, but it may also be used to run many third-party libraries for

solving numerous domain-driven problems. The main libraries used during the project were:

• NumPy: used for scientific computing.

• matplotlib: used for plotting figures.

• Pandas: for manipulation and analysis of data-frames.

• SciPy: scientific computing.

• Seaborn: visualization of graphics.

• Scikit-learn: for machine learning.

• FuzzyWuzzy: checking strings similarities.

The software called 'DB Browser for SQLite' was used to extract data-frames in the csv file format

through SQL queries formulated to any data-sets that were stored in an SQL database.

4.3 The high-level overview of the machine learning workflow

The fig.4.3 below shows the high-Level overview of the methodology followed and the most

important milestones throughout this project.

The following main steps were performed:

a) The referenced web pages are downloaded as either SQL databases or csv files.

b) The data is explored to determine which tables are useful for the project.

c) Using the 'DB Browser for SQLite', the tables of interest stored in an SQL database are

converted to csv files.

d) The csv files are converted into Pandas data-frames in which further data-exploration and

data wrangling is performed.

e) Feature Extraction and Selection takes place in order to represent the data in the best

way possible for the machine learning models.

f) Different algorithms of Machine Learning are run.

g) Parameters are optimized.

39

h) Results for the 2015/2016 season (the testing data-set) are obtained.

Fig.4.3: High-level overview of the machine learning workflow. Icons downloaded from: (Noun

Project, 2019).

4.4 The pre-processing of the data

The steps included in the pre-processing of the data are: data wrangling, feature engineering and

feature selection.

The data wrangling is performed to display the data-set information in a format that facilitates

decision-making.

40

4.4.1 The first attempt at the data wrangling

The first attempt during the data-acquisition step of the data wrangling consisted of downloading

various data-sets from the Kaggle website for Data Science. These datasets individually contained

scattered information about the football matches and the players of each team. The aim was to

build a rich dataset containing as much information (features) as possible.

The main European Football database is stored in an SQLite database. The software called 'DB

Browser for SQLite' was used to extract the following csv files:

• ‘main_matches.csv’, with information about more than 25,000 football matches - seasons

2008 to 2016. (Mathien, Kaggle.com, 2019).

• ‘main_players.csv’, with information about more than 10,000 football players ratings -

seasons 2008 to 2016. (Mathien, Kaggle.com, 2019).

The following datasets were already provided in csv format and were directly downloaded from

Kaggle:

• ‘fifa_players_17.csv’, with information about more than 17,000 football players ratings -

FIFA 2017. (Kaggle.com, Complete FIFA 2017 Player dataset (Global), 2019).

• ‘fifa_players_18++.csv’, with information about 185 sport parameters for every player -

FIFA 2018. (Kaggle.com, FIFA 18 Complete Player Dataset, 2019).

• ‘fifa_players_19.csv’, with information about attributes for every player registered in the

latest edition of FIFA 19 database. (Kaggle.com, FIFA 19 complete player dataset, 2019).

• ‘new_matches.csv’, this dataset contains information about Premier Leagues, Primera

Division, Lique 1, Serie A and Bundesliga from 2004-2005 to 2018-2019, more than 28,000

games. (Kaggle.com, European Football Games, 2019).

• ‘football_betting_odds.csv’, with information about football-data.co.uk collected results,

fixtures and market odds. (Kaggle.com, World Soccer - archive of soccer results and odds,

2019).

41

• ‘events.csv’, with information about event data about each football match. It also

contains text commentaries scraped from: bbc.com, espn.com and onefootball.com.

(Kaggle.com, Football Events, 2019).

• ‘ginf.csv’, with metadata and market odds about each soccer’s match. The odds are

collected from oddsportal.com. (Kaggle.com, Football Events, 2019).

The above files were imported into the Jupyter Notebook environment as Pandas’ data-frames.

Immediately after this, the assessment of each data-set started. The data-frames were visually

assessed to get acquainted with the data. To get a deeper understanding of the data, the

following checks were employed: visualizing the heads and tails of the data-frames, obtaining the

number of non-null entries and the data types of each column as well as obtaining descriptive

statistics of each numeric data-type column. The distribution of the null data (fig.4.4 below) was

also visualized.

Fig.4.4: Overview of the data-frame: ‘new_matches’, in yellow: null data and

 in purple: non-null data.

42

It was also checked whether the data-frames contained duplicated rows and if in any given league

and season the number of matches played for each team was the same.

For the data-frames ‘fifa_players_17’ and ‘fifa_players_18’ coming from the files

‘fifa_players_17.csv’ and ‘fifa_players_18++.csv’, it was found that some players’ names were

repeated several times.

Quality issues

During the performance of the previous analysis, some quality issues were found for the

‘main_matches’ data-frame. The following list describes the most important ones:

1. Some column names were not descriptive of what they contain.

2. For certain columns, some missing values were found.

3. In-game events are found in XML format (goal, shoton, shotoff, foulcommit, card,

cross, corner, possession) within one column.

4. The dates in the column 'date' are strings rather than datetime format.

5. There were missing games for the Belgium League Season 2013-2014.

6. Some inconsistent data was found for the following Poland seasons and teams:

§ Match season 2008-2009, team Polonia Bytom 30.

§ Match season 2010-2011, team Polonia Bytom 30.

§ Match season 2011-2012, team Widzew Łódź 30.

For the second data-frame with information about football matches, ‘new_matches’, some

quality issues were also found. The most important ones found were number 1, 2 and 4 described

in the list above for the ‘main_matches’ data-frame.

43

During the analysis, some quality issues were also found for the players’ information. The list

below describes the main ones:

• Some missing values were found for certain columns.

• The dates in columns 'date' and 'birthday' were strings rather than datetime format.

Tidiness issues

During the performance of the previous analysis, some tidiness issues were found for the data-

frame ‘main_matches’. The following list describes the most important ones:

• The in-game events were not atomic, they should be split into respective teams’ events.

• Several columns were duplicated or unnecessary.

During the analysis, some tidiness issues were also found for the players’ information. The list

below describes the main ones:

• For the ‘fifa_players_17.csv’, there was a missing primary key when compared to the

‘main_players’ table.

• The column headings of the post 2017 player-ratings data-frames needed to be consistent

with the ‘main_players’ data-frame in order to be able to concatenate all of them

together.

Actions were required to depurate the quality and the tidiness issues programmatically. The

following processes were run on the players’ data-frames:

• a new column ‘date’ was added.

• the missing primary key was added.

• checking how many names are duplicated and dropping rows with duplicate names, as

for these cases it is not possible to accurately perform an inambiguous join operation

between data-frames based solely on the name.

44

• The players databases were then concatenated (stacked on top of each other in a

chronological order).

Then, it was checked how many matches could actually be used from the ‘new_matches’ table.

A football match may be saved if a direct match is found between the ‘new_matches’ data-frame

football players’ name to their corresponding ID in the master data-frame of football players.

After finding out that it was only slightly more than 20 matches that could be saved according to

the above plan, another process was designed with the purpose of rescuing the other football-

matches. Using the Python library FuzzyWuzzy to check for similarity of strings, a function called

‘match_name’ was written. This function finds the best match from a player’s name on the

matches data-frame to the player’s name on the players’ data-frame. After the execution of this

function, a data-frame was created with the players’ names and their corresponding best match.

As the results of this method have some room for error, the data-frame was converted to an

excel file and checked manually.

Eventually, this branch of the project was abandoned. It was learnt that while conducting further

literature review, that the problem of predicting the outcome of a football match falls under the

category of a ‘time-series’ problem (Yiannakis et al., 2006, p.96). Even though significant efforts

were made trying to rescue the matches with missing player IDs, a large number of time-gaps

without matches in between were found. If a model were to be created with the missing time-

dependent data, it would not be able to accurately reflect the ground-truth of what happened

during those missing matches up until the current match (e.g. cumulative shots on target would

not represent the actual cumulative shots on target up until that match, so the validity of the

model would become questionable due to the fact that there are missing matches in between).

4.4.2 The second attempt at the data wrangling

Even though the previously described branch of the project was abandoned for the reason

outlined earlier, the experience that was acquired on the data-wrangling process proved to be

45

extremely useful for the next attempt of depuration of the data-set. Again, the starting point is

the Kaggle European Soccer Database (Mathien, Kaggle.com, 2019).

The process started using the software 'DB Browser for SQLite' to extract from the SQLite

database uploaded by Mathien the following csv files:

• ‘main_matches.csv’ with information about more than 25,000 football matches - seasons

2008 to 2016.

• ‘main_players.csv’ with information about more than 10,000 football players ratings -

seasons 2008 to 2016.

The following was directly downloaded from Kaggle:

• ‘football_betting_odds.csv’ with football-data.co.uk collected results, fixtures and market

odds as well as in-game statistics.

Those three files were imported into the Jupyter Notebook environment as Pandas’ data-frames

with the names ‘main_matches’, ‘main_players’ and ‘football_data’ respectively.

The same standard procedures that were utilized during the first attempt were employed again

(acquainting the data, visual inspection etc.).

For the data-frame ‘main_matches’, the in-game events (goal, shoton, shotoff, foulcommit, card,

cross, corner, possession) were still in XML format. These events are not atomic, so they should

be split into their respective teams’ events.

To obtain the in-match statistic data two possible approaches could be used. The first was to use

an XML parser to extract the relevant in-game events. This approach was not followed. The

approach followed was to obtain the in-match information from the ‘football_data’ data-frame.

The seasons and the leagues that the data-frames ‘football_data’ and ‘main_matches’ had in

common were found. After further analysis, the following observations were gathered.

46

Leagues that do not have useful match statistics from the ‘football_data’ dataframe were:

1. Belgium Jupiler League.

2. Netherlands Eredivisie.

3. Portugal Liga ZON Sagres.

After conducting further research online, it was also found that the following leagues did not

have useful match statistics (these leagues were not in the ‘football_data’ dataframe):

1. Poland Ekstraklasa.

2. Switzerland Super League.

As a result, the useful leagues to conduct the analysis were the following:

1. England Premier League.

2. France Ligue 1.

3. Germany 1. Bundesliga.

4. Italy Serie A.

5. Scotland Premier League.

6. Spain Liga BBVA.

Therefore, at that time, the data found in all the above six leagues was considered to be useful.

To be able to produce some important engineered features, it is necessary to know who were

the players that played in each match. Consequently, the matches that did not contain the player

id for all 22 players in a given match were dropped.

Comparing the number of matches per season for each league before and after dropping the

matches that had missing some players’ IDs, it was found that the most complete dataset was

the one corresponding to the German Bundesliga. A data-frame called ‘bundesliga’ was built.

Further work was then performed on this data-frame.

47

To obtain the important in-game statistics for the data-frame ‘bundesliga’, an initial merge with

the data-frame ‘football_data’ was attempted on the columns date, home-team and away-team.

However, the names of the teams did not coincide, therefore the merge was not successful at

first. At this stage, the previous attempt of trying to match players by name using string matching

algorithms became very useful, as the acquired knowledge helped to carry out this merge.

The algorithms based on the library FuzzyWuzzy to check similarity of strings were ran to obtain

the best string match for the names of the teams in the ‘bundesliga’ data-frame to the names of

the teams in the ‘football_data’ data-frame. The data-frame produced was exported to an excel

file for a more thorough visual check. After several more processes of data preparation, the two

tables were successfully merged to the ‘main_matches’ data-frame.

However, after all the previously explained efforts to identify the missing players, there were still

some teams where the identity of some players remained unknown. The lack of unique IDs for

some players caused a problem when obtaining the football players’ most recent rating before

the football match. The next section deals with solving the problem caused by the lack of ratings

for some players.

At this stage, a last attempt to recover the player’s FIFA IDs was made for the 72 Bundesliga

matches. The process consisted in firstly, identifying the missing players’ name and then looking

it up in the main football players’ data-frame. This operation was performed to avoid the

imputation of data as preserving the authenticity of the data to the highest possible extent was

a priority in order to have reliable results derived from the analysis. Nevertheless, these efforts

resulted in vain as it was found out that plenty of the missing players for each match were not

present in the players’ rating table. As a result, a successful merge to obtain these players’ ratings

would have proven impossible, unless the players’ rating table would first be updated with the

missing information of that player.

48

Rating imputation

The rating of some players was not available in the original data-set (Mathien, Kaggle.com, 2019).

