
Automated Mutation Testing for Concurrent

Software

Dept. of Computer and Information Sciences

University of Strathclyde

Patrick Gray

August 2019

This dissertation was submitted in part fulfilment of requirements for
the degree of MSc Software Development

DECLARATION

This dissertation is submitted in part fulfilment of the requirements for the
degree of MSc Software Development of the University of Strathclyde.

I declare that this dissertation embodies the results of my own work and that
it has been composed by myself.

Following normal academic conventions, I have made due acknowledgement
to the work of others.

I declare that I have sought, and received, ethics approval via the Departmen-
tal Ethics Committee as appropriate to my research.

I give permission to the University of Strathclyde, Department of Computer
and Information Sciences, to provide copies of the dissertation, at cost, to those
who may in the future request a copy of the dissertation for private study or
research.

I give permission to the University of Strathclyde, Department of Computer
and Information Sciences, to place a copy of the dissertation in a publicly available
archive.

(please tick) Yes [X] No []

I declare that the word count for this dissertation (excluding title page, dec-
laration, abstract, acknowledgements, table of contents, list of illustrations, refer-
ences and appendices is 15,020

I confirm that I wish this to be assessed as a Type 5 Dissertation

Signature:

Date: 19/08/2019

Abstract

Concurrency allows for multiple computations to be executed within a
program at once (Mois 2015). Programmers utilise this feature for the ben-
efits in performance, however, execution of these computations is inherently
unpredictable and can lead to a variety of problems. Farchi et al. (2003)
define ’bug patterns’ as the implementation of common errors that pro-
grammers encounter when using concurrency. Bradbury et al. (2006) build
on this concept by introducing a variety of ’mutation operators’ that can
be applied to concurrent features in Java. A mutation operator defines a
mechanism that alters a segment of code for the purpose of evaluating the
effectiveness of a system’s testing suite. If after applying a mutation to
a code segment, the tests proceed to fail, then the tests have successfully
identified a change in behaviour of the system; the mutation has been killed.
However, if the tests continue to pass despite the changes in code, then tests
have been unsuccessful at catching a mutation and therefore have not been
designed effectively.

Having reviewed the relevant literature, the objectives of this project
were to build an automatic mutation tool, apply mutations to different con-
current software systems and evaluate the effectiveness of the corresponding
unit tests. The mutation tool was successfully built and was tested on
two different systems: the Banking and Incrementer systems. The results
of these experiments indicate that it is possible to achieve high levels of
support for concurrent software with mutation scores of 86% and 100%,
respectively for the Banking system and the Incrementer system. These
scores represent the number of mutations that were successfully caught by
unit tests compared to the total number of mutations applied to the system.

Contents

1 Introduction 4

2 Background 6

2.1 Concurrency . 6

2.1.1 Threads . 6

2.1.2 Atomic Operations . 7

2.1.3 Synchronization and Locks 9

2.1.4 Liveness . 10

2.1.5 Executor Service . 10

2.2 Mutation Testing . 11

2.3 Regular Expressions . 13

2.4 Concurrent Bug Patterns . 14

2.4.1 Unprotected Code . 15

2.4.2 Unexpected Interleavings . 16

2.4.3 Blocking Code . 16

2.5 Concurrent Mutation Operators . 17

2.5.1 Modify Parameters of Concurrent Method 18

2.5.2 Modify the Occurrence of Concurrency Method Calls 18

2.5.3 Modify Keywords . 18

3 Methodology 19

3.1 Selected Mutation Operators . 19

1

3.1.1 MXT - Modify Method-X Timeout 19

3.1.2 MSP - Modify Synchronized Block Parameter 20

3.1.3 RTXC - Remove Thread Method-X Call 21

3.1.4 RCXC - Remove Concurrency Mechanism Method-X Call . . 22

3.2 Mutation Tool . 23

3.3 Concurrent Software . 25

3.3.1 Banking System . 26

3.3.2 Incrementer System . 29

3.4 Unit Tests . 31

3.4.1 Banking System Concurrent Tests 32

3.4.2 Incrementer Concurrent Tests 34

3.5 Software Engineering Process . 35

4 Analysis 37

4.1 Results . 37

4.1.1 Banking System Results . 38

4.1.2 Incrementer System Results 42

4.2 Results Analysis . 43

4.3 Methodology Analysis . 45

5 Recommendations 48

6 Conclusion 50

Bibliography 52

2

7 Appendices 54

A Mutation Operators 54

B Banking System Code 55

B.1 Account Class . 55

B.2 CurrentAccount Class . 57

B.3 SavingsAccount Class . 58

B.4 LoanAccount Class . 59

B.5 CurrentWithdrawTest Class . 60

B.6 SavingsWithdrawTest Class . 61

B.7 CurrentDoubleWithdrawTest Class 62

B.8 CurrentWithdrawLoanDepositTest Class 63

B.9 CurrentTransferTest . 64

B.10 CurrentTransferDepositWithdrawTest Class 65

C Incrementer System Code 66

C.1 Incrementer Class . 66

C.2 SyncIncRunnable Class . 70

C.3 LockTest Class . 70

C.4 InterruptTest Class . 71

C.5 AwaitSignalTest Class . 72

C.6 SyncTest Class . 73

3

1 Introduction

Programmers today have the privilege of extremely powerful computing power
and to utilise this power for benefits in performance, they can employ the use of
concurrent software. ”Concurrency is the ability of a program to execute several
computations simultaneously. This can be achieved by distributing the computa-
tions over the available CPU cores of a machine or even over different machines
within the same network.” (Mois 2015). Concurrency is a feature that has been
present in the Java programming language since nearly its introduction, with a sig-
nificant update with the release of Java version J2SE 5.0 (Bradbury et al. 2006).

Although concurrency can provide benefits to the performance and execution
times of software, with it can come many data issues and unexpected system
behaviour, due to the unpredictability of concurrent processes, unless handled
properly (Mois 2015). Farchi et al. (2003) discuss the presence of ’bug patterns’
that ”describes a commonly occurring error in the implementation of the software
design” relating to concurrent software. In their paper, Farchi et al. (2003) define
and categorise a variety of different bug patterns where programmers often make
faulty assumptions that their code is protected from errors. By highlighting these
common pitfalls, they aim to identify methods for preventing these errors from
occurring with effective design patterns.

Following on from this, Bradbury et al. (2006) apply these bug patterns to
mutation analysis. Mutation testing is a form of quality assurance for software
test coverage, whereby small changes are made to a system’s code and the existing
test suite is run against this altered code. The tests are evaluated on their ability
to detect these changes, or ’mutations’. There currently exist many tools that
will automatically insert changes to a code base, run unit tests and provide de-
tailed analysis on the results; Pitest is one such example for Java1. However, what
is lacking from these tools is support for concurrency related mutations. Brad-
bury et al. (2006) have created a large range of mutation operators for concurrent
features to offer this support, which is especially pertinent considering the many
issues surrounding this area and the difficulties of testing unpredictable behaviour.
These difficulties will be explored in the following section. The mutation operators
are separated into categories based upon the bugs that they are likely to produce,
identified by Farchi et al. (2003). The categories target specific concurrency mech-
anisms and how these can be manipulated or removed to subtly alter the execution
of segments of code.

1https://github.com/hcoles/pitest

4

Reviewing the literature reveals that there is a necessity for a concurrent mu-
tation testing tool for Java software and thus lies the purpose of this project. The
objectives are to develop a proof-of-concept automatic mutation tool for concur-
rent software, apply mutations to some sample concurrent systems and evaluate
the effectiveness of unit tests at catching these mutations. Four of the mutation
operators found in the paper by Bradbury et al. (2006) will be selected and im-
plemented into the mutation tool. Regular expressions will be used to manipulate
strings in the source code and provide the mechanism by which the tool applies
the mutations. After development is complete, the tool will be tested on two con-
current systems; mutations will be seeded throughout the code and a spectrum of
unit tests will be run against the changes. The unit tests will compose of some
traditional, non-concurrent JUnit tests and a set of tests that create scenarios that
specifically involve concurrent interactions. Prior to any mutations, these unit tests
must consistently pass with no errors and their effectiveness will be evaluated on
the results produced after mutations have been imposed. If the tests subsequently
fail, this indicates that the tests have recognised a change in behaviour of the
system and can be considered to be effective. Conversely, if the tests continue to
report passes, then they have been unsuccessful at catching the mutations. The
results of these test runs will be analysed and reviewed thoroughly.

The structure of this report will be presented as follows. The following section
will provide a sufficient overview of concurrency, mutation testing, and a thorough
review of the relevant literature relating to concurrent bug patterns and mutation
operators by Farchi et al. (2003) and Bradbury et al. (2006), respectively. The
methodology and the implemented software will be described in detail in Section 3.
Analysis of the test results and the project development process will be evaluated
in Section 4. Finally, recommendations for future work and the conclusions will
be presented in Sections 5 & 6, respectively. All code referenced throughout this
report is displayed in the Appendices.

5

2 Background

The relevant background information required for this project will be presented
here, as well as a review of the literature covering concurrent bug patterns and
mutation operators. An overview of concurrency in Java and mutation testing for
general software will provide the necessary understanding for the motivation of
this project.

2.1 Concurrency

2.1.1 Threads

Processes are self contained execution environments with private resources; most
Java applications only require a single process to run efficiently. Modern computer
systems provide multiple cores to process parallel execution of processes. Concur-
rency utilises this functionality with the use of Threads. Threads are light-weight
processes that share their resources (memory, open files, etc) with the other threads
contained within the process (Mois 2015). With the advancement of technology
producing evermore powerful machines, each individual core has the ability to in-
terleave multiple threads as well as the capability of running threads in parallel
on separate cores.

Creating threads is lighter on resources than creating new processes and the
ability to share resources is beneficial to performance. This is the main motivation
for using concurrent code; allowing multiple sections of code to run simultaneously
for faster execution times. Another positive aspect of this is the improved respon-
siveness of a system (Peierls et al. 2005). When one section of a program becomes
blocked or slows down, a single threaded system would become unresponsive to
the user and would report no information back to explain why. A multi-threaded
application would allow a computationally greedy operation to perform in the
background without disrupting the rest of the system and remaining responsive to
observation and interaction from the user.

Each program has at least one thread, the main thread, created at point
of calling the main() method, but subsequent threads can be created after this
execution. There are two ways to create new instances of threads. The first is
to create an object that has implemented the Runnable interface and pass this to
the Thread constructor. The thread will then execute the run() method of the

6

runnable object. The other is to create an object that is a subclass of Thread
and executing the run method pertaining to the object (Oracle 2019a). In both
cases, Thread.start() must be executed to start a specified instance of a thread.
Although, threads are not necessarily run in the order of their start execution, the
threads are automatically assigned a priority by the Java Vitrual Machine (JVM),
and scheduled in order of highest priority (Mois 2015). The first instance is a more
general and flexible approach since it is implementing the Runnable interface, it
allows for the class to inherit functionality from another class. This also has the
benefit of allowing its own parameters to be passed to the constructor. The second
is easier to use in simple applications, but since it is a subclass of Thread, there are
limitations to what the class can do, as only the parent class Thread constructors
are available.

If a thread wants another thread to stop then it can invoke an interruption
using Thread.interrupt(), which will throw an exception message to the interrupted
thread. A thread can support its own interruption by invoking the sleep(long
time) method to stop itself for a specified period of time. After the elapsed time,
the thread will resume running, unless an interrupt is called and the thread is
terminated. Sleep can be used by the user to manage the scheduling of threads
if it is prescient for a particular operation and limits the unpredictability of the
system behaviour. Similar to a thread sleep, Thread.join() can be used for one
thread to wait until another has completed its execution. With no specified time,
the Thread may wait indefinitely for the other one to terminate.

2.1.2 Atomic Operations

An atomic operation is one that is executed and completed all at once or not at
all (Oracle 2019a). It is an action that is considered safe from interference from
other operations, as it cannot be stopped during execution and the state of the
process cannot be changed by another operation. The state is only affected by
the atomic operation from the start to finish. A single line of code does not imply
atomicity, no matter how deceptively simple it may appear. For instance, the
increment operation for some integer, x++, is actually three separate operations
handled by the JVM. First the value of the integer must be fetched, then it is
incremented and finally the new value is written back to memory. This may
seem trivial, but if mishandled, this can have unexpected and varying results if it
is executed in conjunction with another thread that is accessing the same data.
When two threads interleave in such a way, it is referred to as interference. As an
example, Thread A and Thread B are tasked to perform the increment operation

7

Operation Value of x

Thread A retrieves x 0
Thread A increments x 1
Thread B retrieves x 0
Thread A stores value of x 1
Thread B increments x 1
Thread B stores value of x 1

Table 1: Example of a non-atomic operation, x++, in two interleaving threads.

on x. If they were to run consecutively, allowing for complete execution of the first
operation before the initiating the next, the value of x would be expected to have
increased by 2. However, if the two operations are executed at the same time, the
following scenario could feasibly occur:

1. Thread A retrieves the value of x, x = 0.

2. Thread A increments x, x = 1.

3. Thread B retrieves the value of x before the Thread A has been given the
chance to commit the change of x to memory and thus, x remains equal to
0.

