

Analysing the use of casting in
Java systems

Paul O’Hear

August 2019

This dissertation was submitted in part fulfilment of requirements for the degree of

MSc Software Development

DEPT. OF COMPUTER AND INFORMATION SCIENCES UNIVERSITY OF

STRATHCLYDE

2

DECLARATION

This dissertation is submitted in part fulfilment of the requirements for the degree of

MSc of the University of Strathclyde.

I declare that this dissertation embodies the results of my own work and that it has

been composed by myself.

Following normal academic conventions, I have made due acknowledgement to the

work of others.

I declare that I have sought, and received, ethics approval via the Departmental Ethics

Committee as appropriate to my research.

I give permission to the University of Strathclyde, Department of Computer and

Information Sciences, to provide copies of the dissertation, at cost, to those who may

in the future request a copy of the dissertation for private study or research.

I give permission to the University of Strathclyde, Department of Computer and

Information Sciences, to place a copy of the dissertation in a publicly available archive.

(please tick) Yes [√] No []

I declare that the word count for this dissertation (excluding title page, declaration,

abstract, acknowledgements, table of contents, list of illustrations, references and

appendices is 16,389

I confirm that I wish this to be assessed as a Type 1 2 3 4 5 Dissertation (please circle)

Signature: Date : 18/08/2019

3

Abstract

This project aims to investigate the seriousness and potential problems that may occur

following the implementation of casting. Casting is a Java function that is used to

convert the data type of an object to access type specific functionality. However, if a

system requires the continuous use of casting, there are normally resulting issues later

on in the program. To prevent this, developers should consider revising the system

design rather than having to repeatedly use the type conversion operator.

Having carried out an in depth investigation into the various opinions surrounding the

use of casting, a software tool was developed to aid manual inspection of real life open

source Java software systems. Various programs were analysed from the Qualitas

Corpus, a collection of curated software systems that are used globally for research

and development. The aim of this analysis was to provide a conclusion of each system

to conclude whether or not they implement type conversions in an audacious manner

and if code quality can be improved through the use of refactoring.

The findings of this project certainly illustrate how the use of casting can snowball

throughout the program, resulting in an abundance of type checks later required. An

abundance of unnecessary conversions were due to programs frequently passing in

Object data types. These then required multiple type checks and explicit casting

functions. Although there were various suggestions made, the project came to the

conclusion that no matter how well designed a system, conversions will be required at

some point in the program. Future recommendations were also included to increase

the usefulness of the output produced form the analysis tool.

4

Acknowledgements

I would first like to thank my project supervisor Dr Murray Wood for his continuous

support and patience throughout my dissertation. Particularly when I was first

introduced to the visitor pattern and its complex design.

A special thanks to all my family, especially my parents. Without them, my five years

of studies would not have been possible. Their continuous backing has been the

foundation of my success. I simply cannot thank them enough.

5

Contents
 .. 1

Abstract .. 3

Acknowledgements .. 4

Table of Figures ... 8

Table of Tables .. 9

1.0 – Introduction ... 10

2.0 Literature Review ... 13

2.1 Casting ... 13

2.1.1 Implicit Casting ... 13

2.1.2 Explicit Casting ... 14

2.1.3 Reference Variable Conversion ... 15

2.2 Code Smells and Refactoring ... 16

2.3 Static Analysis of Software ... 18

2.3.1 Parsing ... 18

2.3.2 The Visitor Pattern ... 21

2.4 Previous Work .. 22

2.4.1 Detection of Inheritance Hierarchy Smells ... 22

2.4.2 Java quality assurance by detecting code smells 24

2.4.3 JDeoderant ... 25

3.0 Methodology ... 27

3.1 Research Method ... 27

3.1.1 Qualitas Corpus ... 27

3.1.2 Cast Detection Tool .. 28

3.1.3 Manual Inspection .. 28

3.1.4 Result Format ... 28

3.2 Tool Development ... 29

6

3.2.1 Eclipse Java Development Tools (JDT) ... 29

3.2.2 ASTParser .. 30

3.2.3 ASTVisitor .. 32

3.2.4 Cast Expression ... 33

3.2.5 Other ASTNode Types ... 34

4.0 Analysis .. 36

4.1 Apache-Ant 1.8.4 .. 36

4.1.1 Results ... 37

4.1.2 Most Cast Dense File – ‘ZipEncodingTest.java’ 37

4.1.3 Most ‘Instanceof’ Dense File - ‘UnknownElements.java’ 38

4.1.4 Summary .. 38

4.1.5 Conclusion ... 39

4.2 ArgoUML .. 39

4.2.1 Results ... 40

4.2.2 Most Cast AND ‘instanceof’ Dense File – ‘CoreHelperMDRImpl.java’ 40

4.2.3 Summary .. 43

4.2.4 Conclusion ... 46

4.3 JHotDraw 7.5.1 ... 47

4.3.1 Results ... 48

4.3.2 Most Cast Dense File – ‘Base64.java’ .. 48

4.3.3 Most ‘Instanceof’ Dense File - ‘JavaPrimitivesDOMFactory.java’ 49

4.3.4 Summary .. 50

4.3.5 Conclusion ... 52

4.4 Azureus (Vuze) ... 53

4.4.1 Results ... 53

4.4.2 Most Cast Dense File ... 54

4.4.3 Most ‘instanceof’ Dense File – ‘BEncoding.java’ 55

7

4.4.4 Summary .. 55

4.4.5 Conclusion ... 57

4.5 Marauroa .. 58

4.5.1 Results ... 58

4.5.2 Most Cast Dense File – ‘ClientFramework.java’ 58

4.5.3 Most ‘Instanceof’ Dense File – ‘RPObject.java’ .. 59

4.5.4 Summary .. 60

4.5.5 Conclusion ... 61

4.6 Discussion .. 62

4.6.1 Highest Cast Dense System .. 63

4.6.2 Lowest Cast Dense System ... 63

4.6.3 Passing Object Type Parameters ... 63

4.6.4The Use of ‘Instanceof’ Operator .. 64

4.7 Evaluation of Tool ... 64

5.0 Conclusions and Recommendations .. 66

5.1 Possible Future Work .. 66

5.2 Final Conclusion .. 67

6.0 References ... 69

8

Table of Figures

Figure 1 - Upcasting Example .. 13

Figure 2 - Widening Example ... 14

Figure 3 - Narrowing Cast .. 14

Figure 4 - Class Diagram 1 .. 15

Figure 5 - Downcast Example .. 15

Figure 6 - Polymorphic Variable Example .. 16

Figure 7 - Syntactic Definition of 'ifThen' (Gosling, et al., 2019) 19

Figure 8 - Parse Tree Example (Spivak, 2015) ... 20

Figure 9 - AST example (Spivak, 2015) ... 21

Figure 10 - Message Chains Smell Example ... 24

Figure 11 - Smell Detection Graph ... 25

Figure 12 - Binding Example .. 30

Figure 13 - ASTParser.newParser() example .. 31

Figure 14 - Directory Selector using JFileChooser ... 31

Figure 15 - Recursive Method to extract ‘.java’ files ... 32

Figure 16 - getChildren Method .. 33

Figure 17 - Unknown expression involved in casting ... 34

Figure 18 - Cast Inside for Loop ... 37

Figure 19 - Bit-Packing example .. 37

Figure 20 - 'UnknownElements.java' instanceof example .. 38

Figure 21 - example of casting between project classes .. 38

Figure 22 - ArgoUML type check example 2 .. 40

Figure 23 - ArgoUML type check example 1 .. 40

Figure 24 - ArgUML cast example 2 ... 41

Figure 25 - ArgoUML cast example 1 ... 41

Figure 26 - Poor code design in ArgoUML ... 41

Figure 27 - ArgoUML implementation on 'instanceof' ... 42

Figure 28 - ArgoUML cast without type check .. 42

Figure 29 - ArgoUML type checking from Object type .. 43

Figure 30 - Example of a type check method in ArgoUML 43

Figure 31 - ArgoUML casting example ... 44

Figure 32 - ArgoUML casting to type 'JPanel' .. 44

file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873942
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873943
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873944
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873945
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873946
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873947
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873948
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873949
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873950
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873951
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873952
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873953
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873954
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873955
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873956
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873957
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873958
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873959
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873960
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873961
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873962
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873963
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873964
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873965
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873966
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873967
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873968
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873969
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873970
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873971
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873972
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873973

9

Figure 33 - GUI options available through Swings JPanel class (Boskovic, 2005) ... 45

Figure 34 - ArgoUML declaring variables as type Object ... 45

Figure 35 - JHotDraw converting char types to byte types 48

Figure 36 - JHotDraw 'else if' chain .. 49

Figure 37 - JHotDraw using both instcnaceof and cast operator 50

Figure 38 - Project class casts in JHotDraw ... 51

Figure 39 - JHotDraw casting from type Component.. 52

Figure 40 - JHotDraw casting within a set method ... 52

Figure 41 - Azureus casting values in a 256byte construct 54

Figure 42 - Encryption keys used in DESParameters.java 54

Figure 43 - Azureus type check before encoding ... 55

Figure 44 – Azureus casting from Object data types .. 56

Figure 45 – Azureus using casting during array instantiation 56

Figure 46 - Azureus using casting inside for loop ... 57

Figure 47 - Marauroa using casting inside SWITCH statement 59

Figure 48 - Marauroa Type Check 1... 59

Figure 49 - Marauroa Type check 2 ... 59

Figure 50 - Marauroa declaring 'netMan' .. 60

Figure 51 - Marauroa instantiating 'netMan' ... 60

Figure 52 - Marauroa casting without type check ... 60

Figure 53 - Marauroa casting inside FOR loop ... 61

Figure 54 - Marauroa Cast that causes tool error ... 61

Table of Tables

Table 1 - Code Smell Examples and possible Refactoring’s 17

Table 2 - Analysed systems from Qualitas Corpus .. 28

Table 3 - Apache-Ant Analysis Results .. 37

Table 4 - ArgoUML Analysis Results .. 40

Table 5 - JHotDraw analysis Results .. 48

Table 6 - Azureus analysis Results .. 53

Table 7 - Marauroa Analysis Results.. 58

Table 8 - Total files analysed compared to average casts per file 62

file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873974
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873975
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873976
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873977
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873978
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873979
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873980
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873981
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873982
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873983
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873984
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873985
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873986
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873987
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873988
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873989
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873990
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873991
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873992
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873993
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873994
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16873995
file:///H:/Summer%20Project/Dissertation/Dissertation2.docx%23_Toc16874003

10

1.0 – Introduction

Throughout this report, references will often be made to many technical phrases and

terminology which must be discussed prior to the main body if one is to understand

the topics covered fully.

First off, what is casting and why is it considered to be the by-product of poor software

design? It all comes down to a term called technical debt which is accumulated through

code smells. The term code smell was first coined by Kent Beck (Fowler & Beck, 2000)

and has since been widely discussed in the software development community. The

term subtly describes what it actually is; a scent, trace, pointer to a deeper problem

within the systems design that has forced the developer to implement such smells.

Fowler also explains that “A code smell is a surface indication that usually corresponds

to a deeper problem in the system.” The types of code smell greatly vary, there are

five distinct categories of code smells:

• Bloaters – Large sections of code such as methods and classes that

accumulate over time to become unmanageable. Other data clumps such as

large parameter lists are also considered bloaters (Anon., n.d.)

• Object-Orientation Abusers – These smells occur when the principles of object-

orientated programming are incorrectly applied. Examples include ‘switch’

statements and sequences of ‘if’ statements. (Anon., n.d.)

• Change Preventers – System that is designed in such a way that a change to

the code in one place results in other changes required in multiple other

locations.