This happened because Mathien transferred the data for each player from their Sofifa profiles

(Borjigin, 2019) to the table of the matches from enetscores (Football-data.mx-

api.enetscores.com, 2019), and to do this, the only common keys were the players’ birthdays and

names. For many players, as names and birthdays coming from both tables did not produce a

perfect match, Mathien wrote a script to search in the internet the names in the football matches

table to try to find the names used by the Sofifa website. However, this process was not able to

produce results for all the players and that is why the ratings of some players were not available.

To deal with the problem of incomplete data for the players’ ratings, two options were

considered.

The first option was to drop the 72 matches from the Bundesliga, mainly part of the season 2008-

2009. For all those matches the rating of at least one player was missing. This first option would

impoverish the dataset and if possible, was to be avoided.

A second alternative option was to impute a value to the missing values of the ratings. However,

before opting for this solution, some checks were performed.

A frequently used technique in statistics for imputation of missing values is called mean

imputation or mean substitution. It consists of substituting the unknown values by the mean of

the distribution of the known values.

To see whether it was reasonable to impute as overall rating of a player, its team's average

(average rating of the known players), some statistical tests were completed.

The knowledge of the standard deviations of the distribution of the players’ ratings within a team

shed some light on whether the substitution made sense or not. Therefore, the following steps

were taken:

49

1. segregation of the matches with full data

2. performing a join with the most relevant rating based on the nearest backwards looking

date to the match date

3. calculating the average players’ rating for both home_team and away_team, calculating

the standard deviation for both home_team’s and away_team’s players’ ratings

4. Running the ‘describe’ function to obtain summary descriptive statistics.

It was found that the average players’ rating of a football team (with all 11 players present) based

on the average of the team players’ overall rating before a given match was 74.55.

As it can be seen in fig.4.5 below, it was also found that the mean of the standard deviations for

the distribution of players’ ratings for a football team was around 3.66.

Fig.4.5: Standard deviations for the distribution of players’ ratings within a football team.

The standard deviations show that the dispersion of data is moderately low, hence the

imputation of missing football players’ ratings with the average of the rest of the players’ ratings

present per team seemed as a strong option moving forward. The distribution of the standard

deviation for the distribution of players’ ratings seemed to follow a Poisson distribution with

most values being skewed to the left.

50

It was also decided to run further statistical tests to check whether a football team’s players

ratings distribution was normal. If the statistical distribution of the ratings of the players of a

team followed a Gaussian distribution, then some assumptions could be made. The Anderson

Darling (AD) test was used to check the normality of the data. In the AD test, two hypotheses are

considered: H0 (data sampled from a Gaussian population) and HA (data sampled from a non-

Gaussian population). The AD test produces a parameter called the p-value. If the p-value is

greater than 0.05, then the H0 hypothesis is accepted. Normality of the distribution of the ratings

of the players for a team was tested, by finding the p-values shown in the fig.4.6 below.

Fig.4.6: p-values for the distribution of players’ ratings (Anderson-Darling test).

As it may be observed, many of the p-values are greater than 0.05 and it is therefore hard to

reject the null hypothesis of the corresponding ratings following the Gaussian distribution.

However, the number of teams with p-value smaller than 0.05 could not be ignored and therefore

it was decided to circumvent the fact that no access to all the players’ overall rating was available.

This was achieved through smart feature extraction as shown in the section that follows.

51

4.4.3 Feature selection and engineering

One of the major challenges that data scientists face is the optimal representation of the data to

best suit the needs of the intended application. It can be observed, for instance, in Kaggle

competitions, that sophisticated feature engineering can make the difference between the

winning and losing entries. That is to say, that the right extraction of features can make a big

difference to the performance of the supervised machine learning model (often playing a greater

role than the hyper-parameters optimization of the model).

The use of expert knowledge is often required to improve the forecasting ability of machine

learning algorithms. Even though machine learning algorithms are sometimes used with the

purpose of avoiding the use of complex rules designed by experts, the use of expert knowledge

may be of significant help to identify or define highly informative features.

This section concentrates on the feature extraction (preparation of data to be fed into the

Machine Learning models) of the project. Jupyter Notebooks were written to perform the

following steps:

1. To ensure the data is clean.

2. To create functions that derive useful features from the original features

3. To test that the engineered features derived do not present any information leakage (as

a time-series problem is being analysed).

Feature engineering for the ‘virtual’ Bundesliga

The ‘virtual data’ analysed was extracted and curated as explained in sections 4.4.1 and 4.4.2:

Data Wrangling. This set of features is called ‘virtual’ as it was collected from the website

(Borjigin, 2019) of the EA Sports video game FIFA. The data-set includes information of the

players’ attributes in the German Bundesliga seasons (from 2008 to 2016).

52

In the mentioned website, for each player, there is a set of 33 attributes available. Those 33

attributes are perodically updated. The value of any of those 33 parameters is an integer in the

range from 1 to 100. An approach similar to the one taken by Shin and Gasparyan (2014) is

followed. As suggested in their paper, the 33 parameters were split into 7 categories as shown

by the table 4.1 below.

Table 4.1: Categories and features for ‘virtual data’ (Shin and Gasparyan, 2014)

Categories: Features: # Features:

Attacking Crossing, Finishing, Heading Accuracy, Short passing, Volleys 5

Skill Dribbling, Curve, Free Kick Accuracy, Long Passing, Ball Control 5

Movement Acceleration, Sprint Speed, Agility, reactions, Balance 5

Power Shot Power, jumping, Stamina, Strength, Long Shots 5

Mentality Aggression, Interceptions, Positioning, Vision, Penalties 5

Defending Marking, Standing Tackle, Sliding Tackle 3

Goalkeeping GK Diving, GK Handling, GK Kicking, GK Positioning, GK Reflexes 5

To produce the engineered ‘virtual’ features, the steps defined below were followed:

1. The names of the columns in the data-frame ‘bundesliga’ were renamed to identify the

player and the 33 features above. For example, a possible column name is:

agility_home_player_3.

2. Thereafter, the function ‘combine_features’ which groups player's features into the 7

main skills or categories that make up a player was built. This function obtains the

aggregate for each of the 7 main skills for each player before a football match, uses as

parameters rows in the Pandas data-frame, and returns a new set of columns according

to the description given above (columns): home_player_1_attacking,

53

home_player_1_skill, etc. The function was designed to be able to aggregate even when

NaN values were found (as they were replaced with zeros).

3. It was tested that the function produced the expected results.

4. A function ‘obtain_virtual_features’ that obtains the ‘virtual features’ for each team was

written. The inputs to this function are the rows of the ‘bundesliga’ data-frame. The

function output for each team is the aggregation of the ratings for the best 4 attacking

players’ ratings, the best 5 skill players’ ratings, the best 5 movement players’ rating, the

best 5 power players’ rating, the best 5 mentality players’ ratings, the best 4 defending

players’ ratings and the best goalkeeper player’s rating (in all cases the goal-keeper). The

function returns 14 new columns according to the definition of the function:

away_top_5_movement_sum, home_top_5_movement_sum, away_top_5_power_sum,

home_top_5_power_sum, etc. This was the key step to be able to circumvent the

problem of facing missing values as only the best selection of ‘n’ players was chosen to

represent a team according to the 7 categories that define a player (It should be noted

that there were only at most 3 missing players per team per football-match and none of

them were the goal-keeper).

5. The function was tested to ensure it produced the expected results.

The resulting features from the above steps were the ones shown in Eq 2.1 with the addition that

they were all scaled from 1 to 100. Further to this, the difference between each feature of the

home team and away team were computed and these resulted in the final set of virtual features

(49 features in total). These are listed in table C.1 of Appendix C.

A function ‘label_match’ to obtain the match label (home win, draw or away win) was produced.

The inputs of this function are the number of home and away goals. The function returns a string

(H, D, A) that represents the result (home win, draw or away win). This last function was tested

and the data-frame ‘bundesliga_test’ which now included the labels and the engineered features

was saved as a csv file.

54

Feature engineering ‘real’ Bundesliga

This data-set includes the in-game statistics of the German Bundesliga seasons from 2008 to

2016. To extract meaningful features, some of the features contained in this data-set were found

to have a detailed explanation in the dictionary (Football-data.co.uk, 2019).

Some auxiliary functions were designed to help the process of building the ‘real’ engineered

features.

The table A.1 of Appendix A describes the name of those auxiliary functions, their description,

the inputs required, and the outputs obtained.

The final set of features produced may be found in table C.2 of Appendix C.

An aggressive manual feature reduction was performed, after finding that these features provide

a considerable increase in accuracy compared to the isolated set of features that would be

obtained by simply applying the feature extraction functions presented in table A.1 of Appendix

A (Hessels, 2018, p.22).

4.5 Machine learning

4.5.1 Automated machine learning

The software library, auto-sklearn, was initially used. This software library provides an automated

solution to supervised machine learning problems.

Auto-sklearn uses Bayesian optimization for the fine-tuning of the various hyper parameters

found in many machine learning algorithms.

Despite the various positive reviews and mentions in academic papers, the results obtained with

this library did not seem promising after two trial runs.

55

The initial run consisted of a one-hour trial to see whether the software package was working as

expected. After this one hour, auto-sklearn was able to achieve an accuracy of 50%. Following

this successful trial, the full exploitation of this library started with a second trial where the

running time was set to be 72 hours. Unfortunately, after 60 hours of initializing auto-sklearn, it

ran into memory and storage difficulties and thus put at halt the optimization process for this

trial. This information was displayed (fig.4.7) in an error log produced by the Jupyter notebook.

Fig.4.7: Error log produced for the second trial.

At that stage, the next logical step was to set the same parameters but this time rather than the

optimization time being set at 72 hours it was reduced to 48 hours. This should have allowed the

program to still optimize for a long enough time so that the parameters were fully optimized, but

not too long so that the optimization process failed.

Therefore, the next 48-hour trial was set to begin. To the disappointment of the author, the

accuracy obtained was that of 47% (table 4.2), much lower than in the previously achieved trial

run with an optimization time of one hour (50%). At this stage, abandoning auto-sklearn seemed

to be the best course of action.

56

Table 4.2:

Algorithm: Auto-sklearn

Dataset: German Bundesliga season 2015/2016 (virtual)

Classification report

 precision Recall f1 - score support

0 0.47 0.26 0.34 100
1 0.67 0.03 0.05 71
2 0.47 0.87 0.61 135

avg/total 0.52 0.47 0.39 306

4.5.2 Implementing machine learning models (one step lower in the level of abstraction)

Abstracting away from the optimization problem and choosing the best single machine learning

model did not seem to be the best strategy to follow for the remainder of the project. Thus, it

was decided to conduct an intensive period of study of machine learning for data scientists. This

was conducted by the full reading of Muller and Guido (2018). The rationale behind this decision

was that applying an algorithm to a dataset without truly understanding the logic behind the

model and the meaning of its different parameters does not usually lead to attaining reasonable

and understandable results as perhaps evidenced with the auto-sklearn library.

In the problem of predicting football matches results, the objective is to know for a given football

match that has not occurred yet, if the game will result in a home win, a draw or an away win.

It is therefore required to find a model with forecasting abilities for new and unseen football

matches.

It is at this point when the concept of underfitting and overfitting comes into play in the machine

learning world. It is possible to create complex models able to achieve a 100% accuracy on the

training set (the dataset that the machine learning model learns from) however, these complex

models have the tendency of overfitting. These models adjust perfectly to the training data but

57

have a small capacity to generalize, and if a new set of data is used with the model, results may

be poor. Using overfitting models is a common mistake that junior data scientists often fall into.

In general, the objective is not getting a model able to achieve 100% accuracy in the training set,

but to be able to obtain high accuracies in predicting the outcome of new football matches. The

rules that follow an overfitting model are too complex and are not able to generalize well.

The opposite problem is to choose an extremely simplistic model. This is called underfitting.

Sometimes, to be able to provide an easy to explain model, the model is simplified to extreme

barebones such that the accuracies of predictions which the model produces are poor. This is

because the model is not able to capture all the interrelations among the features and the results.

To know whether a machine learning model will perform well in the future with unseen data it is

required to evaluate it with a test set.

Hence, the key to the matter is to choose a model that will generalize well to new data. This is

achieved by neither underfitting nor overfitting on the machine learning models. This is best

portrayed in the below fig.4.8.

