
�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

MSc Software Development

Automated personalised music reproducer according to

running speed by means of Machine Learning

Andrea Giordano

University of Strathclyde, Glasgow

August 19, 2019

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

This dissertation is submitted in part ful�lment of the requirements for

the degree of MSc of the University of Strathclyde.

I declare that this dissertation embodies the results of my own work and

that it has been composed by myself.

Following normal academic conventions, I have made due

acknowledgement to the work of others.

I declare that I have sought, and received, ethics approval via the

Departmental Ethics Committee as appropriate to my research.

I give permission to the University of Strathclyde, Department of

Computer and Information Sciences, to provide copies of the dissertation,

at cost, to those who may in the future request a copy of the dissertation

for private study or research.

I give permission to the University of Strathclyde, Department of

Computer and Information Sciences, to place a copy of the dissertation in

a publicly available archive.

(please tick) Yes [X] No []

I declare that the word count for this dissertation (excluding title page,

declaration, abstract, acknowledgements, table of contents, list of

illustrations, references and appendices is

I con�rm that I wish this to be assessed as a Type 1 2 3 4 5© Dissertation

Signature:

Date: 19/08/2019

i

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Abstract

In this dissertation, Machine Learning and Neural Network techniques are applied to

step recognition and beat detection problem, providing a profound analysis of the full

process from the acquisition of the data, to the processing, ending with building and

evaluation of the produced models.

It has been particularly examined the potentiality of Long Short Term Memory net-

works applied to both these context.

The goal of this dissertation is to prove how it is possible to build an Android's appli-

cation that by making use of the mentioned techniques could reproduce music with the

same tempo as the running pace.

After conducting several experiments and testings, the research showed how intriguing

results could be achieved on step detection, while further analysis will be needed to

beat detection.

It has been �nally shown how it is achievable to lively match songs and user's pace

in an Android's prototype application, which, in future works, would be possible to

combine with the designed and proposed neural network models.

ii

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Contents

Abstract ii

List of Figures iv

List of Tables vii

Preface/Acknowledgements ix

1 Introduction 2

2 Literature Review 4

2.1 E�ectiveness of music in the increasing of �tness performances 4

2.2 Market and Peer-Reviewed analyses . 6

2.3 Overview of Step Detection's algorithms 8

2.3.1 Time Domain approaches . 8

2.3.2 Frequency Domain approaches 9

2.3.3 Feature Clustering approaches 10

2.4 Overview of Audio Beat Tracking and Music Tempo Extraction's algo-

rithms . 11

2.5 Objectives . 12

3 Methodology 13

3.1 Requirement . 13

3.1.1 Requirement's Gathering . 13

3.1.2 Functional Requirements . 15

iii

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Contents

3.1.3 Non-Functional Requirements . 21

3.2 Methodologies . 21

3.3 Programming Languages and frameworks 22

3.4 Design . 24

3.4.1 High-Level Design . 25

3.4.2 Low-Level Design . 30

4 Research Methods 38

4.1 Steps Detection and Counting . 38

4.1.1 Experimental Set-Up . 39

4.1.2 Data Acquisition . 40

4.1.3 Data Preparation . 48

4.1.4 Data Analysis and Preprocessing 49

4.1.5 Data Classi�cation and Training 53

4.2 Beats Detection and Counting . 66

4.2.1 Experimental Set-Up . 66

4.2.2 Data Preparation . 67

4.2.3 Data Analysis and Preprocessing 67

4.2.4 Data Classi�cation and Training 73

4.3 Prototype Evaluation . 79

5 Conclusion and Future Work 81

A Figures 83

Bibliography 83

iv

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

List of Figures

3.1 E�ects of Fast Tempo Music . 14

3.2 Undesirable E�ects of Inappropriate Music 14

3.3 Preferred Music Feature to be Adjusted 14

3.4 Preferred type of Tempo Adjustment . 14

3.5 Preferred type of Tempo Adjustment . 16

3.6 Android-Manual Detected Steps over Z axis Accelerometer (Start of the

session) . 19

3.7 Android-Manual Detected Steps over Z axis Accelerometer (End of the

session) . 20

3.8 Main program-subroutine pattern . 27

3.9 MVC Pattern . 28

3.10 RuntoBPM Main Activity . 29

3.11 RuntoBPM Song Collection Displayer Activity 29

3.12 RunToBPM UML Diagram . 31

3.13 SongAdapter class . 32

3.14 CollectionDysplayer activity class . 33

3.15 Second part of MainActivity class . 34

3.16 Complete SongCollectionManager class 35

3.17 Complete RunBPMapp class . 37

4.1 Android sensors axes orientation . 41

4.2 SensorCollector isn't responding . 44

4.3 Acceleration over the X axis . 49

v

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

List of Figures

4.4 Acceleration over the X axis . 49

4.5 Acceleration over the Y axis time spaced 50

4.6 Acceleration over the Y axis non time spaced 50

4.7 Accuracy of manual detection on axis X acceleration 50

4.8 Hypothetical ideal Hyper-plane classi�cation observation distribution . . 54

4.9 Real observation distribution of the rate of rotation over the Z axis . . . 55

4.10 Structure of consecutive cells in a RNN 58

4.11 Forget Gate of a LSTM cell . 59

4.12 Input Gate of a LSTM cell . 59

4.13 Cell State of a LSTM cell . 60

4.14 Output Gate of a LSTM cell . 60

4.15 LSTM Architecture for Step Detection 61

4.16 LSTM layer with return_sequence=False 61

4.17 Accuracy and Binary Crossentropy loss development over training on

100 epochs with dataset averaged over 5 time steps 63

4.18 Accuracy and Binary Crossentropy loss development over training on

100 epochs with dataset averaged over 3 time steps 63

4.19 Accuracy and Binary Crossentropy loss development over training on

300 epochs . 64

4.20 Accuracy and Binary Crossentropy loss development over training on

other 300 epochs . 64

4.21 Learning curve obtained using a Dense layer as �nal one 65

4.22 Comaprison between placements of manually detected and predicted steps 66

4.23 LibROSA Detected Beats . 69

4.24 Spectrogram mapped onto the Mel scale compared with LibROSA De-

tected Beats . 70

4.25 Magnitude of frequency calculated with STFT compared with LibROSA

Detected Beats . 71

4.26 Original samples compared with Detected Beats 72

4.27 Original samples compared with Detected Beats 72

vi

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

List of Figures

4.28 LSTM structure for BPM recognition 74

4.29 Learning curve obtained using a TimeDistributed �nal layer, making the

network stateful . 74

4.30 Learning curve obtained using a TimeDistributed �nal layer without

shu�ing samples . 75

4.31 Learning curve obtained using a TimeDistributed �nal layer shu�ing

samples after each epoch . 75

4.32 Model structure composed by 3 LSTM layers and a TimeDistributed

�nal layer . 76

4.33 Learning curve obtained using a 3 LSTM layers without shu�ing samples

over 300 epochs . 76

4.34 Learning curve obtained using 3 LSTM layers without shu�ing samples

using a windowed dataset over 50 epochs 78

A.1 Age Distribution . 83

A.2 Gender Distribution . 83

A.3 Run Frequency . 83

A.4 Music Frequency . 83

A.5 Music Genre Distribution . 83

A.6 Perceived boost in Performances . 83

A.7 Expressed Interest in the App . 84

A.8 Expressed Interest in Performances Tracking 84

A.9 Interest in Reproducing more often Songs that Leads to better Perfor-

mances . 84

A.10 Focus on Music or Performances Tracking 84

A.11 Android Detected Steps over Z axis Accelerometer (5 min. approx.) . . 84

A.12 First part of MainActivity class . 85

A.13 Third part of MainActivity class . 86

A.14 Complete Song class . 87

A.15 Complete SongAdapter class . 88

vii

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

List of Tables

3.1 User Case: Start Music Reproduction 18

3.2 Step Counter CRC card . 26

4.1 Test Device specs . 40

4.2 Dataset head . 43

4.3 Android detected steps . 45

4.4 Comparison overview of Sytem threads 47

4.5 Final dataset description . 49

4.6 Comparison of the e�ects of di�erent mean_vaues over the Dataset un-

balance . 51

4.7 First 3 rows of the Dataset averaged with a mean_value of 3 52

4.8 First 3 rows of the scaled Dataset averaged with a mean_value of 3 . . 52

4.9 Prediction results of Linear SVM comparison 56

4.10 Prediction results of Non Lineas SVM comparison 56

4.11 Prediction results �nal comparison between tested algorithms 65

4.12 Comparison between Traktor and LibROSA detected BPMs 68

viii

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Preface/Acknowledgements

I would �rstly like to thank Dr. Konstantinos Liaskos, lecturer at the University of

Strathclyde and my dissertation supervisor for his guidance throughout the year and

availability and precision shown during the whole process of my Master's dissertation.

I would also like to express my gratitude to my parents, for the blessing shown

to my decisions and the support provided all over these years.

Finally, I would also like to thank Stiven Kulla and Rachel McRae for inspiring and

encouraging me through the process of researching and writing this thesis.

ix

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 0. Preface/Acknowledgements

1

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 1

Introduction

This project will provide an in-depth analysis of how it will be possible to improve the

actual level of the apps now available in the market to help the user improving them

performances during running activities through the reproduction of suitable music.

As it will be shown in the following chapter, various studies proved how during cardio

activities listening to music, especially with a similar tempo as the running pace could

have multiple bene�cial e�ects.

Having, therefore, an app that can accurately achieve that goal could be bene�cial to a

wide range of people, from the neophytes to the professionals of the discipline. Indeed

reproducing di�erent songs according to the user's pace it could become an entertaining

motivational tool to encourage people to have a more active lifestyle, as well as be a

powerful means to improve performances of experienced runners.

In this project will be evaluated if it would be possible to overcome, through the appli-

cation of arti�cial intelligence techniques, the two main challenges of this project, i.e.

detection of the user's steps and identi�cation of the beats in the user's smartphone

playlist.

It will be indeed experienced the full cycle of research to produce neural network algo-

rithms, for the de�nition of methodologies to acquire the database, to the processing of

the collected data to the training optimisation and evaluation of the produced model.