4. Thread A stores the result of x = 1.

5. Thread B increments x to 1 and stores the result. Despite two instances of
incrementing the value of x, the final value is recorded as 1; the first instance
has been overridden by the second.

Table 1 displays this information with the perceived value of x at each stage.

This is only one small example of interference, but similar occurrences of
inconsistent memory issues between threads can crop up throughout concurrent
systems unless properly managed. Compounding this is the complexity of other
scenarios with a greater number of interleaving threads and manipulation of more
data. One method of preventing this is utilising the functionality of synchronized
code, which will be explored in the following section.

8

2.1.3 Synchronization and Locks

Synchronization allows for critical sections of code or methods to be executed
atomically in relation to code in other threads. The power of scheduling operations
and resource management is passed to the user (Silberschatz et al. 2013). The
synchronized keyword blocks other threads from executing simultaneously during
its execution to ensure that the state of the system is only affected by the actions
within the synchronized block. Synchronization can be applied to a specific set of
actions in a block, specifying the resource to be restricted or to an entire method.
The two mechanisms of using the synchronized keyword are shown in Figure 1.

Figure 1: Synchronized block and synchronized method

Restricting the whole method will have a more dramatic effect on the perfor-
mance as no other threads can run concurrently. Applying synchronization to the
increment example would solve the observed problem of memory consistency and
would guarantee the expected result to occur.

The synchronized keyword achieves the desired affect by imposing a lock on
the synchronized block of code that prevents access to the contained object’s fields.
After the synchronized block has terminated, the lock is released and normal thread

9

Figure 2: Example of a Reentrant lock in use with the lock and unlock methods.

scheduling will resume. Reentrant locks can be used to similar effect to the syn-
chronized keyword, allowing a thread to obtain and release a lock during execution
of critical code, much like a synchronized block of code. Initially, a lock object
is created and then the critical section of code can be protected by calling the
lock() method immediately before and the unlock() method immediately after. A
demonstration of this is shown in Figure 2.

2.1.4 Liveness

The liveness of an application expresses its ability to execute without complications
in an efficient manner. There are some issues that can interfere with the liveness
of an application by slowing it down or even freeze functionality altogether. A
deadlock can occur when two threads have locked separate resource, but are waiting
on the other thread to release their lock to continue execution.

Thread 1: locks resource A, waits for resource B
Thread 2: locks resource B, waits for resource A

In this instance, both resources are locked and unavailable for access until the
other is released; the program will perpetually hang in an inescapable catch-22.

2.1.5 Executor Service

Previously, concurrency examples provided have only involved two threads that
are relatively simple to follow. In many cases, a program may wish to utilise many
more threads for a significant boost in performance. The Java concurrent package

10

offers the Executor Service to help maintain many instances of threads, a thread
pool, by abstracting the management and construction of threads from the main
program. This can be an invaluable tool for ensuring computation resources are
not wasted by the constant creation of new threads for each concurrent action.
Instead, a pool of threads is created at once and the threads will wait until they
are required. After performing the necessary action, the thread will go back into a
state of waiting for a request for work. The size of the pool has a specified limit, to
prevent a runaway of thread creation; when all the threads in a pool are currently
in use, the executor server will wait to assign work to the next available thread.
Creating a thread takes up time and resources, it is far more efficient to recycle
previously used threads.

2.2 Mutation Testing

Mutation testing is the process of seeding errors throughout a system’s codebase,
to observe the effecting behaviour and evaluate the effectiveness of the present test-
ing coverage (Adrion et al. 1981). A mutation operator is a generalised rule, which
describes the changes that will be made to a specific segment of code. The result
of applying an operator to a code segment is known as a mutant (Ammann and
Offutt 2017). The premise of mutation testing is simple: if the previously imple-
mented software tests have been designed adequately, then they should recognise
the changes to the system behaviour and certain tests should fail accordingly. The
mutation is referred to as killed in this instance. This is the ideal outcome when
a mutation is applied to a system, as it suggests that the tests have been de-
signed effectively and the coverage is sufficient. However, if a mutation survives
by circumventing the tests, this indicates that the tests are either flawed or the
test coverage has gaps and not all of the behaviour has been accounted for. This
is a useful tool for highlighting weaknesses in test coverage; a full suite of unit
tests that successfully pass when run on a system only informs the user that those
specific function behaviours are expected. Although it provides no information on
the behaviours that have been missed. Mutation testing aides identifying these
areas of code that have been overlooked by applying many different mutations
throughout the whole system, which should disrupt as much expected behaviour
as possible. Thus, when a mutation is not successfully killed by any unit test, the
location of the altered code will indicate that there is improvement to be made in
the test coverage related to the affected area.

One example of a renowned mutation testing tool is Pitest (PIT), which com-
bines traditional line coverage with mutation coverage, to offer a comprehensive

11

and fast testing environment for Java applications. The list of mutation opera-
tors it provides is extensive, covering relational operators (e.g. <, <=, >, >=),
mathematical operators (e.g. +, -, *, etc.), logic statements a variety of different
common method calls and return values (Coles 2019). A mutation usually consists
of altering a small section of code or removing a section entirely. For example, a
conditional boundary operator would make the following mutation in Figure 3.

Figure 3: Relational operator mutation

The code now has a slightly different meaning. Designing effective unit tests
involves specifically testing code at such boundary cases. The behaviour of the code
would be monitored for values of a when less than b, equal to b and greater than
b, with a separate test for each scenario. Prior to the mutation, the if statement
would not be executed during runtime for when a is equal to b, but after the
mutation the if statement would be entered. Thus, a unit test that previously
would pass for this scenario should fail due to the alteration and the mutation
could be considered successfully killed. PIT will apply many of these mutations
on the byte code generated after compilation, instead of on the source files. This
produces significantly faster runtimes. After mutation, PIT will automatically run
the new java files against the designated unit tests and produce a set of results
detailing the fates of each mutation. The varying states explained below:

Killed - The mutation was successfully discovered by the presence of a failed
unit test.

Lived - The mutation was unsuccessfully discovered with no failed unit tests.

No coverage - The mutation lived because of a lack of unit tests covering the
relevant mutated section of code.

Non-viable - The mutation affected the Java bytecode such that the JVM could
not load the file.

Timed out - The mutation created an infinite loop so execution of the file could
not terminate.

12

Memory error - The mutation increased “the amount of memory used by the
system or the result of the additional memory overhead required to repeat-
edly run your tests”.

Run error - The mutation caused the file to be unable to run, similar to non-
viable mutations. (Coles 2019)

The results detail which mutations were applied, identify which tests managed
to kill mutations and produce the ratio of successfully caught mutations to the total
number of seeded errors. This ratio is known as a mutation test score (Bradbury
et al. 2006). Although PIT offers a wide range of mutation operators, it is lacking
in support for concurrent systems. Performing unit tests on multi-threaded code
is not as straightforward as single-threaded.

2.3 Regular Expressions

The theory of mutation testing has been presented, however the mechanism by
which mutations are applied is not a simple process with a single approach. The
method used in this project is a high-level approach, utilising regular expressions
to identify and manipulate strings. This is a different approach to the method seen
in the Pitest mutation tool; a more sophisticated and technically complex method
operating on bytecode. For the size and scope of this project, performance is less
of a concern, so manipulating source code is a viable option.

Regular expressions, regex for short, are a syntactic description of a pattern,
often used to search or manipulate strings in a text (Oracle 2017). Exact strings
can be found with ease, but the true power behind regular expressions is the
ability to search for generic patterns and manipulate any matches returned. The
java.util.regex package allows a user defined pattern to be interpreted and will
find any matches within a given text. This is primarily achieved using the Pattern
and Matcher classes. Inputting a regular expression into a Pattern as a parameter
will create a compiled version of the regex. The syntax of a pattern is built up
of special character constructs that can match with independent characters or a
defined range of characters. For example, a regex pattern could be used to search
for a date in the following format DD month YYYY, i.e. 20 July 1969. This format
has strict rules specifying that a date must consist of two digits followed by a word
and finally four more digits. The regex can be made more complex by imposing
more rules limiting the range of numbers for the day section to be between 1-31;
the month section to only consist of the exact strings for the calendar months and

13

the year section to be greater than 0000. All of this is achievable with the Java
regex package. However, to keep it simple, the following regex example will only
look for the basic two digits-word-two digits:

(\ d{2})(\ s)([a− zA− Z] +)(\ s)(\ d{4}) (1)

\d{2}, \d{4} - exactly 2 or 4 digits, respectively

\s - a single whitespace character

[a− zA− Z]+ - one or more letters in the range of a to z, lower or upper case

The brackets separates the regex into groups that can be manipulated in
isolation from the rest of the matched expression. A Matcher object can then
be created to compare a character sequence against the pattern and return any
matches. The find() method attempts to find the next matching sequence in the
input. The group(int group) method returns the sequence that was matched by
the specified group, identified in order of appearance in the regex, e.g. ([a-zA-Z]+)
is group 3. Finally, if the user wishes to replace any part of a matched string, the
replaceFirst(String replacement) and replaceAll(String replacement) methods will
replace either the first matched substring or all matching substrings, respectively,
with a specified replacement string. A full API for these classes is provided by
Oracle (2019b).

2.4 Concurrent Bug Patterns

During the software development life cycle, it is vitally important to contribute
a significant portion of effort into the architectural design of the software. A
well designed system will provide a solid foundation in avoiding unforeseen faults
throughout development. Farchi et al. (2003) present a systematic approach to
preventing certain concurrency related errors in their research on Concurrent Bug
Patterns (Farchi et al. 2003). “Design patterns are solutions to recurring problems
in a given context. A design pattern accentuates the positive, i.e., how to solve a
recurring problem well.”

This is a general concept, originally used to describe physical construction,
but is equally applicable to software development (Gamma et al. 2015). However,
poor design patterns can have the reverse effect and introduce their own set of
errors. This gives rise to what is known as a bug pattern: “A bug pattern is an

14

abstraction of a recurring bug. In other words, a bug pattern is a literary form
that describes a commonly occurring error in the implementation of the software
design.”

By identifying common concurrency errors made by developers, Farchi et al.
(2003) have categorised 8 different bug patterns. In their systematic approach,
they offer a more technical definition of a bug pattern in a program, P, relating to
potential number of interleavings between threads in a concurrent system, I(P),
and the maximum number of interleavings the system can have whilst remaining
correct, C(P). A concurrent bug pattern can be found within the range I(P) –
C(P) Farchi et al. (2003). Typically, bugs will occur due to a faulty assumption
by the developer, separated into the following three categories:

1. ”A code segment is mistakenly assumed to be undisturbed, implicitly or ex-
plicitly, by other threads;

2. As a result of the mistaken assumption that a certain execution order of
concurrent events is impossible;

3. When a code segment is mistakenly assumed to be nonblocking.”, (Farchi
et al. 2003).

Farchi et al. (2003) provide many examples in each category, but only the
relevant bug patterns will be explored in the following sections, separated into the
categories defined above. Due to the limited scope of the project, instances of
many concurrent keywords are not present, meaning that some bug patterns are
not available for exploration. All the bug patterns that have the potential to be
found are presented here.

2.4.1 Unprotected Code

Concurrent code can be considered to be protected when only a single thread is
executing a concurrent event between the first and last events in the code segment.
When multiple threads begin executing concurrent code simultaneously, errors are
bound to arise.

Nonatomic Operations Assumed to be Atomic Bug Pattern
This bug relates to the example in Section 2.1.2, wherein a developer falsely as-
sumes that a fragment of code is an atomic operation and therefore protected. On

15

a surface level, a code fragment may appear to be executed as a single operation,
but the bytecode translation consists of more operations.

Wrong Lock or No Lock Bug Pattern
This pattern can occur when one thread has locked an action but other threads
attempt to acquire a different lock for a concurrent action. The other threads will
either successfully obtain the wrong lock or don’t obtain any lock. Thus, the code
is unprotected and susceptible to interference from interleaving threads.