Fig.4.8: The trade-off between overfitting and underfitting.

58

In practice, this means that to obtain the sweet spot such that the machine learning model is able

to generalize well, important parameters intrinsic to each classifier (machine learning model)

have to be adjusted. For instance, with the nearest neighbour classifier, adjusting the number of

neighbours and the distance measure between each datapoint control the model complexity of

this classifier.

This is well portrayed in fig 4.9 where it can be observed that as the parameter ‘number of

neighbours’ is increased, the accuracy achieved on the training set is sacrificed to obtain a better

generalizing model (reflected on the higher accuracy achieved in the test data-set.)

Fig.4.9: Controlling the complexity of the KNN classifier by varying the number of neighbours
parameter.

It is worth noting that for some algorithms, due to the manner the scikit-learn library works, the

preprocessing of the data (such as scaling the data) has to be performed first, so the scoring

metric relevant to the problem in question can be optimized.

59

The supervised machine learning models mentioned in the summary section of Chapter 3 were

employed for the prediction of the outcome of football matches.

4.5.3 Automatic Feature Selection

Contrary to the author’s initial beliefs, a greater number of features does not necessarily mean a

greater chance of maximizing accuracy. In fact, the number of features is highly correlated to the

complexity of the model. It is therefore wise to avoid the temptation of increasing the

dimensionality of the data. Then, the reader might wonder why an extensive feature engineering

was carried out if increasing the dimensionality of the data leads to a higher chance of overfitting.

At this stage, it is necessary to be reminded of the following concepts and facts:

1. It was necessary to do so, as the original set of features contained information which occurred

during the match event.

2. The aim was to represent the data in the most optimal way to maximize the learning of the

machine learning models.

Apart from the reasons mentioned above, an important step of the machine learning workflow

is to reduce the number of features to the most descriptive ones, getting rid of the rest (which

might be considered as noise in the model). This often produces simpler models, which tend to

generalize better.

In the pipelines designed in this project (a concept which will be discussed in the penultimate

subsection of this chapter), univariate statistics as well as iterative feature selection are

employed. These reduce the number of features of the model and the chance of overfitting.

For the univariate feature selection, the SelectKBest class was used. This selects (as the name

indicates) ‘K’ number of features with the lowest p-values (meaning that they are likely to be

highly related to the match label).

60

A disadvantage of this approach towards feature selection is that it is completely independent of

the machine learning model to be constructed. As a consequence of this, univariate tests are very

fast to execute as they do not require training and testing of a machine learning model. In

practice, the price to pay for this high speed is that the features chosen are more often than not

a sub-optimal choice. Despite this, univariate feature selection may prove useful if there is a large

number of features to build the model.

A more computationally expensive method employed was iterative feature selection. In this

approach, recursive feature elimination with cross-validation was used. A model is built with all

the original features, it is cross validated according to the cross-validation scheme and its

performance is recorded. This is successively repeated by eliminating the least informative

feature of the model, until the prespecified number of features are left. The model chosen is the

one with the highest cross validation score. The concept of cross-validation will be revisited in

the following subsection. Recursive feature elimination is illustrated in the fig.4.10.

Fig.4.10: Recursive feature elimination (Reproduced from Medium, Feature Selection Methods

in Machine Learning, 2019).

It should be noted that recursive feature elimination is a greedy procedure. This means that while

it is a heuristic approach to feature reduction, it does not guarantee the optimal combination of

61

features that would yield the best performance of the scoring metric that it is being tried to

maximise. This might be observed if it was a given fact that the combination of features 1, 2, 3

was the best combination that yielded the best accuracy for the given dataset in fig 4.10. This is

reflected by the fact that the greedy recursive feature elimination selected feature 2, feature 3

and feature 5 as the best subset of features in fig 4.10 and did not obtain the optimal

combination. The author understands that the only way to reach the optimal combinations of

features for a given problem and data-set would be an exhaustive search (brute-force). Such

approach is not normally used in practice due to its computationally and resource intensive

nature.

In the below fig.4.11, it may be seen that according to recursive feature elimination with cross-

validation, the best combination of features are just 2 features which provide the highest cross-

validation score and hence the best generalization performance.

Fig.4.11: Recursive feature elimination with cross-validation (virtual dataset).

As it has been previously mentioned, one of the most important aspects of the machine learning

workflow is the selection of features. Above, it has been discussed how to do so with scikit-learn

feature selection tools. Now that it is understood how to best represent the data, the next

62

subsection describes how to select the appropriate hyper-parameter values also known as model

fine-tuning.

4.5.4 Evaluating the performance of machine learning models

“Cross-validation is a statistical method of evaluating generalization performance that is more

stable and thorough than using a split into a training and a test set.” (Muller and Guido, 2018,

p.252).

To cross-validate the model’s results, different methods can be used to split the data. As

mentioned by Yiannakis et al. (2006, p.96), predicting the outcome of a football match is a time-

series domain problem. When evaluating a prediction task that belongs to this domain, it is

interesting to learn from the past and predict for the future, as one might expect. Hence,

traditional methods of cross-validation such as K fold validation, Stratified K-fold cross validation

and leave-one-out cross validation are not the most appropriate statistical methods to validate

the generalization performance of the models. Forward chaining is the most suitable method to

use in this research. In forward chaining, as with all other cross-validation techniques, the dataset

is split into the non-test set and the test set. The main difference between forward chaining and

the other techniques mentioned is that the non-test set is further split into an actual training set

(in which all data is used up to a certain date) where the model is fitted and a validation set (the

remaining data past that date up to another date) where the initial parameters selection of the

model is evaluated on.

In practical terms, this is how it would be reflected in the data-set: given the first season in the

non-test set (training set), what is the expected outcome of the future matches in the following

season (validation set)? Now, given the first two seasons in the non-test set (note that the last

season of these two was the previous validation set), what is the expected outcome of the future

matches in the following season (validation set)? This happens sequentially up until the last

season in the non-test dataset is reached as the last validation set. This is best illustrated in the

fig. 4.12 and 4.13 below.

63

Fig.4.12: Test data and non-test data.

Using forward chaining (fig.4.13), it is required to train ‘n’ models (depending on how many splits

the practitioner specifies) rather than one. Even though several models (with different training

data) are trained, the purpose is to check the generalization performance of a machine learning

model with a specific set of hyper-parameters.	This results in a high computational cost. Again,

in machine learning a trade-off situation is found, trying to achieve the fullest optimization is

always accompanied by associated computational costs which usually translate into an increase

in computational time.

	

Fig.4.13: Forward chaining.	

As outlined above, several models (with different training data and specific set of hyper-

parameters) are trained with the purpose of observing their generalization performance.

64

However, this is only done for a specific set of hyper-parameters and there is no guarantee that

those used parameters are the ones that would result in the best generalization performance.

The question which naturally arises is about what can be done to find the values of these

important hyper-parameters. The techniques called Grid Search and Random Search are used to

tackle this issue. In basic terms, grid search is a brute force method where all the different

combinations of values provided to the class are tried for the respective parameters of the

machine learning model. Usually, trying all possible combinations of hyper-parameters is not a

viable machine learning strategy, hence random search is also employed as an alternative.

Random search selects random combinations from a predefined grid where the user specifies the

limit of search iterations. Random searches are more efficient because not all hyper-parameters

are equally important to tune (Bergstra and Bengio, 2012, p302-303).

Sci-kit learn provides an implementation that combines both concepts mentioned above (cross-

validation and fine-tuning hyperparameters) and those are the GridSearchCV and

RandomizedSearchCV classes. By instantiating the GridSearchCV class and calling the ‘fit’ method

on this object, forward chaining for each combination of the machine learning models’ hyper-

parameters is performed. After the finalization of the search for the best parameters which

resulted in the best forward chaining performance (the parameters which yielded the highest

mean validation accuracy), a new model is fitted on the entire non-test dataset with the best

parameters and it is stored within this object. The final evaluation is then conducted through the

test set score. This score gives an indication of the generalization performance with the chosen

parameters for data never seen before.

A similar approach may be carried out for the RandomizedSearchCV class where rather than

performing forward chaining for each combination found in the parameter grid, there is an

explicit limit of search iterations provided by the user.

4.5.5 Pipelines

With the sheer amount of information presented in the above subsections, it might be tempting

to consider machine learning as an obscure art only reserved for the few. As it was mentioned

65

before, some models require preprocessing steps such as that of scaling. There are also usually

rewards in reducing the dimensionality of the data (by either applying feature selection

techniques or principal component analysis or even both). Moreover, the right combination of

values for the hyper-parameters has to be chosen. All of these processing steps are required to

obtain the best generalization performance and extract the full potential of the machine learning

models.

To be able to chain together the various steps outlined earlier in this chapter, scikit-learn provides

a class called Pipeline. Pipelines are able to encapsulate all of these steps into one single object.

The grid search class can be applied to Pipelines to evaluate them. The grid search also allows to

search not only for the relevant parameters of each model but also the several possibilities that

exist within the previously mentioned preprocessing steps. It therefore allows to significantly

amplify the search space for all the different combinations of sequential processing (i.e. scaling

data), feature extraction/dimensionality reduction and hyper parameters selection. This class is

one of the most convenient ones as it allows to run more processes with less code, thereby

minimizing the likelihood of coding a sequence of steps with syntax or logical errors.

 4.6 Summary of the chapter

In this chapter the methodology of the project is described. The software engineering methods

used for the project’s deployment (a variant of scrum and test-driven development) are

illustrated. Detailed explanations about the software used, tools employed and machine learning

workflow are produced. The steps of data pre-processing and data wrangling are shown and the

quality and tidiness issues found in these processes were explained. Despite significant efforts

in trying to enlarge the dataset to contain as many football matches as possible, as well as their

corresponding features, the subject was settled with two parallel data sources (the virtual set

and the real set).

The sub-sections of feature engineering and feature selection follows. With feature engineering,

the aim was to represent the data in the most informative way to the machine learning models

and this was performed carefully so as to avoid any data-leakage. With regards to feature

66

selection, it was discussed that having a high number of features does not necessarily mean

greater generalization performance. In fact, as the number of features or dimensions grow, the

amount of data needed to generalize accurately grows exponentially (Medium, The Curse of

Dimensionality! 2019). This is known as the curse of dimensionality.

Univariate feature selection and iterative feature selection methods were introduced in order to

tackle this curse (by reducing the features/dimensions of the data) as acquiring more data was

an option that had been already explored with little success.

The penultimate part of this chapter discussed the machine learning models’ performance

evaluation relevant to the time-series problem arisen in this dissertation.

Lastly, constructing the pipelines (which combine all the pre-processing steps mentioned and the

hyper-parameter tuning) and deploying them jointly with gridsearch or randomized search to

search for the optimal values that yielded the highest generalization performance led to obtain

the results seen in the chapter that follows.

67

5 Presentation and evaluation of results

Pipelines that ran several algorithms and optimized parameters and pre-processing steps were

built and applied in parallel to the real and virtual datasets. The models were built using the data

from the seasons 2009-2010 to 2014-2015 and tested with the data of the season 2015-2016.

This section provides answers to the following research questions posed in the section 1.2

(problem formulation):

• Which features of the data available have more predicting ability?

• Can data collected from EA Sports (regarding player ratings) outperform real-world

historical data in order to predict the outcome of football-matches?

• Which machine learning algorithms produce more accurate predictions? Which

parameters and pre-processing steps should be used when using those algorithms to

predict football match results?

• Do the models developed improve the predicting capabilities that existing models claim

to obtain?

5.1 Which features of the data available have more predicting ability?

The feature importance values were derived by training an extra trees classifier composed of

10,000 trees. The values of the feature importance fluctuate between 0 (not correlated with

label) and 1 (predicts the label with total certainty). The addition of all the feature importance

values is the unity.

5.1.1 Virtual set feature importance values

Figure 5.1 below shows for the virtual set, the top 10 most important features obtained. They

may be seen in the figure that follows.

68

 Feature Importance

Fig.5.1: Feature importance values for the virtual dataset.

It can be first observed that the Feature importance values for the top 10 most important features

are smaller than 0.025 and fluctuate in a very small range (approximately from 0.022 to 0.024).

The values found illustrate the complexity of the problem of predicting football result predictions.