The main objective targetted here has been to prove how neural networks, with par-

ticular reference to Long Short Term Memory Recurrent Network, could be a suitable

2

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 1. Introduction

solution to the exposed problems.

Furthermore, it would be intriguing to examine the astonishing abilities of these net-

works and how, di�erently to other Machine Learning techniques, can produce exciting

results even through the simpli�cation and inaccuracies due to time and resource lim-

itations peculiar to a master's dissertation. Finally, it will be furnished a prototype

simulating the behaviour of the proposed app to show and evaluate the potentiality of

this project, providing solid foundations for possible future developments.

3

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 2

Literature Review

Since the usage of Android's build-in sensors to �tness and health application, uniquely

integrated with machine learning algorithms, is something not that common and still a

topic of research, where a de�nitive solution yet has to be found, it is understandable

how there will not be that much literature available.

The motives of this a�rmation are likely to be found in how the availability of these

sensors was just heritage of the high-end smartphones until some years ago and further-

more how the accuracy was not high enough, while nowadays even cheap phones have

decent quality sensors and are provided to enough computational power to manage

similar applications.

Whereas the exponential technological growth is far from over, it is believed that, even

if the smartphone's app market is not as �ourish as before, there will still be a margin

of growth for this niche market as a �eld whom potentiality is not yet fully explored.

2.1 E�ectiveness of music in the increasing of �tness per-

formances

The �rst question regarding this project to be answered is: if the common perception

that music can help performances had been somehow previously scienti�cally proven.

It is often said that music distracts people from pain and fatigue, elevates their mood,

increases endurance, reduces perceived e�ort and may even promote metabolic e�-

4

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 2. Literature Review

ciency. People run farther, bike longer and swim faster than usual, often without even

realising it. [21]

Now would be indeed interesting to investigate the merit of this claim in order to pro-

vide more relevance to this work, showing the actual bene�t provided.

Some research has been made to prove the correlation between music tempo and sport

performances. An intriguing experiment showed the e�ects produced by increasing or

decreasing the actual tempo of a playlist by a 10% during cycling over a self-chosen

work-rates program, showing a direct relationship between distance covered/unit time,

power and pedal cadence and BPMs. [44]

As this can already create some solid foundation to this case, however, can be fur-

therly tried to be claimed that movements synchronised with music BPMs could be

more e�cient. In details has been tested how the value of heart rate (HR) and oxygen

consumption (VO2) change after cycling for 12 min at 70% of maximal HR, resulting in

lower (VO2) in synchronous conditions. Proving that the body has a better e�ciency

under these circumstances, especially with faster tempo. [8]

Similar experiments have been conducted even on a running sprint over 400-m dis-

tance, measuring the in�uence of motivating and oudeterous (neither motivating nor

demotivating) synchronous music. Similar results have been shown, but furthermore

emphasizing how is the synchrony more any than other features what boost perfor-

mances. [25]

An explanation of this can be found in the enhancement in ventral premotor cortex

activity when exposed to preferred music tempos [27].

From that we can propose two interesting conjectures, that would be intriguing to in-

vestigate in future works. Firstly that, in a moment of e�ort, this preferred tempo

could be very similar to the current running speed, as for the ability of the body to

continuously adapt to external inputs. Alternatively, that if not bound by limitations

of a pre-ordered playlist, the runner will automatically reach the most performing pace

and hence his best potential, as the time of songs follow him.

Having all that in mind it is believed that the most critical feature to sync with the

running speed are the song's BPM, and particularly beats with steps, over any other

5

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 2. Literature Review

classi�able musical feature, as genre or triggered emotions.

2.2 Market and Peer-Reviewed analyses

Moving now on to the review of similar applications, a quick market analysis will show

how small is the number of available options.

Probably the most popular had been a side premium feature of the well known "Spotify"

music app, but that had been removed in early 2018, receiving several complaints as

can be seen from their community page [32]. It is hence interesting to see how this type

of application is desired by users.

On the market, some other apps try to achieve the same goal, e.g. "Nike+ Run Club"

or "RockMyRun". However, they require the connection with "Spotify premium", not

available to everybody and just allow you to select a tempo of the played playlist, not

to adjust it according to your speed or use the favourite songs. Lastly, some other apps

use the GPS sensor in the smartphone to calculate the running pace and after having

selected a target speed increase (if you are overcoming it) or decrease (if not achieved)

the music tempo. This, lead to a signi�cant issue, i.e. render the app worthless if used

on a treadmill, and an inconsistency, i.e. the choice made on how to treat the music to

increase motivation.

A better approach has been followed in [36] project, this will be analysed more in-depth

as the readiest to be reality wise applied. They propose a solution to both the issues

mentioned above. Acquiring data using a redesigned earphone accessory unit, that is

including two sensor boards embedded into the earbuds which provide HR data and a

baseboard integrated with an IMU (3-axis accelerometer and gyroscope), that collects

data from the earbuds and communicates with the smartphone.

The detected HR, combined with the activity revelation, calculated from accelerometer

data, provide music recommendations to guide the user to the (previously selected)

desired level of activity. This is achieved by reproducing more aggressive songs to

increase this level and more chilled ones to lower it. As far as it can be told this is a

better means to suggest music compared to the one previously mentioned, considering

6

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 2. Literature Review

Figure 2.1: The Septimu hardware platform [36].

that it would perform in any circumstance and has a more appropriate way to guide to

the preferred tempo.

Their approach to features extraction from the raw accelerometer data is to apply the

linear magnitude over the three axes:

|aear| =
√
a2x + a2y + a2z.

On the resulting samples sequence, it is then calculated the standard deviation xi with

a window of size 50 (corresponding to 1 sec.), and that is the �nal feature used in

the classi�cation process. Then they opted to train an unsupervised learner using a

k-means clustering algorithm to identify 3 clusters {xi} corresponding in di�erent levels

of activity.

In the real usage phase, each xi value recorded is classi�ed considering their minimum

distance from the cluster heads obtained in training. The activity level is then decided

considering a window of 60 seconds by majority voting, in order to detect the right

level of activity even though small interruptions as tying shoelaces.

This is an interesting approach and would work very well on a variety of contexts.

However, as mentioned earlier, it is the synchronization between the song's BPM with

each step what more than anything improve performances. Hence on an athletic envi-

ronment, a method that precisely detects steps would be more appropriate and would

allow a series of more advanced features.

Furthermore, it would be interesting to allow the user to reproduce songs from their

owned or favourite music, allowing a more appreciable experience.

Not to mention what could be another barrier for many people, i.e. the necessity of

7

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 2. Literature Review

external devices additional to the smartphone itself that are not available to the mass.

The same issue is encountered in [10] or [37], where both use even more external hard-

ware to detect the running pace, as respectively an accelerometer inside an armbar and

a heart monitor and 2-axis accelerometer.

Following it will be provided a profound overview of the most common approaches

attempted to the step detection and BPM recognition problems, considering them in-

dependently in order to supply more accurate and diverse papers.

2.3 Overview of Step Detection's algorithms

In this section it will review the step detection issue, focusing on the most popular type

of algorithms, even if used in a di�erent type of application or context, as it would still

be possible to be inspired.

Currently, the available literature can be categorized into three main macro-areas: time

domain, frequency domain and feature clustering approach.

2.3.1 Time Domain approaches

The most simple usage of the accelerometer sensor is by applying thresholds, above

which a step is detected [4]. Nevertheless, though its simplicity of realization and us-

age, it is challenging to �nd optimal thresholds, primarily if the smartphone is used in

an unconstrained manner.

Another popular approach is detecting peaks of acceleration as in [40] and detecting

steps matching them with peaks. The main issue with this is the environmental noise

and disturbance that can be misdetected as a step. However, in order to reduce that,

di�erent techniques can be applied, as low-pass �ltering [46], limiting the time interval

between two peaks [14] or use the vertical acceleration [45].

Even though with the last one it could be eventually possible to detect steps even from

unconstrained smartphones, their accuracy will still be a�ected by the user's running

speed.

Another option available is zero-crossing counting applied in [28], calculating the num-

8

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 2. Literature Review

ber of zero points in the sensor's data. However, it would also require heavy �ltering

and work better as a counter than a step detector.

All the methods mentioned till now, greater or lesser extent, still all su�er from a de-

grade of performances if the smartphone is not �rmly attached to the body.

Lastly, it has to be mentioned the autocorrelation approach proposed in [41]. Here,

given an acceleration signal, the normalized auto-correlation is computed, producing

a new wave with spikes at the correct periodicity of the running activity. This is an

attractive idea and something that could have also been applied in this project because

of its great performances at a reasonable computational cost.

2.3.2 Frequency Domain approaches

This type of techniques have a di�erent approach, focusing on the frequency of signal

measured over successive windows, rather than time.

Di�erent type of algorithms can be applied to transform the signal from its original

time domain to a representation of its frequency.

The most commonly used are "fast Fourier transform"(FFT) [17] or "short-time

Fourier transform"(STFT) [9]. The main di�erence between the two is that STFT

determine the sinusoidal frequency and phase content on shorter segments of equal

length instead that over the whole signal(FFT), resulting more meaningful.

Another group of algorithms are the "continuous/discrete wavelet trans-

forms"(CWT/DWT) [9] [43]. Here is explored the idea of transforming the wavelets

of a signal in order to provide an overcomplete representation of the signal itself. The

di�erence between the two approaches is how translation and scale parameter of the

wavelets are ideniti�ed: varying continuously in CWT, or prede�ned value in DWT.

These type of algorithms could be even used to preprocess the data before applying

one of the techniques seen in the previous section, or that will be illustrated in the

next one.

The main issue encountered with these approaches is that Android's accelerometer

provides a new data point when it is detected a new value by the sensor, hence the

interval between these samples is not regular, so they cannot be treated as a constant

9

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 2. Literature Review

signal. As far as it has been possible to experiment, at the application level, the

only way to have a constant rate is to discard data point received under the selected

rate. However, it adds computational power to an operation that, as it will be in

deep explained later, is already problematic. Not to mention that thinking of the

working app, some of the missing values could be the actuals steps, resulting in weak

predictions. Alternatively, it would be possible to modify the Android framework

internals (sensor HAL), but that has been considered out of the researcher area of

expertise.