2.4.2 Unexpected Interleavings

In these scenarios, the programmer has assumed an interleaving between threads to
be impossible, often due to considering the computation time of a certain action to
be fast enough that it will not overlap with another concurrent action. Generally,
this is considered bad practice as it is often difficult to predict the length of time
for a process to complete, which can also vary between executions.

Sleep() Bug Pattern
A programmer might understandably attempt to control the scheduling of thread
execution by introducing delays, utilising the sleep() method, and specifying a time
they have deemed to be sufficient for complete execution of certain critical sections.
Instead, the join() method would be more appropriate in this circumstance.

Farchi et al. (2003) cover another example of an unexpected interleaving bug
pattern involving the notify() and wait() methods. However, the concurrent sys-
tems tested in this project do not contain any instances of these methods and thus,
the notify() bug pattern will not be covered in this review.

2.4.3 Blocking Code

In some circumstances, a segment of code can have an unexpected behaviour in a
thread that blocks other threads from executing, resulting in the system hanging
indeterminately. This obviously can have a very drastic effect on the performance
of a program.

Blocking Critical Section Bug Pattern

16

After execution of a critical section in a thread is complete, it is expected to
relinquish control and allow other threads to execute. If the correct procedure for
this has been overlooked then other threads are left waiting for the first thread to
terminate; an event which may never happen.

Again, only one of the patterns in this category can be found in the concurrent
systems and is covered in this section.

2.5 Concurrent Mutation Operators

Bradbury et al. (2006) have comprehensively designed a set of mutation operators
specific to the concurrent functionality and the bug patterns identified by Farchi
et al. (2003) The focus of their research is in response to the updated concurrent
functionality introduced in the J2SE 5.0 version of Java. Synchronization can now
be implemented using explicit locks, semaphores, barriers, latches and exchangers.
Support for these various concurrent operations persists through the more recent
versions of Java with some minor updates and revisions. In total, Bradbury et al.
(2006) to produce 22 different mutation operators, each of which are associated
with a number of different concurrent methods. The operators are split into groups
relating to the concurrent bug patterns described in the work of Farchi et al. (2003)

Mutation analysis for non-concurrent systems has been covered extensively
in research and made available through a variety of different tools such as PIT,
Jumble2 and Jester3. With their mutation operators, Bradbury et al. (2006) aim
to help improve the quality and development of concurrent Java applications by
making programmers aware of the various pitfalls surrounding concurrency. The
operators have been divided into five categories:

1. ”Modify parameters of concurrent methods

2. Modify the occurrence of concurrency method calls (removing, replacing and
exchanging)

3. Modify keywords (addition and removal)

4. Switch concurrent objects

5. Modify critical regions (shift, expand, shrink and split)” (Bradbury et al.
2006)

2http://jumble.sourceforge.net/
3http://jester.sourceforge.net/

17

Some of these operators are modified versions of existing operators, whereas
some are novel. 1-3 of the above categories will be explored in the following sec-
tions. Categories 4 & 5 are not covered since none of the mutation operators from
these categories are implemented in the tool developed for this project. The specific
operators that have been implemented will be fully explored in the Methodology
section of this report. The full list of mutation operators can be found in Table 14
in Appendix A (Bradbury et al. 2006).

2.5.1 Modify Parameters of Concurrent Method

Altering the parameters of a method in any way can cause a dramatic difference to
the original intention when calling the method. The operators in this category aim
to do just that for any concurrent method or methods related to threads. This
can involve changing the value of an input parameter or removing a parameter
altogether, assuming the method has an overloaded version to support this removal.

2.5.2 Modify the Occurrence of Concurrency Method Calls

In contrast to the previous category of modifying method parameters, this set
operates on the method calls themselves. The mutation can manifest in three
forms: a method call can be removed, replaced or exchanged with a similar method.

2.5.3 Modify Keywords

This category is similar to the previous type, but focuses solely on the addition or
removal of certain concurrent keywords, such as static, synchronized, volatile and
finally. These keywords affect the behaviour of classes, methods and variables,
thus modifying them may have significant effects when calling a mutant version.

18

3 Methodology

The background information has been presented and the literature surrounding
Mutation testing operators has been explored. The motivation for the project
should now be clear. Although there are mutation testing tools available for Java
applications, they lack support for concurrency. Thus, the aim of the project is to
build a mutation testing tool that will automatically apply mutations specific to
concurrent operations, utilising the operators provided by Bradbury et al. (2006)
This will provide support for programmers to analyse the effectiveness of their unit
tests for multi-threaded functionality.

This Methodology section will describe the development process in detail and
the steps taken to ensure the mutation testing tool is robust.

3.1 Selected Mutation Operators

Before development of the software for the mutation testing tool, a small selection
of mutation operators from Bradbury et al. (2006) were chosen to be implemented
into the tool. This section describes the selected operators: Modify Method-X
Timeout, Modify Synchronized Block Parameter, Remove Thread Method-X Call,
and Remove Concurrency Mechanism Method-X Call. These four operators target
commonly used concurrency features and the mechanisms by which they apply
their respective mutations are straightforward. Thus, they proved to be the ideal
candidates for implementation by maximising the number of potential method
mutations and required the least amount of time to develop. Since the latter two
operators both involve removing method calls, only one programming function was
necessary to apply these mutations to the list of different methods.

3.1.1 MXT - Modify Method-X Timeout

The MXT operator falls under the category of Modify Parameters of Concurrent
Method, found in Section 2.5.1. The objective of this operator is to modify the
time parameter in the methods wait(long time), await(long time), sleep(long time)
and join(long time) (Bradbury et al. 2006). The wait, await and join methods
all have an overloaded equivalent without the time parameter, meaning that the
mutation can remove or modify for varying effects. Removing the time parameter
from the wait method forces the current thread to remain inactive until a notify()

19

or notifyAll() method is called to release the interruption. The await method is
similar to the wait method, but is instead released by a signal() or signalAll()
method call in another thread. The join method is called on a thread and will
wait until it has completed execution or until the specified time has elapsed, after
which, the code following the join call will be executed in the same thread. The
sleep method will interrupt the current thread for the specified time. The mutation
that has been implemented in the tool is to either remove the time parameter, if
applicable, or to reduce the time by half. An example of this type of mutation can
be seen in Figure 4.

Figure 4: MXT mutation (Bradbury et al. 2006)

In this example, prior to the mutation, the wait time had been set to a suffi-
cient length to allow other threads to fully execute any concurrent operations that
may interfere with mutually accessed resources. However, cutting this time in half
may not leave enough time for another thread to complete execution. Various sim-
ilar problems can occur when applying the MXT mutation to the other concurrent
methods mentioned above. These errors will be discussed in the Results section,
for each method tested.

3.1.2 MSP - Modify Synchronized Block Parameter

The MSP is another Modify Parameters of Concurrent Method operator that alters
the parameter of a synchronized block. The synchronized keyword is applied to an
object that the programmer wishes to be thread safe when executed by blocking
other concurrent actions from taking place. The mutation made by this operator
aims to replace the synchronized object parameter with another object (Bradbury
et al. 2006). The simplest method of achieving this is to replace the object with
the keyword this. An example of this is given in Figure 5.

The keyword this refers to the current object: an instance of the class in
which the method has been defined. Thus, the effects of changing the lock object
to this, the lock object becomes no longer thread safe and executing the critical
section of code leaves the lock object susceptible to unpredictable behaviour when

20

Figure 5: MSP mutation (Bradbury et al. 2006)

interleaving with other threads.

3.1.3 RTXC - Remove Thread Method-X Call

The RTXC belongs to the Modify the Occurrence of Concurrency Method Calls
category in section 2.5.2. This mutant simply removes calls to the Thread methods
wait(), join(), sleep(), yield(), notify(), and notifyAll() (Bradbury et al. 2006).
Figure 6 provides an example for this mutation.

Figure 6: RTXC mutation (Bradbury et al. 2006)

Removing a call to any of the Thread methods also removes control from the
user in their ability to schedule thread execution. The behaviour of the system is
likely to change from the original expectations.

21

3.1.4 RCXC - Remove Concurrency Mechanism Method-X Call

The final mutation operator that was selected aims to remove a variety of different
concurrent methods: lock(), unlock(), signal(), signalAll(), acquire(), release(),
countDown(), and submit() (Bradbury et al. 2006). It utilises the same removal
mechanism as the previous operator, RTXC, and is also in the same in category,
Modify the Occurrence of Concurrency Method Calls. Potentially the most sig-
nificant method removals are for the lock and unlock methods. This is shown in
Figure 7.

Figure 7: RCXC mutation (Bradbury et al. 2006)

Altering a lock on an object will have a similar behaviour to mutating a
synchronized block; the object becomes no longer thread safe. Removing an unlock
will prevent this thread from releasing the lock and will prevent any other threads
from acquiring the lock to begin execution. Referring to work of Farchi et al.
(2003), this can result in a Blocking Critical Section Bug described in section
2.4.3.

22

3.2 Mutation Tool

With the four mutation operators identified above, the core functionality of the
mutation testing tool could be designed. The main objective of the software is as
follows:

• Select an input file, a mutation operator and a method to be mutated

• Count the number of instances of the selected method in the input file

• Randomly select a match and perform the mutation

• Write the mutation to a new file

The system consists of two classes: the Mutator class contains the methods
that perform the above functionality, and the MutatorRunnable class creates a
Mutator object, passes the necessary input and executes the mutation. The Mu-
tator class accepts a File object as its only parameter. The mutation is performed
by calling the replaceMutation() method.

When running the mutation tool, the user is prompted to select an input file,
an operator and a method they wish to be mutated. The tool will recognise if this
combination is suitable by verifying that the input are compatible. If the user has
attempted to input an incompatible pair of method and operator, then an error
will flag up indicating this. This is achieved by storing a string of each operator
and method in an ArrayList related to each operator. When the user inputs their
desired mutation operator and method, the strings will be compared against the
ArrayList contents to verify that their options are suitable. If the user selects a
successful pair then the tool will begin to search the input file for any matches
against the regex pattern. The matches will be returned to the user with their
respective character location in the input file. The mutation is designed to only
be applied to one match at random, if there are multiple matching methods.

An algorithm was created to achieve this random selection by applying the
following method. A count of the matches is stored as a local variable. The
first match is encountered and a Random() function chooses a number between
1 and the count. If the random number matches the count then the first match
will be selected to be mutated. The chances of this happening are 1/count; the
algorithm provides an equal chance of mutation to each match. When the random
number does not match, the count is reduced and the process is repeated for each
subsequent match.

23

The following regex pattern was designed to match with any combination of
mutation operator and associated method.

(\ s∗.∗ \ b method \ ()(\ w∗)(.∗) (2)

\s∗ - zero or more whitespace characters e.g. the beginning of a line
.∗ - zero or more of any character e.g. any number of chained methods
\b - a word boundary e.g. a full stop indicating the calling of the selected method
or the beginning of the line
\(- a bracket e.g. the beginning of the method parameter
\w∗ - zero or more of any word characters e.g. any number of parameters
.∗ - zero or more of any character e.g.

The regular expression was generalised so that only one pattern was required,
instead of a separate pattern for each combination of method and mutation oper-
ator. The pattern is separated into the three groups in red brackets. In general,
the first group identifies the method call, the second identifies the parameters and
the third identifies any syntax following the end of the parameters e.g.) , { , ; ,
etc. Before the pattern is compiled, the regex is stored as a string with the input
method stored as a string variable. Thus, for any method that the user wishes to
mutate, the regex string can be easily updated and then compiled as a Pattern
object. Group 1 allows for the tool to easily find the specified method by the user.
Group 2 is the main target for two of the mutation operators as they aim to alter
the parameters. The MXT operator accesses group 2 and appends the parameter
with ”/2” to divide the specified length of time by 2 or simply remove the param-
eter altogether. The MSP operator accesses group 2 and replaces the parameter
object with the keyword this. The operators RCXC and RTXC both remove the
entire method call by deleting the entire matched pattern from the code.

Once a match has been selected, the mutation will be applied to the relevant
section of code using the String.replaceFirst(regex, replacement) method. The
limitation of this method is that it will perform a replacement only on the first
instance of a match within a string. To overcome this, the full input file is split
into two separate strings for each match: one before, excluding the match and
one after, including it. This ensures that the current selected match is the first
occurrence in the second string. The mutation can therefore be applied to any of
the method matches in a file. After the mutation, the two strings are stitched back
together to recreate the original file with only the desired alteration. The mutant
is written to a new file within the project. Note that the original file remains
completely intact and the mutant is a separate file.

24

For example, Figure 8 shows a code segment that has two wait methods that
would match against a mutation operator such as the MXT. In this scenario, the
mutation tool has identified that there are two matches. On the first iteration,
when deciding which match to apply the change to, it has split the code into two
strings up to the first match and after. If it decided to mutate the second match,
then the two strings are shifted to before and after the second instance of wait.