The virtual dataset has 49 features, with an average importance of 1/49 = 0.020. As the features

with highest Feature importance values fluctuate in a very small range (approximately from 0.022

to 0.024) and are very close to the average Feature importance (0.020), this means that there is

not a strong dominant feature in the dataset that will help to predict the outcome of a football

match.

This is further supported by carefully studying the correlation matrix (fig.5.2) for this data-set

which shows positive high correlations amongst the features.

Fe
at

ur
e

69

Fig 5.2: Correlation matrix heatmap for features in the virtual dataset.

As it may be deduced from the fig.5.1, the home defending and away defending feature

difference plays the most significant role when predicting the outcome of a football match. It is

said that the best offence (attack strategy) is achieved by having the best defense (having an

unbreakable defense). An interesting highlight found was that the difference between the

defense of the home team and the away team’s attack is not part of the three most important

features, it is actually ranked sixth from a total of 49 virtual features.

70

5.1.2 Real set feature importance values

Figure 5.3 below shows for the real set, the top 10 most important features obtained. They may

be seen in the following figure.

Feature Importance

Fig.5.3: Feature importance values for the real dataset.

For the real dataset there are only 12 features, with an average importance of 1/12 = 0.083. For

this real dataset, the ten features with the highest Feature importance, values fluctuate in a very

small range (approximately from 0.075 to 0.095) and are also very close to the average Feature

importance (0.083). This means that for the real dataset there is also not a strong dominant

feature that will help to predict the outcome of a football match.

Fe
at

ur
e

71

From the fig.5.3 it may be inferred that for the real dataset, the features related to ‘Shots on

Target’ are among the most informative features, however, again, as for the case of the virtual

data, no single feature may be considered highly superior to the rest of features.

For illustrative purposes, the correlation between features in the real dataset is shown below in

fig 5.4.

Fig 5.4: Correlation matrix heatmap for features in the real dataset.

5.2 Can data collected from EA Sports (regarding player ratings) outperform real-world

historical data in order to predict the outcome of football-matches?

To answer this question properly, the concept of the confusion matrix would need to be first

explained using an example.

72

In the table 5.1 below, ‘A’ means away team wins, ‘D’ means draw and ‘H’ means home team

wins. There is a total of 306 matches per season, in this example (306 = 27 + 11 + 62 + 13 + 5 +

53 + 16 + 16 + 103). The number of matches properly predicted are 27 + 5 + 103 = 135 (the

elements in the main diagonal). The rows represent actual classes, the columns represent the

predicted classes. As an example, 62 matches were predicted as H, but they were actually A.

Table 5.1: Confusion matrix for the virtual dataset (random forest classifier).

 Predicted A Predicted D Predicted H

Actual A 27 11 62

Actual D 13 5 53

Actual H 16 16 103

Several metrics may be used to assess the machine learning models. These testing metrics are

defined in the table 5.2 below coupled with an explicit example:

Table 5.2: Testing metrics for binary classification.

Recall for

Away Wins

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 =

27
27 + (11 + 62) = 0.27 Eq.5.1

Precision

for Away

Wins

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 =

27
27 + (13 + 16) = 0.48	 Eq.5.2

F1-score

for Away

Wins

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑥	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 	𝑥	2 =

0.48	𝑥	0.27
0.48 + 0.27 	𝑥	2 = 0.35 Eq.5.3

Accuracy

or recall

weighted

avg

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑚𝑎𝑡𝑐ℎ𝑒𝑠
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑎𝑡𝑐ℎ𝑒𝑠 =

27 + 5 + 53
306 = 0.44 Eq.5.4

73

Since the problem of interest concerns the evaluation of multiclass classification, it is required to

compute a weighted average over all the classes in order to obtain the weighted recall, weighted

precision and the weighted f1-score.

In this project, the main metric used to assess the machine learning models built is the accuracy

or weighted recall average.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑎𝑡𝑐ℎ𝑒𝑠 Eq.5.5

Results obtained for accuracy using the different machine learning pipelines (full names of

pipelines may be read in the Appendix B) on the test dataset (German Bundesliga 2015/2016

season) have been plotted in fig.5.5 below.

Fig.5.5: A visual summary of the accuracies obtained with the pipelines of machine learning

models deployed in the 2015/2016 season of the German Bundesliga.

74

According to the results obtained, and as it may be seen in fig.5.5, it can be concluded that, in

general terms, virtual data collected from EA Sports (blue) outperforms real-world historical data

(red) when predicting the outcome of football-matches. In fact, the best accuracy result (0.51) is

obtained using the Pipeline of Logistic Regression with PCA with the virtual dataset.

5.3 Which machine learning algorithms produce more accurate predictions? Which

parameters should be used when using those algorithms to predict soccer match results?

According to the results obtained, the best pipeline and model was Logistic Regression with

Principal Component Analysis with the virtual dataset. Table 5.3 below shows the confusion

matrix and classification report obtained using this algorithm.

Table 5.3: Confusion matrix and classification report for the algorithm with the best accuracy

Algorithm: Logistic Regression with

Principal Component Analysis

Dataset: Virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 43 1 56 A 0.51 0.43 0.47 100

Actual
D 18 0 53 D 0.00 0.00 0.00 71

Actual
H 23 0 112 H 0.51 0.83 0.63 135

 accuracy 0.51 306

 macro avg 0.34 0.42 0.37 306

 weighted
avg 0.39 0.51 0.43 306

The following processing steps and hyper-parameters define the best classifier obtained:

1. Pre-processing steps applied to the virtual non-test data:

75

• Applying a MinMaxScaler with the values of features ranging from 0 to 1.

• Reducing Dimensionality of the data with Principal Component Analysis and a retained

variance of 90%.

2. Hyper-parameters relevant to the Logistic Regression Classifier:

• C=1

• class_weight=None

• max_iter = 10,000

• multi_class= ‘auto’

• penalty= ‘l2’

• solver = ‘newton-cg’

Almost equally well-performing pipelines are the K-Nearest neighbour classifiers (virtual and real

datasets) with dimensionality reduction. For the virtual and real data-sets, they obtain an

accuracy of 0.50 and 0.49 respectively (the 2nd and 3rd best values for accuracy obtained in the

test dataset) respectively.

Surprisingly, XGBoost was not crowned as the championing algorithm, despite its popularity

among the data science community to be a de facto superior model for the application of

machine learning to tabular data (as is the case in this research).

Another interesting observation drawn is that in most cases, dimensionality reduction either

through means of Principal Component Analysis or feature selection resulted in a better

prediction performance than running the same set of algorithms without this crucial pre-

processing step.

For greater completeness, the full set of results for all pipelines (confusion matrices and the

testing metrics in the form of a classification report) may be found in Appendix B.

76

5.4 Do the models developed improve the predicting capacity that existing models claim

to obtain?

Figure 5.6 below illustrates the accuracies obtained by previous researchers in the prediction of

football match results and the author’s accuracy for the 2015/2016 German Bundesliga Season.

Fig.5.6: A visual summary of the accuracies obtained by previous researchers and the author’s.

Shin and Gasparyan (2014) obtained an extremely high accuracy (0.75) (predicting the Spanish La

Liga) due to the way the problem of predicting a football match is addressed by them. They state

that ‘we will have three binary classification problems where in each one we try to distinguish

between one of the labels and the other two’. This means that the accuracy they claim to achieve

0.59

0.50

0.63

0.75 0.75
0.70

0.51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Joseph, Fenton
and Neil (2016)

Ulmer and
Fernandez

(2013)

Yezus (2014) Shin and
Gaspayaran

Razali et al.
(2017)

Klyuchka et al.
(2017)

Igea (2019)

Ac
cu

ra
cy

Author and year

Accuracies obtained by previous researchers and this project's
accuracy

77

is for a binary classification problem rather than the multi-classification problem tackled in this

dissertation.

Razali et al. (2017) when predicting matches in the English Premier League state in their abstract

that they use K-fold cross validation for testing the accuracy of their prediction model. It has

previously been discussed that this method of cross-validation is not the most appropriate one

for evaluating the generalization performance in a time-series domain problem. Razali et al. do

not mention any works related to feature engineering. This may most likely imply that they were

predicting the outcome of a football-match once the match had ended (and all the relevant

statistics from the match generated). This practice has not been carried out in this dissertation

as the aim was to predict the outcome before a match had begun and not from information

available after the match had finished.

Yezus (2014) does not mention any statistical method of evaluating generalization performance

so it leaves the reader wondering whether she did in fact split the data into a non-test set and a

test set for the English Premier League matches scraped. If she did not, she would not have had

an independent dataset (a dataset which was not used to create the model) to evaluate the

generalization performance. This is a crucial step when evaluating results derived from applying

machine learning methods	 as the results obtained by not following cross-validation tend to

produce an overly optimistic representation of generalization performance.

Joseph, Fenton and Neil (2006) made use of an expert constructed Bayesian net. It was built

almost exclusively with subjective judgment and their research only focused on predicting the

football matches played by a single team, Tottenham Hotspur Football Club.

From the insights given above, it is thus difficult to compare and benchmark the results obtained

in this dissertation with that of other authors due to the shortcomings presented by some

authors in their methodology or the general unsuitability to do so (predicting football matches in

other leagues).

78

Moreover, the high accuracies claimed by some authors for what may be thought to be very

similar datasets (such as the English Premier league or the Spanish La Liga) to the one employed

during this project (the German Bundesliga), have not been achieved despite using similar feature

extraction techniques and feature selection methods. This may very well be due to an innate

difference found across football-teams in different leagues.

Fig.5.7: Football leagues’ predictability. Reproduced from: (Kaggle.com, The Most Predictable

League, 2019).

The above argument is clearly depicted by fig.5.7. Figure 5.7 illustrates the leagues’ predictability

across several seasons. The diagram was produced using book-makers’ odds and the entropy

concept. While several authors have analysed the English Premier league and they have also

achieved higher accuracy results than the ones presented in this project, it is important to note

that the German Bundesliga has been more difficult to predict than the English Premier League

79

for professional sports betting operators. Therefore, the high reported accuracies found in the

literature review should not create disappointment to the reader of this project, as significant

differences are to be expected as conveyed by the fig.5.7.

Hence, comparing accuracies non-pertaining to the same dataset may not be entirely appropriate

to evaluate results since predictability is not only governed by the football league but it is also

affected by the football season.

Therefore, what might be a more appropriate benchmark when analyzing the results would be

to look at what the industry’s sports betting operators’ predictions were in the analyzed league

during the 2015/2016 season (the used test-set). The confusion matrices and classification

reports were obtained for the sports betting operators for this season (which may be found in

Appendix D) and their accuracies were extracted from this to build fig.5.8 below.

Fig.5.8: Test-set accuracies German Bundesliga season 2015-2016.	

Another base-line to assess the results obtained in this dissertation is to determine how much

better the produced models perform when compared to a “smart” dummy classifier (which

0.44

0.53 0.53
0.52 0.52

0.53

0.51

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Dummy
Classifier

Bet365 LadBrokes Bet&Win VC William Hill Best Own
Model

(Logistic
Regression
with PCA)

Ac
cu

ra
cy

Test-Set Accuracies Season 2015-2016

80

always predicts a home win, that is, the most frequently observed class in the dataset). This

comparison is also shown in fig.5.8 (outermost left bar).

It can be observed that the best pipeline (in red) obtained was able to achieve a 7% positive

difference compared to a dummy classifier that produces predictions on the most frequently

observed class. This may be taken as an indication that the chosen metric to assess the results

obtained (accuracy) is a sensible one for the problem of predicting the outcome of football-

matches.

If the class imbalance in the data-set is contemplated, it could be worth considering the f1-score

(the harmonic mean between accuracy and precision) as a suitable alternative for the scoring

metric to maximise.

However, the fig.5.8 above does not provide a full picture as it only provides an indication of the

generalization performance of the best pipeline produced. A more insightful perspective from

which results can be analysed is the study of the performance of the obtained pipeline

throughout the several seasons used in the non-test data-set (fig.5.9 below). As the cross-

validation technique of forward chaining was followed, this is a perfectly acceptable analysis.

81

Fig.5.9: Accuracies per season in the German Bundesliga for each entity.

The accuracies plotted for the ‘Own Model’ (in red) are the results obtained with cross-validation

(using forward chaining) for the grid-search of the pipeline with the highest generalization

performance (Logistic Regression with Principal Component Analysis for the Virtual Data-set,

accuracy obtained: 0.51). Many useful observations may be drawn from fig 5.9:

1. The model designed has been able to outperform the book-makers during the 2011/2012 and

2012/2013 seasons of the German Bundesliga.