2.3.3 Feature Clustering approaches

These kinds of approaches take advantage of machine learning techniques, and they have

been mostly used in medic and rehabilitation contexts. Several types of algorithms had

been applied over the years to classify the gait phases, starting from state machines [38]

on angular velocity and force-sensitive resistors, to Hidden Markov models(HMMs) [30]

on signals collected with a mono-axial gyroscope. Not to mention KMeans clustering

algorithms as previously mentioned in [36].

Nevertheless, even if not entirely continuously sampled, sensors data can be considered a

time series. Hence it would make sense to apply a time-recursive neural network(RNN),

because of its better decision-making ability, as it considers not only the present but

also the recent past.

This intuition has been proven to be a valuable starting point by previous work such

as [47] where the preprocessed values of rotation rate and acceleration over the three

axes are used as input for a two-layer Long Short Term Memory Neural Network to

count steps.

To conclude this section, it will be �nally mentioned [13] for the extensive comparison

of various walking detection and step counting approaches. It has indeed been high-

lighted how for the former the best results are obtained using thresholding based on

the standard deviation and signal energy and for the latter windowed peak detection,

HMM and CWT. [24] Their work is giving more credit to the hypothesis that an RNN

and particularly an LSTM one could lead to optimal results since it is a more advanced

10

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 2. Literature Review

version of an HMM.

2.4 Overview of Audio Beat Tracking and Music Tempo

Extraction's algorithms

Having already made a point of why to prefer music tempo over genre classi�cation in

this context, the next step is to understand what could be more appropriate between

Beat Tracking and Tempo Extraction. As the second one could be an easier task since

it does not require the knowledge of every single beat, it is although more sensible to

errors and results misleading in the case of songs with variable tempo.

With that in mind, we can state that beat tracking is a better option for music syn-

chronization with external elements, as it has to be in this application.

Hence considering that the primary goal of this project, it will hence furnish two sim-

ilar topics of investigation. Since the audio signal and, to some extent, values from

accelerometer and gyroscope sensors both have the form of a wave and in the predic-

tion process, previous values will be relevant in the decision-making. However, beat

tracking and tempo estimation had been usually treated simultaneously, often subdi-

viding the overall problem in two phases: "a �rst stage that generates a driving function

from direct processing of the audio signal; and a second stage that detects periodicities

in this driving function to arrive at estimates of tempo and/or beat times" [31].

This scheme is applied by most of the traditional algorithms, using �rst a �lter bank [3]

or the discrete Fourier transform(DFT) [29] [22] and then pitch and onset detection

methods [3] or banks of oscillators [22].

Nevertheless, in recent years, new approaches have been displayed, and most of them

involve NN like CNN or RNN. The former had been used mostly for genre or artist

classi�cation [16], but found its way even on Onset Detection [42], showing promising

performances. However, the same researcher, S. Böck, has then provided optimal re-

sults even on the beat tracking problem participating to several of the lasts "Music

Information Retrieval Evaluation eXchange" (MIREX) [33], a competition that awards

several music classi�cation tasks, including Beat Tracking. As an example, in [11] an

11

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 2. Literature Review

arti�cial neural network composed of three LSTM bidirectional layers with a �nal soft-

max activation to make predictions in the range [0,1] is �tted with Mel spectrogram of

sequences of length 23.2 ms, 46.4 ms, and 92.8 m calculated with the STFT.

The just mentioned topics will not be deeply covered here in the belief that it would

be possible to explain them in a much precise way providing, in the following chapters,

the theory alongside the practical example of how it has been applied.

Concluding, having a look to the MIREX's best placements over these last years, it

is observable how neural networks are a valuable and widely used methodology to ap-

proach this topic. This can also be evinced by the evaluation of di�erent deep neural

network(DNN) over this task provided by [23].

2.5 Objectives

With the provided overview of how Historically similar problems have been treated, it

is possible now to state clearly the project objectives:

• Examination of how could be achieved a step detector algorithm relying on An-

droid's smartphone sensors by the use of ML techniques and LSTM neural net-

works;

• Examination of how it would be possible to obtain a beat detector algorithm by

mean of Neural networks;

• Implementation of an Android app able to perform the proposed behaviour, i.e.

matching the runner pace with the BPM of the closest song available.

12

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3

Methodology

3.1 Requirement

Since this, has been a self-proposed project, it was not immediate to gather require-

ments, as there was not anything like a "customer's request" to be satis�ed or other

particular guidelines to direct the continuation of the project.

Therefore, already having to de�ne the outline of this in the individual project of

the module CS 993, it has been useful to start an early requirement's gathering from

some potential users, to have a better understanding of which could be the essential

features.

3.1.1 Requirement's Gathering

It has been opted for an online survey, with mostly closed question as it seemed the

less time and e�ort consuming option for potential candidates. This is because it is

understandable how people can be busy and can quickly lose interest in open-ended

questions, hence skipping them or replying poorly. That had been even proven by the

low level of feedback received over the three open questions proposed, with just two

replies in one of them and none the remaining two.

Having in mind the form of it, it has been then targeted a diverse group of people, re-

stricted on the range between 20es and 30es because these seemed to be potentially the

13

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

most interested customers Fig. A.1. It has been assured to cover the broadest range

of potential users, from sports fanatics, to occasional runners, to not sporty people

Fig. A.3.

Something that has been then particularly interesting was to have a con�rmation that

the building e�ort could be potentially worth it, as the assumption that the �nal prod-

uct could be desirable could have been somehow supported by numbers.

Figure 3.1: E�ects of Fast Tempo Music Figure 3.2: Undesirable E�ects of Inappro-
priate Music

This has indeed been tested with three di�erent questions: if respondents actually lis-

ten to music while running Fig. A.4, if they ever felt demotivated by the next song

reproduced from the playlist Fig. 3.2 and if they could appreciate this kind of app

Fig. A.7. The results had been quite promising with respectively 73%, 87% and 100%

of positive answers.

Moreover, It has been interesting to see how widespread was the perception that music,

particularly fast tempo once, could improve performances Fig. A.6 Fig. 3.1 and addi-

tionally to understand how users would favour to be motivated and their preferences

on how to handle the transition between songs and di�erent tempos.

Figure 3.3: Preferred Music Feature to be
Adjusted

Figure 3.4: Preferred type of Tempo Ad-
justment

It turns out that �rstly, a slight majority of them would prefer a change in the genre

more than in bpm Fig. 3.3, against the researcher initial belief and this was something

that pushed to carry out more careful and in-deep analysis as read in the dedicated

14

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

section of the literature review. Therefore, considering that question's results were

far away from a vast majority and opposed to the proofs provided by the listed peer-

reviewed articles, it has been decided to follow the BPM approach.

Secondly, the most requested type of tempo adjustment has been after each song with

an impressive 73%, followed by the real-time adaptation of the BPM at song level with

a 29% Fig. 3.4. This majority is something that makes sense, as it allows a certain

amount of �exibility. Since when the desired speed is achieved, it could be possible

to run at steady velocity using the music beats as a reference to maintain the right

pace, always having an appropriate song. Or if it is preferred training with di�erent

workloads, songs after songs the music will follow with just a small delay.

These are the motivation that droved to this choice for the actual project. However,

it would be still interesting in future works to make some test to see if it is doable an

individual beat-step alignment and how that would impact on user performances.

Another issue that has to be solved was to select an appropriate phone placement for

this experiment and, as can be evinced from Fig. 3.5, the most commonplace is the

pocket. This is one of the most relevant info extracted from this survey as over this

revelation it has been based the assumption that the smartphone will be held on the

pocket and that, as it will be subsequently shown will in�uence all phases of the project.

Undoubtedly, this is a potential restriction to the potential usage of the app, but is

something required by the strict time available, as it would exponentially increase the

project complexity.

Lastly, respondents showed interest in performance tracking, as shown in Fig. A.8 and

Fig. A.10 and particularly in the possibility to reproduce more often songs that lead

to better results Fig. A.9. Nevertheless, that would have been a shareable secondary

feature, unfortunately this will be another thing to explore in future works.

3.1.2 Functional Requirements

Having now a better picture of the project and his main challenges, it has been possible

to proceed on the next steps to extract the Functional Requirements, useful to build a

working plan for the succeeding weeks.

15

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

Figure 3.5: Preferred type of Tempo Adjustment

Following Agile suggested principles, it has been decided to produce some User Sto-

ries, with the role-goal-bene�t rule, to have a better idea of the requirements from a

user perspective point of view. To then categorize them using the MoSCoW method to

organize the tasks in a user perspective way, estimating the potential e�ort and design

constraints.

Particularly challenging had been producing small and independent user stories, be-

cause from a user perspective the actions to perform are quite limited, with most of the

functionality happening on the back-end and therefore cannot be adequately expressed

as user stories. It is indeed one of the goals to reduce the number of actions required

as much as possible to leave user freedom to concentrate on running.

Below are the main user stories produced with relative estimated e�ort:

• As a user, I MUST decide if give the app permission to read on my device storage

so that can access and reproduce songs; 6/10

• As a user, I MUST be able to see the detected songs in the smartphone internal

or external storage, to check if they are detected and be able to select them; 6/10

• As a user, I MUST be able to decide if I want to start the music reproduction

with a song selected by me or the closest to my steps per minute; 7/10

• As a user, I MUST be able to select the desired song, to start the reproduction of

it; 7/10

• As a user, I MUST be able to touch the play button, so the music from my phone

will start accompanying me during the running session; 8/10

16

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

• As a user, I MUST be able to touch the stop button to stop the reproduction of

music; 7/10

• As a user, I SHOULD be able to decide if I allow vocal noti�cation so that I can

or not be noti�ed about my running speed; 7/10

• As a user, I COULD be able to remove a song I did not like from the playlist;

6/10

• As a user, I COULD check my previous performances to see my improvements;

8/10

• As a user, I COULD be able to see which songs lead me to the best performances

so that I can know what works better; 9/10

• As a user, I COULD listen more often to the songs that lead me to the best

performances so that these can increase; 9/10

Over these, it is then possible to build some User Case Description in order to

subsegment even more complex issues to make them more understandable and ready

to be implemented. It will now be proposed an example of probably the most crucial

function o this system.