• Dispensable – Duplicate or dead code for example that could be eliminated

from the system and result in more efficient and understandable code.

• Couplers – Excessive coupling between classes such as one class accessing

methods and other data fields of another class (Anon., n.d.).

All of the above code smells have the potential to add to the systems technical debt.

Coined by Ward Cunningham (Letouzey & Whelan, n.d.), technical debt can be

compared to financial debt. When money is borrowed, one must repay the total sum

in instalments. If these instalments are not met, interest is added over time and the

total sum increases, further worsening the initial problem.

11

Technical debt is the same, if developers continuously elect a quick fix rather than

dedicating more time to find the root of the problem, the technical debt will accumulate.

If this debt is given no attention and no ‘repayments’ are made, it will continue to grow

until it is near impossible to implement any changes to the software. In the worst case

scenario, the project will have to be discarded or started again, this is called technical

bankruptcy (Girish, et al., 2015). If teams of developers are not careful and do not

communicate effectively, technical bankruptcy can be inevitable when new code is

pulled together.

Fowler and Kent also go on to identify and classify many code smells and the steps

that should be followed to overcome their necessity by refactoring the system design.

However, there is one distinct code smell that is not covered, casting. In fact,

compared to all other code smells and refactoring recommendations, typecasting and

other conversion types are rarely mentioned in literature. Casting is the implicit or

explicit conversion of a variable type, this can range from primitive types such as

Integers and Doubles to Object data types such as converting from one class to

another.

• Primitive Type Conversions – Specifically explicit conversions will be the main

focus of this report as an assumption is made that any automatic conversions

(widening) will pose no threat to the system (Sierra & Bates, 2015). However,

the conversion of a ‘double’ to an ‘int’ for example will be scrutinised.

• Object Type Casting – Unlike primitives, reference variables simply refer to an

object and do not contain the object itself (baeldung, 2019). Although upcasting

is frequently implicitly performed by the compiler, the report will still discuss the

impacts it may have along with an in-depth discussion of downcasting.

In the following chapters, the use of casting in the Java programming language will be

investigated. Extensive research will be carried out to conclude if casting should be

considered a code smell at all or if it can be used impetuously throughout Java

systems. As most casting errors only arise at runtime, a tool is to be developed to

identify all instances of casting in a project and identify the Object or Primitive type

before and after the cast. If successful, the tool will also be able to identify some

metadata about the cast and the potential effects it may have in the future.

12

• The following chapter highlights previous literature that discuss code smells,

specifically the use of casting and the impacts it can have on the overall

performance and integrity of Java systems.

• A review of previous projects will also take place to determine any recurring

focal points when developing code analysis tools. Additionally, the various

software packages available to efficiently build such a tool within the time

constraints set.

• With consideration of all methodologies, a static analysis tool will be developed

to aid developers in identifying cast instances and their severity.

• Lengthy testing will follow and results will be recorded to determine if analysis

tools can compete against human intuition when identifying the use of casting

and the information it provides about a systems design.

• To conclude this report, further discussion will take place on the ways in which

the development of analysis tools can be improved and the proposition of future

work.

The report will conclude with a reflection of all findings and personal opinions on the

topic as a whole.

13

2.0 Literature Review

This chapter will include in-depth reviews of numerous literature that not only discuss

the use of casting in Java systems but also cover; code smells and when they were

first discussed as well as the root problems in which they originate from. The various

types of casting will be covered and the errors that can arise if used incorrectly such

as ‘CastClassException’ at runtime and similar issues that can go unnoticed by

developers. Relationships between data types in a system are key to the

implementation of casting which is why the concept of Hierarchies will also be

deliberated and their significant importance in object-oriented programming.

An appreciable amount of knowledge is required to analyse software systems.

Therefore, the key areas such as parsing, abstract syntax trees and visitor pattern will

be covered in this chapter. Additionally, a considerable amount of time will be allocated

to research the various software packages that have previously been used to develop

analysis tools, specifically those that cover the recognition of casting, if any.

2.1 Casting

Casting or otherwise known as type casting and type conversion, is the process of

implicit or explicitly changing a data type from one to another for a specific reason.

 However, the function does not have any impunity that can be used haphazardly.

There are unique rules when it comes to casting that if one does not abide by, can

result in prolonged amounts of time trying to refactor code with hidden runtime errors.

2.1.1 Implicit Casting

This is most commonly used when assigning variables to data types. However,

especially in Java, the rigorous type checking ensures that the location and destination

of the cast are compatible. Implicit casting or Coercion (Schildt, 2007) occurs when

this compatibility is valid and variables can automatically change type. Figure 1

demonstrates a very simple coercion example and the way it can be used in Java.

Figure 1 - Upcasting Example

14

The validity of this code stems from the fact that variable ‘i’ is changing from primitive

type ‘int’ to the larger primitive type ‘float’, this is called widening. As float can store

values with greater precision than integer types, the Java type check allows the

conversion. This is also the case when converting any data type to a destination that

is larger than the source type. Figure 2 shows the automatic conversions that are

authorised due to widening.

However, when changing from a float to an integer, for example, an explicit cast is

required.

2.1.2 Explicit Casting

Explicit casting is required when the source and location data types are compatible

but cannot undergo automatic conversion. Following on from the previous example,

explicit casting is necessary when converting a variable data type from a float to an

int. As int is a smaller, less precise data type, programmers must use the cast function

to explicitly carry out the narrowing conversion. This is done by surrounding the target

type in parenthesis before the object that is changing type. Figure 3 demonstrates the

explicit use of casting.

Figure 3 is an example of when a whole number is required even though the two values

in the sum may be doubles with decimal points. Although this conversion is perfectly

valid it must be used very carefully as the system is losing precision due to the decimal

point being dropped when converting to an integer. If this form of casting is repeated

multiple times, the integrity of the data being produced on the console, for example, is

highly questionable. Additionally, if the result of the sum is greater than the maximum

value that an integer can hold, information will be lost and that maximum will be

displayed instead.

Figure 2 - Widening Example

Figure 3 - Narrowing Cast

15

2.1.3 Reference Variable Conversion

Explicit casting is not limited to primitive data types. It can be used in various manners

such as converting a String to an int using ‘Integer.parseInt(String)’. However, the

most common application is converting an objects data type from a superclass into a

more specific subclass to enable a greater range of functions. This is called

downcasting. Upcasting (converting a subtype to a super type) is not necessary in

Java as one can call superclass methods automatically. However, downcasting is a

more delicate process that requires care and attention otherwise the infamous

ClassCastException may be a recurring theme. An example that is regularly used to

explain this is the use of an Animal superclass with Cat and Dog subclasses.

Figure 4 represents the three classes along with their attributes and methods. Note

that a dog can walk, eat and bark. However, an Animal can only walk and eat. If there

is a collection of animals, the code in Figure 5 can be used to differentiate between

Cat and Dog and call upon the appropriate method.

Figure 4 - Class Diagram 1

Figure 5 - Downcast Example

16

If the variable animal was in fact instantiated as an Animal and then one attempts to

cast it as a Dog, ClassCastException will occur at runtime.

Furthermore, if a Dog is upcast to an Animal, it will lose its bark capabilities until it is

cast back down to a Dog, just as a Cat would with purr. Both Cat and Dog object can

be considered polymorphic as they can “refer to a variety of class types during a single

execution” (Budd, 1991). If for example, we want to ‘walk()’ all Animals without caring

about the type of animal. Figure 6 shows how this can be done.

The new Cat and Dog are automatically upcast to an Animal implicitly, added to the

list of Animals and then walked. The program can then later implement the ‘instanceof’

function to identify which of the Animals are of type Cat and Dog. However, to access

their functionality, the object would have to be cast back to its original type. In real life

systems, this form of inheritance can have multiple depths with a large number of

classes and methods which is why it is important to know where and when to use the

cast function.

2.2 Code Smells and Refactoring

As previously mentioned, the term ‘code smell’ was introduced by Kent Beck in the

book ‘Refactoring: Improving the design of future code’ (Fowler & Beck, 2000). As this

book was published in the year 2000, some of the ideas have already been explored.

However, to ensure a solid foundation has been set for the remainder of the report, an

in-depth analysis will take place of the full text. Beck explained that developers have

learned to look for specific patterns and indicators that tell them a possible refactoring

is in order to improve the code. Which is why he allocated these indicators the name

“Smells” because developers can follow the scent to the root of the problem and decide

whether or not the underlying problem will have a detrimental effect on the program.

Beck along with Martin Fowler, co-wrote the chapter ‘Bad smells in code’ and detail

many different instances of code smells that could be erased with the use of

refactoring.

Figure 6 - Polymorphic Variable Example

17

Smell Explanation Refactoring Suggestion

Temporary Field When an instance variable
is instantiated and used
only in certain
circumstances. One would
expect a class to use all of
its variables and therefore
can be confusing to
anyone reading the code.

Extract Class is
considered a solution with
all code that implements
the variable in question
transferred over.

Inappropriate Intimacy The fundamentals of
Object-Oriented
programming say that
classes should know as
little about each other as
possible. They should not
be intruding into private
fields and using them
elsewhere.

Use the Move Method to
relocate the method to the
class in which it is used
most often.

Middle Man If a class has multiple
methods that simply
delegate requests to other
classes.

Remove the methods that
delegate and force the
request to deal with the
required class directly by
introducing an additional
getter for example

Table 1 - Code Smell Examples and possible Refactoring’s

Table 1 provides some examples of code smells, why they are considered bad practice

in Java and possible refactoring techniques to eliminate each smell.

Fowler lists many common code smells and provides a very helpful guide on not only

how to refactor but where it is most likely required. However, he explicitly states that

his literature is only the beginning of an in-depth topic with the potential of great

expansion. The final chapters are co-written by Don Roberts, John Brant and Kent

Beck and cover the future of refactoring. Roberts and Brant go into great detail about

the lack of tool support for refactoring code, in order to cut cost and time spent doing

so. They firmly believe (with the support of Beck) that with the aid of automated tool

support, developers can drastically cut the time spent refactoring. Furthermore, they

insist that developers will be less likely to turn a blind eye to time-consuming

refactoring’s resulting in higher quality code. It is important to note that although this

book is a great introduction to the topic, it either does not consider casting to be a

severe enough code smell to feature in the book or the numerous authors do not yet

consider casting to be a smell at all.

18

2.3 Static Analysis of Software

Static analysis of software involves taking the syntax of a system and analysing it for

possible defects without any dynamic execution. This form of analysis can identify

problems in the system at an early stage and offline if necessary. Static analysis can

be performed by both humans and machines.

Humans can manually scan through the code and ensure the programmer has

followed Object-Oriented conventions for example. Whereas, machines can analyse

the code for lexical, syntactic and possibly semantic errors (Ghahrai, 2018). Static

analysis is frequently carried out after coding but before extensive testing is performed,

it allows developers to eliminate both silly and more complex flaws in the code before

integration. However, the process of static analysis can be time-consuming if done

manually and it requires trained personnel that can be in short supply if it is a small

company. Analysis tools can greatly improve the efficiency of the process but can

reduce accuracy and consistency by producing both false positives and negatives

(Acellere, 2017).

2.3.1 Parsing

In the Oxford English Dictionary, the phrase parsing means to “Resolve a sentence

into its components and describe their syntactic roles according to a given grammar”

(Anon., 2019). However, this is not limited to an English sentence, it can be a computer

program, a piece of music, a sequence of geological strata and even a knitting pattern.

The grammar for parsing computer programs (syntax analysis) is a set of rules that

defines how the syntax is broken down and how each construct can be composed. To

parse a Java system, two grammars are required.