Figure 8: Input code is split into two strings, before and after a method match.

3.3 Concurrent Software

With the mutation testing tool built and the mutation operators fully imple-
mented, to ensure the tool worked effectively, it needed some concurrent systems
to test on. A typical banking system was selected after having identified that
it contained a sufficient number of different concurrent features that were com-
patible with the four mutation operators the tool had to offer. The second, the
Incrementer system, was developed to match the concurrent features found in the
banking system but with different core functionality. Applying the tool to a va-
riety of software systems provides greater verification and assurance of the tool’s
effectiveness. The two systems and the unit tests designed for each will be explored
in detail in the following sections.

25

3.3.1 Banking System

The Banking system contains four different Account classes that provide different
functionality for slightly different purposes when handling money4. The Account
class is an abstract parent class that the CurrentAccount, LoanAccount and Sav-
ingsAccount all inherit from. The main difference between the account classes is
their specific method of withdrawing or depositing money. Each method also an as-
sociated Runnable class to allow for multi-threaded execution. The Account class
holds generic methods for depositing and transferring money, as well as the base
constructor which defines the initial balance and name of the Account object. The
following methods all contain concurrent functionality in an attempt to prevent
interference from interleaving threads: deposit(double amount), withdraw(double
amount) and transferMoney(double amount, Account recipient). These methods
and their functionality will be explored below. The code for all Banking system
classes can be found in Appendix B.

Account - deposit(double amount)
This method aims to deposit the specified amount of money into the currently
accessed Account object. A lock on the critical section of code is introduced to
prevent other threads from performing any interfering actions. After updating the
balance, a signalAll() is called on the concurrent condition, fundsAvailableCon-
dition, which informs other threads that the Account object now has a positive
balance. Finally, the lock is released to allow other threads to execute concurrently.
The code can be found in Appendix B.1.

LoanAccount - deposit(double amount)
The LoanAccount overrides the parent deposit method to support the different
style of account. The LoanAccount ’s purpose is to allow the user to take a loan of
a specified amount of money and deposit that money into a CurrentAccount. The
initial balance of the LoanAccount is then the negative of this amount. Money can
be deposited into the LoanAccount to pay off the loan and if the balance becomes
greater than £0, the positive balance will be deposited into the CurrentAccount
from before. The deposit method utilises concurrency through the lock system
and calls the parent version of the deposit method detailed above. The code can
be found in Appendix B.4.

4The four Banking system Account classes were taken from a Strathclyde undergraduate
Computer Science class on concurrency.

26

CurrentAccount - withdraw(double amount)
The withdraw method has the simple objective of removing money from an Ac-
count, however, there are some rules imposed on when this is allowed. The Cur-
rentAccount constructor sets an overdraft limit of £50, meaning that the account
cannot have less than -£50 available after any transaction. If the user attempts
to withdraw an amount of money that would leave the account with less than
this limit then the thread will wait until there are sufficient funds in the account
by calling an await(time) on the fundsAvailableCondition. The thread will resume
when a signalAll() method is called in another thread, such as the deposit method,
or until the elapsed time has passed. In the instance of time running out and there
still not being enough money in the account, the thread will be interrupted using
Thread.interrupt() and the withdrawal will not take place. After either circum-
stance, the method will release control of the lock it has. The code can be found
in Appendix B.2.

SavingsAccount - withdraw(double amount)
The SavingsAccount version of withdraw has the same functionality as the Cur-
rentAccount version with the addition of imposing a fee on each withdrawal. The
user selects an amount to be withdrawn from the SavingsAccount but this amount
plus a predefined fee will be withdrawn. The concurrent features are the same as
those found in the CurrentAccount method. The code can be found in Appendix
B.3.

Account - transferMoney(double amount, Account recipient)
The transferMoney method withdraws money from one Account and deposits that
amount in another Account, using the respective methods. Thus, it does not
have any unique concurrent issues of its own, although it will encounter the same
problems that can be found in the deposit and withdraw methods. A successful
transfer will only take place if the withdrawal is successful and returns true. The
code can be found in Appendix B.1.

Tables 2 & 3 highlight every concurrent method that occurs in each of the
Bank System methods described above. This information was then used to design
the effective unit tests for all concurrent behaviour within the Bank System, which
will be explored in Section 3.4.

27

Concurrent Feature
lock unlock signalAll interrupt await newCondition

Account
constructor

Account
deposit
Account

transferMoney
Bank

System
Method

LoanAccount
constructor

LoanAccount
deposit

CurrentAccount
withdraw

SavingsAccount
withdraw

Table 2: Concurrent features that occur in the Banking System methods. Green
boxes indicate that the concurrent method is directly called. Blue boxes indicate
that the concurrent method is indirectly called by calling another method. For ex-
ample, the Account transferMoney method calls a deposit and a withdraw method
which contain the concurrent methods signalAll, interrupt and await.

Concurrent Feature
lock unlock signalAll interrupt await newCondition

Account
CurrentAccountBank

System
Class

SavingsAccount
LoanAccount

Table 3: Concurrent features that occur in the Banking System classes. Green
boxes indicate that the concurrent method is directly called. Blue boxes indicate
that the concurrent method is indirectly called by calling another method.

28

3.3.2 Incrementer System

The Incrementer system was designed with the specific purpose of containing all
of the same concurrent features found in the Banking System. A list of these
methods can be found in Table 4. The core functionality of this system is basic
and mostly involves exploiting the non-atomic action of incrementing an integer,
x, using the operation x++. Section 2.1.2 explains this operation in detail. This
system consists of one main class, Incrementer, with a variety of similar methods
that perform the x++ operation but utilising different concurrent features. The
motivation behind creating this system was as a proof-of-concept and to help
reproduce the results of performing unit tests on the Banking System. Thus, the
Incrementer system is not very complex or pertains to any practical usefulness in
its functionality. Each of the Incrementer concurrent methods will be explored
below. The code for the Incrementer class can be found in Appendix C.1.

Incrementer - increment(int inc)
The base increment method allows the user to enter an amount to increase a
global integer count by. A delay is introduced between each increment using the
Thread.sleep method. There are no safety mechanisms implemented, such as a
lock or synchronized block and the time delay was set to 750 ms to artificially
provide enough time for interference to regularly occur from concurrently executing
threads. This is the only concurrent feature of this method.

Incrementer - incrementLocked(int inc)
The incrementLocked method is the thread safe version of the base increment by
introducing a lock and unlock call before and after an increment call.

Incrementer - incrementInterrupt(int inc)
This incrementing method invokes an interruption on the current thread with a
Thread.interrupt() call if the count mod 5 is equal to 0. The count will only be
incremented if a Thread.interrupted() call returns true. With unmutated code, this
will always be true but applying the RTXC mutation operator on the interrupt
call will cause the method to behave incorrectly.

Incrementer - incrementAwait(int inc)
The incrementAwait method operates on a similar premise to the fundsAvail-
ableCondition seen in the Banking System withdraw methods. This method will

29

execute an increment if an await call is interrupted by a signalAll, or if the count
is greater than zero at the start of execution. Otherwise, no increment will occur.

Incrementer - incrementSignal(int inc)
This method is similar to the incrementLocked, however, before releasing the lock,
it will call a signalAll on the global condition to alert the incrementAwait method
that it can continue execution.

SyncIncRunnable - run()
In addition to the concurrent methods found in the Banking system, the synchro-
nized keyword was included into the Incrementer system as it is such a key feature
of concurrency and the MSP mutation operator was implemented into the mu-
tation tool. The SyncIncRunnable class is separate from the Incrementer class
and is simply the mechanism by which threads can execute multiple instances
of a method on the same object. The synchronized keyword is applied to an
Incrementer object, which can be replaced with the this keyword by the MSP
mutation. In the synchronized block, the Incrementer object calls the basic in-
crement method. This will have a similar effect to calling the incrementLocked
method. The code can be found in Appendix C.2.

Concurrent Feature
lock unlock interrupt signalAll await newCondition sleep synchronized

Incrementer
Constructor
increment
increment-

Locked
increment-
Interrupt

Incrementer
System
Method

increment-
Await

multiplier-
Signal

SyncInc-
Runnable

Table 4: Concurrent features that occur in the Incrementer System methods.
Green boxes indicate that the concurrent method is directly called. Blue boxes
indicate that the concurrent method is indirectly called by calling another method.

30

3.4 Unit Tests

Having identified a variety of concurrent methods and implemented operators to
mutate these instances throughout a system, the next step in this project was
to design effective unit tests to sufficiently evaluate all the functionality of the
implemented systems. Typically, for Java systems, the JUnit testing framework
is sufficient for creating unit tests. However, JUnit lacks support for executing
multiple threads concurrently and thus is not suitable for evaluating most of the
software developed in this project. As a result of this, another approach to unit
testing had to be taken; assert statements provide similar functionality to that
found in the JUnit framework without the same limitations relating to concurrency.

The key to writing effective unit tests is to identify each individual component
of a code segment and isolate its behaviour under all possible outcomes. This
involves creating tests that guarantee the execution of each different path within a
method, such as the branches in an if/else block. As well as this, it is important to
observe the behaviour of a system in boundary cases where errors are most likely
to arise. An example of this would be testing the statement if(x <y) for each of
the cases where x is less than y, x is equal to y and x is greater than y. Applying
these principles to all sections of code will add confidence of a strong test coverage.

Despite the limitations with concurrency discussed above, JUnit provides an
extremely effective environment for testing single threaded code and ensuring that
each individual component behaves as expected. A JUnit test class was created
for each of the Banking system classes and the Incrementer class. All methods
were tested, multiple times if they produced different outputs from varying cir-
cumstances. Even the concurrent methods were tested to ensure they behaved
in the expected manner when they were executed without interaction from other
threads.

The unit tests written for concurrent actions were of a slightly different struc-
ture and purpose to the traditional unit tests using JUnit. The concurrent tests
focus more on evaluating the specific concurrent features of the systems. Several
scenarios were identified that could potentially lead to interfering threads attempt-
ing to access the same resource. In the Banking system, most of the methods were
attempting to access and modify the balance of an Account object. If two threads
attempted to deposit or withdraw money whilst another thread was modifying the
balance, then the final balance query may be different from the expected value,
unless the methods have the necessary precautions in place. Section 2.4 details
the various issues that can occur when a system is not properly safeguarded from
interfering threads. A total of seven concurrent unit tests were created for the

31

Bank System and four for the Incrementer system. The two systems in their orig-
inal states without mutations needed to be verified as thread-safe by passing all of
their respective concurrent unit tests. Each test produces at least one scenario for
interleaving methods, many of them produce more as the execution order of the
threads can vary. These scenarios will be described below.

3.4.1 Banking System Concurrent Tests

CurrentWithdrawTest
This test performs a withdrawal in one thread and a deposit in another, from
a CurrentAccount. The aim of the first scenario is for the withdraw to execute
first and to encounter the situation where the amount of money attempting to
be withdrawn is over the limit and there is not enough money to perform the
withdrawal immediately. The withdraw thread will then wait until the account
has enough money to make a successful withdrawal. Whilst this thread is inter-
rupted, the other thread will be allowed to execute and will make a deposit to the
shared CurrentAccount. After the second thread executes a call to the signalAll
method, the first thread will resume execution and the account will have enough
money available to complete the withdrawal. The other scenario involves the de-
posit transaction executing first and the withdraw transaction after. The withdraw
method no longer has to wait for funds to become available. Without any muta-
tions, this test should pass every time as sufficient steps have been taken to prevent
any interference from the two threads. The code can be found in Appendix B.5.

SavingsWithdrawTest
The SavingsAccount has a near identical withdraw method to the CurrentAccount
but with an added fee for each withdrawal. This test functions in the same manner
as the CurrentWithdrawTest above, only using the SavingsAccount version of the
withdraw method. The code can be found in Appendix B.6.

CurrentDoubleWithdrawTest
Two withdrawals from a CurrentAccount are attempted in this test. To pass, only
one of the withdrawals can be successful, otherwise the account balance will be
below the limit set on the account. The withdraw methods makes multiple checks
to the current balance before allowing a transaction to take place. However, in a
thread-unsafe scenario, if one thread were to check the balance just before another
thread made a successful withdrawal from the same account, then the balance it
has will no longer be correct. The second thread will then be permitted to perform

32

a second withdrawal over the limit. Since the actions are identical, the execution
order is not important. The code can be found in Appendix B.7.