17

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

Use Case Name: UC1: Start Music Reproduction

Triggering Event: The user press the play button

Scenario Description: The user wants to listening to appropriate music without
having to worry to have to change them

Main Actor(s): User

Preconditions:

1. User allowed the app to access storage;

2. App correctly imported songs;

3. App have BPM for each song;

4. App is successfully detecting and counting steps;

Post condition(s): User can listen to appropriate songs without having to
change them

Main Path:

1. User open app;

2. User press play button;

3. User start running;

Table 3.1: User Case: Start Music Reproduction

These are the requirements that have been initially pre�xed, and over these, the

project has been designed.

However, being a goal to experiment and elaborate the full process of the developing

of ML algorithms, to better understand the concerning challenges and where it could

be possible to adopt improvements.

The trade of for it was having to give up on the possibility to realise a �nal product,

opting for just a prototype, although with the advantage of o�er a better overall picture

of the subject matter.

This choice is indeed extremely re�ected in the decision of not using the Android built-

in step counter, but rather try to implement a custom one.

As a result, it has been needed a second app to gather the data from the smartphone's

18

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

sensors to build a dataset big enough to then train the ML algorithm. In order to

achieve that it is essential to feed it with data point appropriately labelled as step or

no-step.

Here another assumption has been made: the researcher has to be the only tester during

the whole process. It can be understood how, particularly during the collection of data

for training purposes, accuracy is crucial and how this will be projected on prediction's

precision. As far as it has been possible to experiment, considering how Android allows

accessing sensors, there was two main option to label the sensors' data, relying on the

build-in step detector or on user inputs when a step is performed. However, considering

how the phone has to be carried in the pocket from starting of recording and any manual

touch could compromise the integrity of data. Having performed some tests, the best

option found had been to use the headphone media button to manually record each

step. This will allow a better accuracy of recording compared to the Android's built-in

detector, and moreover, it does not require any physical contact with the phone.

Figure 3.6: Android-Manual Detected Steps over Z axis Accelerometer (Start of the session)

19

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

Figure 3.7: Android-Manual Detected Steps over Z axis Accelerometer (End of the session)

As can be seen in A.11 and particularly observing the start Fig. 3.6 and end Fig. 3.7

of a sensor's recording session, Android's detector miss some initial steps at the begin-

ning and identi�es some extra ones at the end. Moreover, it is visible how the precision

of its detection is even less accurate than manual ones.

Over these considerations, it is then possible to build some user stories to guide in

the building phase:

• As a user, I MUST decide if give the app permission to read and write on my

device storage so that can write sensor's data; 7/10

• As a user, I MUST be able to read clear instruction on the app's usage; 1/10

• As a user, I MUST be able to touch the play button, so that the app starts recording

sensors data; 9/10

• As a user, I MUST be able to touch the stop button, so stop recording data; 7/10

• As a user, I MUST be able, after having stopped the recording, to send data in a

usable format; 6/10

Finally, once having this app and then an appropriate dataset that the next step is

to implement the two ML algorithms to detect steps and song's beats. These are the

other two functional requirements.

20

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

3.1.3 Non-Functional Requirements

Considering indeed the two ML algorithms, it is evident how they are susceptible to

some Non-Functional Requirements as performances and the main method of evalua-

tion will be accuracy, binary cross-entropy log loss and precision.

Thinking instead to the �nal prototype and its possible future development are rele-

vant principles like availability, serviceability, reliability, maintainability, manageability

and usability. These are all characteristics that aim to assure a smooth, bug-free and

enjoyable experience, a crucial point in this system as its success will heavily depend

on user satisfaction. Having instead in mind the app to gather data, another relevant

principle followed has been data integrity, as utterly useless if somehow corrupted dur-

ing the recording, writing or collecting phase. Not to mention that even here some

special attention was given on performances, since as will be explained, record and

write multiple sensors at the same time could be a challenging operation.

3.2 Methodologies

In order to support and help the organization of the process of software development

many theory had been developed from the more traditionalWaterfall, to the more mod-

ern Scrum, Extreme Programming, Rapid Application Development, Spiral and Agile.

The overall idea followed here has been to draw lessons from all of them, trying to

recreate a tailored strategy that could �t the speci�cs needs of the project.

Certainly Waterfall, even though been overtaken by newer and more dynamic method-

ologies, still provide, with its Requirements-Design-Implementation-Veri�cation-

Maintenance structure, an useful tool to start decomposing a project in more ap-

proachable problems and force to adopt a methodical approach.

However, the better �exibility provided by Agile methodologies are welcomed as being

a customer-oriented and experimental project it has been immediately clear how the

use of user stories or CRC cards were crucial facilitators. In the same way, it has been

adopted a Test and Goal-Driven Development approach, performing constant testing

and alongside continuously adjust requirements and plan for the following weeks.

21

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

In a similar context, is where Scrum methodology, especially with Sprints are par-

ticularly valuable, forcing to produce every week some new functionality to test and

evaluate, keeping high the level of motivation and providing a better time awareness.

Another reason that driven to opt for this technique is that had been clear since the

early stages how, be able to create and stick with a prede�ned plan, was almost im-

possible. The reason for this is how being these topics yet fertile ground for research

and especially new to the researcher it had been easy to underestimate challenges and

therefore has been extremely rare the case that estimated e�ort was appropriate.

Therefore, considering meetings with the supervisor a sort of expert evaluation the or-

ganization of the project resulted in weekly sprints where results where evaluated and

from that the following steps where decided.

3.3 Programming Languages and frameworks

In the choice of the preferred programming language some re�ection has been made,

starting with the knowledge that will be a mobile application, thus becomes particu-

larly relevant the decision of targetted operating system.

The main available choices here are Android, IOs or eventually both in the case of an

hybrid application.

Therefore considering the latest data regarding market shares [1] the two main actors

have respectfully 76% and 22%, it becomes then quite clear how Android is a must have

and therefore, considering the time available,the idea of a native Apple application is

discarded.

However there i still the possibility to cover almost the totality of the market with an

Hybrid application, this is possible thanks to the React Native framework that allow

to writing natively rendering mobile applications, with the advantage that being based

on React (a very popular JavaScript library) most of the code is reusable on both

platform.

Nevertheless in this particular project it could be not the optimal choice, as it rely

heavily on accelerometer and gyroscope sensors and to access them it is always

recommended to write native code. Not to mention the advantage of using Android

22

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

Studio with its Grade Build System, that allows to include external binaries or library

modules to its build as dependencies.

Secondarily has also been considered the amount of time needed to mastery a new

language like JavaScript and the less control over variables that this o�er to the

programmer compared to Java.

Being therefore native the best option available, then has been preferred Java over

Kotlin as still the most popular option out there and Android Studio as preferred

integrated development environment (IDE), since is the o�cial one and being build

over JetBrains' IntelliJ IDEA it allows lots of functional keyboard shortcuts and to

e�cient autocomplete suggestions.

Furthermore an Android external library named Dexter by Karumi [26] has been used

to request user's read permission at runtime with the advantage to simplify the process

allowing to initialize objects or call methods only if the permission has been granted.

A separate discussion then is required by the developing of ML algorithms, indeed

the data has been acquired by a developed android application build in the previously

mentioned method, but once obtained all the process of feature extraction and model

development had been carried on in Python language.

The main reason behind this choice is the extended availability of libraries and frame-

work that make easier di�erent phases of the process. Here is a list of them:

• Pandas library for data manipulation and analysis, particularly useful in this

case to read CSV �les and especially for his data-frame management utilities like

grouping, splitting, adding or removing rows and columns and �nally its time

series-functionality like moving window statistics.

• NumPy library supporting multi-dimensional arrays and matrices, allowing dif-

ferent type of transformation over them, alongside a wide collection of high-level

mathematical functions like the very useful here FFT.

• Matplotlib library allow production of di�erent types of plots, crucial to exanimate

data and evaluate results.

23

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

• Scikit-learn library implementing various classi�cation, regression and clustering

algorithms including support vector machines, random forests and k-means, plus

many usefull preprocessing functionalities like scaling or weighting data.

• SciPy library specialized in scienti�c and technical computing, conteining speci�c

module for signal processing techniques like mfcc and logfbank.

• LibROSA library for music and audio analysis, facilitating some fundamentals

operation like loading audio �les, compute spectrograms and locating beats.

• TensorFlow library used for ML applications such as NN, furthermore allows

deployment of computation across CPU and GPU, thanks to CUDA extension,

sensibly reducing operation's time.

• Keras library running on top of TensorFlow, enabling to build NN models in a

faster and user friendly way, with particular regard of layers, activation functions

and optimizers.

• FFmpeg a free and open-source software suite of libraries and programs for han-

dling video, audio, and other multimedia �les.

• Traktor a DJ software developed by Native Instruments

3.4 Design

This section will now focus on the followed process to de�ne the architecture compo-

nents, interfaces, and other characteristics of this system. In its development, it has

been particularly useful to always have in mind some suggested principles to produce

a more appropriate design:

• Abstraction, focusing only on the relevant information of each object analysed,

ignoring the remaining;

• Coupling and Cohesion, ensuring the interdependence of modules and the level

of association on the elements of each of them;

24

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

• Decomposition and modularization, highlighting the importance of dividing the

system into smaller components and interfaces;

• Encapsulation and information hiding, highlighting the importance of grouping

and make inaccessible internal details;

• Separation of interface and implementation, focusing on having public interfaces

separated from the detail of how the component would be realised;

• Su�ciency, completeness, and primitiveness ensuring that each component cap-

ture only the important characteristic of abstraction and that the design will be

easy to implement;

• Separation of concerns, allowing stakeholders to focus on few things of their in-

terest.

Now, it has to be reminded how the design of the prototype can not be considerate

completely �nalised and is something that could be altered when the implemented ML

algorithms will be integrated to �nd optimal performances and user experience.