• Lexical Grammar – A lexical grammar defines the structure of each token in a

program. Tokens are a type of lexeme which are the smallest elements of a

program that are purposeful to the compiler. These include operators such as ‘+’,

‘-’, ‘%’ and ‘*’ as well as keywords like ‘int’, ‘class’ and ‘return’ and all other Java

operations and statements. Elements like white spaces and comments are

automatically discarded (Gosling, et al., 2019).

19

• Syntactic Grammar – A syntactic grammar uses the tokens defined by the lexical

grammar and describes how each token produces syntactically correct systems.

Each programming language has a unique syntactic grammar specific to its syntax.

Lexical and Syntax analysers follow the rules of each grammar to produce a parse

tree. As such the parse tree is constructed following one of two methods. For Java,

the context-free grammars can be accessed and inspected to learn about the

language specifications (Gosling, et al., 2019). Figure 7 illustrates the syntactic

definition of an ‘if-then’ statement. An ‘If’ token will only be recognised if it is

accompanied by a left parenthesis, an expression, a right parenthesis and a

resulting statement. This is the highest level representation of the definition as both

‘Expression’ and ‘Statement’ will have large definitions of their own.

• Top-Down Parsing – The construction of the parse tree starts at the root and works

through the syntax deciding where the next token belongs in the tree then and

there. After each token has been analysed, the tree is complete. ‘Lookahead’ can

be used which allows the parser to inspect the next token before placing the current

one. However, anything other than simple expressions can cause major problems

during the production of the tree as anything more than a lookahead of one is very

expensive. Top-down parsing also finds the left most deviation when constructing

the parse tree, this means it applies the rules of the grammar on the leftmost

derivation (reads left to right).

• Bottom-up Parsing – Similar to top-down but more general, just as efficient and

more common to use in practice. Bottom-up parsing or an LR parser reads tokens

from left to right and traces a rightmost derivation in reverse. In doing so, the parse

tree is constructed starting from the leaves and working towards the root.

If the construction of the parse tree is successful, each node in the tree denotes a

syntactic construct in the Java source code. Parse trees are profoundly complex and

can grow quickly grow from a small section of code. Figure 8 is the corresponding

parse tree for the simple statement ‘7 + ((2+3))’. Notice that all parts of the syntax are

represented with a node, even parenthesis.

Figure 7 - Syntactic Definition of 'ifThen' (Gosling, et al., 2019)

20

For this very reason, more often or not, Abstract Syntax Trees (AST) are used instead

of the sometimes unnecessary parse trees. The key difference is that it is abstract,

meaning they do not display needless or redundant data within the tree. Parentheses

and grammar rules, for example, are removed. Moreover, nodes of the tree are made

up of operations/operators and operands are used as their children. As a result, an

AST is considerably smaller, more compact and easier to work with both visually and

programmatically. However, key data is still included so there is no loss of information

and the input can clearly be identified. Figure 9 is an AST of the same phrase used to

produce the parse tree in Figure 8 - Parse Tree Example . Although less than half the

size, the same crucial information is characterised.

Figure 8 - Parse Tree Example (Spivak, 2015)

21

Despite the simplistic design of an AST, they too still have the potential to become

very convoluted when representing larger real-life systems, classes can also become

crowded with unrelated operations. Therefore, it is essential to be able to efficiently

traverse through the tree otherwise the effort to create it would be in vain.

2.3.2 The Visitor Pattern

The visitor pattern is a design pattern that allows programmers to define new

operations without changing the type or classes of the element that it is currently

operating on (Sciore, 2019).

When implemented on an AST, the visitor must first be ‘accepted’ by each node. The

visitor will then determine the type of the current node and execute the defined

operation for that type. Essentially, the node lends itself to the visitor as a parameter

to let the visitor access its state (Anon., 2011). Programmers can further expand the

functionality of visitors by creating new NodeVisitor subclasses and developing actions

to be taken for every type of node in the system. A few of many advantages of using

a visitor include (Anon., 2019);

• Able to add functions to class libraries in which you are not able to change

the source.

• Able to attain data from unrelated classes to obtain overall results and

identify data patterns.

• Develop all related operations in a single class rather than trying to adapt

current classes to add the same operations.

Figure 9 - AST example (Spivak, 2015)

22

The main aim is to encapsulate methods used for obtaining data from many classes

that have different interfaces. The key to developing a successful visitor is to define a

‘visit()’ method for each concrete derived class within the AST (Anon., 2019). Also,

only a single argument can be passed to each visit() method which directs the visitor

to a specific node type. Each base class or in this case AST must also employ an

‘accept()’ method that again, receives a single argument. This argument is a reference

to the particular visitor within the Visitor hierarchy that is to traverse through the tree

visiting specified nodes.

Having set an adequate background to the topic of casting and static analysis, the

remainder of the chapter will detail previous research, projects and work that has been

carried out. Projects with similar aims to this will be inspected in order to discover if

there are any trends and/or recommendations about developing a static analysis tool.

Their methods of development along with other findings will be discussed and

recorded so to consider all options and compare with the final results obtained from

this project as a whole.

2.4 Previous Work

2.4.1 Detection of Inheritance Hierarchy Smells

In 2017, a former student of the University of Strathclyde, Ioannis Ziamos, carried out

an investigation into the detection of inheritance hierarchy smells (ZIAMOS, 2017).

Having read the book “Refactoring for Software Design Smells: Managing Technical

Debt” (Suryanarayana, et al., 2015), Ziamos aimed to investigate the smell patterns

identified by the literature and develop a tool that can extract such smells from system

source code for review.

The Eclipse JDT framework and the ASTParser library were used to create a list of

names of each class in the system, any class it may extend and any interface that it

may implement. Additionally, the names of each type and variable were recorded.

Having gathered all this information, Ziamos was able to link each class and illustrate

each hierarchy within the system. Multipath hierarchy smells were detected by

comparing any implemented interfaces of each class and each superclass. This is only

one of the many hierarchy smells detected.

23

The use of the tool was based on a command-line interface. By providing the path to

a directory, users were able to list each inheritance hierarchy smell in accordance with

their needs. They could also view individual hierarchy extracts from within the system.

Ziamos carried out a very thorough investigation into inheritance hierarchy smells and

successfully developed an efficient tool for developers to use in practice. He finds that

there are instances of each studied smell in all systems analysed. He also goes on to

explain the usefulness of the tool and that there is “much utility to performing static

analysis of this nature”. The report recommends that the tool should not be used as

the sole method for detecting code smells. Manual inspection is still required by

developers for conformation of each instance detected by the tool. However, the tool

still provides an efficient pointer towards each code smell and allows future developers

to quickly learn the overall design of the system in question.

24

2.4.2 Java quality assurance by detecting code smells

E. van Emden and L. Moonen both based in Amsterdam, Netherlands try to develop

a tool that aids automatic code inspection by attempting to identify the presence of

many code smells simultaneously (Emden & Moonen, 2002). They believe that they

can assess the overall quality of code by pinpointing things like “code duplication”,

“long methods” and “message chains”. Message chains are when a client requests an

object and that object then requests another object. When this pattern continues, the

‘Law of Demeter’ is violated (Anon., 2019). Figure 10 gives and examples of what a

message chain may look like.

These are only a few of the smells that the paper suggests the tool will identify.

However, the report states that many of the smells they wish to detect are subject to

change depending on the user. They continue that code smells are based entirely on

personal opinions and experiences and the tool should be able to accommodate these

differences.

The idea of this report is that each code smell has a number of ‘smell aspects’, the

tool will analyse the system and flag up smells only when all of its aspects are found.

To do so, Emden and Moonen specify that a static analysis of the system is all that is

necessary for the successful completion of the task at hand. They use the ‘Asf+sdf

Meta Environment’ that aids the production of parser generators. A custom parser was

created and used to parse each system, producing a parse tree. A custom analyser

was also developed to traverse the parse tree and store data on each element of the

system such as classes, methods and constructors as well as relations between each

of these entities. Interestingly, the method used for detailing the results is not that of a

table that may have included the total for each smell but instead, a visualisation tool

was used to illustrate the results in the form of a graph model.

After providing their prototype, jCOSMO, for real-life testing, a user interface was later

integrated as the original instruction was too complex to efficiently apply to systems.

However, following this, a great success of the tool was reported with Emden and

Moonen now considering their tool to be a key point in the development cycle of

automated code inspection and quality assessment.

Figure 10 - Message Chains Smell Example

25

Figure 11 is an example of the output from the prototype. The graph model not only

details the code smells present in the system but also gives an insight into the overall

structure of the system.

2.4.3 JDeoderant

JDeoderant is a plug-in that was developed for the Eclipse environment and is used

to identify feature envy code smells in Java systems. A feature envy smell occurs when

a method uses more methods of another unrelated class than that of its own class.

Data and functions should traditionally be in the same place to avoid having to access

other classes unnecessarily. JDeoderant not only extracts all instances of feature envy

smells but also improves the overall quality of the code by applying an automatic

refactoring.

Developed by Marios Fokaefs, Nikolaos Tsantalis and Alexander Chatzigeorgiou, the

main aim of JDeoderant was to give the user the “ability to pre-evaluate the impact of

all possible move refactoring’s on design quality and apply the most effective one”

(Fokaefs, et al., 2007). Fokaefs et al identified the feature envy smell by measuring

the distance between a method and the class that it has accessed. The greater the

distance, the greater the dissimilarities between the method and the corresponding

attributes of the class it is accessing. A specific smell is flagged if this measurement

is less than the measurement between the same method and the class it belongs to.

Like Ziamos and the detection of hierarchy smells, JDeoderant utilises the ASTParser

in Eclipse JDT. Additionally, the ASTRewrite operator was employed so that the tool

could apply move refactoring’s on system source code. By implementing a move

method refactoring, users are able to improve the quality of code by increasing

encapsulation and decreasing over intimacy of classes.

Figure 11 - Smell Detection Graph

26

The tool was tested on real-life systems and was able to successfully identify six out

of six and seven out of eight feature envy bad smells that were manually selected

beforehand.

Having closely analysed the previous work discussed in this chapter, it is clear to see

that there is a recurring aim to further develop automatic code inspection and quality

checks. Although many code smells come down to personal opinions, the use of

inspection tools are still highly beneficial as they can provide developers with the

knowledge about the system and areas that could possibly be improved, without

having to manually inspect each line of code. Having covered various case studies

and examined the underlying knowledge of static analysis, the desire for improved

code inspection tools for more and more code smells is growing which leads into the

practical development section of this report. With consideration of previous work and

other research carried out on tool development, a design process will be drafted and

finalised to establish the best software and approaches that are best suited for this

project. The aim is to contribute towards the automated code inspection lifecycle in the

form of analysing systems for casting code smells and other type-changing operators.

27

3.0 Methodology

3.1 Research Method

A custom tool has been developed with a view to aid developers during static analysis

of Java systems to determine if there is an overabundance of cast operations used

within the program. Furthermore, the tool aims to provide analysis results that can

identify all instances of casting and the metadata of each instance. This metadata will

aim to include features such as the object type that is being cast and what it is being

converted to. The accuracy of the tool will also be tested to ascertain whether or not

the tool is able to, first of all, locate all instances of casting and if so, is it maintaining

data integrity when displaying final results. Irrespective of the success of the tool, each

system under investigation will undergo manual inspection to try and determine why a

particular volume of casting has been used and why the syntax regularly requires other

type-check functionality so the report as a whole can provide useful findings on the

subject.

Following the development, it is essential to assess all aspects of the tool on real-life

systems that vary in size and complexity. This allows both benefits of the tool to be

recorded and areas of systems that the tool may struggle with. Additionally, it provides

a fair analysis and allows comparison with other tools of similar functionality such as

the one developed by Ziamos to identify hierarchy smells. With this in mind, a request

was sent to Dr Ewan Tempero to gain access to the Qualitas Corpus so to select a

number of systems that will provide a diverse range of results for analysis (Tempero,

n.d.).