CurrentWithdrawLoanDepositTest
This test checks that the LoanAccount deposit method functions correctly with a
corresponding CurrentAccount. The user takes out a loan so that the CurrentAc-
count initially has a positive balance and the LoanAccount has a negative balance.
The CurrentAccount attempts to make a withdrawal that exceeds the limit and
waits for funds to become available. Then a deposit will be made to the LoanAc-
count, such that the balance becomes positive and the excess is deposited into the
CurrentAccount and the withdrawal from this account can proceed. For this test
to pass, both methods must be functioning in a perfectly thread-safe way. The
code can be found in Appendix B.8.

CurrentTransferTest
The transfer method moves money from one Account to another by withdrawing
from one and depositing in the other. In one scenario, the first thread will execute
a transfer transaction and the second a deposit transaction. This is similar to the
CurrentWithdrawTest, where the sender attempts to transfer too much money to
another account and has to wait for available funds from a deposit. The other
scenario is the reverse order in which the account will have enough money to
perform a transfer. The code can be found in Appendix B.9.

CurrentTransferDepositWithdrawTest
The final test combines all of the concurrent methods in three separate threads
to maximise the chances of interference. Two CurrentAccounts are created, one
sender and one receiver. The sender attempts to withdraw a large sum of money,
transfer money to the other account and finally deposit a large enough sum to
allow the other two transactions to be successful. The combination of the three
methods produces up to six different scenarios depending on the order of the thread
execution. The code can be found in Appendix B.10.

All of these tests determine a pass or failure by evaluating the balance of
each Account object after all of the concurrent actions have taken place. The
nature of the tests ensures that the outcome should always be the same for correct
functionality but a mutant will likely produce a different outcome. The range of
tests here covers all of the Banking system classes and all concurrent operations
within them.

33

3.4.2 Incrementer Concurrent Tests

LockTest
The LockTest performs two incrementLocked methods in separate threads to pro-
duce the interference bug shown in Section 2.1.2 Table 1. Removing the locks
through a mutation will mean that the threads are attempting to access and mod-
ify the Incrementer object’s count at the same time. The code can be found in
Appendix C.3.

InterruptTest
This tests the incrementInterrupt method by calling this in one thread and an
incrementLocked in another. If the interrupt call has been removed by a mutation,
then only one set of increments will be applied to the count and the final value
will not be correct. The code can be found in Appendix C.4.

AwaitSignalTest
The AwaitSignalTest tests for the presence of the await and signalAll calls in the
incrementAwait and incrementSignal methods. The functionality of the incre-
mentAwait in this test, depends on the incrementSignal to be called and release it
from its interrupted waiting state. The test will always pass with unaltered code,
however it will not always fail when a mutation is introduced. This is because
the outcome of this scenario depends on the order in which the two threads run.
Thus, this test must be run multiple times until the mutation has been veritably
caught. The code can be found in Appendix C.5.

Similar to the Banking system concurrent tests, the critical variable that is
evaluated after concurrent actions have terminated is the count, in this case.

SyncTest
This test executes two SyncIncRunnables in separate threads with the intention
of interference occurring during the increment operations. With synchronized
code, the two threads will execute sequentially and will always produce the same
outcome. With mutated code, the synchronized keyword modified to this, the code
is no longer synchronized and will likely produce a different outcome every time.
The code can be found in Appendix C.6

34

3.5 Software Engineering Process

IntelliJ was chosen as the IDE to develop in, utilising its intuitive layout, inte-
gration with GitHub and the various useful services it provides for refactoring
and debugging5. Throughout development, GitHub was used to maintain version
control and keep a record of daily updates. Initially, a logbook was created and
updated regularly with project development ideas; resources found during research
were recorded and any useful details kept for reference. This process helped provide
a structure for the project and allowed for a continual review of the software de-
sign. Once development of the software was under way and the main architectural
design had been outlined, the GitHub commit messages served a similar purpose.
As well as describing any changes to the code, the following steps to take in de-
velopment and any problems that had been encountered were documented here.
The commit messages were reviewed upon revisiting the project as a reminder of
the progress.

During the design and requirements gathering stages of development, initial
research was conducted into concurrency, mutation testing and the relevant tools
currently available for developers. Pitest was the most comprehensive of the tools
discovered and a lot of the mutation tool’s requirements were inspired by this
software’s features. Section 2.2 on Mutation Testing describes the similar aspects
of PIT that have been implemented into this tool. The main difference between
PIT and the mutation tool developed in this project, is the level at which the
mutations are applied. PIT applies the operators on the byte code, whereas this
mutation tool operates on the source code by manipulating strings.

Another approach to designing an automatic mutation tool, rather than util-
ising regular expressions to find and replace strings, is to use a parser tool. An
existing grammar for the language, Java in this case, can be modified to recognise
the relevant concurrent features and manipulate them according to the mutation
operator specifications. Alternatively, a bespoke grammar could be built to only
recognise the necessary features. This is likely a vastly more complex and time
consuming method, but may benefit from being more general and can be easily
applied to any system. Prior to developing the mutation tool using the regular
expressions, the parser approach was considered using ANTLR6, a parser gener-
ator application, to modify an existing grammar for Java7. After some research,
this method appeared to be too large a task for this project and it was rejected in

5https://www.jetbrains.com/idea/
6https://www.antlr.org/
7https://github.com/antlr/grammars-v4/blob/master/java8/Java8.g4

35

favour of the simpler regular expressions mechanism.

An iterative approach was taken to developing the mutation tool; each mu-
tation operator was implemented and tested before beginning development on the
next one. To manage the work flow and to provide a structure to the development,
the most pressing issues were displayed on a whiteboard and ticked off when com-
pleted. This is similar to the project management style found in an agile Kanban
development with goal-oriented coding blocks, continuous revisions of the process
and the use of Kanban cards for issue tracking (Radigan 2019). Organising the
project in this manner promotes productivity and keeps development on schedule.

Aside from the concurrent unit tests written for the Banking and Incrementer
systems, the mutation tool also required tests. Once a few of the mutation oper-
ators had been implemented into the tool, unit tests were created for the various
methods within the Mutator class. However, as the project progressed, there be-
came an unmanageable number of different options for each mutation operator
and it was not an efficient use of time to create a unit test for each mutation.
Sample files containing a small selection of the different mutable methods were
created. Since many of the mutations operated on a shared mechanism of removal
or parameter modification, the mutation tool was tested on only a few different
methods and the outcomes were reasonably assumed to be representative of the
whole selection. This method of manual observation is not necessarily as reliable
as running a full suite of JUnit tests after any code modification, but the time
saved during the development was worth the sacrifice.

Each file in the concurrent systems was stored outside of the IntelliJ project,
isolated from the mutation testing tool. These files were intact and contained no
errors or mutations; the mutation tool would accept these clean files as input before
corrupting them with mutations. After applying the mutation, unit tests had to
be performed on the new file, thus each mutant had to overwrite the previous
mutation and then introduce the file to the IntelliJ project where the unit tests
were stored. This method ensured that the original files remained intact and that
only one mutation would be present in the project version. Simultaneously, each
mutation was saved to another location on file to keep a record of results.

36

4 Analysis

4.1 Results

For a test to be considered successful at killing a mutation, the outcome of the
test must go from passing when applied to clean, unaltered code, to failing when
applied to mutated code. The test resulting in a failure indicates that the test has
identified that the behaviour of the system has changed due to the mutation i.e.
the test has fulfilled its purpose.

Since it can be difficult to predict the scheduling order of concurrently running
threads, all concurrent tests were run up to 10 times or until a mutation was killed.
This ensured that the tests covered all possible run scenarios to take place. If
the test managed to catch a bug in at least one of the runs then it was deemed
successful, regardless of whether other runs failed to kill a mutation. For each
mutation, all of the tests relating to the mutated file were run and the result of a
mutation surviving or not was assessed across the whole range of tests. If one of
the tests reported the presence of a mutation but the others did not, the mutation
would still be deemed to have been successfully killed.

The results of the tests will be displayed in sections 4.1.1 & 4.1.2, where green
results indicate that a mutation was successfully killed i.e. the test returned with
a failure. Red indicates that a mutation went undiscovered i.e. the test returned
with a pass. Blue indicates that some other exception was thrown. Orange results
indicate that the mutation produced a syntax error that prevented the tests from
executing; these results will not be included in the mutation score as a pass or as
a fail.

The JUnit tests have a slight variation in what is considered a test failure
compared to the concurrent tests. JUnit tests can produce a failure when the
observed state of the variables after execution are in accordance with the expected
outcome, such as a correct account balance, but if an IllegalMonitorStateException
is thrown, for example, then the test will not pass despite the methods otherwise
functioning properly. In opposition, determining a failure for the concurrent tests
relies purely on the outcome of the various account balances and exceptions are
treated as blue results. The reason for the separate definitions is to differentiate
between a failed test due to a behavioural change that caused the system to result
in a different state to the expected, as opposed to an error thrown but the system
still managed to result in the correct final balance. For all intents and purposes,
a blue result can be considered to have killed a mutation as the error produced

37

indicates to the user that the system is not working perfectly. The two most
common types of exceptions that are thrown from a mutation that will produce
a blue result for concurrent tests, are the IllegalMonitorStateException and the
NullPointerException.

IllegalMonitorStateException (IMSE) - API description: ”Thrown to indi-
cate that a thread has attempted to wait on an object’s monitor or to no-
tify other threads waiting on an object’s monitor without owning the speci-
fied monitor.” (Oracle 2018a). This typically occurs when removing a lock
method whilst leaving the corresponding unlock method intact. The error is
thrown because the command to release the object’s lock on the monitor is
given, even though the object never obtained the lock in the first place, due
to the mutation.

NullPointerException (NPE) - API description: ”Thrown when an applica-
tion attempts to use null in a case where an object is required.” (Oracle
2018b). A very familiar error to any Java developer, although, specifically
in these tests, this error is almost exclusively thrown when removing a new-
Condition. Removing this method declaration in the Incrementer construc-
tor consequently means that when the withdraw method attempts to call an
await on the fundsAvailableCondition, the condition does not exist, hence
the method is attempting to use null instead of an object.

A mutation test score will be provided for each results table and a combined
score for the whole system. The mutation test score is a ratio of mutants killed
to the total number of mutants tested, expressed as a percentage. One score will
be given excluding blue results and one including them, the latter being the more
significant value.

4.1.1 Banking System Results

The results for all concurrent and JUnit tests for the Banking system are displayed
in Tables 5-11.

38

JUnit Tests
Concurrent Feature

lock unlock interrupt signalAll await newCondition
Account

constructor
Account
deposit
Account
transfer

Banking
Concurrent

Method

Current
withdraw
Savings

withdraw
Loan

deposit

Table 5: JUnit test results for mutations applied to the selected concurrent meth-
ods in each of the Banking system classes. Mutation test score: 57%.

Account
Concurrent Feature

lock unlock signalAll newCondition
Current

Withdraw
Savings

Withdraw
Concurrent

Test
Current Transfer

Deposit
Current Transfer

Deposit Withdraw
Current Withdraw

Loan Deposit

Table 6: Results of concurrent tests for mutations applied to the Account class.
Mutation test score excluding blue results: 50%. Score including blue results: 75%

39

Current
Concurrent Feature

lock unlock interrupt await
Current

Withdraw
Current Double

Withdraw
Concurrent

Test
Current Transfer

Deposit
Current Transfer

Deposit Withdraw
Current Withdraw

Loan Deposit

Table 7: Results of concurrent tests for mutations applied to the CurrentAccount
class. Mutation test score: 100%.

Savings
Concurrent Feature

lock unlock interrupt await
Concurrent

Test
Savings

Withdraw
Savings Double

Withdraw

Table 8: Results of concurrent tests for mutations applied to the SavingsAccount
class. Mutation test score excluding blue results: 75%. Score including blue
results: 100%

Loan
Concurrent Feature
lock unlock

Concurrent
Test

Current Withdraw
Loan Deposit

Table 9: Results of concurrent tests for mutations applied to the LoanAccount
class. Mutation test score excluding blue results: 0%. Score including blue results:
50%.

40

Concurrent Tests
Concurrent Feature

lock unlock interrupt signalAll await newCondition
Account

constructor
Account
deposit
Account
transfer

Banking
Concurrent

Method

Current
withdraw
Savings

withdraw
Loan

deposit

Table 10: Concurrent test results for mutations applied to the selected concurrent
methods in each of the Banking system classes. Mutation test score excluding blue
results: 57%. Score including blue results: 86%.

Combined Results
Concurrent Feature

lock unlock interrupt signalAll await newCondition
Account

constructor
Account
deposit
Account
transfer

Banking
Concurrent

Method

Current
withdraw
Savings

withdraw
Loan

deposit

Table 11: Combined test results for the Banking system JUnit tests and Concur-
rent Tests. Mutation test score: 86%.