3.4.1 High-Level Design

The �rst useful step to start transforming the gathered requirements into high-level

decisions is to utilize CRC(Class-Responsibility-Collaboration) Cards.

What seems to be particularly helpful is that producing them helps to start thinking

about the high and low-level design, providing a physical visualization, avoiding to be

stuck in abstraction and helping to create a better plan to follow.

As can be seen in an example of CRC card produced Tab. 3.2, responsibilities of a

class are a rough oversimpli�cation of what will become a method and this help start

thinking early of how they will look like, forcing the production of cleaner and more

organized code in line with Agile methodologies.

25

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

STEP-SONG MATCHER

• Get step count;

• Get song Collection;

• Read songs' BPM;

• Find the song with closest
BPM to step count;

• Return the more appropriate
song;

• Step Counter;

• Song Collection;

• Song;

• Music player;

Table 3.2: Step Counter CRC card

Furthermore, this has been the phase where important decisions have to be taken.

Indeed some assumption has been again required. Considering how it will be just a

prototype and will not yet implementing the investigate ML algorithms, some simpli-

�cations have been adopted.

Firstly, it will be used the Android's built-in step counter, that, however, does not

change the behaviour of the application majorly.

The situation is instead di�erent regarding the BPM detector. Here it is assumed that

the device will contain audio �les with as a name their BPMs value. Hopefully, in

possible future works, the method that accesses the �le name will be replaced with a

model that performs the operation independently, but as now it would require some

manual work.

3.4.1.1 Architecture and Patterns Design

An interesting approach, helpful to brainstorm over a complex problem and built fun-

daments to the high-level design, is the old main program�subroutine architectural

pattern by Niklaus Wirth paper [35], where he for the �rst time formally de�ned the

top-down problem decomposition methodology, and that led to the formal de�nition of

this pattern [20].

It consists of the continuous decomposition of the whole idea in sub-problems and so

26

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

on, allowing to deeply think about how each functionality is composed. Therefore this

is still a valuable tool that, if used with due proportion, allows to achieve a better

decomposition and modularization. In the following Fig. 3.8, it is visible how all the

system functionality �nds a graphical representation, improving class organization and

design.

Figure 3.8: Main program-subroutine pattern

It can also be seen how using red arrows are also taken into consideration user's

performance collection and display functionality that could be a starting point for future

extensions of this project.

Nevertheless, this is an Android application, and as mentioned in the previous section

it has been used Java, that is strictly an Object Oriented Programming Language,

therefore will require a dedicated architectural pattern.

Probably the most popular one is the Model-View-Controller (MVC), it "was originally

developed to map the traditional input, processing and output roles of many programs

into the GUI realm" [20].

What is particularly interesting is how it suggest to segment an application or interface

into three parts, increasing modularization and reusability of the code:

• the model, responsible for managing some data elements, responds to queries

about its state, and to instructions to change it,

• the view, in charge of managing the display area and responsible for presenting

27

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

data to the user through graphics and text,

• the controller, in control of interpreting inputs from the user and translates them

into commands sent to the model and/or view to e�ect the appropriate changes.

It is indeed bene�cial in order to achieve separation of concerns and separation of

interface and implementation, braking or program in how it works, what it is displayed

and how it gets the data.

Similarly, as can be seen in Fig. 3.9 helps in encapsulation and information hiding, in

fact, leads to the creation of di�erent classes and packages, these will produce objects

that hide data and how they are manipulated, presenting to the world just a simple

interface to interact with.

Figure 3.9: MVC Pattern

3.4.1.2 User Interface Design

One of the last steps in the high-level design is the development of the

Graphical User Interface (GUI), that, in a leisure-�tness context, could be a relevant

factor for the succeeding of an app. Although this is just a prototype to show the

potentiality and give a �avour of the �nal behaviour of this app, it has been developed

accordingly the 10 Usability Heuristics principles, with particular attention to two

of them:

1. Aesthetic and minimalist design, using a completely black background, hiding

Android toolbar and navigation bar, principally for aesthetic reasons, having

a more immersive experience, but it also has the advantage to be less battery

28

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

draining, considering how much is already stressed by step detection and song

matching.

2. Recognition rather than recall, reducing as possible the number of actions and

buttons required by the user, avoiding them to have to remind long sequence of

actions, distracting them from what is the real goal of the app.

Moreover, considering how the device during activity should be placed in the user's

pocket, hence it is not really possible to have access to the screen, therefore, to achieve

visibility of system status vocal noti�cation had been added to advise the user over his

running speed. This functionality can also be turned o� simply touching a button, as

this could be a motivational tool, but it is important to leave the user the �nal decision.

Figure 3.10: RuntoBPM Main Activity Figure 3.11: RuntoBPM Song Collection
Displayer Activity

With all that in mind, a brief overview of the main functionality will be provided.

29

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

As can be seen in Fig. 3.10, it is always displayed the current running speed, and three

more buttons are present:

• The Play button, that starts the music reproduction and will make appear below

it the name of the played song; it will be always reproduced the closest song to

the user's pace, in the form of steps per minute; when they will start running,

a slow-paced song is played to follow their warm-up, and as they increase the

speed, song after song will follow their rhythm.

• The VoiceOn button start or stop the vocal noti�cations.

• The Collection button leads the user to another screen where all the available

songs are displayed.

The second available screen Fig. 3.11 will also allow starting the reproduction of the

desired song clicking on it. This will however still provide an automatic selection of the

following songs with the already mentioned logic. Moreover, the button located on the

top left will return to the main activity.

All these functionalities are quite simple and would not require further instruction;

nevertheless, a brief description could be provided alongside the deployment.

3.4.2 Low-Level Design

With clear in mind, the main decided functionality will be now possible to dig deeper

into Low-Level Design details. The UML diagram in Fig. 3.12 Will provide an overview

of how classes have been structured and which methods have been implemented.

It is possible to observe how in order to be able to access and therefore display and

play songs both in MainActivity and in CollectionDysplayer activity, it has been

implemented an Application class named RunToBPM (name of the app) extending

android.app.Application. In doing so, it will be possible to call its methods

initializing that in both activities.

This is something required, not only to have cleaner code, avoiding duplications but

above all to initialize there the MediaPlayer and SongCollectionManager classes

and therefore not having to pass these objects between activities through intents or

30

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

bundles, resulting in a very cumbersome and not bug-free procedure.

Figure 3.12: RunToBPM UML Diagram

It has also been used the interface onNoteClick, noticeable in Fig. 3.13 in to de�ne

what will happen when a song is clicked, since the behaviour of the RecyclerView,

assigned to display them, is handled by a created custom adapter named SongAdapter.

31

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

Figure 3.13: SongAdapter class

As can be seen in Fig. 3.14 the mentioned interface, implemented in the adapter's

class, allows to be overridden it in the CollectionDysplayer to set the methods called

when an item is clicked in the RecyclerView. This will result in a much cleaner and

organized code. In fact, the behaviour of a click is set in the class where it logically

belongs instead of in the RecyclerView adapter.

32

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

Figure 3.14: CollectionDysplayer activity class

Another aspect interest is how it has been achieved the matching between the songs

and the user pace.

Firstly as it will be in dept explained in the next section, it has implemented a

SensorEventListener to receive the detected steps, then each time a step is detected

it is increased a counter instantiated in the MainActivity class, where the listener is

implemented. It has not been implemented in the RunBPMapp application class since

33

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

it has to be instantiated in an activity.

Figure 3.15: Second part of MainActivity class

The value of the mentioned counter is then every 30 seconds passed to the

RunBPMapp class as o�cial step count and then reset to 0, to count the steps of the

following 30 seconds again.

This is achieved with the use of a Handler to manage a thread, to which runnable

objects, with the instruction above, are passed. It is possible to observe the

used methods carefully in Fig. 3.15 It has to be furthermore mentioned how the

READ_EXTERNAL_STORAGE permission has been asked and therefore granted or denied.

Here has been very helpful the Dexter library available on GitHub that provide

methods to achieve that. It can indeed be seen again in Fig. 3.15 how with the

34

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

method getExternalStoragePermission it is possible to manage the whole process

in a simple and clean manner.

Figure 3.16: Complete SongCollectionManager class

The process of selecting the most appropriate song, as well as reading and collecting

in a list all the available audio �les it is instead handled by the SongCollectionManager

class.

It is indeed collected all the "mp3", "wav" and "wma" �les present in any folder of

the smartphone except for hidden folders or �le.

35

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

As can be observed in Fig. 3.16 the song with the closed BPM is then found calculating

the absolute value of the di�erence between a song and the actual number of steps

per minute; this process is repeated for all the available songs and then returned the

closest one.

In the Fig. 3.17 it is then implemented a method to play a song, this will actually

call itself again at the completion of the played song, but passing as its parameter, the

method to obtain the closest song.

In doing so, this method is more reusable as it can be used to select a song from the

displayed list as well as when the start button is pressed(and hence requested to play

the closest song) and no matter what is the �rst usage then it will always continue

playing the more appropriate song one after the other.

This will continue until the stop button is pressed or the user selects a new song.

It is visible how being this a prototype at the moment it does not have a much-

complicated structure, but it has been developed in a way that it would be possible to

easily implement new functionalities without having to modify the overall design.

Finally, to clarify any further doubts or curiosities and conclude this overview, it will

be provided the full copy of the remaining code in the Appendix section.

36

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 3. Methodology

Figure 3.17: Complete RunBPMapp class

37

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4

Research Methods

In this chapter will be analysed the process and the decision carried out in order to

obtain the results subsequently explained.

As mentioned in the literature review, the best possible achievable goal would be a

perfect matching between beats and steps, to be able to then through experiments

and testing �nd the most suitable solution for the user. Although this was di�cultly

achievable over the short time available, however, the perspective has always been to

produce the maximum achievable amount of work in this direction, instead to aim of

a more comfortable and accessible target, but not being the optimal solution. In this

way, this preliminary work can be useful as a foundation to further improvements.