3.1.1 Qualitas Corpus

The Qualitas Corpus is a collection of open-source systems intended to be used for

research purposes to enable ‘reproducible’ studies of software (Corpus, 2013). The

collection was first constructed as many software investigations were not detailing the

systems they studied. Therefore, the validity and accuracy of the findings were

unknown. The most recent release of the collection 20130901r included multiple open-

sourced Java software systems. A number of these systems will be evaluated using

the developed tool to fully test its efficiency, functionality and overall usefulness to

developers during static analysis.

28

The selection of such systems was an iterative process due to the fact that some

systems did not include Java source code or have any instances of the cast operator.

Although all results were recorded, this report will only go into the details of the

systems that provided a means of analysis by providing results that can be compared

to other systems. The final set of systems are displayed in Table 2.

Name Version Domain Number of ‘.java’ Files

Apache Ant 1.8.4 Parsers/generators 1196

ArgoUML 0.34 Diagram Generator 1922

JHotDraw 7.5.1 3d/Graphics/GUI 613

Azureus (Vuze) 1.8.1.2 Databases 3319
Table 2 - Analysed systems from Qualitas Corpus

3.1.2 Cast Detection Tool

A custom tool has been developed specifically for this project to analyse the use of

casting in Java systems, the development, implementation and results of the tool are

detailed in the following chapters. The tool can detect all instances of casting in each

system and other data that surrounds the use of casting and code smells such as the

use of the ‘instanceof’ operator that was included later in development to provide a

means to further analysis. The tool is applied to all the Java systems selected from the

Qualitas Corpus with all results being recorded.

3.1.3 Manual Inspection

Since developers can cast in a huge variety of ways, it is extremely difficult to enable

the tool to provide extra information about all cast instances within the time constraints

set. Therefore, any instance that has not been accounted for within the tools code will

be listed. Manual inspection will be used to identify any recurring patterns that can

provide extra information surrounding the system, its design and the general approach

of each system to using the cast function.

3.1.4 Result Format

For each system, a ‘summary’ method will be called to print the numerical results of

each measured variable. Corresponding files will also be presented to aid manual

inspection of the densest uses of casting and type-check functions. Users also get the

option to print out all cases that the tool was unable to gather information for. This can

be for various reasons like null pointers or message chains.

29

The findings from both the tool and manual inspection will be discussed and possible

improvements of the tool will be suggested to increase the accuracy, efficiency and

automation of the analysis process. It must be noted that only the final results are

included in this report. However, this was an iterative process with continuous changes

being made after each simulation in order to optimise both the tool and the usefulness

of its output.

3.2 Tool Development

As previously discussed in chapter 2, there are a number of possible approaches to

statically analysing source code. However, having to create and develop custom

grammar rules, a custom parser for parsing java source code that produces an AST

and a custom visitor for traversing through the AST identifying all nodes that are of

cast expression type can be a very time consuming and complex task. Fortunately

enough, this can all be done in a single environment with all functions and libraries

installed as standard.

3.2.1 Eclipse Java Development Tools (JDT)

This is a framework of the Integrated Development Environment (IDE) Eclipse and

comes with all the necessary plug-ins that support the development of any Java

application (EclipseFoundation, 2019). It is commonly used for the design of plugin

projects as it is especially useful for manipulating Java source code. However, the

framework also allows the development of standalone projects separate from the IDE.

To use the tool for static analysis of source code, there is one library that is part of the

JDT framework as standard and must first be imported to the workspace to enable the

functions required. This library is:

‘org.eclipse.jdt.core.dom’

There was a considerable amount of learning that was required before the

development of the tool could even begin. Initially, a JDT Plug-in project was to be

produced so that it could be integrated with the IDE and possibly other development

environments. However, it was established that a standalone project would be

preferred to allow the tool to analysis systems without them having to be present in

the current workspace.

30

3.2.2 ASTParser

The ASTParser class is a Java language parser that has pre-defined grammar rules

and produces an AST from a continuous string input. Using the

‘ASTParser.setKind(ASTParser.K_Compilation_Unit)’ method, the parser produces a

single CompilationUnit object for each Java source file. A CompilationUnit is the

highest-level syntactic structure recognised by Java. The resulting CompilationUnit is

then used to create the corresponding AST for each file. The ASTParser can also be

configured depending on the type of project and its requirements.

The configurations important to this project are the ‘ASTParser.setKind ()’ that has

been mentioned above as well as ‘ASTParser.setResolveBindings()’ and

ASTPArser.setEnvironment()’.

ASTParser.setResolveBindings () – This must be set to ‘True’ to instruct the compiler

to provide extra binding information for each ASTNode in the AST. The importance of

resolving bindings in this project allows the tool to inspect the expression that is being

cast and the class it was originally bound to.

Figure 12 shows variable ‘d’ being instantiated as the primitive type ‘double’.

Subsequently, by resolving the binding of ‘d’ in the second line, ‘double’ will be

returned. However, it is being narrowed to a float which is why the explicit cast operator

‘(float)’ is used.

ASTParser.setEnvironment () – This sets the environment of the parser as, by default,

aims to parse source code in the current workspace if no Java project is provided. As

the aim is to develop a standalone application, it is important to allow the tool to import

Java systems without having to be imported into the same workspace environment.

Therefore, the tool must be configured in a way that allows external Java source code

to be analysed.

Figure 12 - Binding Example

31

When instantiating a new ASTParser the method ASTPArser.newParser() is used.

This method takes a single parameter which is important to set correctly. The

parameter is the version of Java Development Kit that is currently installed. Figure 13

shows how method must be used within the tool, ‘JLS9’ is used as it is the most up to

date Java language specification that supports JDK 1.8 (the version of Java that the

tool is based upon).

Although the utilisation of ASTParser is relatively simple, the input must first be

converted into a String before parsing can begin. Thus a number of methods had to

be developed to do the following.

1. Direct the tool to the relevant system that the user wished to analyse. Initially,

this was done by manually inputting the full path of the directory. However, with

continues testing and frequently changing the target system, the JFileChooser

class was implemented. By doing so, a file browser window shown in Figure 14

is displayed at the beginning of each simulation allowing users to select any

locally stored directory.

Figure 14 - Directory Selector using JFileChooser

Figure 13 - ASTParser.newParser() example

32

2. All files of the selected directory were then extracted but only the ‘.java’ files

were temporarily stored for analysis. This was done by developing a recursive

method that calls upon itself to open each internal directory of the chosen

system. Figure 15 displays the recursive method explained. It takes a directory

path as a String and an empty list of files as parameters.

If the method ‘.isDirectory()’ returns true, the method is executed again for the

newfound directory. Otherwise, it extracts the files that end in ‘.java’, adds them

to the directories list of files and returns the list once all internal directories have

been opened and checked.

3. Each Java file was then converted into a string of characters using the

StringBuilder class. Only then can the ASTParser class be used to parse each

Java file using the corresponding String as a single parameter. Producing an

AST and compilation unit which is required to accept and implement the visitor

pattern.

3.2.3 ASTVisitor

The visitor pattern is considered one of the most complex design patterns to implement

and although this report has provided a brief explanation into the background of the

pattern, developing a custom visitor is a very intricate process. Which is why Eclipse

JDT is so beneficial by providing a pre-constructed ASTVisitor class. Developers are

able to create a custom concrete visitor class of their own that extends all functionality

of ASTVisitor as well as their own added specifications. This was the process followed

in this project to create a ‘CustomVisitor’ class.

Figure 15 - Recursive Method to extract ‘.java’ files

33

For any visitor to obtain access to an AST, the linked compilation unit produced from

parsing must ‘accept’ a given visitor object. Only then can the visitor traverse through

the AST and collect information on the node types specified in each ‘visit’ method. In

this case, the crucial node type is ‘CastExpression’.

3.2.4 Cast Expression

To provide users with a thorough analysis of each system, the tool must do more than

simply provide the total number of cast expressions present. Clearly, this was lacking

adequate information to support users in coming to any conclusion about the general

design of the system and its overall approach to the use of casting.

Further development gave the tool the following functionality:

• Visit the node in which the cast operator was type-changing through the use of

a ‘getChildren’ method. The development of this method was very beneficial as

it could return the children of any ASTNode, not just cast expression types.

It was also used to determine the presence of message chains within

expressions. Figure 16 shows this method. By implementing the

StructuralProperty class, the tool was able to check the properties of a specific

ASTNode and return the elements that were of type ASTNode themselves.

• Resolve the original binding of the object that is changing type. This is so that

the tool can compare the initial data-type of the object to the data-type it is being

converted to.

• Discover the relationship between the two data-types involved in each cast.

• Lend the user with all unknown bindings for manual inspection to allow for a

greater understanding of the system that the tool cannot provide.

Figure 16 - getChildren Method

34

3.2.5 Other ASTNode Types

To determine whether or not the system was casting objects from one instantiated

class to another, all ‘TypeDeclaration’ nodes were identified using the ‘preVisit’ method

of ASTVisitor. This method visits all ASTNodes of the AST before type-specific nodes

are found. Each type declaration node was temporarily recorded so that a list of system

classes could be obtained and compared to expression bindings during analysis. The

capability to recognise ‘instanceof’ operators was also included so to compare the total

number of cases with the total number of casts to establish any underlying

relationships or trends between the two. For example, if the same file has the most

uses of casting and ‘instanceof’ operators or if a super class has the most uses of

casting and a subclass has most uses of ‘instanceof’. Again, to assist in drafting a

more thorough conclusion of the system.

During early simulations, it was clear to see that the cast operator was being used in

a huge variety of ways that were not anticipated. There was a recurring error being

thrown when attempting to resolve bindings of expressions that were not simply a

single variable. In particular, when the cast function was followed by a method or string

of method invocations known as message chains, discussed earlier. For example,

Figure 17 illustrates an expression that is involved in casting that the tool was unable

to resolve the binding for.

Therefore, it was necessary to implement code that recognised each method

invocation and attempt to gain knowledge of its return type which would be the type

that the object is being cast from. Again, due to time constraints, rules for all outcomes

could not be enforced. However, with the aid of output to the console, manual

inspection was able to identify the majority of the unknown cases. Although considered

a completely different smell type, the use of message chains was recorded to find out

what percentage of unknown expression types were a result of their use. This is done

by using the previously developed ‘getChildren’ method again and if there are more

than two returned (the expression is made up of 3 or more method calls), the

expression is considered a message chain.

Figure 17 - Unknown expression involved in casting

35

To conclude each analysis, the following results will be displayed to the console:

• Total number of Java files analysed

• The average number of casts per Java file

• Total number of cast operators identified in the system

• Total number of ‘instanceof’ operators

• The file that has the most cast instances

• The file that has the most ‘instanceof’ instances

• Total casts that involve internal system classes

• Total casts that were from Object class to a more specific type

• Total casts that only involve primitives

• Other return types in the system and option to print them all

• Total Unknown cast expression types

• Number of unknown values caused by message chains

• Option to print all unknown expression types for manual inspection

This chapter has discussed the software used and important aspects of the code that

one may need if the project is to be reproduced or further developed in the future. The

benefits of using Eclipse JDT have been highlighted and the depths of research that

can be reached with the package. In this project, it cannot be stressed enough how

important it was in the development of the cast analyser tool. After a number of

considerations, the tool was finalised with its current functionality. This was to allow

for adequate analysis of as many real-life systems from the Qualitas Corpus as

possible.

The following chapter will contain the results obtained from the analysis of each

system. The official output of the tool will be included, evaluated and discussed. To

ensure the integrity of each output, each system will undergo manual inspection even

if all cast instances are accounted for. All findings will also be deliberated to give a fair,

unbiased review of the analysis tool.