41

4.1.2 Incrementer System Results

The results for all JUnit and concurrent tests for the Incrementer system are
displayed in Tables 12 & 13. Since the concurrent tests managed to kill all of the
mutations, the combined results of the JUnit and concurrent tests are the same as
just the concurrent test results.

Note that SyncIncRunnable is displayed as a method in Tables 12 & 13, where
in fact it is a separate class that implements the Runnable interface to allow the
increment method to be executed in synchronisation with multiple threads. The
method that is actually mutated by the MSP operator, is the run() method, but
SyncIncRunnable is displayed for better clarity.

JUnit Tests
Concurrent Feature

lock unlock interrupt signalAll await newCondition synchronized
Incrementer
constructor
increment-

Locked
increment-
Interrupt

Incrementer
Concurrent

Method

increment-
Signal

increment-
Await

SyncInc-
Runnable

Table 12: JUnit test results for the Incrementer system. Mutation score: 50%.

42

Concurrent Tests
Concurrent Feature

lock unlock interrupt signalAll await newCondition synchronized
Incrementer
constructor
increment-

Locked
increment-
Interrupt

Incrementer
Concurrent

Method

increment-
Signal

increment-
Await

SyncInc-
Runnable

Table 13: Test results for Incrementer system concurrent tests. Mutation score:
100%.

4.2 Results Analysis

The most surprising finding from the results is how well the JUnit tests performed
at identifying mutations without having to run multiple threads. Comparing the
mutation test scores of the JUnit tests with the concurrent tests, the JUnit tests
matched the concurrent ones for the scores excluding blue results with 57%, re-
spectively found in Tables 5 & 10. However, when including the blue results, the
concurrent tests come out on top with 86%.

The concurrent tests have proven to be very effective when including the errors
from the blue results, reaching a mutation score of 86% which matches that of the
combined results with the JUnit tests. This could suggest that the JUnit tests
are superfluous, as they do not kill any additional mutants to the concurrent ones.
Although, from a development point of view, JUnit tests are quick and easy to
produce and can provide instant feedback for many concurrent bugs in a system
without having to design bespoke tests for each concurrency issue that can occur.
JUnit tests are also extremely useful for ensuring that the basic functionality
of methods function in the expected manner, whereas the concurrent tests are
more representative of the actual use of the system and confirm the robustness
of handling concurrent issues. The ideal testing suite would utilise JUnit and
concurrent tests to reap the benefits of both styles.

43

Compared to the Banking system, the Incrementer system JUnit tests have
been slightly less successful reporting a lower mutation score of 50% to the 57%
found in the Banking system (Tables 5 & 12). The concurrent tests, however, were
extremely effective at killing mutations and significantly outperformed the Banking
system: 57% excluding blue results and 86% including them compared to 100%
in the Incrementer system, respectively (Tables 10 & 13). Finally, the combined
results also noted an improvement from the Banking system: 86% to 100% (Tables
11 & 13). Initially this may seem surprising that both style of tests did not follow
the same trend of either being more or less successful with respect to the Banking
system. However, this is likely due to the overall design of the two systems serving
different purposes. The Banking system was designed to be a useful piece of
software and had specific functional requirements to meet. It is larger and more
complex than the Incrementer system, with multiple different interacting methods
across a range of classes. On the other hand, the Incrementer system functionality
was not designed to serve a useful purpose to the user. Instead, the methods were
designed with a focus on the concurrent tests and discovering the most simple
procedures that could be tested with ease. The complexity of the Banking system
consequently means that various methods are co-dependent on each other and more
noticeable problems likely to arise when introducing a mutation. This produced
small domino effects on the dependent methods that allowed the JUnit tests a
greater opportunity to identify faults in the code, without having to utilise multiple
threads. In contrast, the Incrementer system’s simple design with independent
methods means that altering concurrent features has little to no effect on single
threaded execution, but dramatic effects on multi-threaded execution.

For the case of the await statements in the CurrentAccount and SavingsAc-
count withdraw methods and the Incrementer system incrementAwait method,
any mutation applied to it produced an InterruptedException error that prohibited
compilation. The await method must always be accompanied by an InteruptedEx-
ception, which will be thrown if the method is removed unless there are multiple
await calls in the code segment. Consequently, no test was able to run after this
mutation, although the mutation can be considered to have been killed as the user
would become aware of the error when attempting to compile the code. Compar-
ing to the Pitest tool’s definitions in section 2.2, this would be considered a ’run
error’ result and cannot be considered in the mutation test scores as a result.

The RCXC mutation operator removing the lock method, always produced
an IllegalMonitorStateException. JUnit tests flag this as a failure, and although
the concurrent tests reported the same exception, executing the code produced the
same outcome as the pre-mutated version of the code, so it is reported as a blue
result in Tables 6-10. Relating back to the concurrent bug patterns identified by

44

Farchi et al. (2003), this is an example of a ”Wrong Lock or No Lock Bug Pattern”
found in section 2.4.1. The lock method has been removed and so the section of
code does not acquire the lock on thread execution, leaving the code unprotected.
The IMSE exception is thrown because the unlock method remains in the code
segment, attempting to release a lock that has been acquired.

When catching the mutations that removed the unlock and interrupt methods,
executing the code would cause the system to hang and the threads would never
achieve termination. For the unlock, this occurs because whichever thread executes
first and obtains the lock on the monitor would never release the lock to allow the
other thread to begin execution. Referring to bug patterns identified by Bradbury
et al. (2006), this is an example of a ’blocking critical section’ bug, which is defined
in section 2.4.3. If the system hangs when running a test and cannot complete
execution to provide a result, then the test has in effect failed and the mutation
can be considered to be caught. When this has occurred, these results have been
marked as green in the various results tables.

For the removal of the fundsAvailableCondition instantiation with newCon-
dition in the Account class and the matching case in the Incrementer system, a
NullPointerException was thrown, which resulted in the blue results seen in Ta-
ble 6. However, the CurrentWithdrawTest did manage to kill the mutation by
observing an unexpected account balance value and is consequently marked as a
green result. Similarly, the AwaitSignalTest in the Incrementer system reports a
positive mutation catch with a count different to the expected value.

4.3 Methodology Analysis

The Incrementer system has been designed to purposefully encounter concurrent
problems, such as thread interference and memory consistency errors. The reason
behind this is to easily catch the bugs that are present after a mutation has taken
place in one of the system class files. Sleep() statements were utilised to slow
down the computation time and increase the likelihood of two threads attempting
to access state variables within the same window. This serves as a proof of con-
cept that it is possible and fairly straightforward to design effective unit tests for
concurrent code. Although, obviously, in real-life scenarios, compromising the per-
formance and execution time of large systems is not ideal. Especially considering
the main motivation of implementing concurrency to a system is to improve the
performance. The test environment can be used to determine whether the system
has been properly safeguarded with less concern for efficiency. There may be an

45

argument to introduce a default sleep time of 0 seconds, stored as a variable, to
be used as a parameter for the relevant methods, so that in normal use the sys-
tem will function with the desired efficiency. However, when it comes to testing,
this variable can be altered to a more suitable value that will provide significant
opportunity for errors to arise that would remain hidden in the default state of
execution.

It was deemed sufficient to test the systems with only two threads in most
cases. Since the systems were small in scale and designed in such a manner that
errors would be readily caught, increasing the number of threads would be su-
perfluous. If a mutation was identified and killed by any unit test with only two
interleaving threads, then the mutation would definitely be caught in number of
more threads. However, in larger, more complex systems, any bug may be sig-
nificantly harder to find, so increasing the number of threads with the objective
of maximising the likelihood of interference could be an effective approach. Also,
running more than two threads concurrently could reduce the time spent testing
a system as test would not necessarily have to be run nearly as many times to
confidently convince the user that all possible scenarios have taken place. The Ex-
ecutor Service mentioned in Section 2.1.5 provides the functionality to efficiently
manage many threads at once.

In terms of refactoring, it might have been prescient to break the structure
of the tool down into separate subclasses for each mutator. In this case, the
class hierarchy would have an abstract Mutator parent class with each mutator
inheriting from it. This would have the positive effect of expandability when
introducing new mutation operators. The core methods could be inherited with
ease and only the necessary methods overridden. This would follow the Object
Oriented paradigm to greater effect. One drawback, however, is that a runnable
class would have to be created for each mutator, whereas with just one mutator
class, the user can choose a different operator with ease when performing multiple
tests.

It may be noted that there are more concurrent unit tests for the Banking
system than the Incrementer system. The reasons for this variance are partly due
to the fact that the Banking System is larger and more complex; the Banking
System consists of four different types of Account with many more methods that
can interact with the same resources during concurrent execution. Some of the
tests for the Incrementer system also manage to kill multiple mutations due to the
simplicity of the system and because it was designed with the purpose of being
easily tested. To test the same number of mutations, half as many concurrent tests
were applied in the Incrementer system and an additional test was created for the

46

MSP mutation of the synchronized keyword.

With the analysis of the results above, some of the concurrent tests for the
Banking system could be refined and improved upon to consistently catch bugs
relating to removing the locks and the await/signalAll methods. The Incrementer
system tests prove that it is possible to kill all of these mutations. The success of
the concurrent tests proves that it is entirely possible to design a suite of effective
unit tests for concurrent software. Although, the results from the concurrent
tests in the Banking system suggests that it is more difficult than producing unit
tests for single threaded software. A solution could not be found to successfully
kill mutations involving the singalAll method in the Account class or the unlock
method in the Loan class. Expanding the selection of the concurrent tests or
increasing the number of concurrently executing threads may achieve the desired
result, although the results from the Incrementer system prove that it is possible
to detect these mutations in just two threads. Ultimately, it may depend on the
precise use of the concurrent features in the different contexts.

47

5 Recommendations

The original goal was to end up with a full test suite that would seed many muta-
tions throughout the code, perform the unit tests and produce a set of results. The
results would detail which mutations were applied, identify which tests managed
to kill mutations and produce the ratio of successfully caught mutations to the
total number of seeded errors. Due to time limitations, a revision of expectations
and priorities, the focus was on developing the mutation system and the unit tests
for the sample test systems. Thus, many of the stages above were carried out
manually. The inspiration for the tool described was spawned from the presence
of other mutation testing tools, such as Pitest, which provides a full mutation
testing environment and many operators to select. However, none of the available
tools provide support for concurrent operators due to the special difficulties that
surround the subject. A complete automatic tool for evaluating the effectiveness
of concurrent tests would be a valued area for future development.

Although the concurrent tests were effective in this context, this may not be
the case in other scenarios, especially larger and more complex systems. With
more time and the availability of more legitimate pre-existing concurrent systems,
it would be pertinent to apply the mutation operators explored in this project
to these systems and verify the results obtained here. This would give a greater
insight into the effectiveness unit tests against concurrent issues.

As well as testing a greater range of concurrent systems, there are many more
mutation operators that could be developed for this tool. The automatic mutation
application tool currently only supports application of four mutation operators
with all of the relevant concurrent keywords and methods: MXT, MSP, RTXC
and RCXC. However, at least 7 more of the operators could be implemented with
little difficulty due their similar mechanisms. These other operators can be found
in Appendix A Table 14 along with the full list of operators defined by Bradbury
et al. (2006). The regular expression used is very consistent for simple removals of
keywords and minor modifications to method parameters. The operators that have
been implemented already were chosen based on the needs of the banking system
and the limited number of concurrent methods present in the code. Expanding
the selection of mutation operators would allow for greater flexibility in choosing
concurrent systems and provide a more thorough analysis.

For a larger project or a publicly available application, parser manipulation
is potentially a more robust and general purpose method of applying mutations
and would be more suited to these types of project. This area could be researched

48

more thoroughly to develop a more complete concurrency mutation tool that aims
to implement more of the mutation operators by Bradbury et al. (2006).

IntelliJ provides code coverage statistics that report the number of lines and
branches that are covered by a test suite (JetBrains 2019). A similar idea could
be applied to concurrent tests, for instance, to prevent lock and unlock methods
from producing ”Wrong Lock or No Lock” and ”Blocking Critical Section Code”
bug patterns (Sections 2.4.1 & 2.4.3), a simple tool could be created that counts
the number of instances of each of these method calls; there should be an equal
number of these calls. If the counts differ then the programmer would be informed
and all instances will be returned to the user to identify where the missing call/s
are located. Similar mechanisms could be implemented for other paired methods,
such as await and signalAll.