This prespective is mainly re�ected in the choice of detecting single bets instead of

using more simple classi�cation like genre and in the methodologies used to detect each

step instead of just aiming for a count of them. Now, since these are the two main

areas of investigation, for cohesion purposes will be treated one after another to avoid

confusion between the two.

4.1 Steps Detection and Counting

Since the expressed objectives require to experiments the full process of research includ-

ing dataset development, it was necessary to design an experiment to acquire enough

quality data to train a ML model over it.

38

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

Following all this process, as well as the methodologies attempted and implemented,

will be detailed in this section.

4.1.1 Experimental Set-Up

As mentioned in the requirements section, the assumption of the smartphone held

in the pocket has been made. This �nds its reason manly in the simpli�cation of

having data that are as uniform as possible. Considering indeed as an example the

placing the smartphone on an armband and focusing over one side of the body, it is

immediately noticeable how movements of arm and thigh during the running activity

are in opposite directions. This will result in opposite values of accelerometer and

gyroscope sensors.

There could still possibly be found a correlation between the opposite arm and tight.

However, seems more appropriate, in order to achieve the maximal precision, to �rst

apply a model to detect the kind of placement, and only then apply a step detection

with weights and parameters studied speci�cally for that placement.

Therefore for the time being the focus will be on just on what resulted the most

popular position used and bearing that in mind it is now possible to outline the

characteristics of this experiment.

Due to the high level of attention and concentration required to detect each step, it

has been decided to involve in the recordings of data just the researcher itself, to have

the highest possible con�dence in the data accuracy.

It has been then established to consider running sessions limited to a max of ten

minutes, resulted after some experiments as the time beyond which the accuracy tent

to decrease. It is indeed not that easy to keep track of all the steps, especially when

the speed increase and this has been the reason why has been chosen to record only

the steps performed by the right leg.

Moreover, to increase the level of abstraction, the experiments had been repeated

under di�erent condition. It have been recorded multiple running sessions over various

terrains (concrete, grass, beaten earth and treadmill), with diverse speeds (from a

39

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

minimum of 5 km/h to a max of 15km/h) and with di�erent level of incline, workloads

and rhythms, taking care to always include several variations of pace.

The reason behind this choice is to simulate the majority of possible use scenarios,

considering peculiar people habits. Moreover, notable relevance has been given to

record data holding the device in a constrained and especially unconstrained manners,

re�ected by the use of diverse type of clothes(from gym shorts to jeans). This is

particularly signi�cant because the data recorded from sensors in these two diverse

ways will be quite di�erent and being able to develop a model that produce results

regardless that would be an exciting result.

It will be lastly speci�ed that some attention has been reserved to have a balanced

mix of all the previously mentioned condition to avoid that one of them could

particularly a�ect the prediction algorithm.

4.1.2 Data Acquisition

With in mind the outline of the experiment it is now possible to focus on which data

and how has been recorded.

The �rst thing to cover is the device used for all the carried out tests and recordings,

i.e. a "Redmi Note 7" by Xiaomi with these specs available in Tab. 4.1.

Processor RAM OS Accelerometer Gyroscope

Snapdragon 660 AIE (2.2GHz) 4GB Android 9.0 Yes Yes

Table 4.1: Test Device specs

Android devices allow access to a variety of di�erent type of data gathered from

sensors. Even though it is possible that some devices do not provide with them all,

however, nowadays most of them are available.

What are relevant for this project are the provided motion sensors and this a brief

overview of them all:

• TYPE_ACCELEROMETER, provide three values of acceleration force along the 3 axes

40

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

(including gravity);

• TYPE_ACCELEROMETER_UNCALIBRATED, provide six values of acceleration along the

3 axes with and without estimated bias compensation;

• TYPE_GRAVITY, provide three values of force of gravity along the three axes;

• TYPE_GYROSCOPE, provide three values of rate of rotation around the 3 axes;

• TYPE_GYROSCOPE_UNCALIBRATED, provide six values of rate of rotation with and

without drift compensation around the 3 axes;

• TYPE_LINEAR_ACCELERATION, provide three values of acceleration force along the

3 axes (excluding gravity);

• TYPE_ROTATION_VECTOR, provide three values of rotation vector component along

the 3 axes (axis ∗ sin(θ/2));

• TYPE_STEP_COUNTER, return number of steps taken by the user since the last

reboot while the sensor was activated;

• TYPE_STEP_DETECTOR, return the 1 value each time a step is taken by the user;

In Fig. 4.1, it is outlined how the mentioned axes are oriented, and it must be speci�ed

that they will not swap when the device's screen orientation changes.

Figure 4.1: Android sensors axes orientation

Android has a speci�c class to hold sensors values called SensorEvent that have the

following �elds, a multi-dimensional array of values(except for the last two that has just

a single value), the accuracy, the sensor type and a timestamp (time in nanoseconds at

41

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

which the event happened).

The way to access them is via the provided abstract class SensorManager with the

method getDefaultSensor(), specifying the desired type choosing from the list pre-

viously provided. Then, once acquired, it must be initialized a SensorEventListener,

interface necessary to receive noti�cations from the SensorManager when there is new

sensor data available. Finally, the listener must be registered in the SensorManager

with the method registerListener() where it can also be speci�ed the type of desired

sampling frequency between the provided:

• SENSOR_DELAY_NORMAL suitable for monitoring typical screen orientation changes

and uses a delay of 200,000 microseconds;

• SENSOR_DELAY_UI uses a delay of 60,000 microsecond delay;

• SENSOR_DELAY_GAME uses a delay of 20,000 microsecond delay;

• SENSOR_DELAY_FASTEST uses a delay of 0 microsecond delay;

It must be although clari�ed that these are just the suggested delay as it can be usually

lower, as the speci�ed value can be more appropriately considerate as the max accept-

able delay.

Each SensorEvents can be �nally accessed with the onSensorChanged() method pro-

vided by the SensorEventListener interface that will be called each time there is

a new event, this method can be hence overridden to specify the desired behaviour,

however it must be cleared that "on changed" is somewhat of a misnomer, as this

will also be called if we have a new reading from a sensor with the exact same values

(but a newer timestamp) [6]. In this project have been used TYPE_ACCELEROMETER

and TYPE_GYROSCOPE, selected as the right trade-o�, between rawness and amount of

preprocessing already applied; furthermore, the number has been restricted to two for

this main reasons:

1. to limit the number of features, maintaining at a reasonable level the amount

of computational power and time required to run the NN, considering that had

42

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

been tested over a laptop GPU and a fortiori since it should ideally run on a

smartphone GPU or worst case scenario CPU;

2. to non-overload the amount of memory required by the app, since the process

of record and write data is a draining operation to manage and Android can

arbitrarily shut down a process and kill the app components running it, whenever

memory is low or required by other processes.

With this brief overview, it is now clear how it is possible to records sensors data.

However, it has to be explained the methodology used to record the actual values of

these when a step is manually recorded pressing of the media button available in most

of the earphones.

Firstly, ass shown in Tab. 4.2 it has been decided to build a database with these

headers (Accelerometer along axes X, Y and Z, Gyroscope rate of rotation around axes

X, Y and Z, System Time, instance of Date precise to milliseconds, manually detected

steps, Android detected steps and type of event.) for each data entry, whatever is the

triggering event, no matter if Android's Accelerometer, Gyroscope or step detector

event or a manually detected step.

aX aY aZ gX gY gZ systemTime Date manualStep androidStep eventType

6.366.455 16.283.463 31.590.118 0.5065918 27.833.252 -4.200.012 1,56218E12 2019-07-03 19:37:48.734 0 0 accelerometer

6.366.455 16.283.463 31.590.118 0.6930237 27.993.011 -4.180.847 1,56218E13 2019-07-03 19:37:48.734 0 0 gyroscope

6.366.455 16.283.463 31.590.118 0.6930237 27.993.011 -4.180.847 1,56218E14 2019-07-03 19:37:48.759 1 0 manualStepDetector

6.366.455 16.283.463 31.590.118 0.8517456 27.662.811 -41.542.206 1,56218E15 2019-07-03 19:37:48.774 0 0 gyroscope

6.366.455 16.283.463 31.590.118 0.98384094 27.215.424 -4.131.836 1,56218E16 2019-07-03 19:37:48.775 0 0 gyroscope

Table 4.2: Dataset head

Then the manually detected steps are identi�ed through the KeyEvent.Callback

interface, so that when the onKeyDown() method is called a new data-point is created

with the most recent values.

In order to achieve that it was crucial to be capable of have all the sensors' values

related to each data entry, this has been achieved implementing a class to temporarily

store and update those values each time new ones are available. It is then understand-

able why it is needed the lowest delay possible, therefore SENSOR_DELAY_FASTEST, as

any delay can compromise the accuracy of data. Indeed if when a step is recorded the

43

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

sensors have new values, but due to delay, are not yet noti�ed, it will results in the

wrong matching between steps and peeks of acceleration or rotation.

It has been then decided that the best available methodology to store and collect these

data was on a CSV �les that will be programmatically sent to the researcher email

once a recording session is declared ended by pressing a button on the screen. This

choice can be explained by the purpose of potentially, in future experiments, scale the

recording process to multiple subjects, increasing the level of abstraction.

Di�erent approaches have been tested to �nd the optimal writing methodology. It has

indeed been noticed how, short delay time combined with multiple sensors is re�ected

in many entries per millisecond, as visible in the �rst two row of Tab. 4.2, causing the

app to be shut down forcibly due to long response time Fig. 4.2.