36

4.0 Analysis

This chapter details all results obtained from the analysis tool and other observations

as a result of manual inspection. A brief description of each system and its general

use in real-world environments will be included to provide a background of the

program. This will then be followed by the analysis part. Each section will first present

the output values as a result of the system being passed through the tool. Secondly,

an in-depth discussion of the values will be included followed by the findings

discovered through manual inspection. The aim of the discussions will be to try and

identify why the cast operator has been used and the general reason for its necessity.

Particularly, the analysis will investigate the most cast dense files and if their use is a

result of poor overall design. Additionally, the same process will be followed if there is

an abundance of the type-check operator ‘instanceof’. Values that the tool provide to

solely aid manual inspection will not be included and will only be discussed along with

overall conclusions of each analysis. For example, methods, method chains and

variables in which the binding could not be resolved due to them returning null.

As previously mentioned, the implementation of the final tool was an iterative process

to optimise the usefulness of the overall report. Therefore, so too are the results. For

example, there were systems analysed that did not, in fact, have any files ending in

‘.java’ and were therefore left out of this chapter. The reason being that manual

inspection alone of the whole system would be far too time consuming and difficult to

compare with other analysis outcomes from the tool. Similarly, systems that had very

little instances of casting were left out as they added very little value to the

investigation.

4.1 Apache-Ant 1.8.4

Apache-Ant is a Java library that is used to efficiently build Java systems as targets

and extension points. It is commonly used to build Java applications as there are many

advantages in doing so. For example, it can automatically remove ‘.ignore’ files and

other local temporary directories. The open-source software is also very powerful in

compiling ‘.java’ files but is not limited to only compilation tasks but also testing and

other aspects of development. It is an extremely popular tool used by Java developers.

Although used to enhance the capabilities of the Java language, it is also written in

Java which is why it is suitable for analysis by the tool.

37

4.1.1 Results

 Value

Total .java files analysed 1196

Total number of cast instances 2590

Average casts per file 2.166

Total ‘instanceof’ instances 365

Total casts that involve a system Class 140

Total casts that involve the Object Class 1093

Total casts from that involve primitives 348

Total errors that occur 365

Total errors due to message chains 51
Table 3 - Apache-Ant Analysis Results

4.1.2 Most Cast Dense File – ‘ZipEncodingTest.java’

‘ZipEncodingTest.java’ has the most instances of casting out of the 1196 ‘.java’ files

that were analysed in the system. Although the tool returned a total of 124 instances

of casting, upon manual inspection, it is clear there are considerably more. The cast

operator is used within a conventional for loop as shown in Figure 18.

As a result, there are an additional 256 instances of casting not recognised by the tool.

This has been noted for future work and similar implementations will be checked

during the manual inspection. Initially, this seems rather excessive. However, the file

is actually using the cast operator to convert data types to ‘(byte)’ in order to carry out

operations needed for bit-packing. A small section of code is shown in Figure 19 to

demonstrate this approach.

 Bit-packing is the process of inserting non-byte size data into primitive data types.

There is no serious cause for concern as bit-packing is used to increase the efficiency

of output during testing. Unlike the normal use of casting which is to access the

functionality of a class.

Figure 18 - Cast Inside for Loop

Figure 19 - Bit-Packing example

38

4.1.3 Most ‘Instanceof’ Dense File - ‘UnknownElements.java’

‘UnknownElements.java’ has the most cases of the ‘instanceof’ type-check operator.

It has a total of 14 instances out of the total 365 for the system. It is clear from the

name of the file that it has been set up to solely check the data-types of various return

values. All but two cases of the operator check for the ‘Task’ datatype and then follow

up with a cast if true is returned.

An example is illustrated in Figure 20 in which the initial binding of ‘o’ is of type Object.

The file comments describe it as a wrapper class that creates Tasks and data types

that are otherwise unknown during runtime. The file appears to be unrelated to

‘ZipEncodingTest.java’ which had the most instances of casting. The sole purpose of

this class is to take in an object and return the data type of that object that is otherwise

unknown.

4.1.4 Summary

The overall system has a total of 2590 instances of casting giving an average of 2.166

casts per file. There is a total of 1093 casts originating from Object data-types to more

specific project classes. 348 of the casts are changing from primitive types but it is

now clear that this can be considerably more due to the flaw in the tool. Most of the

cases observed are narrowing values from ‘int’ to ‘byte’ during the bit-packaging

process discussed. However, casting from the data type ‘DirectoryScanner’ to

‘ArchiveScanner’ was also a regular occurrence with a total of 47 instances.

‘ArchiveScanner’ is deemed a necessary subclass of ‘DirectoryScanner’ to add

archive specific functionality. This is exactly why the cast function has been used as

displayed in Figure 21.

Furthermore, the use of casting to convert from a ‘URLConnection’ type is also

predominant in the system. The cast operator is often used to convert the object to

Figure 20 - 'UnknownElements.java' instanceof example

Figure 21 - example of casting between project classes

39

type ‘HttpURLConnection’, a subclass of ‘URLConnection’ that has extra functionality

for systems that are only dealing with HTTP or HTTPs. Web protocols that are used

for secure communications over a computer network. Other than this, there aren’t

many project class conversion that are substantial enough to suggest the need for any

form of refactoring. Out with these three parameters, casting is also regularly used to

convert ‘Object[]’ arrays. There were 365 errors that the tool could not distinguish

bindings for. Although 51 of these were due to message chains, the majority of them

were caused by the same expression ‘getCheckedRef().touch(modTime)’. The ‘touch

()’ method is used to update a modified file at a specific modification time. However,

the tool is seeing it as an additional method call and trying to resolve the binding for

that instead of the return type of ‘getCheckedRef()’.

4.1.5 Conclusion

Apache-ant is a relatively large system that presents multiple arguments for the

necessity of the cast operator. It will be interesting to see if other systems have similar

results. For example, casting from Object data-types to specific project classes greatly

outweighing all other conversion types. This could be a design that is very common in

large Java systems which allows general objects to be passed around until a definite

type is decided later on in the program. As all the systems have test classes, maybe

this bit-packing will be a regular occurrence to increase the efficiency of output. With

an average of 2.166 casts per file, Apache-Ant does not appear to require major

refactoring due to design flaws.

4.2 ArgoUML

ArgoUML is a diagramming application that is written in java and is therefore

accessible by any platform running on Java. Developers can simply download the zip

file from ‘http://argouml.tigris.org/’ and add the ‘.jar’ to the classpath of their projects.

ArgoUML provides developers with an efficient interface that allows them to create

and modify numerous UML diagrams such as class and sequence diagrams.

Additionally, there is an advanced code generation feature available with ArgoUML

that can automatically generate classes, source code and interactions based on the

diagram you have created. This feature is available for many languages including C++

and Java and is based on strict Java standards.

40

Not only does ArgoUML provide extra guidance for developing well designed UMLs, it

also evaluates and suggests possible improvements that can be made to the overall

design of the diagram using its ‘design critics’ feature.

4.2.1 Results

 Value

Total .java files analysed 1922

Total number of cast instances 8367

Average casts per file 4.353

Total ‘instanceof’ instances 3458

Total casts that involve project Class 1103

Total casts that involve Object Class 4794

Total casts that involve primitives 668

Total errors that occur 564

Total errors due to message chains 141
Table 4 - ArgoUML Analysis Results

4.2.2 Most Cast AND ‘instanceof’ Dense File – ‘CoreHelperMDRImpl.java’

Unlike the system Apache-Ant, the greatest number of casting operators in ArgoUML

is in the same file as that of the ‘instanceof’ operator. There are a whopping 447 cases

of both casting and ‘instanceof’ in the file ‘CoreHelperMDRlmpl.java’. Upon manual

inspection, almost every method employs at least one of the operators. However, there

is a great variety of type checks that occur. For example, the program checks if an

object is of type Class or Subclass and then later checks if an object is of type

‘NameSpace’, as shown in Figure 22 and Figure 23 - ArgoUML type check example .

Figure 22 - ArgoUML type check example 2

Figure 23 - ArgoUML type check example 1

41

Similarly, with casting, the system casts to many different types such as List and

‘Dependency’ type as shown in Figure 24 and Figure 25.

Out of all the different type checks, the one that occurs the most is ‘instanceof

Classifier’ with a total of 93 occurrences. Classifiers are a type of element that is

characterised in Unified Modelling Languages (UML) which have similarities whether

it be attributes, structural features or behavioural features such as methods. Therefore,

the result of the type check solely depends on the characteristics of the Classifier

Class, set by the system itself.

Not only does ‘CoreHelperMDRlmpl.java’ carry out a large number of type checks, the

way that it has implemented it is not only hard to understand but hard to physically

inspect due to its repetitive use of else if statements. Figure 26 shows a small section

of code from the file.

Figure 25 - ArgoUML cast example 1

Figure 24 - ArgUML cast example 2

Figure 26 - Poor code design in ArgoUML

42

ArgoUML should consider refactoring in some way to improve the quality and

maintainability of the code. Possible refactoring examples could be to use the Enum

data type or switch statements that do not alter the logic of code but can simply

improve the readability. Figure 27 shows another example of how ‘instanceof’ is

implemented in the system.

From the 447 instances of casting, the most use cases of the operator are to convert

objects to the type ‘ModelElement’ with a total of 63 instances. The majority of use

cases first check the type to confirm the object is indeed of type ‘ModelElement’.

However, there are a handful of circumstances that do not use any type check

methods but still explicitly cast to object, illustrated in Figure 28.

Figure 27 - ArgoUML implementation on 'instanceof'

Figure 28 - ArgoUML cast without type check

43

4.2.3 Summary

The overall system has a total of 8367 instances of casting which would suggest the

developers for ArgoUML view casting in a different light than that of Apache-Ant. Is it

possible that they do not see casting as a code smell at all which is why they have

used the operator so frequently? The system has an average of 4.353 casts per file,

more than double than that of Apache-Ant. Again, the greatest number of objects being

cast are of Object data type with 4794 occurrences. Most of which were carrying out

type checks beforehand.

Like the example shown in Figure 29, ArgoUML constantly passed in parameters of

Object data type, carried out a type check and then cast to that specific type. Similar

examples show that ArgoUML had the approach of keeping as many objects of type

Object as they could. The system then uses custom files that have the responsibility

to check general Object type variables and then cast them to specific classes.

‘FacadeMDRImpl.java’ is an example of such files, Figure 30 shows one of its

methods. However, there are many more that are near identical that check for a huge

variety of data types.

Figure 29 - ArgoUML type checking from Object type

Figure 30 - Example of a type check method in ArgoUML

44

There were a total of 668 instances of casting that involved primitive data types. Upon

further inspection, the system interestingly uses the explicit cast function to store

integer values as their corresponding ASCII (American Standard Code for Information

Interchange) character. A method that employs the casting operator in this way is

shown in Figure 31.

As ArgoUML is such a vast system, other files that were manually inspected were

those that had the most instances of casting after ‘CoreHelperMDRImpl.java’. This

was to identify how the system used the casting operator to convert custom data types,

which occurred 1103 times. Other than casting to ‘ModelElement’ previously

discussed, the system often casts to ‘JPanel’. In Java, the JPanel class is used to

store components and can be customised to provide various layouts depending on the

organisation required. JPanel is part of the Swing package that is used to enable the

development of graphical user interfaces (GUI). Figure 32 shows how the casting

operator is used in the system and Figure 33 shows an example of the GUI’s possible

by using JPanel.

Figure 31 - ArgoUML casting example

Figure 32 - ArgoUML casting to type 'JPanel'

45

There were 570 expressions that could not be fully analysed, this is not as bad as what

was first expected as it is only 198 more than Apache-Ant despite having nearly double

the number of analysed Java files.