2. For the 2013/2014 season, the project’s model was able to obtain an equal performance

compared to the sports-betting operators. It is worth mentioning that for all predictors, this was

the most predictable season found in the data-set. This could have been due to the high

0.41

0.43

0.45

0.47

0.49

0.51

0.53

0.55

0.57

0.59

Season 2010/11 Season
2011/2012

Season
2012/2013

Season
2013/2014

Season
2014/2015

Ac
cu

ra
cy

Seasons

Accuracies per season for each entity

Own Model Bet365 LadBrokes Bet&Win

VC William Hill Dummy Classifier

82

percentage of home-wins (as shown by the ‘dummy classifier’) and the relatively high number of

away-wins compared to draws (as shown in fig 3.1) during this season.

3. The author’s model obtained a slightly inferior performance in the 2010/2011 and 2014/2015

seasons compared to the sports betting operators. The 2010/2011 inferior performance was to

be expected due to the minimal amount of data that the produced pipeline could be trained on

(only one season according to the cross-validation scheme: the 2009/2010 season). It remains to

be explored why the author’s performance in 2014/2015 slightly suffered when comparing the

merits of this pipeline with the other seasons.

5.5 Summary of the chapter

This chapter has presented and evaluated the results obtained by individually answering the

questions posed as part of the problem formulation. Additionally, some of the gaps found in the

literature review have been indirectly answered.

It was seen that results obtained by authors without the use of forward chaining for cross-

validation in the non-test dataset most likely produced overly optimistic results. It has also been

explained that it is not clear at this stage whether the authors’ machine learning model selection

was the optimal one (due to the limited number of models employed in their research).

The chapter that follows presents the conclusions that may be reached from this research and

the recommendations about possible steps to be followed to find a superior model able to

outperform the sport-betting giants. It is within this sixth chapter that the dissertation is

concluded.

83

6 Conclusions and recommendations for further work

6.1 Conclusions

This dissertation constitutes an initial solid attempt to the prediction of football matches using

multi-classification machine learning methods. It has been shown that predicting the outcome of

football matches (an unbalanced classification problem) with accuracies higher than the industry

benchmarks, is a tough challenge, though not an impossible one, as evidenced in the results

section.

It was also learnt that some authors in the existing literature claim results that perhaps do not

allow a direct comparison with the results obtained in this project.

The author believes that the final objectives agreed upon with the supervisor have been

successfully explored and met. These are stated below:

1. Machine learning models have been built in order to predict the outcome of a sport: football.

2. The models developed have been assessed with respect to the accuracy scoring metric.

3. The research questions, posed as problem formulation have been thoroughly answered and

analysed:

• The features with the highest predicting ability were found for both data-sets. It was

found that for both separate data-sets, there was not a strong dominant feature.

• By analyzing the results obtained from the deployment of several machine-learning

pipelines, it was determined that the data collected from EA Sports (regarding football

players’ ratings), in this study, possess a higher predicting power than real-world historical

data predicting the outcome of football-matches. This is a quite remarkable finding

considering that EA Sports’ main objective is to bring the passion of football to video-

game players and in the process of doing so, EA Sports has (perhaps) inadvertently

84

created a powerful set of features which can be used to predict the outcome of football

matches.

• Logistic Regression coupled with Principal Component Analysis was the pipeline that led

to the best generalization performance among the several machine learning pipelines

deployed. An interesting finding was that it cannot be predetermined which machine

learning algorithm will outperform the others, even if it is known that specific ones have

yielded best results for other authors.

• The best model developed was not able to achieve similar accuracies to the models

reported in the literature. This may be due to several reasons. One of them, as it was

shown earlier is that not only do leagues vary in predictability, but also seasons within

each league have different predictability. As the league of choice was the German

Bundesliga and no other paper was found regarding the prediction of football-games in

this league, it was concluded that an alternative evaluation path should be followed. This

other path of evaluation compared accuracies obtained with the ones obtained by the

industry giants. This alternative approach to the assessment of results is further

supported by the fact that some of the results obtained by other authors in the literature

may be considered as not comparable (as validation techniques not appropriate for this

domain were employed).

While it was not possible to find an absolute consistent superior model that outperformed the

book-makers throughout all seasons with regards to accuracy as the scoring metric, it is firmly

believed that with the recommendations that follow, this goal may be achieved.

6.2 Recommendations for further work

6.2.1 Further work on acquiring more data

An overlooked strategy to improve the training of machine learning models is the collection of

additional data. Machine learning nowadays is easily accessible through relevant libraries in

various programming languages (R, Python, Java, etc.). What often differentiates the players in

85

the data-science field is the access to valuable data. The Director of Research of Google P. Norvig

once said: ‘We don’t have better algorithms. We just have more data’ (Kdnuggets.com, 2019).

A good analogy is to think about how humans actually learn from experience; the more

experience, the more consolidated the knowledge becomes. Data would be the experience in the

machine learning models, and therefore, data boosts the power of the machine learning models.

The fig.6.1 below supports the above argument.

Fig 6.1: Different boundaries learnt by the same Nearest Neighbour Classifier with 23 data-

points and 50 data-points.

With more data, clearer boundaries can be defined by the respective models, and hence the

scoring metric to maximise or minimize can be improved. Therefore, it is recommended to obtain

the football players which played in each match and their respective ratings and attributes for as

long as EA Sports has had them (this would constitute a significant challenge on its own). In

addition, it is recommended to obtain relevant statistics such as ball possession, goals conceded,

goals scored, etc. for each football match played.

6.2.2 Further work on feature extraction and engineering

Once the strategy of acquiring more data has been fully exploited, another interesting place to

focus on is the representation of the data via feature extraction and engineering. In this study,

the form of the teams was obtained by observing cumulative statistics during the last three

86

matches. The ‘form’ features were also extended to include the form of the home team when

playing at home and the form of the away team when playing away. Usually, a football team plays

one week at home and the following week away. So, if the last three matches while playing home

or away for any given football team have to be considered, it may be expected that the team has

to play six matches before any relevant statistics are derived. When measuring the form using

the last three matches and taking into consideration each team’s status (home or away), there is

a significant proportion of datapoints (around the first 60 football matches for each season) that

do not contain any significant feature values. This happens because the teams have not yet

played three football matches while being either home if they are playing home, or away if they

are playing away (these values are 0 before any relevant statistics are derived). When conducting

principal component analysis (retaining 95 % of the variance) in order to reduce the

dimensionality of the real-world data, it is believed that the problem outlined above is depicted

in the conglomeration of points seen towards the centre of the below fig.6.2 (orbiting near the

origin in what appears to be a thick downwards sloped line).

Fig.6.2: Principal Component 2 vs Principal Component 1 for the different datapoints in the

Machine Learning Real Dataset.

As previously discussed (Ulmer and Fernandez, 2013, p.2), one possible solution so that the data

points become more disperse would be to attribute the value of ‘form’ for those matches where

87

there is not enough information (as there is not enough historical data) with a function/routine

that considers the number of weeks with information actually available.

Another way to improve the representation of the form/streakiness data of a team is to conduct

a similar study as the one performed by Ulmer and Fernandez. According to the authors, the

value of weeks, X, to be considered for the calculation of value of form can be defined by a value

of X which minimizes the error rate of classification. It is important to note that separate studies

would have to be conducted for the different machine learning models currently available in sci-

kit learn. Please note that this may be a very laborious task.

It may be expected that by following the above recommendations, a two-dimensional

representation of the data would result similar as to the one shown below. Figure 6.3 shows the

two-dimensional representation of the virtual dataset whose features were solely extracted from

the Sofifa website (Borjigin, 2019).

Fig.6.3: Principal Component 2 vs Principal Component 1 for the different datapoints in the

Machine Learning Virtual Dataset.

88

6.2.3 Further work on ensemble methods

‘Ensemble models in machine learning combine the decisions from multiple models to improve

the overall performance’ (Medium, Simple guide for ensemble learning methods, 2019).

With ensemble methods, it is possible to combine the predictive strengths from each machine

learning model by reducing variance, noise and bias. The accuracy of the ensemble model will be

normally higher than the accuracies obtained using single models.

From a simple perspective, the ensemble methods may be classified as simple and advanced.

If the problem of predicting football matches’ results is considered, several machine learning

algorithms would be used to forecast the result (home win, draw, away win). The simple

ensemble methods would produce as a final result either the mode, the average or the weighted

average of the results forecasted by the different algorithms. The weighted average method

assigns different weights to the algorithms according to some importance criteria.

Advanced ensemble methods require the selection of a model category. The advanced ensemble

method combines several models of the selected category. After the base model is chosen, there

are two possible approaches to produce a final result: bagging and boosting.

In the bagging method, samples with replacement are randomly selected from the training set

and an algorithm is built for each of those subsets. The final result is calculated by either

averaging or voting the results obtained by each of the models built using the subsets.

The boosting method is iterative. The algorithm first gets trained using the complete dataset. In

this first run the weight assigned to all the data points is the same. Results are obtained. The data

points for which poor predictions were obtained get in subsequent runs higher weights. In this

way, several models which form part of a series are created. Each of these models shows high

prediction performance for a part of the dataset. A final prediction model is created combining

the different models built during the iterative process.

89

Table 6.1 below shows the advantages and disadvantages of the ensemble methods.

Table 6.1: Advantages and disadvantages of the ensemble methods. (Medium, Simple guide

for ensemble learning methods, 2019).

Advantages Disadvantages

High accuracy predictions.

The aggregated model is more stable and

robust than each of the models combined.

The final ensemble models are able to capture

both linear and non-linear connections

between features and labels.

The models become complex, and therefore

difficult to interpret.

High processing time.

It is a complex problem to select the models

that will be used to create the ensemble.

6.2.4 Further work on hyper-parameter optimization

In this dissertation, grid search (exhaustive search of the search space) and random search

(random sampling of the search space) have been used as hyper-parameter optimization

strategies.

One of the main advantages of these two strategies is that they can be run in parallel to explore

the search space. Nonetheless, they may be considered as inefficient and computationally

expensive as the combination of tried values are “blind” to the previously tried ones and hence

some valuable information may be lost in the following tries (i.e. unimportant parameters whose

values do not seem to affect cross-validation performance). This is especially true for grid search.

It may then become apparent that a more efficient way to sweep the search-space may be

implemented taking into account previously searched values. There is a strategy able to do this,

it is called Bayesian optimization. The main benefits of using Bayesian optimization are the

considerable decrease in the computational time employed for the hyper-parameter

optimization and the better generalization performance for the models. A library able to carry

90

out Bayesian optimization is Hyperopt. Other possible methods also used for hyper-parameter

searching are genetic and racing algorithms, particle swarm optimization and coupled simulated

annealing (Claesen and De Moor, 2015, p.3).

The introduced optimization methods may prove useful when deploying new pipelines with

different engineered features as the speed gains (time saved) in the obtention of results can

readily inform the data scientist which features or combination of features look to be the most

promising ones.

6.2.5 Automation of the feature obtention

Machine learning algorithms may obtain higher accuracy predictions if highly informative

features are accurate and available. Video recordings of football matches are usually available.

Some football teams (i.e. Liverpool) are working on a code-base which employs video-tracking

and assigns numerical data to all the events happening in the play field (Nytimes.com, 2019). At

the time of writing, the Swedish company Signality offers this solution commercially

(Signality.com, 2019).

The implementation of these techniques requires teams with high expertise in football, image

processing, coding and machine learning. For the machine learning practitioner, this is a very

interesting field full of challenges and a whole new array of possibilities for data acquisition.

6.3 Summary of the chapter and lessons learnt

Machine learning is a highly empirical driven field. The results claimed by some authors for very

similar datasets (such as the English premier league or the Spanish La Liga) have not been

achieved in this study despite using similar feature extraction techniques and feature selection

methods. This may very well be due to an innate difference found across football-teams in

different leagues as demonstrated earlier, but also to the use of different validation techniques

not appropriate for this problem. Small datasets (such as the one used in this research) might

91

suffice for a proof of concept but for commercially inclined machine learning applications, much

more data is required.