49

6 Conclusion

The objectives of this project were clearly defined: to produce an automatic muta-
tion tool, apply mutations to concurrent software and evaluate the effectiveness of
the systems unit tests. These aims have been successfully met, the test results have
been evaluated with reflections on improvements in the unit tests and suggestions
have been made for future work in this area.

The topics of concurrency and mutation testing were covered in sufficient
detail to provide the necessary understanding for this project. With this knowledge
and reviewing the relevant literature, particularly focusing on the works of Farchi
et al. (2003) and Bradbury et al. (2006), a proof-of-concept mutation tool was
developed with four mutation operators implemented: the MXT, RTXC, RCXC
and MSP operators can mutate a wide variety of different concurrent features
through modification or removal. The potential for implementing more is easily
attainable with more time, as a number of other operators share similar mutation
mechanisms.

The tool was tested on two different systems with a range of concurrent fea-
tures and the tests for these systems have been evaluated based on the results. A
mutation score has been given in each example to evaluate the effectiveness of the
tests and the results tables indicate the areas that need improvements. The first
of the software tested, the Banking system received an overall mutation score of
86% after seeding a total of 14 different mutations, combining the efforts of single-
threaded JUnit tests and multi-threaded concurrent tests. The second system to
be tested, the Incrementer system, was created specifically for this project and
was designed to be easily tested for concurrent bugs, received a mutation score
of 100% for the 12 mutations applied. These scores represent the percentage of
mutations that were detected and successfully killed compared to the total number
that were seeded.

Taking the results presented throughout this report into consideration and
the techniques employed during development, design patterns can be created to
aid programmers in writing thread-safe code and effective unit tests to ensure this.
Particular concurrent features to focus on are the lock, unlock, await and signalAll
methods as they frequently avoided detection by the suite of unit tests. Of the
seven concurrent features explored in this project, all but one were successfully
tested and the mutation killed by at least one test. Aspects of these successful
concurrent tests can be applied to the design of tests for other concurrent features
and operators discussed in the work of Bradbury et al. (2006).

50

The purpose of JUnit tests is most often to provide a satisfactory line and
branch coverage for a system, ensuring that each code segment is accounted for
with an expected outcome. This style of testing does not lend itself well to con-
current software which is inherently unpredictable with its thread execution order
mostly outwith the programmer’s control. The concurrent tests were designed to
target these concurrency issues by creating a variety of scenarios that accentuate
situations involving interleaving threads. Reporting such high mutation scores
serves as proof that it is entirely possible to design effective unit tests for concur-
rent software.

51

Bibliography

Adrion, W. R., Branstad, M. A. and Cherniavsky, J. C. (1981), Validation, ver-
ification, and testing of computer software, U.S. Dept. of Commerce, National
Bureau of Standards.

Ammann, P. and Offutt, J. (2017), Introduction to software testing, Cambridge
University Press.

Bradbury, J. S., Cordy, J. R. and Dingel, J. (2006), ‘Mutation operators for con-
current java (j2se 5.0)’, Second Workshop on Mutation Analysis (Mutation 2006
- ISSRE Workshops 2006) .

Coles, H. (2019), ‘Real world mutation testing - mutators’.
URL: http://pitest.org/quickstart/mutators/

Farchi, E., Nir, Y. and Ur, S. (2003), ‘Concurrent bug patterns and how to test
them’, Proceedings International Parallel and Distributed Processing Symposium
p. 286.

Gamma, E., Helm, R., Johnson, R. E. and Vlissides, J. (2015), Design patterns:
elements of reusable object-oriented software, Pearson Education.

JetBrains (2019), ‘Code coverage’.
URL: https://www.jetbrains.com/help/idea/code-coverage.html

Mois, M. (2015), ‘Java concurrency essentials’.

Oracle (2017), ‘Lesson: Regular expressions’.
URL: https://docs.oracle.com/javase/tutorial/essential/regex/index.html

Oracle (2018a), ‘Class illegalmonitorstateexception’.
URL: https://docs.oracle.com/javase/7/docs/api/java/lang/IllegalMonitorStateException.html

Oracle (2018b), ‘Class nullpointerexception’.
URL: https://docs.oracle.com/javase/7/docs/api/java/lang/NullPointerException.html

Oracle (2019a), ‘Lesson: Concurrency’.
URL: https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

Oracle (2019b), ‘Package java.util.regex’.
URL: https://docs.oracle.com/javase/8/docs/api/java/util/regex/package-
summary.html

52

Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D. and Holmes, D. (2005), Java
Concurrency in Practice, Addison-Wesley Professional.

Radigan, D. (2019), ‘Kanban - a brief introduction’.
URL: https://www.atlassian.com/agile/kanban

Silberschatz, A., Galvin, P. B. and Gagne, G. (2013), Operating System Concepts,
9th edn, Wiley Publishing.

53

7 Appendices

A Mutation Operators

Table 14: List of concurrency mutation operators devised by Bradbury et al. (2006)
The green highlighted operators have been fully implemented in the mutation test-
ing tool. The blue highlighted operators could be implemented without difficulty.

54

Table 15: The relationship between new mutation operators for concurrency and
the concurrency features provided by J2SE 5.0 (Farchi et al. 2003).

B Banking System Code

The four Banking system Account classes were taken from a Strathclyde under-
graduate Computer Science class on concurrency and remain unaltered. The con-
current unit tests were written by myself for the purpose of evaluating the software.

B.1 Account Class

1 package bankSystem;

2 import java.util.concurrent.locks.Condition;

3 import java.util.concurrent.locks.ReentrantLock;

4

5 public abstract class Account {

6

7 protected static final int TIMEOUT = 5;

8 protected double balance;

9 protected int accountNumber;

10 protected String name;

11 protected ReentrantLock balanceLock;

12 protected Condition fundsAvailableCondition;

13

14 public Account(String name, double balance) {

15 this.balance = balance;

55

16 this.name = name;

17 System.out.println("Initial balance of " + name + " is " + balance

+ ".");

18 balanceLock = new ReentrantLock();

19 fundsAvailableCondition = balanceLock.newCondition();

20 }

21

22 public int getAccountNumber() {

23 return this.accountNumber;

24 }

25

26 public double getBalance() {

27 System.out.println("Balance of " + name + " is " + balance + ".");

28 return this.balance;

29 }

30

31 public void deposit(double amount) {

32 System.out.println("Depositing " + amount + " in " + name + "...");

33 balanceLock.lock();

34 try {

35 this.balance += amount;

36 getBalance();

37 fundsAvailableCondition.signalAll();

38 } finally {

39 balanceLock.unlock();

40 }

41 }

42

43 public abstract boolean withdraw(double amount);

44

45 public void transferMoney(double amount, Account recipient) {

46 System.out.println("Transferring " + amount + " from " + name + "

to " + recipient.getName() + ":");

47 balanceLock.lock();

48 try {

49 if (withdraw(amount))

50 recipient.deposit(amount);

51 getBalance();

52 recipient.getBalance();

53 } finally {

54 balanceLock.unlock();

55 }

56 }

56

57

58 public String getName() {

59 return name;

60 }

61 }

B.2 CurrentAccount Class

1 package bankSystem;

2 import java.util.concurrent.TimeUnit;

3

4 public class CurrentAccount extends Account {

5

6 private final double overdraftLimit;

7

8 public CurrentAccount(String name, double initialBalance) {

9 super(name, initialBalance);

10 this.overdraftLimit = -50;

11 }

12

13 @Override

14 public boolean withdraw(double amount) {

15 System.out.println("Withdrawing " + amount + " from " + name +

"...");

16 boolean waiting = true;

17 balanceLock.lock();

18 try {

19 while (balance - amount < overdraftLimit) {

20 if (!waiting) {

21 Thread.currentThread().interrupt();

22 } else {

23 System.out.println("Waiting for funds to become

available...");

24 }

25 waiting = fundsAvailableCondition.await(TIMEOUT,

TimeUnit.SECONDS);

26 }

27

28 this.balance -= amount;

29 getBalance();

30 return true;

57

31

32 } catch (InterruptedException e) {

33 System.out.println("Can’t withdraw " + amount + " from account

with balance " + balance);

34 return false;

35 } finally {

36 balanceLock.unlock();

37 }

38 }

39

40 public double getOverdraftLimit() {

41 return overdraftLimit;

42 }

43 }

B.3 SavingsAccount Class

1 package bankSystem;

2 import java.util.concurrent.TimeUnit;

3

4 public class SavingsAccount extends Account {

5

6 private double fee;

7

8 public SavingsAccount(String name, double initialBalance) {

9 super(name, initialBalance);

10 this.fee = 0.5;

11 }

12

13 @Override

14 public boolean withdraw(double amount) {

15 System.out.println("Withdrawing " + amount + " from " + name +

"...");

16 boolean waiting = true;

17 balanceLock.lock();

18 try {

19 while (balance - (amount + fee) < 0) {

20 if (!waiting) {

21 Thread.currentThread().interrupt();

22 } else {

58

23 System.out.println("Waiting for funds to become

available...");

24 }

25 waiting = fundsAvailableCondition.await(TIMEOUT,

TimeUnit.SECONDS);

26 }

27 this.balance -= (amount + fee);

28 getBalance();

29 return true;

30

31 } catch (InterruptedException e) {

32

33 System.out.println("Can’t withdraw " + amount + " from account

with balance " + balance);

34 return false;

35 } finally {

36 balanceLock.unlock();

37 }

38 }

39

40 }

B.4 LoanAccount Class

1 package bankSystem;

2

3 public class LoanAccount extends Account {

4

5 private CurrentAccount parentAccount;

6

7 public LoanAccount(String name, double loanAmount, CurrentAccount

parent) {

8 super(name, -loanAmount);

9 this.parentAccount = parent;

10 parentAccount.deposit(loanAmount);

11 }

12

13 @Override

14 public boolean withdraw(double amount) {

15 System.out.println("Can’t withdraw " + amount + ". Withdrawals not

available for loan account.");

59

16 return false;

17 }

18

19 @Override

20 public void deposit(double amount) {

21 balanceLock.lock();

22 try {

23 this.balance += amount;

24 if (balance >= 0) {

25 System.out.println("Loan paid off. You have " + balance + "

credit.");

26 }

27 if (balance > 0) {

28 parentAccount.deposit(balance);

29 balance = 0;

30 getBalance();

31 }

32 } finally {

33 balanceLock.unlock();

34 }

35 }

36

37 }

B.5 CurrentWithdrawTest Class

1 package bankSystemUnitTests;

2

3 import bankSystem.CurrentAccount;

4 import bankSystem.DepositRunnable;

5 import bankSystem.WithdrawRunnable;

6

7 public class CurrentWithdrawTest {

8 /**

9 * Unit test for CurrentAccount withdraw method

10 * Runs withdraw in one separate thread and deposit in another

11 * @param args

12 * @throws InterruptedException

13 */

14

15 public static void main(String[] args) throws InterruptedException {

60

16 CurrentAccount account = new CurrentAccount("Account A (Current)",

0);

17

18 Thread thread1 = new Thread(new WithdrawRunnable(account, 800));

19 Thread thread2 = new Thread(new DepositRunnable(account, 1000));

20

21 thread1.start();

22 thread2.start();

23

24 thread1.join(3000);

25 thread2.join(3000);

26 assert account.getBalance() == 200: "Incorrect Balance. Balance: "

+ account.getBalance() + " Expected Balance: 200.00";

27 }

28

29 }

B.6 SavingsWithdrawTest Class

1 package bankSystemUnitTests;

2

3 import bankSystem.DepositRunnable;

4 import bankSystem.SavingsAccount;

5 import bankSystem.WithdrawRunnable;

6

7 public class SavingsWithdrawTest {

8 /**

9 * Unit test for SavingsAccount withdraw method

10 * Runs withdraw in one separate thread and deposit in another

11 * @param args

12 * @throws InterruptedException

13 */

14

15 public static void main(String[] args) throws InterruptedException {

16 SavingsAccount account = new SavingsAccount("Account A

(Current)", 0);

17

18 Thread thread1 = new Thread(new WithdrawRunnable(account, 800));

19 Thread thread2 = new Thread(new DepositRunnable(account, 1000));

20

21 thread1.start();

61

22 thread2.start();

23

24 thread1.join(3000);

25 thread2.join(3000);

26 assert account.getBalance() == 199.5: "Incorrect Balance.