143 of these errors were caused by message chains that the tool has difficulty dealing

with. Although not particularly high compared to the size of the system, it is still a

substantial amount that could be inspected for possible refactoring.

With the aid of the analysis tool providing a list of all unknown bindings for manual

inspection, an observation was made across the whole system. Often, the return value

of the method ‘getPanelTarget()’ was involved in many cast instances. The returned

object is of type ‘Fig’ but is often declared as type Object, supporting the point made

earlier. Figure 34 shows an example of this.

Figure 34 - ArgoUML declaring variables as type Object

Figure 33 - GUI options available through Swings JPanel class (Boskovic, 2005)

46

Although Figure 34 shows the object being cast to ‘PathContainer’, this only occurs a

few times. Most cases by far are cast to one of the following data types:

• FigCompartmentBox

• FigInterface

• StereoTypeContainer

• Visibilitycontainer

• FigText

• FigAssociationClass

• PathContainer

• FigRRect

Additionally, all of the casts that include this ‘getPanelTarget()’ method are in a specific

type of file.

• StylePanelFigClass.java

• StylePanelFigAssociation.java

• StylePanelFigInterface.java

• StylePanelFigPackage.java

• StylePanelFigRRect.java

• StylePanelFigText.javaStylePanelFigNodeModelElement.java

All of which extends the ‘StylePanelFig’ class. Following some background research,

all of these files involved in giving the user the ability to adjust the common attributes

of a Fig. A Fig class is simply used instead of the console for input and output, this can

simply be a pop-up box that displays a message in the form of a String.

4.2.4 Conclusion

As a much bigger system, ArgoUML was expected to use the casting operator more

than Apache-Ant but not quite double the average casts per file. It was observed that

ArgoUML employs a technique that uses Object data types more frequently across the

entire system. Resulting in many dynamic type checks required within the system

itself. Although this approach can be practical, it forces the use of casting, which can

be considered unnecessary if the correct parameter is originally passed in. It can also

cause confusion during maintainability as it can be difficult to understand what the

method does from its signature as well as limiting the possibilities of overloading.

Users and developers may assume that any object type can be passed in and the

method will work, which is usually not the case. From the findings of the tool and

manual inspection, a number of refactoring techniques discussed could increase the

overall code quality of ArgoUML.

47

4.3 JHotDraw 7.5.1

JHotDraw can be considered a similar system to ArgoUML in the sense that it is used

to aid development and annotation of GUI based applications and tools. However,

JHotDraw is more specific to applications that intend to be used for drawing technical

graphics such as network layouts. JHotDraw is the Java version of HotDraw and has

impressive capabilities that can be extended to incorporate missing functionality that

may be desirable for specific projects. The software was originally developed by the

man who first defined what a ‘code smell’ was, Kent Beck, and was the first package

labelled a ‘framework’ as it was specifically designed for reuse. JHotDraw version

7.5.1 was released in 2010 and is the most recent version within the Qualitas Corpus.

It is written in Java and has had continuous updates throughout its lifetime. The system

is suited for a study such as this and will be interesting to compare with ArgoUML to

observe the differences or similarities in their approach to casting.

48

4.3.1 Results

 Value

Total .java files analysed 613

Total number of cast instances 2685

Average casts per file 4.380

Total ‘instanceof’ instances 362

Total casts that involve project Class 117

Total casts that involve Object Class 680

Total casts that involve primitives 705

Total errors that occur 495

Total errors due to message chains 130
Table 5 - JHotDraw analysis Results

4.3.2 Most Cast Dense File – ‘Base64.java’

‘Base64.java’ uses the cast operator the most out of the whole system with a total of

81 instances. Upon manual inspection, the file uses the function to convert ‘char’ data

types into the data type ‘byte’ while filling a corresponding byte[] array during

declaration. The full declaration is illustrated in Figure 35.

This employment of casting is used in the process of encoding and decoding from

base64 notation. Base64 is a Java class used to deal with encryption (JavaTPoint,

2016). The file provides the necessary methods to both encrypt and decrypt the data

within a system. A few methods used for encoding include:

• encodeBytes(byte[] source) – Used to encode an array of bytes into Base64

notation.

• encodeToFile(byte[] dataToEncode, String filename) – Used to encode data to

a file.

• encodeFromFile(String filename) – Used to encode data in a file to Base64

notation.

Figure 35 - JHotDraw converting char types to byte types

49

The reason for JHotDraw using Base64 notation for characters is to maintain its ability

to save, load, print and share figures and diagrams without being corrupted. Base64

notation ensures this. However, this comes at a cost as four bytes are produced from

every three bytes of data, which can greatly increase the size of storage required if

encoding a large data set.

4.3.3 Most ‘Instanceof’ Dense File - ‘JavaPrimitivesDOMFactory.java’

‘JavaPrimitivesDOMFactory.java’ contains 39 use cases of the ‘instanceof’ operator.

Although this is not many, the fact that it is more than half of the maximum number of

casts in a file may be an issue. The reasoning being that the system may be using the

casting function without carrying out necessary type checks first. The purpose of the

class itself, ‘JavaPrimitivesDOMFactory’, is to serialise Java primitive objects and

‘DomStoreable’ objects. Upon manual inspection, the ‘instanceof’ operator is used to

identify the type of an object being passed into a method and then return the type of

the object as a String. This is a perfectly acceptable situation. However, the

implementation of the method is similar to that of Figure 26, that there is a large chain

of ‘if’ and ‘else if’ statements that make the body of the method. Figure 36 displays a

section of one of these methods.

Figure 36 - JHotDraw 'else if' chain

50

Which again could possibly be replaced with a more manageable and aesthetically

pleasing ‘switch’ statement. The same approach is used in other methods within the

class. Additionally, the operator is used when the object passed in is an Array type.

This is followed by a cast to a new array and then filled as illustrated in Figure 37.

Other than these observations, the ‘instanceof’ operator is not used an excessive

number of times and does not provide the user with a greater understanding of the

system.

4.3.4 Summary

The final output values of the tool analysis have some surprising results. Despite the

fact that there were only a total of 2685 instances of casting, the total number of ‘.java’

files analysed was only 613. Which means the average number of casts per file is

4.380, higher than that of ArgoUML which had a total of 8367 instances of casting.

Suggesting that the developers of JHotDraw do not, in fact, view casting as a code

smell at all, which might actually be the case.

Once more, the results of JHotDraw are not what they seem. With many cast

instances, one would expect that a similar approach to development would be adopted

as ArgoUML. To keep an object of the general Object data type and then cast to

specific types when required. However, JHotDraw is the first system that has more

casts involving primitive types than that of Object data types.

There are a total of 705 casts that are either casting to or from primitives compared to

a total of 680 casts of type Object. Other than the primitive conversions discussed

earlier in Figure 35, the others are spread out fairly evenly. For example, if you follow

the majority of the primitive casts to their original file. In most cases, there are only two

casts in the file, others only have a single instance. Therefore, other than the

conversions required for Base64 notation, there is no substantial data that can aid

users in refactoring.

Figure 37 - JHotDraw using both instcnaceof and cast operator

51

The program casts between system classes a total of 680 times. Although less than

that of primitives, it is still a substantial amount with respect to the size of the whole

system. In fact project class casts account for 25.3% of the total casts. Many of which

occur in the file ‘FontFamilyNode.java’. Referencing the JHotDraw API, this file

implements the ‘MutableTreeNode’ and only allows ‘FontFaceNode’ as child nodes

(JHotDraw7API, n.d.). MutableTreeNode is an interface that specifies the

requirements for a tree node object that may be subject to change. FontFaceNode

also implements MutableTreeNode and is a class that does not allow children. The

reason for using these classes within JHotDraw may be to efficiently traverse through

a Java tree but limit the number of children produced from each node. Figure 38

illustrates a method within ‘FontFamilyNode’ and how it uses the cast function to

ensure that the child nodes are not split again into children of their own.

Other casts that regularly occur in JHotDraw, is the cast from type Component.

Component is a Java class in which its instances have a graphical representation that

can be displayed and interacted with by the user. In a system like JHotDraw that is

mainly used to create and customise graphical user interfaces for the user, there will

be many different types of Component types such as scrollbars, checkboxes and other

custom types set up by the system. As a result of manual inspection, it can be stated

that JHotDraw uses the Component class much like other systems use Object.

Figure 38 - Project class casts in JHotDraw

52

For example, objects of type Component are passes into a method. Followed by a

type check and a cast if the check returns true. This is a common theme throughout

JHotDraw, an example is shown in Figure 39 from the file

‘ReOpenApplicationAction.java’.

Unfortunately, there were a total of 495 instances in which the binding of the type being

converted could not be resolved. 130 of these were due to message chains. However,

there were various other reasons that errors occurred such as the Java Clone()

method that the analysis tool consistently struggles with. This will be discussed in the

analysis of the tool itself. The specific method in JHotDraw that threw the tool off was

‘createUI()’. Many different object types call upon this method such as:

• PaletteButtonUI

• PaletteSliderUI

• PaletteLabelUI

• PaletteFormattedTextFieldUI

All of which extend the corresponding BasicUI class and have been customised to

enable palette specific functionality. JHotDraw uses the cast function along with the

method call, inside a set method. This is so that the property being set is of the correct

type. An example of ‘PaletteButtonUI.creatUI()’ does exactly this in Figure 40.

4.3.5 Conclusion

JHotDraw is a considerably smaller system than that previously analysed. However,

the results of both output from the tool and manual inspection drew out some

interesting aspects of the system. The casting operator was frequently used

throughout the system for various reasons. This particular analysis disclosed the need

for casting when using Base64 notation, which was not considered at the beginning of

this investigation.

Figure 39 - JHotDraw casting from type Component

Figure 40 - JHotDraw casting within a set method

53

This and many other cast dense files greatly increased the average of the system to

4.38 casts per file. Which can be expected if Kent Beck does not personally consider

casting to be a code smell. The system has an efficient approach to creating different

characteristics of user interfaces by using objects of type Component. However, it

forces the use of the cast operator which may be unnecessary if an alternative method

was used. Additionally, the use of the ‘instanceof’ operator in Figure 36 implies that

there may be a need for other refactorings in the system that cast analysis alone

wouldn’t uncover.

4.4 Azureus (Vuze)

The Vuze software, previously known as Azureus, is a Java-based package that is

used to share and transfer files via the BitTorrent protocol. BitTorrent protocol is a

peer-to-peer method of transferring data over the internet. The most recent version

included in the Qualitas Corpus is still Azureus but has since been renamed to Vuze

in more recent versions. It is also a free open-source package but has many features

similar to premium clients, which is why it is so popular among both aspiring and

advanced developers. Vuze is compatible with many IDE’s and has its own user

interface functionality that can be accessed through the Eclipse Standard Widget

Toolkit (SWT).

4.4.1 Results

 Value

Total .java files analysed 3319

Total number of cast instances 12915

Average casts per file 3.89

Total ‘instanceof’ instances 2130

Total casts that involve project Class 1688

Total casts that involve Object Class 5880

Total casts that involve primitives 3051

Total errors that occur 1836

Total errors due to message chains 110
Table 6 - Azureus analysis Results

54

4.4.2 Most Cast Dense File

‘MD2Digest.java’

‘MD2Digest.java’ has the most instances of casting within the entire system with a total

of 357 occurrences. MD2 is a Message-Digest algorithm that was developed in 1989.

The cryptographic hash function employs a public key infrastructure that is used to

produce hash values of text. The file ‘MD2Digest.java’ is used within Azureus to

implement MD2 hash function.