Figure 4.2: SensorCollector isn't responding

This behaviour is registered implementing the traditional and often suggested

methodology [15] to access multiple sensor, i.e by using a single SensorManager

and SensorEventListener and then distinguish events by their type in the

onSensorChanged() method as even recommended in Listing 4.1 [34].

private SensorManager manager ;

private SensorEventLi s tener l i s t e n e r ;

manager = (SensorManager) this . getSystemServ ice (Context .SENSOR_SERVICE) ;

l i s t e n e r = new SensorEventLi s tener () {

@Override

public void onAccuracyChanged (Sensor arg0 , int arg1) {

}

@Override

public void onSensorChanged (SensorEvent event) {

44

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

Sensor s enso r = event . s en so r ;

i f (s enso r . getType () == Sensor .TYPE_ACCELEROMETER) {

}

else i f (s enso r . getType () == Sensor .TYPE_GYROSCOPE) {

}

}

}

manager . r e g i s t e r L i s t e n e r (l i s t e n e r ,

manager . ge tDe fau l tSensor (Sensor .TYPE_ACCELEROMETER) ,

SensorManager .SENSOR_DELAY_GAME) ;

manager . r e g i s t e r L i s t e n e r (l i s t e n e r ,

manager . ge tDe fau l tSensor (TYPE_GYROSCOPE) ,

SensorManager .SENSOR_DELAY_GAME) ;

Listing 4.1: Recommended imlementation to record multiple sensors

Furthermore, another anomaly has been noticed, i.e. the android detected steps seems

to be grouped in the recording or writing phase, resulting in blocks of steps hypothet-

ically performed with unreasonable timing.

aX aY aZ gX gY gZ systemTime Date manualStep androidStep eventType

0.66770935 -0.7369232 12.436.523 0.0126953125 -0.08067322 -11.791.077 1,56347E12 2019-07-18 19:17:09.633 0 0 accelerometer

-0.66770935 -0.7369232 12.436.523 0.08087158 -0.26176453 -11.759.186 1,56347E12 2019-07-18 19:17:09.634 0 0 gyroscope

-0.45222473 -0.8422699 10.257.721 0.14904785 -0.44180298 -11.801.758 1,56347E13 2019-07-18 19:17:09.638 0 0 gyroscope

-0.45222473 -0.8422699 10.257.721 0.08087158 -0.26176453 -11.759.186 1,56347E14 2019-07-18 19:17:09.638 0 0 accelerometer

-0.45222473 -0.8422699 10.257.721 0.14904785 -0.44180298 -11.801.758 1,56347E15 2019-07-18 19:17:09.642 0 1 androidStepDetector

-0.45222473 -0.8422699 10.257.721 0.14904785 -0.44180298 -11.801.758 1,56347E16 2019-07-18 19:17:09.642 0 1 androidStepDetector

-0.45222473 -0.8422699 10.257.721 0.14904785 -0.44180298 -11.801.758 1,56347E17 2019-07-18 19:17:09.643 0 1 androidStepDetector

-0.45222473 -0.8422699 10.257.721 0.14904785 -0.44180298 -11.801.758 1,56347E18 2019-07-18 19:17:09.643 0 1 androidStepDetector

-0.45222473 -0.8422699 10.257.721 0.14904785 -0.44180298 -11.801.758 1,56347E19 2019-07-18 19:17:09.643 0 1 androidStepDetector

-0.45222473 -0.8422699 10.257.721 0.14904785 -0.44180298 -11.801.758 1,56347E20 2019-07-18 19:17:09.643 0 1 androidStepDetector

-0.45222473 -0.8422699 10.257.721 0.14904785 -0.44180298 -11.801.758 1,56347E21 2019-07-18 19:17:09.643 0 1 androidStepDetector

-0.45222473 -0.8422699 10.257.721 0.14904785 -0.44180298 -11.801.758 1,56347E22 2019-07-18 19:17:09.643 0 1 androidStepDetector

-0.45222473 -0.8422699 10.257.721 0.14904785 -0.44180298 -11.801.758 1,56347E23 2019-07-18 19:17:09.645 0 1 androidStepDetector

-0.45222473 -0.8422699 10.257.721 0.14904785 -0.44180298 -11.801.758 1,56347E24 2019-07-18 19:17:09.645 0 1 androidStepDetector

-0.26786804 -0.95718384 0.80311584 0.14904785 -0.44180298 -11.801.758 1,56347E25 2019-07-18 19:17:09.646 0 0 accelerometer

-0.10507202 -10.433.807 0.5589142 0.14904785 -0.44180298 -11.801.758 1,56347E26 2019-07-18 19:17:09.646 0 0 accelerometer

-0.10507202 -10.433.807 0.5589142 0.20443726 -0.61650085 -11.833.801 1,56347E27 2019-07-18 19:17:09.646 0 0 gyroscope

0.019424438 -1.103.241 0.33146667 0.25024414 -0.7826843 -1.184.433 1,56347E28 2019-07-18 19:17:09.649 0 0 accelerometer

Table 4.3: Android detected steps

It can be seen in Tab. 4.3 how ten steps are recorded over three milliseconds, and

this is a behaviour that is repeated several times over any recording session. It is

hard to precisely understand the reasons of these behaviours since the programmer

does not have the full control when hardware-based composed are involved; however,

some investigation has been carried on, and three possible super�cial causes have been

identi�ed:

45

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

1. an overlapping of di�erent output stream trying to write at the same time on one

CSV �le;

2. too numerous operations addressed to the UI Thread(main thread of execution for

the application, where most of the application components as Activities, Services,

ContentProviders and BroadcastReceivers are created and run, alongside any

system calls to those) to be e�ciently handled;

3. too many events in a short space of time,to be handled by a single SensorManager

or SensorEventListener.

The �rst attempt tested to exanimate the �rst option has been writing each sensor on

a distinct �le. However, no considerable improvements have been noticed; indeed if

more than one sensor use the SENSOR_DELAY_FASTEST the application will not respond,

an indication that this is not the triggering cause.

Di�erent approaches have therefore been experienced to move the workloads away

from the UI Thread, in line with the O�cial Android documentation:

"In any situation in which your app performs a potentially lengthy operation, you

should not perform the work on the UI thread, but instead create a worker thread and

do most of the work there." [5]

As a results of some experiments over AsyncTask and HandlerThread classes the

best option available seemed the ThreadPool. The reason behind this choice is the

nature of the work that needs to be o�oaded. It can indeed be observed a high num-

ber of small distinct task, i.e. having to write a new entry on the CSV �le. This is

is particularly well-suited to the ThreadPoolExecutor class, that indeed "address two

di�erent problems: they usually provide improved performance when executing large

numbers of asynchronous tasks, due to reduced per-task invocation overhead, and they

provide a means of bounding and managing the resources, including threads, consumed

when executing a collection of tasks." [7]

This is achieved by collecting the required tasks in a queue(in the present case

46

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

LinkedBlockingQueue). New threads are created with the following logic, every time

a new task is delegated to the thread pool a new one is created even if idle threads

exist, this happens until the corePoolSize(minimum number of threads to keep in the

pool) is reached, then new threads are created only if the queue of tasks is full, until

the maximumPoolSize(maximum number of threads allowed in the pool) is reached.

Some test to monitor its functioning has been made, and how shown in Tab. 4.4. It has

been noticed that both the number of threads alive and working increase signi�cantly.

Indication of the fact that probably was too much to handle only by the UI Thread.

Without ThreadPoolExecutor With ThreadPoolExecutor

Max number of alive Threads Range of working Threads Max number of alive Thread Range of working Threads

13-14 7-9 21-22 7-17

Table 4.4: Comparison overview of Sytem threads

Finally to address the last possible cause has been implemented distinct

SensorManager and SensorEventListener for each of the motion sensor recorded,

and that seemed to be what more than anything else make the most visible improve-

ments, resulting in the prime candidate of causing the undesired behaviour.

That being said, it still seems recommended to use a ThreadPool to have a more canonic

implementation, avoiding to overload the UI Thread and therefore creating possible de-

lays in the recordings of data.

Even though, with this con�guration, being able to record and write all the desired

sensors without drawbacks of any kind, still it has not been found a de�nitive explana-

tion to the weird exposed behaviour of multiple steps detected by Android in incredibly

small amount of time.

As far as has been possible to exanimate, two potential theories the could be peddled:

• it is due to the decision of pairing it with the SystemTime and an instance of

Date when the onSensorChanged()method is called, instead of using its available

timestamp. This has been done to have a uniform temporal reference common

to all the datapoint, whatever the triggering event. It could be therefore pos-

sible that the anomaly is addressed to the SystemTyme acquisition, that could

oddly happen with some delay. However, it is quite unlikely since it would be

47

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

anyhow strange that many sequential steps happen without being interspersed

by accelerometer or gyroscope events.

• This leads to the second and more plausible theory, i.e. it is the regular Android

step counter behaviour, it is indeed possible that it is not that precise. Indeed,

more than accurately detect precisely when each step is performed, mostly count

and return them together sequentially. This supposition is also supported by the

fact that the same behaviour is also seen in the debugger and running windows

logging and printing the event type every time a new one is returned.

This is another motivation that leads to the necessity of using manually detected steps

as labels for the training process of the ML algorithm since it is impossible to rely

entirely on Android's one.

It has then been recorded several running session where all the steps have been

manually detected, specifying how if a misdetection has been noticed during the exper-

iment performance, the corresponding session has been trashed.

This results of this process are 22 CSV �les, representing each of the best sessions.

4.1.3 Data Preparation

All the data �le received by email had been saved on a speci�c folder, naming each �le

with the date of when has been recorded. Then a script has been made in order to

collect all these on a single and more manageable dataset �le.

Moreover has been chosen to take just the portion of these �les from the �rst to last

step. It has been avoided to transfer in the �nal dataset not useful and noisy data from

the start and end of the session. Doing that, movements that can create confusion in

the training process as placing the phone in the pocket and take it out to stop the

recording, are not taken into account.

This, however, considerate the data as a time series, could possibly lead to confusion as

in the transition between a session and the following one, two consecutive data-point

will record a step and could be misleading. However this, as all the preprocessing

methodologies, will be treated in the next section.

48

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

4.1.4 Data Analysis and Preprocessing

The resulting �nal dataset it is then composite of 3 098 922 from which has been

dropped the last 22 entries in order to have a more manageable and most importantly

easily divisible number.

Total entries Android's detected steps Manually detected steps Accelerometer events Gyroscope events

3098900 16636 8424 1536917 1536923

Table 4.5: Final dataset description

Analysing the Tab. 4.5 it is possible to notice how the Android's detected steps are

vaguely double the number of the manual ones. This could mean that potentially are

detected the steps of both legs or that the step movement is split in two, i.e. the rising

and descending motion of the leg. However, considering its uneven behaviour, it is hard

to believe it is actually one of these options, inclining more for a high number of false

positive.