Accuracy may not be the most appropriate metric for the prediction of football matches’ results,

as the dataset is unbalanced. A possible alternative could be to repeat this same study with the

scoring-metric of the f1-score (the harmonic mean of the recall and precision). However, it is

brought to the attention of the reader that the f1-score metric has not been used in many of the

papers used for benchmarking purposes.

It has also been discussed that the models developed for this project, show ample room for

improvement with regards to their predictive power. Despite this, the obtained results are highly

encouraging. For the 2011/2012 and 2012/2013 seasons in the German Bundesliga, the results

obtained were superior to the accuracies achieved by the professional betting agencies.

For the readers driven by financial gain, it might be worth bringing up that achieving a higher

accuracy than book-makers does not necessarily mean financial gains. It is a complex research

problem to devise a betting strategy that has a positive financial return in the long-term. A

starting point may be constructing a more accurate model than the book-makers, but even if a

superior model is found, this does not mean that profits can be generated.

As a matter of fact, Kaunitz, Zhong and Kreiner (2017) were are able to find an inefficiency in the

sports betting market. Having thoroughly validated their strategy, they put it to implementation.

According to them, when the book-makers noticed their outlying behavior (generating consistent

profits) some of their transactions started to get blocked or had to be manually approved. In

some cases, they reported a transaction limit lower than the initial amount betted. It may be

concluded from their paper that the house always wins.

92

6.4 Project’s recapitulation

The use of data science techniques to predict the results of football games has become

increasingly popular. However, forecasting the result of a match constitutes a difficult challenge.

This is due to the significant random component of the number of goals scored by each team and

because of the difficulty in predicting a draw.

Abundant attempts have been made to produce machine learning models for the prediction of

football results, but it is difficult to benchmark these results with the ones obtained in this

project. This is due to the shortcomings presented by some authors in their methodology and

because of the varying predictability of the different football leagues and their seasons.

Nevertheless, it was shown that predicting the outcome of football matches (an unbalanced

classification problem) with accuracies higher than the industry benchmarks, while a challenging

task, is not an impossible one, as evidenced by the results obtained.

There remain many more unanswered questions arising from this research (they may be found

in Appendix E) and it is hoped that one day, future researchers are able to find answers to these

intriguing questions.

93

References

Anon, (2019). Neuron Structure and Function. University of Newcastle. Australia. [online]

Available at: https://www.studocu.com/en/document/university-of-newcastle-

australia/psychology-introduction-2/lecture-notes/neuron-structure-and-

function/1052390/view [Accessed 9 June 2019].

Aoki R., Assuncao R. and Vaz de Melo P. (2017). Luck is hard to beat: The difficulty of sports

prediction. Department of Computer Science. UFMG. Belo Horizonte, Brazil. Proceedings of the

23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1367-

1376.

Bergstra, J. and Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal of

Machine Learning Research 13 (2012) 281-305.

Borjigin, K. (2019). Players FIFA 19 Jul 18, 2019 SoFIFA. [online] Sofifa.com. Available at:

https://sofifa.com/ [Accessed 2 June 2019].

Buursma D. (2011). Predicting sports events from past results - Towards effective betting on

football matches. University of Twente. Holland, pp.1-6.

Claesen, M., De Moor, B. (2015). Hyperparameter Search in Machine Learning. MIC 2015: The XI

Metaheuristics International Conference. p.14-1 to p.14-5.

Constantinou, A., Fenton, N. and Neil, M. (2012). pi-football: A Bayesian network model for

forecasting Association Football match outcomes. Knowledge-Based Systems, 36, pp.322-339.

Dertat, A. Medium. (2019). Applied Deep Learning - Part 1: Artificial Neural Networks. [online]

Available at: https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-

networks-d7834f67a4f6 [Accessed 9 June 2019].

94

Dixon, M. and Coles, S. (1997). Modelling Association Football Scores and Inefficiencies in the

Football Betting Market. Journal of the Royal Statistical Society: Series C (Applied Statistics), 46(2),

pp.265-280.

Dubitzky, W., Lopes, P., Davis, J. and Berrar, D. (2018). The Open International Soccer Database

for machine learning. Machine Learning, 108(1), pp.9-28.

En.wikipedia.org. Linear regression. (2019). [online] Available at:

https://en.wikipedia.org/wiki/Linear_regression [Accessed 8 June 2019].

En.wikipedia.org. Reinforcement learning. (2019). [online] Available at:

https://en.wikipedia.org/wiki/Reinforcement_learning [Accessed 6 June 2019].

Fifaindex.com. (2019). Player Stats Database - FIFA 19 - FIFA Index. [online] Available at:

https://www.fifaindex.com/ [Accessed 4 June 2019].

Football-data.mx-api.enetscores.com. (2019). Football Livescores | Football Betting | Free Bets |

Football Results. [online] Available at: http://football-data.mx-api.enetscores.com/ [Accessed 9

June 2019].

Football-data.co.uk. (2019). Football Betting | Football Results | Free Bets | Betting Odds.

[online] Available at: http://www.football-data.co.uk/ [Accessed 10 June 2019].

Hessels, J. (2018). Improving the prediction of soccer match results by means of Machine

Learning. Tilburg University, The Netherlands.

Highlights, M., Cup, F., Kits, F., Kits, 2., 1, F., Updates, F., Updates, M., Open, A., Open, F., Open,

U., 2019, S., Cowboys, D., Eagles, P., Rams, L., United, M., Barcelona, F., Madrid, R., Saint-

Germain, P., Munich, B., Milan, A., Roma, A., City, L., United, N., Money, S., Sports, O., SPORTS,

M., 2018, F., Warriors, G., Lakers, L. and Cavaliers, C. (2019). 25 World's Most Popular Sports

(Ranked by 13 factors). [online] TOTAL SPORTEK. Available at:

https://www.totalsportek.com/most-popular-sports/ [Accessed 1 July 2019].

95

Hill, I. (1974). Association Football and Statistical Inference. Applied Statistics, 23(2), p.203.

Igea, A. (2019). Machine Learning Algorithms for Sports’ Results Prediction – Individual Project

Report. University of Strathclyde, Glasgow.

Joseph, A., Fenton, N. and Neil, M. (2006). Predicting football results using Bayesian nets and

other machine learning techniques. Knowledge-Based Systems, 19(7), pp.544-553.

Kaggle.com. (2019). Complete FIFA 2017 Player dataset (Global). [online] Available at:

https://www.kaggle.com/artimous/complete-fifa-2017-player-dataset-global [Accessed 11 June

2019].

Kaggle.com. (2019). European Football Games. [online] Available at:

https://www.kaggle.com/waterchiller/european-football-games [Accessed 11 June 2019].

Kaggle.com. (2019). FIFA 18 Complete Player Dataset. [online] Available at:

https://www.kaggle.com/thec03u5/fifa-18-demo-player-dataset [Accessed 11 June 2019].

Kaggle.com. (2019). FIFA 19 complete player dataset. [online] Available at:

https://www.kaggle.com/karangadiya/fifa19 [Accessed 11 June 2019].

Kaggle.com. (2019). Football Events. [online] Available at:

https://www.kaggle.com/secareanualin/football-events [Accessed 11 June 2019].

Kaggle.com. (2019). The Most Predictable League | Kaggle. [online] Available at:

https://www.kaggle.com/yonilev/the-most-predictable-league [Accessed 14 Aug. 2019].

Kaggle.com. (2019). World Soccer - archive of soccer results and odds. [online] Available at:

https://www.kaggle.com/sashchernuh/european-football [Accessed 11 June 2019].

Kaunitz, L., Zhong, S., Kreiner, J. (2017). Beating the bookies with their own numbers – and how

the online sport betting market is rigged. Universities of Tokyo, Monash and Sao Paulo.

96

Kdnuggets.com. (2019). In Machine Learning, What is Better: More Data or better Algorithms.

[online] Available at: https://www.kdnuggets.com/2015/06/machine-learning-more-data-

better-algorithms.html [Accessed 18 Aug. 2019].

Klyuchka, Y., Cherednichenko, O., Vasylenko, A. and Yakovleva, O. (2017). Forecasting the results

of football matches on the Internet based information. Bulletin of National Technical University

"KhPI". Series: System Analysis, Control and Information Technologies, 0(55), pp.51-59.

Leung, C. and Joseph, K. (2014). Sports Data Mining: Predicting Results for the College Football

Games. Procedia Computer Science, 35, pp.710-719.

Maher, M. (1982). Modelling association football scores. Statistica Neerlandica, 36(3), pp.109-

118.

Mathien, H. Kaggle.com. (2019). European Soccer Database. [online] Available at:

https://www.kaggle.com/hugomathien/soccer [Accessed 3 June 2019].

Medium. (2019). Applications of Reinforcement Learning in Real World. [online] Available at:

https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-

1a94955bcd12 [Accessed 8 June 2019].

Medium. (2019). Feature Selection Methods in Machine Learning. [online] Available at:

https://medium.com/@sagar.rawale3/feature-selection-methods-in-machine-learning-

eaeef12019cc [Accessed 10 June 2019].

Medium. (2019). Is Optimizing your Neural Network a Dark Art?. [online] Available at:

https://medium.com/autonomous-agents/is-optimizing-your-ann-a-dark-art-79dda77d103

[Accessed 10 June 2019].

Medium. (2019). Simple guide for ensemble learning methods. [online] Available at:

https://towardsdatascience.com/simple-guide-for-ensemble-learning-methods-d87cc68705a2

[Accessed 10 Aug. 2019].

97

Medium. (2019). The Curse of Dimensionality!. [online] Available at: https://medium.com/diogo-

menezes-borges/give-me-the-antidote-for-the-curse-of-dimensionality-b14bce4bf4d2

[Accessed 10 Aug. 2019].

Moroney M. (1956). Facts from figures, 3rd edition. Penguin: London.

Muller, A. and Guido, S. (2018). Introduction to Machine Learning with Python. O’Reilly Media.

Nielsen, M. (2019). Neural Networks and Deep Learning. [online]

Neuralnetworksanddeeplearning.com. Available at:

http://neuralnetworksanddeeplearning.com/chap2.html [Accessed 9 June 2019].

Noun Project. (2019). Noun Project. [online] Available at: https://thenounproject.com/search/

[Accessed 10 June 2019].

Nytimes.com. (2019). How Data (and Some Breathtaking Soccer) Brought Liverpool to the Cusp

of Glory. [online] Available at: https://www.nytimes.com/2019/05/22/magazine/soccer-data-

liverpool.html [Accessed 2 July 2019].

O’Reilly, Safari. (2019). Scala Machine Learning Projects. [online] Available at:

https://www.oreilly.com/library/view/scala-machine-learning/9781788479042/e5456dbe-

d0f4-47e8-b175-a5a7291ea420.xhtml [Accessed 8 June 2019].

Razali, N., Mustapha, A., Yatim, F. and Ab Aziz, R. (2017). Predicting Football Matches Results

using Bayesian Networks for English Premier League (EPL). IOP Conference Series: Materials

Science and Engineering, 226, 012099.

Reep, C., Pollard, R. and Benjamin, B. (1971). Skill and Chance in Ball Games. Journal of the Royal

Statistical Society. Series A (General), 134(4), p.623.

Rue, H. and Salvesen, O. (2000). Prediction and Retrospective Analysis of Soccer Matches in a

League. Journal of the Royal Statistical Society: Series D (The Statistician), 49(3), pp.399-418.

98

Sawe, B. (2019). The Most Popular Sports in the World. [online] WorldAtlas. Available at:

https://www.worldatlas.com/articles/what-are-the-most-popular-sports-in-the-world.html

[Accessed 1 July 2019].

Shin, J. and Gasparyan, R. (2014). A novel way to Soccer Match Prediction. Stanford University,

pp.1-5.

Signality.com. (2019). Performance, Signality. [online]

Available at: https://www.signality.com/performance/ [Accessed 6 Aug. 2019].

Statinfer.com. (2019). 204.6.8 SVM: Advantages Disadvantages and Applications – Statinfer.

[online] Available at: https://statinfer.com/204-6-8-svm-advantages-disadvantages-

applications/ [Accessed 9 June 2019].

Tavakol, M., Zafartavanaelmi, H., and Brefeld, U. (2016). Feature extraction and aggregation for

predicting the Euro 2016. Universities of Luneburg and Darmstadt, p.1-7.