The need for casting arises in a method that has a “random permutation constructed

from the digits of PI”. This is a 256-byte construct that converts all of the input values

to type byte. Figure 41 displays a section of this method.

There is not much information disclosed about this file and its purpose within Azureus.

Therefore, another cast dense file will also be included in this section to develop a

deeper understanding of Azureus as a whole.

‘DesParameters.java’

The second file behind ‘MD2Digest.java’ with the most cast instances is

‘DesParameters.java’. However, this file is from the Bouncy Castle Crypto package

and is also used to implement cryptographic algorithms. In fact, DES in the file name

represents Data Encryption Standard. As a result, the casting operator is used in a

similar fashion to that of ‘MD2Digest.java’.

Figure 41 - Azureus casting values in a 256byte construct

Figure 42 - Encryption keys used in DESParameters.java

55

Figure 42 shows how the file casts to type byte when developing data encryption keys,

these are required when a block cypher is used to encrypt data.

Giving the nature of Azureus and what it is used for, it is no surprise that there are so

many files and casting instances that are involved in the encryption of data.

As Azureus allows for peer-to-peer sharing of data, it can be expected that it is difficult

to find sources explaining the function of each file in the system. The tool does,

however, highlight how the necessity of the cast operator to carry out such

encryptions.

4.4.3 Most ‘instanceof’ Dense File – ‘BEncoding.java’

Bencoding is the type of encoding used in the Azureus system and in fact most

BitTorrent clients. It is also involved in the process of peer-to-peer file sharing.

However, it specifically supports byte Strings, integers, lists and dictionary data types.

‘BEncoding.java’ uses the ‘instanceof’ operator to check the type of object before

casting and then encoding it. The type checks range from type Map and TreeMap to

String. An example is shown in Figure 43.

The file only has a total of 47 instances of the operator and follows a similar approach

to that of Figure 43 in nearly all of the cases.

4.4.4 Summary

Being the largest system so far, the tool analysed a total of 3319 ‘.java’ files. Although

there is a total of 12915 instances of the cast operator, Azureus has an average of

3.89 casts per file. Lower than that of JHotDraw which is over five times smaller than

Azureus. As Azureus is such a vast system, it would be impossible to manually inspect

all popular conversion types. Therefore, a number of reoccurring cases will be

inspected. However, the main figures to observe during this analysis is the average

casts per file. The usefulness of these values will be discussed in the following chapter.

Figure 43 - Azureus type check before encoding

56

The system has 5880 instances of casting that converts from Object data types.

Similar approaches to previous systems can be observed in Azureus, there is an

abundance of methods that accept Object type parameters, check the type and then

use casting to access class-specific methods. Figure 44 displays two methods that

have implemented this approach.

Additionally, the system has casting when using the ‘toArray’ function to instantiate an

array of a specific type. This is also a recurring theme within Azureus, an example is

displayed in Figure 45.

There were a total of 3051 casts that convert objects of primitive data types. As well

as ‘DESParameters.java’ that uses casting in the process of data encryption, there are

many other files that have similar if not the same reasons for using the cast operator.

Encryption of data is a crucial aspect of a system that promises peer-to-peer sharing.

However, the way it uses casting seems unnecessary and could certainly be reviewed

for refactoring.

As a result of further investigating other ways Azureus uses casting, it was discovered

that there are many instances in which the cast operator is used within various loops.

Figure 45 – Azureus using casting during array instantiation

Figure 44 – Azureus casting from Object data types

57

For example, Figure 46 shows the casting operator being used as many times as there

are elements in the list ‘managers’. However, like before, the tool only recognises one

instance of casting.

When inspecting the cast instances that the analysis tool could not resolve binding for,

it was noticed that there was one conversion that occurred hundreds of times.

‘cell.getDataSource()’ occurs in multiple files such as :

• SizeItem.java

• StorageTypeItem.java

• TorrentRelativePathItem.java

• CategoryItem.java

All of which implement the interface ‘TableCell’. However, having inspected the

interface, the return type of ‘.getDataSource()’ is simply an Object data type. It is not

confirmed the reason the tool cannot resolve the binding for this method. Further

analysis of the tool is required to pinpoint where it goes wrong in this particular

example.

4.4.5 Conclusion

As previously mentioned, without the aid of an analysis tool to point users in the right

direction, it would be near impossible to manually inspect the whole of Azureus for

possible refactoring opportunities. The usefulness of the average value included in the

analysis tool was highlighted as one may assume the more instances of casting, the

more refactoring is required. However, this is not the case as shown in this chapter.

So far the smallest system has had the highest average of casts per file. That said,

the tool did recognise more than 12000 instances of casting and the way Azureus

employs the operator as explained. Although this has been the largest system

analysed by the tool so far, this is still considerably high in terms of casting being a

code smell.

Figure 46 - Azureus using casting inside for loop

58

4.5 Marauroa

Due to the sheer size of Azureus, Marauroa was selected for analysis as it has more

than half the ‘.java’ files, allowing the project to compare systems with a wide range of

sizes. Marauroa is a Java package that allows users to build their own online games

by assisting with database persistence, object management and client-server

communication. Marauroa is popular among developers that aim to produce ‘old-

school’ games. Arguably, the most popular game to be produced using the package

is ‘Stendhal’, an open-world adventure game where online players can interact and

trade in-game currencies. Due to the consistent demand for these kinds of games,

Marauroa has experienced continued development and updates. It will be interesting

to see how this system compares to the others as it is the smallest system that is to

be analysed.

4.5.1 Results

 Value

Total .java files analysed 207

Total number of cast instances 222

Average casts per file 1.07

Total ‘instanceof’ instances 18

Total casts that involve project Class 17

Total casts that involve Object Class 35

Total casts that involve primitives 76

Total errors that occur 44

Total errors due to message chains 0
Table 7 - Marauroa Analysis Results

Immediately, it is not difficult to notice the clear contrast between Marauroa and all of

the other systems. Not only in terms of size but all results obtained from the analysis

tool. That said, the analysis methods will remain consistent to highlight any surprising

approaches Marauroa may have to the use of casting.

4.5.2 Most Cast Dense File – ‘ClientFramework.java’

Within Marauroa, the file that uses the cast operator the most is

‘ClientFramework.java’, an abstract class that has a total of 19 casting instances.

Upon inspection, there is no obvious approach to the use of casting within the file. For

example, there are no large methods that contain multiple ‘else-if’ statements found

during analysis of other programs.

59

There are, however, many switch statements that all include at least one instance of

casting, which do not actually implement any type checks beforehand. These kinds of

assumptions are not advised. An example is displayed in Figure 47.

Other than this, the casting operator is used sparsely, is it possible that the developers

had a clear opinion when it came to its use. Unlike many of the other systems. The file

is advised to be extended into the user’s game to wrap actions that the online client

should do.

4.5.3 Most ‘Instanceof’ Dense File – ‘RPObject.java’

This opinion may become clearer throughout this analysis as the file that uses the

‘instanceof’ operator the most is ‘RPObject.java’. However, it does so only twice.

Surprisingly, this file is of considerable size with a total of 1896 lines. The two

occurrences do, however, use the same approach that this project has frequently

come across. Passing an object into a method, checking the type and then casting to

access class-specific methods. Which is what Figure 49 and Figure 48 display.

This file details what the system views as an ‘object’. It explains that “everything is an

object”, whether It be “physical or logical”. This is followed up with a large list of

parameters that their custom object should have.

Figure 47 - Marauroa using casting inside SWITCH statement

Figure 49 - Marauroa Type Check 2

Figure 48 - Marauroa Type check 1

60

This may explain why there are only two use cases of ‘instanceof’ and why the system

has more castings that involve primitive types than Object data types.

4.5.4 Summary

As briefly mentioned, Marauroa is the smallest system that has been inspected by the

analysis tool. With a total of 207 ‘.java’ files and 222 casts in total, Marauroa was

included to increase the variety of systems analysed and see how they compare to

each other. With an average of 1.07 casts per file, the lowest of all the systems,

Marauroa does not use the function as nonchalantly as other programs. The system

has 17 instances of casting that convert between internal classes. A few of these

instances do not check the type first and have been used on the basis that the

developer ‘just knows’ that the object is on that type. Which in turn, relies on a

successful connection to the internet. For example, the property ‘netMan’ is declared

in the class but instantiated in a method called ‘connect()’, as shown in Figure 50 and

Figure 51.

This is then followed up by a method shown in Figure 52 that requires the cast function

to be the same type it was instantiated as.

This seems like an unnecessary instance of casting and there are similar occurrences

throughout other files. It is unclear why the system has done this and there are little to

no comments explaining its purpose. This may be taken further in the discussion

section of this report to try to understand the root of the cause.

Similarly to JHotDraw, Marauroa has more castings that involve primitives than that of

Object data types, 41 instances to be exact. Again, this should be more if the tool was

able to recognise the use of casting inside a for loop as shown in Figure 53.

Figure 50 - Marauroa declaring 'netMan'

Figure 51 - Marauroa instantiating 'netMan'

Figure 52 - Marauroa casting without type check

61

The Message class in java also occurs regularly during conversions. However, this

links back to the ‘ClientFramework.java’ file that uses switch statements to determine

the specific type of message.

There were 44 errors that the tool could not identify binding for. Interestingly, none of

them were due to message chains. Suggesting that the developers of Marauroa are

reluctant to use many code smells. Many of the errors occur as a result of the Java

clone() method that was discussed in section 4.3. Others include

‘object._tojava_(PythonWorld.Class)’ and ‘ser.readObject(new RPObject())’. The first

is to support the importing of Python scripts and the second is to create a new custom

RPObject that was defined in ‘RPObject.java’ previously. Which again, is used inside

a for loop shown in Figure 54.

It is clear that an object of type ‘RPObject’ is returned but the tool throws an error when

a ‘new’ object is instantiated and cast at the same time.

4.5.5 Conclusion

This system makes little use of both the casting operator and the ‘instanceof’ type

check functionality. As well as it's custom object class ‘RPObject’, many of its classes

inherit directly from type Object.

It is possible that the few ‘.java’ files analysed contributes to the end results but the

average casts per file is the lowest value obtained from all of the systems analysed.

Marauroa further emphasised the improvements required in the analysis tool to be

able to provide more accurate results.

Figure 53 - Marauroa casting inside FOR loop

Figure 54 - Marauroa Cast that causes tool error

62

4.6 Discussion

The focus point of this project as a whole was to attempt to provide an understanding

of the different approaches to casting that systems may have and if this is a result of

poor overall design. From the results and observations made, it was clear that each

system viewed casting in a different light and required the operator for various

purposes. There were no Java systems analysed, including those that were not

included in this report for further inspection, which did not use a single instance of

casting. Due to restrictions set by Java and its strict Object-Oriented approach, a fair

point can be made that no matter how well a software systems design and architecture,

it is very difficult if not impossible not to use casting at some point during development.

However, as this project has found out, certain systems use casting far more

incautiously than others. Table 8 illustrates the total files cast for each system

alongside the average casts per file to allow a visual comparison of the two.

Apache-Ant ArgoUML
JHotDraw

7.5.1
Azureus Marauroa

files analysed 1196 1922 613 3319 207

Average casts per file 2.166 4.353 4.38 3.89 1.072

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

500

1000

1500

2000

2500

3000

3500

A
V

ER
A

G
E

C
A

ST
S

P
ER

 F
IL

E

TO
TA

L
'.

JA
V

A
' F

IL
ES

 A
N

A
LY

SE
D

Table 8 - Total files analysed compared to average casts per file

63

4.6.1 Highest Cast Dense System

The system that used the casting operator the most relative to its size was JHotDraw.