Balance: " + account.getBalance() + " Expected Balance:

199.50";

27 }

28 }

B.7 CurrentDoubleWithdrawTest Class

1 package bankSystemUnitTests;

2

3 import bankSystem.CurrentAccount;

4 import bankSystem.WithdrawRunnable;

5

6 public class CurrentDoubleWithdrawTest {

7 /**

8 * Unit test for CurrentAccount withdraw method

9 * Runs withdraw in two separate threads

10 * @param args

11 * @throws InterruptedException

12 */

13

14 public static void main(String[] args) throws InterruptedException {

15 CurrentAccount account = new CurrentAccount("Account A

(Current)", 0);

16

17 Thread thread1 = new Thread(new WithdrawRunnable(account, 40));

18 Thread thread2 = new Thread(new WithdrawRunnable(account, 20));

19

20 thread1.start();

21 thread2.start();

22

23 thread1.join(3000);

24 thread2.join(3000);

25

26 assert (account.getBalance() == -40) | (account.getBalance() ==

-20): "Incorrect Balance. Balance: " + account.getBalance() +

" Expected Balance: -40.00 or -20.00";

62

27 }

28 }

B.8 CurrentWithdrawLoanDepositTest Class

1 package bankSystemUnitTests;

2

3 import bankSystem.CurrentAccount;

4 import bankSystem.DepositRunnable;

5 import bankSystem.LoanAccount;

6 import bankSystem.WithdrawRunnable;

7

8 public class CurrentWithdrawLoanDepositTest {

9 /**

10 * Unit test for CurrentAccount withdraw method and LoanAccount

deposit method

11 * Runs withdraw in one thread and deposit in another

12 * @param args

13 * @throws InterruptedException

14 */

15

16 public static void main(String[] args) throws InterruptedException {

17 CurrentAccount account = new CurrentAccount("Current Account",

0);

18 LoanAccount loanAccount = new LoanAccount("Loan Account", 100,

account);

19

20 assert account.getBalance() == 100: "Incorrect Balance. Balance:

" + account.getBalance() + " Expected Balance: 100.00";

21 assert loanAccount.getBalance() == -100: "Incorrect Balance.

Balance: " + account.getBalance() + " Expected Balance:

-100.00";

22

23 Thread thread1 = new Thread(new WithdrawRunnable(account, 800));

24 Thread thread2 = new Thread(new DepositRunnable(loanAccount,

1000));

25

26 thread1.start();

27 thread2.start();

28

29 thread1.join(3000);

63

30 thread2.join(3000);

31

32 assert account.getBalance() == 200: "Incorrect Balance. Balance:

" + account.getBalance() + " Expected Balance: 200.00";

33 assert loanAccount.getBalance() == 0: "Incorrect Balance.

Balance: " + account.getBalance() + " Expected Balance:

300.00";

34 }

35 }

B.9 CurrentTransferTest

1 package bankSystemUnitTests;

2

3 import bankSystem.CurrentAccount;

4 import bankSystem.DepositRunnable;

5 import bankSystem.TransferRunnable;

6

7 public class CurrentTransferTest {

8 /**

9 * Unit test for CurrentAccount transfer method

10 * Runs transfer in one thread and deposit in another

11 * @param args

12 * @throws InterruptedException

13 */

14

15 public static void main(String[] args) throws InterruptedException {

16 CurrentAccount sender = new CurrentAccount("Current Account

Sender", 0);

17 CurrentAccount receiver = new CurrentAccount("Current Account

Receiver", 0);

18

19 Thread thread1 = new Thread(new TransferRunnable(sender,

receiver, 100));

20 Thread thread2 = new Thread(new DepositRunnable(sender, 100));

21

22 thread1.start();

23 thread2.start();

24

25 thread1.join(3000);

26 thread2.join(3000);

64

27

28 assert sender.getBalance() == 0: "Incorrect Balance. Balance: "

+ sender.getBalance() + " Expected Balance: 0.00";

29 assert receiver.getBalance() == 100: "Incorrect Balance.

Balance: " + receiver.getBalance() + " Expected Balance:

100.00";

30

31 }

32 }

B.10 CurrentTransferDepositWithdrawTest Class

1 package bankSystemUnitTests;

2

3 import bankSystem.CurrentAccount;

4 import bankSystem.DepositRunnable;

5 import bankSystem.TransferRunnable;

6 import bankSystem.WithdrawRunnable;

7

8 public class CurrentTransferDepositWithdrawTest {

9 /**

10 * Unit test for CurrentAccount transfer, deposit and withdraw method

11 * Runs transfer, deposit and withdraw in separate threads

12 * @param args

13 * @throws InterruptedException

14 */

15

16 public static void main(String[] args) throws InterruptedException {

17 CurrentAccount sender = new CurrentAccount("Account A

(Current)", 0);

18 CurrentAccount receiver = new CurrentAccount("Account B

(Current)", 0);

19

20 Thread thread1 = new Thread(new WithdrawRunnable(sender, 800));

21 Thread thread2 = new Thread(new TransferRunnable(sender,

receiver, 100));

22 Thread thread3 = new Thread(new DepositRunnable(sender, 1000));

23

24 thread1.start();

25 thread2.start();

26 thread3.start();

65

27

28 thread1.join(3000);

29 thread2.join(3000);

30 thread3.join(3000);

31 assert sender.getBalance() == 100 : "Incorrect Balance. Balance:

" + sender.getBalance() + " Expected Balance: 100.00";

32 assert receiver.getBalance() == 100 : "Incorrect Balance.

Balance: " + receiver.getBalance() + " Expected Balance:

100.00";

33 }

34 }

C Incrementer System Code

All Incrementer classes were written by myself for this project.

C.1 Incrementer Class

1 package concurrentSystems;

2

3 import java.util.concurrent.TimeUnit;

4 import java.util.concurrent.locks.Condition;

5 import java.util.concurrent.locks.ReentrantLock;

6

7

8 public class Incrementer {

9 /**

10 * Incrementer class provides multiple concurrent methods that

utilise the increment operation, x++.

11 */

12 private ReentrantLock lock = new ReentrantLock();

13 private int count;

14 private int secs;

15 private int millis;

16 private Condition condition;

17

18 /**

19 * Constructor

66

20 */

21 public Incrementer() {

22 count = 0;

23 secs = 3;

24 millis = 750;

25 condition = lock.newCondition();

26 }

27

28 /**

29 * Basic incrementer method, increases count by input value inc

30 * @param inc increments count

31 */

32 public void increment(int inc) {

33 if (inc > 0) {

34 System.out.println("Incrementing count by " + inc);

35 for (int i = 0; i < inc; i++) {

36 count++;

37 System.out.println(count);

38

39 try {

40 Thread.sleep(millis);

41 } catch (Exception e) {

42 System.out.println("Thread Interrupted");

43 }

44 }

45 } else {

46 System.out.println("Increment amount must be greater than

1");

47 }

48 }

49

50 /**

51 * Implements a lock system to the basic increment

52 * @param inc increments count

53 */

54 public void incrementLocked(int inc) {

55 System.out.println("incrementLocked begins...");

56 lock.lock();

57 increment(inc);

58 lock.unlock();

59 System.out.println("incrementLocked ends.");

60 }

61

67

62 /**

63 * If the current value of count %5 == 0 then the count will be

incremented by inc. Otherwise count will be set to -1

64 * @param inc increments count

65 */

66 public void incrementInterrupt(int inc) {

67 System.out.println("incrementInterrupt begins...");

68 lock.lock();

69 if(count%5 == 0) {

70 Thread.currentThread().interrupt();

71 }

72

73 if(Thread.interrupted()) {

74 increment(inc);

75 } else {

76 count = -1;

77 System.out.println(count);

78 }

79

80 lock.unlock();

81 System.out.println("incrementInterrupt ends.");

82 }

83

84 /**

85 * Increments count if a signalAll is called in another thread or if

the count != 0

86 * @param inc increments count

87 */

88 public void incrementAwait(int inc) {

89 System.out.println("incrementAwait begins...");

90 boolean waiting = true;

91 lock.lock();

92 try {

93 if (count == 0) {

94 System.out.println("Waiting");

95 waiting = condition.await(secs, TimeUnit.SECONDS);

96 if (waiting) {

97 increment(inc);

98 }

99 } else {

100 increment(inc);

101 }

102

68

103 } catch (InterruptedException e) {

104 System.out.println("Thread interrupted.");

105

106 } finally {

107 lock.unlock();

108 }

109

110 }

111

112 /**

113 * Increments the count and calls a signalAll

114 * @param inc increments count

115 */

116 public void incrementSignal(int inc) {

117 System.out.println("incrementSignal begins...");

118 lock.lock();

119 increment(inc);

120 condition.signalAll();

121 System.out.println("incrementSignal ends.");

122 lock.unlock();

123 }

124

125 /**

126 * Getter for count

127 * @return count

128 */

129 public int getCount() {

130 return count;

131 }

132

133 /**

134 * Setter for count

135 * @param i new count value

136 */

137 public void setCount(int i) {

138 count = i;

139 }

140

141 /**

142 * Sets secs

143 * @param s new secs value

144 */

145 public void setSecs(int s) {

69

146 secs = s;

147 }

148

149 /**

150 * Sets millis

151 * @param m new millis value

152 */

153 public void setMillis(int m) {

154 millis = m;

155 }

156 }

C.2 SyncIncRunnable Class

1 package concurrentSystems;

2

3 public class SyncIncRunnable extends Thread {

4 private Incrementer syncInc;

5 private int inc;

6

7 public SyncIncRunnable(Incrementer i, int x) {

8 syncInc = i;

9 inc = x;

10 }

11

12 public void run() {

13 synchronized(this) { //synchronized was modified

14 syncInc.increment(inc);

15 }

16 }

17 }

C.3 LockTest Class

1 package concurrentSystems;

2

3 public class LockTest {

4 /**

70

5 * Unit test for incrementLocked method

6 * Runs incrementLocked in two threads

7 * @param args

8 */

9

10 public static void main(String args[]) {

11 Incrementer inc = new Incrementer();

12 LockIncRunnable lock1 = new LockIncRunnable(inc, 5);

13 LockIncRunnable lock2 = new LockIncRunnable(inc, 5);

14

15 lock1.start();

16 lock2.start();

17

18 try {

19 lock1.join(15000);

20 lock2.join(15000);

21 } catch(Exception e) {

22 System.out.println("Interrupted");

23 }

24

25 assert inc.getCount() == 10: "Incorrect x value. x = " +

inc.getCount() + " Expected x = 10";

26 }

27 }

C.4 InterruptTest Class

1 package concurrentSystems;

2

3 public class InterruptTest {

4 /**

5 * Unit test for incrementInterrupt method

6 * Runs incrementInterrupt in one thread and incrementLocked in

another

7 * @param args

8 */

9 public static void main(String args[]) {

10 Incrementer inc = new Incrementer();

11 InterruptIncRunnable int1 = new InterruptIncRunnable(inc, 5);

12 LockIncRunnable lock = new LockIncRunnable(inc, 5);

13

71

14 int1.start();

15 lock.start();

16

17 try {

18 int1.join(9000);

19 lock.join(9000);

20 } catch (Exception e) {

21 System.out.println("Interrupted");

22 }

23

24 assert inc.getCount() == 10: "Incorrect count value. Count = " +

inc.getCount() + " Expected Count = 10";

25 }

26 }

C.5 AwaitSignalTest Class

1 package concurrentSystems;

2

3 public class AwaitSignalTest {

4 /**

5 * Unit test for incrementAwait and incrementSignal methods

6 * Runs incrementAwait in one thread and incrementSignal in another

7 * @param args

8 */

9

10 public static void main(String args[]) {

11 Incrementer inc = new Incrementer();

12 AwaitIncRunnable ai = new AwaitIncRunnable(inc, 3);

13 SignalIncRunnable si = new SignalIncRunnable(inc, 2);

14

15 ai.start();

16 si.start();

17

18 try {

19 ai.join();

20 si.join();

21 } catch (Exception e) {

22 System.out.println("Interrupted");

23 }

24

72

25 assert inc.getCount() == 5: "Incorrect count value. Count = " +

inc.getCount() + " Expected Count = 7";

26 }

27 }

C.6 SyncTest Class

1 package concurrentSystems;

2

3 public class SyncTest {

4 /**

5 * Unit test for SyncIncRunnable run method

6 * Runs synchronized increment methods in two separate threads

7 * @param args

8 */

9

10 public static void main(String args[]) {

11 Incrementer inc = new Incrementer();

12 SyncIncRunnable sync1 = new SyncIncRunnable(inc, 5);

13 SyncIncRunnable sync2 = new SyncIncRunnable(inc, 5);

14

15 sync1.start();

16 sync2.start();

17

18 try {

19 sync1.join();

20 sync2.join();

21 } catch(Exception e) {

22 System.out.println("Interrupted");

23 }

24

25 assert inc.getCount() == 10: "Incorrect x value. x = " +

inc.getCount() + " Expected x = 18";

26 }

27 }

73