Ulmer, B. and Fernandez, M. (2013). Predicting Soccer Match Results in the Premier League.

School of Computer Science. Stanford University, pp.1-5.

Vaibhavi J. MarkTechPost. (2019). How reinforcement learning can help in solving real-world

problems? | MarkTechPost. [online] Available at:

https://www.marktechpost.com/2019/04/22/how-reinforcement-learning-can-help-in-solving-

real-world-problems/ [Accessed 9 June 2019].

Yezus, A. (2014). Predicting outcome of soccer matches using machine learning. Mathematics

and Mechanics Faculty. Saint-Petersburg State University, pp.1-12.

Yiannakis, A., Selby, M., Douvis, J. and Han, J. (2006). Forecasting in Sport. International Review

for the Sociology of Sport, 41(1), pp.89-115.

Wunderlich, F. and Memmert, D. (2018). The Betting Odds Rating System: Using soccer

forecasts to forecast soccer. PLOS ONE, 13(6), p.e0198668.

99

Appendix A

Table A.1: auxiliary functions
Function Description Inputs Outputs
get_n_last_matches Obtains the last 'n'

matches for a
given team

Dataframe matches’
information.
home_team_api_id
or
away_team_api_id.
Date from which to
look backwards to
for the 'n' last
matches.
Number of matches
to look for since the
provided date.

For a given team
a dataframe
containing all
relevant
information
from the
previous 'n'
matches since
the requested
date.

get_all_previous_matches Obtains all the
matches played by
a given team
before and
including a given
date.

Dataframe matches’
information.
home_team_api_id
or
away_team_api_id.
Date from which to
look backwards for
the team's previous
matches.
home-team matches
wanted in the
previous matches
played?
away-team matches
wanted in the
previous matches
played?

Dataframe with
all the matches
played by a
given team
before and
including the
date given.

get_statistic Obtains relevant
statistic for each
match of a given
team.

Row in the Pandas
dataframe.
home_team_api_id
or
away_team_api_id.
Statistic to get from
each match for a
given team.

Relevant
statistic for
given team in a
match(int): an
integer with the
relevant statistic

obtain_team_shots_on_target Obtains the
relevant team

Row in the Pandas
dataframe.

An integer with
the relevant

100

shots on target for
each match.

home_team_api_id
or
away_team_api_id.

team shots on
target.

get_cum_total_statistics Obtains the
cumulative
statistics for both
teams leading to
the current
match. (*).

Row in the Pandas
dataframe.
Dataframe matches’
information.
Statistic to get from
each match for both
teams.

Two integers
with the
relevant statistic
of each team:
one for the
home team, the
other for the
away team.

get_cum_positional_statistics Obtains
cumulative
statistics for both
football teams
leading to the
current match.
Note: It only
obtains the
previous match
statistics for
home-team
matches for the
HOMETEAM and
the away-team
matches for the
AWAYTEAM. (*).

Row in the
dataframe.
Dataframe with
matches
information.
Statistic to get from
each match for both
teams.

Relevant
statistics for
both teams: two
integers with
the relevant
statistics
one for the
home team, the
other for the
away team.

get_points_for_each_team Derives the
number of points
to be awarded for
each team that
played in a given
match: H(3,0)
D(1,1) and A(0,3).

Row in the Pandas
dataframe

Points to be
awarded to
home team (int)
and points to be
awarded to
away team (int).

get_positions_agg_ratings Obtains the
aggregate
team_players
statistics for a
given set of team-
players of a
match.

Row in the Pandas
dataframe.
home_team_ratings
or
away_team_ratings.
List of players (the
column headers).
Corresponding Y
coordinates of the
players above (in

Integers with
the goal
keeper's rating,
the defenders
aggregate
rating, the
midfielders
aggregate rating
and the
forwards

101

their respective
order).

aggregate
rating.

(*) No data leakage occurs as information from current match is not included.

102

Appendix B

Table B.1

Algorithm: SVM default parameters Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 0 0 100 A 0.00 0.00 0.00 100

Actual
D 0 0 71 D 0.00 0.00 0.00 71

Actual
H 0 0 135 H 0.44 1.00 0.61 135

 accuracy 0.44 306

 macro avg 0.15 0.33 0.20 306

 weighted
avg 0.19 0.44 0.27 306

Table B.2

Algorithm: SVM with PCA Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 31 0 69 A 0.52 0.31 0.39 100

Actual
D 13 0 58 D 0.00 0.00 0.00 71

Actual
H 16 0 119 H 0.48 0.88 0.62 135

 accuracy 0.49 306

 macro avg 0.33 0.40 0.34 306

 weighted
avg 0.38 0.49 0.40 306

103

Table B.3

Algorithm: Random Forest default

parameters

Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 27 11 62 A 0.48 0.27 0.35 100

Actual
D 13 5 53 D 0.16 0.07 0.10 71

Actual
H 16 16 103 H 0.47 0.76 0.58 135

 accuracy 0.44 306

 macro avg 0.37 0.37 0.34 306

 weighted
avg 0.40 0.44 0.39 306

Table B.4

Algorithm: Random Forest with PCA Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 36 0 64 A 0.52 0.36 0.43 100

Actual
D 15 0 56 D 0.00 0.00 0.00 71

Actual
H 18 0 117 H 0.49 0.87 0.63 135

 accuracy 0.50 306

 macro avg 0.34 0.41 0.35 306

 weighted
avg 0.39 0.50 0.42 306

104

Table B.5

Algorithm: random forest with select K best Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 34 0 66 A 0.50 0.34 0.40 100

Actual
D 13 0 58 D 0.00 0.00 0.00 71

Actual
H 21 0 114 H 0.48 0.84 0.61 135

 accuracy 0.48 306

 macro avg 0.33 0.39 0.34 306

 weighted
avg 0.37 0.48 0.40 306

Table B.6

Algorithm: Random forest no pre-processing Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 33 0 67 A 0.48 0.33 0.39 100

Actual
D 15 0 56 D 0.00 0.00 0.00 71

Actual
H 21 0 114 H 0.48 0.84 0.61 135

 accuracy 0.48 306

 macro avg 0.32 0.39 0.33 306

 weighted
avg 0.37 0.48 0.40 306

105

Table B.7

Algorithm: Gaussian Naïve Bayes default

parameters

Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 Precision recall f1 -
score

support

Actual
A 49 24 27 A 0.49 0.49 0.49 100

Actual
D 21 21 29 D 0.30 0.30 0.30 71

Actual
H 31 26 78 H 0.58 0.58 0.58 135

 accuracy 0.48 306

 macro avg 0.45 0.45 0.45 306

 weighted
avg 0.48 0.48 0.48 306

Table B.8

Algorithm: Gaussian Naïve Bayes with

dimensionality reduction

Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 Precision recall f1 -
score

support

Actual
A 38 0 62 A 0.51 0.38 0.43 100

Actual
D 17 0 54 D 0.00 0.00 0.00 71

Actual
H 20 0 115 H 0.50 0.85 0.63 135

 accuracy 0.50 306

 macro avg 0.33 0.41 0.35 306

 weighted
avg 0.39 0.50 0.42 306

106

Table B.9

Algorithm: XG Boost default parameters Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 29 9 62 A 0.52 0.29 0.37 100

Actual
D 12 5 54 D 0.21 0.07 0.11 71

Actual
H 15 10 110 H 0.49 0.81 0.61 135

 accuracy 0.47 306

 macro avg 0.40 0.39 0.36 306

 weighted
avg 0.43 0.47 0.41 306

Table B.10

Algorithm: XG Boost randomized search Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 36 0 64 A 0.50 0.36 0.42 100

Actual
D 14 0 57 D 0.00 0.00 0.00 71

Actual
H 22 0 113 H 0.48 0.84 0.61 135

 accuracy 0.49 306

 macro avg 0.33 0.40 0.34 306

 weighted
avg 0.38 0.49 0.41 306

107

Table B.11

Algorithm: Logistic Regression default

parameters

Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 Precision recall f1 -
score

support

Actual
A 31 8 61 A 0.53 0.31 0.39 100

Actual
D 8 11 52 D 0.46 0.15 0.23 71

Actual
H 19 5 111 H 0.50 0.82 0.62 135

 accuracy 0.50 306

 macro avg 0.50 0.43 0.41 306

 weighted
avg 0.50 0.50 0.45 306

Table B.12

Algorithm: Logistic Regression with PCA Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 - score support

Actual
A 43 1 56 A 0.51 0.43 0.47 100

Actual
D 18 0 53 D 0.00 0.00 0.00 71

Actual
H 23 0 112 H 0.51 0.83 0.63 135

 accuracy 0.51 306

 macro

avg
0.34 0.42 0.37 306

 weighted
avg 0.39 0.51 0.43 306

108

Table B.13

Algorithm: KNN neighbours default

parameters

Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 30 0 70 A 0.53 0.30 0.38 100

Actual
D 10 3 58 D 0.75 0.04 0.08 71

Actual
H 17 1 117 H 0.48 0.87 0.62 135

 accuracy 0.49 306

 macro avg 0.58 0.40 0.36 306

 weighted
avg 0.56 0.49 0.42 306

Table B.14

Algorithm: KNN with dimensionality reduction Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 - score support

Actual
A 33 0 67 A 0.54 0.33 0.41 100

Actual
D 13 0 58 D 0.00 0.00 0.00 71

Actual
H 15 0 120 H 0.49 0.89 0.63 135

 accuracy 0.50 306

 macro

avg
0.34 0.41 0.35 306

 weighted
avg 0.39 0.50 0.41 306

109

Table B.15

Algorithm: KNN with feature selection Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 - score support

Actual
A 34 0 66 A 0.47 0.34 0.39 100

Actual
D 16 0 55 D 0.00 0.00 0.00 71

Actual
H 23 0 112 H 0.48 0.83 0.61 135

 accuracy 0.48 306

 macro avg 0.32 0.39 0.33 306

 weighted
avg 0.36 0.48 0.40 306

Table B.16

Algorithm: Decision Tree default parameters Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 29 28 43 A 0.35 0.29 0.32 100

Actual
D 17 21 33 D 0.27 0.30 0.28 71

Actual
H 38 30 67 H 0.47 0.50 0.48 135

 accuracy 0.38 306

 macro avg 0.36 0.36 0.36 306

 weighted
avg 0.38 0.38 0.38 306

110

Table B.17

Algorithm: Decision Tree whole grid Dataset: Bundesliga 2015/2016 season - virtual

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 35 0 65 A 0.46 0.35 0.40 100

Actual
D 15 0 56 D 0.00 0.00 0.00 71

Actual
H 26 0 109 H 0.47 0.81 0.60 135

 accuracy 0.47 306

 macro avg 0.31 0.39 0.33 306

 weighted
avg 0.36 0.47 0.39 306

Table B.18

Algorithm: SVM default parameters Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 4 0 96 A 0.44 0.04 0.07 100

Actual
D 1 0 70 D 0.00 0.00 0.00 71

Actual
H 4 2 129 H 0.44 0.96 0.60 135

 accuracy 0.43 306

 macro avg 0.29 0.33 0.22 306

 weighted
avg 0.34 0.43 0.29 306

111

Table B.19

Algorithm: SVM with PCA Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 27 0 73 A 0.49 0.27 0.35 100

Actual
D 12 0 59 D 0.00 0.00 0.00 71

Actual
H 16 0 119 H 0.47 0.88 0.62 135

 accuracy 0.48 306

 macro avg 0.32 0.38 0.32 306

 weighted
avg 0.37 0.48 0.39 306

Table B.20

Algorithm: Random Forest default

parameters

Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 44 9 47 A 0.47 0.44 0.45 100

Actual
D 22 6 43 D 0.18 0.08 0.12 71

Actual
H 28 18 89 H 0.50 0.66 0.57 135

 accuracy 0.45 306

 macro avg 0.38 0.39 0.38 306

 weighted
avg 0.41 0.45 0.43 306

112

Table B.21

Algorithm: Random Forest with PCA Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 41 0 59 A 0.45 0.41 0.43 100

Actual
D 22 0 49 D 0.00 0.00 0.00 71

Actual
H 29 0 106 H 0.50 0.79 0.61 135

 accuracy 0.48 306

 macro avg 0.31 0.40 0.34 306

 weighted
avg 0.36 0.48 0.41 306

Table B.22

Algorithm: random forest with select K best Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 29 0 71 A 0.51 0.29 0.37 100