With an average value of 4.38 casts per file, JHotDraw surpassed systems that are

more than five times its size. 613 ‘.java’ files were analysed in which the tool identified

2685 instances of casting. This was mainly down to the implementation of encoding

data, which required the system to cast ‘char’ data types to ‘byte’ data types.

4.6.2 Lowest Cast Dense System

The system that had the least amount of casting relative to its size was Marauroa. This

was also the smallest system analysed and had an average of 1.07 casts per file. If

additional systems were analysed in this report, it would be difficult to find a program

that has an average as low as Marauroa. This may simply be down to its size or it

could be possible that the developers had a negative opinion on the use of casting.

So they designed the system in such a way that they would not require it. Regardless

of the reason, casting analysis alone would not be able to provide adequate enough

information on the system to suggest any possible refactoring.

4.6.3 Passing Object Type Parameters

There was a consistent need for casting throughout all the systems as a result of a

specific design choice. Object data types being passed in as method parameters, the

parameter would undergo multiple type checks, and then the object would be cast to

the specific check that returned true.

However, on many occasions. The system checked for every possible return type.

Resulting in an unsightly chain of ‘else-if’ statements. In examples like the method

found in JHotDraw (Figure 36), refactoring ought to be considered. These particular

instances of casting made up the majority of casts in all the systems that were

analysed. Granted ArgoUML is a medium sized program with 1922 ‘.java’ files, the

system persistently utilised this design approach throughout many of its classes. The

approach is considered bad practice within the software development community.

Particularly, the point made during analysis that assumptions may be mistakenly made

that any object type can be passed into these kinds of methods. Additionally, it forces

developers to use casting throughout the system.

64

4.6.4The Use of ‘Instanceof’ Operator

Due to the fact that most cast instances undergo a type check beforehand, it only

made sense to correspondingly analyse the systems for the ‘instanceof’ operator.

Which proved to contribute valuable data towards the project overall. It was definite

that the use of the operator certainly came hand-in-hand with casting. The more the

system used casting, the more type checks were required. Additionally, as the

instances of casting that were converting Object data types increased, so too did the

use of ‘instanceof’.

4.7 Evaluation of Tool

The software analysis tool that was developed greatly increased the efficiency of the

analysis process. By providing practical results, the tool proved extremely helpful

during manual inspection and was used to focus on files and Java code that were of

particular interest. It was clear early on in this project that the investigation would

simply not be possible without the use of an automated inspection tool. Especially

when dealing with systems as big as Azureus, within the time constraints of the project

it would have been impossible to try and manually detect each instance of casting.

Furthermore, the late addition to detect the ‘instanceof’ operator would not have been

possible, which also contributed towards the overall investigation. All instances of

casting that the tool identified were confirmed to be true positives. In terms of static

analysis, there were no instances of casting that went unnoticed. As previously

mentioned, the tool development was a continuous process. Once the fundamentals

were established and it was capable of analysing real life systems, there were many

improvements added when deemed necessary.

Other than the specific features detailed within this report, the tool also provides users

with data types involved in casting that the tool was not implemented to handle. For

example, if the tool was to provide details and resolve binding for every data type

involved in every instance of casting, code would have to be developed to deal with

every possible return type. This would simply be out of the scope of this project.

Therefore, instead of simply ignoring the fact that they exist, the tool has the option to

provide all data types that were not accounted for so that the user can look for

reoccurrences. This feature was incredibly helpful in allowing the user to get a quick

breakdown of conversion types out with the final results of the tool.

65

Although there were many aspects of the tool that were a success, the tool did not

perform as well as initially thought which has been highlighted throughout the analysis

chapter. The first most predominant downfall is the inability to accurately count

instances of casting inside a for loop. For example, a for loop may have iterated over

ten objects, casting each of them to an alternate data type. However, the tool would

only recognise a single instance of casting. To solve this problem, dynamic analysis

would be required which is out with the scope of this investigation. This has caused

an obvious decrease in accuracy of the final results. As discovered during analysis,

the tool was also unable to resolve binding for many cast instances. One being for

methods that created new objects during its implementation. This would be a main

focus if there was additional time available.

66

5.0 Conclusions and Recommendations

This report documents the process of attempting to develop a static analysis tool that

can aid users in recommending possible refactoring of Java code. The investigation

supports Fowler and Beck by showing that human intuition cannot be beaten at the

present moment when it comes to suggesting the best course of action to eliminate

code smells (Fowler & Beck, 2000). However, static analysis tools such as the one

developed here can provide an extremely helpful abstract of systems. By efficiently

using the tool to quickly gather data, developers can then home in on areas of the

program that they wish to further inspect or refactor based on personal experiences

and opinions.

The report has outlined the various design aspects of numerous systems and identified

that not all developers view the use of casting the same. There are various literature

and teaching tools that will suggest reviewing a systems design instead of repeatedly

having to cast objects. Along with many academics that have studied the topic of code

smells. However, there are large systems like Azureus that use casting profusely and

are still a great success and continue to be many years later. Therefore, is it possible

that casting is a smell and nothing more? A mere suggestion that one could possibly

redesign the system so that conversions are not required but at the same time, pose

no threat to the functionality and efficiency of the final output. This may be why as

mentioned in the literature review, many developers will disagree that casting should

be viewed in a negative light.

5.1 Possible Future Work

There is a great scope to develop this project further. There are various different paths

this investigation could go down that can provide a deeper understanding of not only

casting, but code smells in general and how they exist in real life open source systems.

Listed below, are numerous recommendations that have the potential to further

increase the usefulness of the casting analysis tool.

• Integrate additional functions to allow for dynamic code analysis. By doing so,

the too could compare data types before and after the execution of the code

as well as analysing the output data of each system. This may also enable the

possibility of counting casting instances in real time, especially when the

system is executing loops to repeatedly convert object data types.

67

• If time permits, develop code that is able to handle, if not all, more data types

so that it can resolve binding for a higher percentage of expressions that are

being converted. Although this could be a gruelling task, it would greatly

increase the quality of the current tool. If a 100% success rate was achieved

for resolving binding, the tool could then be developed to analyse the

hierarchies of each data type and how the two types involved in the casting

relate.

• As a follow up to the previous suggestion, the cast analysis tool developed in

this project could collaborate with the tool discussed in section 2.4 that also

carries out static analysis to provide information on hierarchy code smells

within open source systems. If the two were able to integrate, a far more

proficient tool could be produced that can first analyse the use of casting.

Followed by an in depth analysis of the relationships of each data type.

• One could analyse more systems to try and identify other commonalities when

it comes to casting. Moreover, there is also the option to expand not only the

tool but the full investigation to other programming languages. Especially, the

languages that implement explicit casting functions differently to convert data

types such as C++. This allows for a comparison to be made not only between

systems but also between high-level languages to obverse for any

commonalities.

5.2 Final Conclusion

The aim of this project was to investigate the use of casting in Java systems. It was

first observed that the operator was one of few code smells that had not been studied

to great depths. Some literature did not even include the function as a code smell at

all. Therefore, a foundation had to be set for the project to build on which would be an

unbiased view of the function. From there, the project would try to develop a deeper

understanding in able to come to a conclusion on how it is used and the insight it gives

to the design of a system. This was to be done through the development of a static

analysis tool which would aid manual inspection of systems from the Qualitas Corpus.

68

Although a steep learning curve was initially off-putting, the tool was able to parse

Java source code and identify nearly all instances of casting used in each system.

The tool was applied to a total of five systems, followed by an in depth analysis using

its output results. The final conclusions of each system were not as first expected, with

the smallest system using the function the most relative to its size. It was clear that

casting is a function widely used in open source systems to various degrees. It would

be realistic to conclude that it is near impossible to develop a system of relative size

and not use the casting function in multiple occasions.

69

6.0 References

Acellere, 2017. Benefits of Static Code Analysis. [Online]

Available at: https://medium.com/acellere/benefits-of-static-code-analysis-

a453b5d4a5e9

[Accessed 11 07 2019].

Anon., 2011. Visitor Design Pattern. [Online]

Available at: https://www.codeproject.com/Articles/186185/Visitor-Design-Pattern

[Accessed 2019].

Anon., 2019. Code Smells - Couplers - Message Chains. [Online]

Available at: https://refactoring.guru/smells/message-chains

[Accessed 14 07 2019].

Anon., 2019. Oxford English Dictionary, s.l.: s.n.

Anon., 2019. Visitor Pattern Design. [Online]

Available at: https://sourcemaking.com/design_patterns/visitor

[Accessed 07 2019].

Anon., n.d. Bloaters. [Online]

Available at: https://sourcemaking.com/refactoring/smells/bloaters

[Accessed 06 2019].

Anon., n.d. Object-Orientation Abuser. [Online]

Available at: https://sourcemaking.com/refactoring/smells/oo-abusers

[Accessed 06 2019].

Anon., n.d. Refactoring - Couplers. [Online]

Available at: https://refactoring.guru/refactoring/smells/couplers

[Accessed 06 2019].

baeldung, 2019. [Online]

Available at: https://www.baeldung.com/java-type-casting

[Accessed 06 2019].

Boskovic, M., 2005. PatternGuru: An Educational System for Software Patterns., s.l.:

s.n.

70

Budd, T., 1991. An Introduction To Object-Oriented Programming. 3 ed. s.l.:Reading,

Mass. : Addison-Wesley Pub. Co. .

Corpus, Q., 2013. Qualitas Corpus, s.l.: s.n.

EclipseFoundation, 2019. Eclipse Foundation, s.l.: s.n.

Emden, E. v. & Moonen, L., 2002. Java quality assurance by detecting code smells.

Richmond, IEEE.

Fokaefs, M., Tsantalis, N. & Chatzigeorgiou, A., 2007. JDeodorant: Identification and

Removal of Feature Envy Bad Smells. Paris, IEEE.

Fowler, M. & Beck, K., 2000. Refactoring : improving the design of existing code.

s.l.:Reading, MA : Addison-Wesley .

Ghahrai, A., 2018. Static Analysis vs Dynamic Analysis in Software Testing. [Online]

Available at: https://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-

software-testing/

[Accessed 11 07 2019].

Girish, S., Samarthyam, G. & Sharma, T., 2015. Refactoring for Software Design

Smells. s.l.:Elsevier Inc..

Gosling, J. et al., 2019. The Java Laguage Specification. [Online]

Available at: https://docs.oracle.com/javase/specs/jls/se12/html/index.html

[Accessed 11 07 2019].

JavaTPoint, 2016. Java Base64 Encode and Decode, s.l.: s.n.

JHotDraw7API, n.d. Class FontFamilyNode, s.l.: s.n.

Letouzey, J.-L. & Whelan, D., n.d. Introduction to the Technical Debt Concept. [Online]

Available at: https://www.agilealliance.org/wp-

content/uploads/2016/05/IntroductiontotheTechnicalDebtConcept-V-02.pdf

[Accessed 06 2019].

Schildt, H., 2007. Java : a beginner's guide. s.l.:New York, N.Y. : McGraw-Hill.

Sciore, E., 2019. The Visitor Pattern. In: Java program design principles,

polymorphism, and patterns. s.l.:Berkeley, CA : Apress L. P..

71

Sierra, K. & Bates, B., 2015. Head First : Java. s.l.:Sebastopol, CA : O'Reilly.

Spivak, R., 2015. Let’s Build A Simple Interpreter Part 7, s.l.: s.n.

Suryanarayana, G., Samarthyam, G. & Sharma, T., 2015. Refactoring For Software

Design Smells: Managing Technical Debt. Amsterdam ; Boston : Elsevier, Morgan

Kaufmann .

Tempero, D. E., n.d. Acquiring the Qualitas Corpus, s.l.: s.n.

ZIAMOS, I., 2017. Detecting Inheritance Hierarchy Smells, Glasgow: University of

Strathclyde.