Actual
D 12 0 59 D 0.00 0.00 0.00 71

Actual
H 16 0 119 H 0.48 0.88 0.62 135

 accuracy 0.48 306

 macro avg 0.33 0.39 0.33 306

 weighted
avg 0.38 0.48 0.39 306

113

Table B.23

Algorithm: Random forest no pre-processing Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 28 0 72 A 0.52 0.28 0.36 100

Actual
D 13 0 58 D 0.00 0.00 0.00 71

Actual
H 13 0 122 H 0.48 0.90 0.63 135

 accuracy 0.49 306

 macro avg 0.33 0.39 0.33 306

 weighted
avg 0.38 0.49 0.40 306

Table B.24

Algorithm: Gaussian Naïve Bayes default

parameters

Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 Precision recall f1 -
score

support

Actual
A 47 35 18 A 0.45 0.47 0.46 100

Actual
D 24 19 28 D 0.21 0.27 0.23 71

Actual
H 34 37 64 H 0.58 0.47 0.52 135

 accuracy 0.42 306

 macro avg 0.41 0.40 0.41 306

 weighted
avg 0.45 0.42 0.43 306

114

Table B.25

Algorithm: Gaussian Naïve Bayes with

dimensionality reduction

Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 Precision recall f1 -
score

support

Actual
A 29 0 71 A 0.43 0.29 0.35 100

Actual
D 19 0 52 D 0.00 0.00 0.00 71

Actual
H 20 0 115 H 0.48 0.85 0.62 135

 accuracy 0.47 306

 macro avg 0.30 0.38 0.32 306

 weighted
avg 0.35 0.47 0.38 306

Table B.26

Algorithm: XG Boost default parameters Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 40 2 58 A 0.49 0.40 0.44 100

Actual
D 15 4 52 D 0.40 0.06 0.10 71

Actual
H 26 4 105 H 0.49 0.78 0.60 135

 accuracy 0.49 306

 macro avg 0.46 0.41 0.38 306

 weighted
avg 0.47 0.49 0.43 306

115

Table B.27

Algorithm: XG Boost randomized search Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 35 1 64 A 0.47 0.35 0.40 100

Actual
D 16 0 55 D 0.00 0.00 0.00 71

Actual
H 23 0 112 H 0.48 0.83 0.61 135

 accuracy 0.48 306

 macro avg 0.32 0.39 0.34 306

 weighted
avg 0.37 0.48 0.40 306

Table B.28

Algorithm: Logistic Regression default

parameters

Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 Precision recall f1 -
score

support

Actual
A 41 1 58 A 0.45 0.41 0.43 100

Actual
D 22 3 46 D 0.60 0.04 0.08 71

Actual
H 29 1 105 H 0.50 0.78 0.61 135

 accuracy 0.49 306

 macro avg 0.52 0.41 0.37 306

 weighted
avg 0.51 0.49 0.43 306

116

Table B.29

Algorithm: Logistic Regression with PCA Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 38 0 62 A 0.44 0.38 0.41 100

Actual
D 20 0 51 D 0.00 0.00 0.00 71

Actual
H 29 0 106 H 0.48 0.79 0.60 135

 accuracy 0.47 306

 macro avg 0.31 0.39 0.34 306

 weighted
avg 0.36 0.47 0.40 306

Table B.30

Algorithm: KNN neighbours default

parameters

Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 43 1 56 A 0.45 0.43 0.44 100

Actual
D 23 0 48 D 0.00 0.00 0.00 71

Actual
H 30 1 104 H 0.50 0.77 0.61 135

 accuracy 0.48 306

 macro avg 0.32 0.40 0.35 306

 weighted
avg 0.37 0.48 0.41 306

117

Table B.31

Algorithm: KNN with dimensionality

reduction

Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 33 0 67 A 0.51 0.33 0.40 100

Actual
D 13 0 58 D 0.00 0.00 0.00 71

Actual
H 19 0 116 H 0.48 0.86 0.62 135

 accuracy 0.49 306

 macro avg 0.33 0.40 0.34 306

 weighted
avg 0.38 0.49 0.40 306

Table B.32

Algorithm: KNN with feature selection Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 35 0 65 A 0.44 0.35 0.39 100

Actual
D 19 0 52 D 0.00 0.00 0.00 71

Actual
H 25 0 110 H 0.48 0.81 0.61 135

 accuracy 0.47 306

 macro avg 0.31 0.39 0.33 306

 weighted
avg 0.36 0.47 0.40 306

118

Table B.33

Algorithm: Decision Tree default parameters Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 42 28 30 A 0.42 0.42 0.42 100

Actual
D 15 23 33 D 0.30 0.32 0.31 71

Actual
H 44 26 65 H 0.51 0.48 0.49 135

 accuracy 0.42 306

 macro avg 0.41 0.41 0.41 306

 weighted
avg 0.43 0.42 0.43 306

Table B.34

Algorithm: Decision Tree whole grid Dataset: Bundesliga 2015/2016 season - real

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 56 0 44 A 0.42 0.56 0.48 100

Actual
D 30 0 41 D 0.00 0.00 0.00 71

Actual
H 46 0 89 H 0.51 0.66 0.58 135

 accuracy 0.47 306

 macro avg 0.31 0.41 0.35 306

 weighted
avg 0.36 0.47 0.41 306

119

Appendix C

Table C.1: The 49 engineered features for the ‘virtual’ Bundesliga
home_attacking_away_attacking_Diff 2142 non-null float64
home_attacking_away_skill_Diff 2142 non-null float64
home_attacking_away_movement_Diff 2142 non-null float64
home_attacking_away_power_Diff 2142 non-null float64
home_attacking_away_mentality_Diff 2142 non-null float64
home_attacking_away_defending_Diff 2142 non-null float64
home_attacking_away_goalkeeping_Diff 2142 non-null float64
home_skill_away_attacking_Diff 2142 non-null float64
home_skill_away_skill_Diff 2142 non-null float64
home_skill_away_movement_Diff 2142 non-null float64
home_skill_away_power_Diff 2142 non-null float64
home_skill_away_mentality_Diff 2142 non-null float64
home_skill_away_defending_Diff 2142 non-null float64
home_skill_away_goalkeeping_Diff 2142 non-null float64
home_movement_away_attacking_Diff 2142 non-null float64
home_movement_away_skill_Diff 2142 non-null float64
home_movement_away_movement_Diff 2142 non-null float64
home_movement_away_power_Diff 2142 non-null float64
home_movement_away_mentality_Diff 2142 non-null float64
home_movement_away_defending_Diff 2142 non-null float64
home_movement_away_goalkeeping_Diff 2142 non-null float64
home_power_away_attacking_Diff 2142 non-null float64
home_power_away_skill_Diff 2142 non-null float64
home_power_away_movement_Diff 2142 non-null float64
home_power_away_power_Diff 2142 non-null float64
home_power_away_mentality_Diff 2142 non-null float64
home_power_away_defending_Diff 2142 non-null float64
home_power_away_goalkeeping_Diff 2142 non-null float64
home_mentality_away_attacking_Diff 2142 non-null float64
home_mentality_away_skill_Diff 2142 non-null float64
home_mentality_away_movement_Diff 2142 non-null float64
home_mentality_away_power_Diff 2142 non-null float64
home_mentality_away_mentality_Diff 2142 non-null float64
home_mentality_away_defending_Diff 2142 non-null float64
home_mentality_away_goalkeeping_Diff 2142 non-null float64
home_defending_away_attacking_Diff 2142 non-null float64
home_defending_away_skill_Diff 2142 non-null float64
home_defending_away_movement_Diff 2142 non-null float64
home_defending_away_power_Diff 2142 non-null float64
home_defending_away_mentality_Diff 2142 non-null float64
home_defending_away_defending_Diff 2142 non-null float64
home_defending_away_goalkeeping_Diff 2142 non-null float64
home_goalkeeping_away_attacking_Diff 2142 non-null float64
home_goalkeeping_away_skill_Diff 2142 non-null float64
home_goalkeeping_away_movement_Diff 2142 non-null float64
home_goalkeeping_away_power_Diff 2142 non-null float64
home_goalkeeping_away_mentality_Diff 2142 non-null float64

120

home_goalkeeping_away_defending_Diff 2142 non-null float64
home_goalkeeping_away_goalkeeping_Diff 2142 non-null float64

Table C.2: The 12 engineered features for the ‘real’ Bundesliga
GCumTot_Diff 2142 non-null float64
STCumTot_Diff 2142 non-null float64
PointsCumTot_Diff 2142 non-null float64
GCum_Diff 2142 non-null float64
STCum_Diff 2142 non-null float64
PointsCum_Diff 2142 non-null float64
GFormTot_Diff 2142 non-null float64
STFormTot_Diff 2142 non-null float64
PointsFormTot_Diff 2142 non-null float64
GForm_Diff 2142 non-null float64
STForm_Diff 2142 non-null float64
PointsForm_Diff 2142 non-null float64

121

Appendix D

Table D.1

Bookmaker: B365 – BET365 Dataset: Bundesliga 2015/2016 season

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 48 0 52 A 0.53 0.48 0.51 100

Actual
D 22 0 49 D 0.00 0.00 0.00 71

Actual
H 20 0 115 H 0.53 0.85 0.66 135

 accuracy 0.53 306

 macro avg 0.36 0.44 0.39 306

 weighted
avg 0.41 0.53 0.45 306

Table D.2

Bookmaker: LB – LadBrokes Dataset: Bundesliga 2015/2016 season

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 46 0 54 A 0.52 0.46 0.49 100

Actual
D 22 0 49 D 0.00 0.00 0.00 71

Actual
H 20 0 115 H 0.53 0.85 0.65 135

 accuracy 0.53 306

 macro avg 0.35 0.44 0.38 306

 weighted
avg 0.40 0.53 0.45 306

122

Table D.3

Bookmaker: BW – Bet&Win Dataset: Bundesliga 2015/2016 season

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 46 0 54 A 0.53 0.46 0.49 100

Actual
D 20 0 51 D 0.00 0.00 0.00 71

Actual
H 21 0 114 H 0.52 0.84 0.64 135

 accuracy 0.52 306

 macro avg 0.35 0.43 0.38 306

 weighted
avg 0.40 0.52 0.44 306

Table D.4

Bookmaker: VC Dataset: Bundesliga 2015/2016 season

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 47 0 53 A 0.52 0.47 0.49 100

Actual
D 22 0 49 D 0.00 0.00 0.00 71

Actual
H 22 0 113 H 0.53 0.84 0.65 135

 accuracy 0.52 306

 macro avg 0.35 0.44 0.38 306

 weighted
avg 0.40 0.52 0.45 306

123

Table D.5

Bookmaker: WH – William Hill Dataset: Bundesliga 2015/2016 season

Confusion matrix Classification report

 Predicted
A

Predicted
D

Predicted
H

 precision recall f1 -
score

support

Actual
A 46 0 54 A 0.54 0.46 0.50 100

Actual
D 20 0 51 D 0.00 0.00 0.00 71

Actual
H 19 0 116 H 0.52 0.86 0.65 135

 accuracy 0.53 306

 macro avg 0.36 0.44 0.38 306

 weighted
avg 0.41 0.53 0.45 306

124

Appendix E

Natural extensions for future research arising from this project

Can the best features of both data-sets be used in order to create an even more robust predictive

model?

What would happen if we add the English Premier League or any other league(s) to the training

data? Would we see any significant improvements in the accuracy of the model?

Can Machine Learning be an approach that is not the optimal?

Should perhaps Monte-Carlo simulations be explored as a more indicative tool of predicting the

outcome of football matches?

For readers trying to explore financial gains/opportunities

Hypothesis: To maximise financial returns, one hypothesized strategy would be to bet on those

events where your model is very “precise” at predicting one class and assigns a much larger

probability of the event to happen compared to the book-makers. When book-makers

underestimate the probability of an event occurring, this is considered as having an edge (also

known as opportunistic betting).

While analyzing the results, it was noticed that book-makers never predicted a ‘Draw’ as the most

likely outcome of a football match. Could a betting strategy where a user only bets on draws that

meet the conditions described above be used to generate consistent profits?

125

For readers interested in finding superior models to the book-makers

Take all the information from the recommendations for further work section and implement the

suggested ideas in your research to increase the accuracy of a model (may be more than one as

learnt in ensemble methods) and explore the different leagues and seasons.