Figure 4.3: Acceleration over the X axis Figure 4.4: Acceleration over the X axis

To support this theory it can bee sees in Fig. 4.3 how looking closely at a step level

not all the vertical lines, indicating an Android detected step, have the same thickness,

this is because, how shown in Fig. 4.4, these are actually �ve steps recorded in less

than a second.

It can also be noticed how these are not detecting steps from both legs, as the four

observable peeks of acceleration visible in Fig. 4.3 corresponding respectively to (right,

left, right, left steps) are not anyhow matched by the Android's detected steps. This

is furthermore suggesting how what at �rst could have seemed an issue in the method-

ologies used in the data recording it is in all likelihood the typical behaviour of Android.

49

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

Moreover, it must be considerate that unlike the plots presented until now, the ML

model will be �tted with just the sequence of data-points, without considering the time

spacing between them. However, thanks to the low delay obtained in the recording

phase, observing a small section of 5
000 samples, the di�erence between Fig. 4.5 and

Fig. 4.6 it is hardly noticeable.

Figure 4.5: Acceleration over the Y axis time
spaced

Figure 4.6: Acceleration over the Y axis non time
spaced

Before moving on to the proper data analysis, it needs to be explained in more

detail how the manually detected steps have been used as labels. Having each data

point in the ManualStep column a 1 if it is a step and a 0 it is a di�erent event, the

simplest way to use these is to consider them as two classes: "Step" and "Non Step".

It is however easily recognizable, bearing in mind Tab. 4.5, how there is a signi�cant

unbalance between the two classes, having 8 424 Step against 3 090 476 Non Step. It is

also evident in Tab. 4.6 how the accuracy of matchings between acceleration peeks and

detected steps is good, but obviously not perfect. This can be addressed to the human

imprecision and still some delay between the moment when the earphone button is

pressed and when it is recorded.

Figure 4.7: Accuracy of manual detection on axis X acceleration

A possible solution to the accuracy problem could be reducing the jitters of the line

50

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

chart applying statistical calculation as the moving average. Pandas Python's library

allows this operation combining two of its core functionality: rolling() and mean(),

the �rst one allows to perform calculations over a rolling window of desired size and

the second one return the mean value in the window.

This, however, do not anyhow reduce the unbalancing problem, therefore has been

considerate to develop a revisited implementation of it to a�ect both the enumerated

issues.

def mov_avg_on_features (df , mean_value) :

df_avg = df . groupby (np . arange (len (df . index))//mean_value) . mean ()

return df_avg

Listing 4.2: Reinterpretation of Moving Average over Features

As can be seen in Listing 4.2 the mean value of all the features(Accelerometer and

Gyroscope values) it is not calculated over a rolling window. Instead, the values are

grouped according to a selected mean_value and then over these, it is calculated the

average.

The main reason to prefer this approach is how labels can be treated:

def mov_avg_on_labels (l ab e l s , mean_value) :

lab = lab . groupby (np . arange (len (l a b e l s . index))//mean_value) .max()

return l ab

Listing 4.3: Reinterpretation of Moving Average over Labels

Indeed based on whether a group include a step or not, it will be returned just a value of

1 or 0. This two methods together will reduce the unbalancing of the dataset, reducing

the number of total samples without however decrease the number of instances of the

Step class.

Two di�erent mean_value has been tried, with the following results:

Original Dataset Dataset resulted with mean_value of 3 Dataset resulted with mean_value of 5

Tot. samples Steps Tot. samples Steps Tot. samples Steps

3098900 8424 1032950 8407 619750 8405

Table 4.6: Comparison of the e�ects of di�erent mean_vaues over the Dataset unbalance

Nonetheless, it can be noticed a minor reduction, this is, however, a desirable con-

sequence, since, as previously mentioned, the running session has been trimmed to the

51

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

�rst and last steps to have dataset containing only running data, therefore on the junc-

tions two consecutive data-point will results as two steps one after the other. These

are merged together resulting in a single entry.

This, however, comes along with the drawback of reducing the size of the dataset al-

ready not huge, making possibly the chose of a mean_value of 3 a more a�ordable

option. Nevertheless, the unbalance, despite being reduced, it can still signi�cantly

in�uence the ML algorithm, producing biased results in the form of reaching a high

accuracy without detecting any steps. Therefore has been decided to produce weights

to each samples to rebalance the two classes of labels.

To achieve that it is particularly handy compute_sample_weight() method from

the library Scikit-learn [39] that calculate the weight of each sample according to

their classes, assigning a weight of 0.5041028048603133 to each Non Step and

61.43392411086 to each Step.

Finally considering Tab. 4.7 how Accelerometer and Gyroscope sensors can have a

high variance in their measurements, to have more normalized data has been scaled to

�t in a range between -1 and 1.

aX aY aZ gX gY gZ

-0.34687805 15.105.514.999.999.900 -3.355.606 0.40753174 -1.105.957 -0.17225647

-0.34687805 15.105.514.999.999.900 -3.355.606 0.28501892 -10.462.951.999.999.900 -0.26280212

-0.34687805 15.105.514.999.999.900 -3.355.606 0.16464233 -10.143.433.000.000.000 -0.3789215

Table 4.7: First 3 rows of the Dataset averaged with a mean_value of 3

aX aY aZ gX gY gZ

-0.004429966218252667 0.1927699504034695 -0.044657642542667686 0.01616198251301425 -0.03231623982860062 -0.009067390404706248

-0.004429966218252667 0.1927699504034695 -0.044657642542667686 -0.009908589590776085 -0.025434755076415377 -0.027389316035804814

-0.004429966218252667 0.1927699504034695 -0.044657642542667686 -0.021839117234798686 -0.019933896734393712 -0.03748778239513067

Table 4.8: First 3 rows of the scaled Dataset averaged with a mean_value of 3

Speci�cally, as can be noticed in Tab. 4.8, it has been used again the library Scikit-

learn choosing the MaxAbsScaler, that "translates each feature individually such that

the maximal absolute value of each feature in the training set will be 1. It does not

shift/center the data, and thus does not destroy any sparsity." [2]. This will result in

52

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

a dataset scaled in a range between -1 and 1. This somehow, probably precisely for

this property, generate better results in the training phase then other scalers like the

MinMaxScaler that would produce a similar dataset selecting parameters of min -1 and

max 1.

4.1.5 Data Classi�cation and Training

Moving now on how the obtained data has been classi�ed, the �rst thing to mention

is that in this experiments it has been considerate only supervised learning algorithms,

this is because the two problems lend themselves well to be labelled in a reasonably

straightforward manner.

To approach the step detection problem, two main algorithms have been tested:

1. Support Vector Machines, particularly recommended for binary classi�cation

problems and proved to be able to get excellent results even using a small datasets.

2. Long Short Term Memory Neural Network, specially designed for time se-

ries problems, with the ability to remember previous temporal steps and produce

prediction according to these.

The selection of these two is to provide an overview of two di�erent possible approaches,

considering data-point individually, therefore having a simple binary classi�cation prob-

lem, or alternately thinking them as consecutive steps in time and hence dealing with

a time series classi�cation problem.

4.1.5.1 Support Vector Machines

Starting from SVM, the idea behind it can be simply explained as imagining to

visualize each data-point in a n-dimensional space, where n is number of provided

features, the classi�cation is then performed searching the hyper-plane that divide the

two classes as best as possible.

The name of the algorithm is indeed inspired by the support vectors, i.e. co-ordinates

of each individual observation.

53

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

Figure 4.8: Hypothetical ideal Hyper-plane classi�cation observation distribution

Simplifying this classi�cation problem to just one feature to have just two dimen-

sions in order to have a more straightforward visualisation. It can be then seen in

Fig. 4.8 how ideally a hyperplane (identi�ed by the black line) would separate two

classes, as shown in the �gure steps and non steps values from the Z-axis of the Gyro-

scope.

The equation of the hyperplane in a 2D space will hence be the equation of the line

that divide two classes and is expressed as:

y = a ∗ x+ b

To �nd the line that in the best possible way de�nes the two classes, it is then just a

matter of �nding the optimal slope (a) and the intersection with the y axis (b).

This becomes an optimisation problem, i.e. �nd weights that allow the most signi�cant

possible margin between itself and any point within the training set.

Nevertheless, it can be imagined how, in reality, data will be very di�erent from the

one in Fig. 4.8. Indeed looking at the totality of data-point recorded by the gyroscope

in Fig. 4.9 it is clear how a linear classi�cation in 2D would not be possible, and this is

the reason why it has been used six features. Therefore the hyperplane will be searched

in a 6D space, hoping that considering more features there will be a more apparent

distinction between steps and non steps.

54

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

Figure 4.9: Real observation distribution of the rate of rotation over the Z axis

It has then been used scikit-learn library to build a SVM model to classify the

dataset and considering the unbalancing between the labels to avoid to encounter just

non step predictions some procedure was required.

Remembering now how it was previously mentioned, that labels were unbalanced, it

will now be explained why that is so relevant in this context.

This issue requires the adding of weights to each sample to balance the algorithm bias.

Otherwise, since predictions are merely based on mathematical optimisation, if a high

accuracy can be achieved, always detecting non steps, the hyperplane parameters will

be optimised in this direction.

Unfortunately, using scikit-learn, it has not been possible to assign weights

neither at a class level (assigning the computed weights as parameter class_weight=

initializing the SVM model), nor at samples level (assigning individual weights to each

sample and �tting them as parameter sample_weight= alongside the training dataset

and labels). It has been indeed observed how trying to run the model would result in

an endless process, even letting it run for several hours.

An alternative solution to this issue has been selecting from the dataset just the row

containing a step and then add the same amount of non step rows, in order to balance

the two classes.

The size of this created dataset has been then also doubled and multiplied by ten,

always selecting di�erent random non step rows, to test the learning over a diverse

55

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

amount of training data.

4.1.5.2 Support Vector Machine Results

Two typologies of SVM has been tested, the linear SVM and non linear SVM over the

values of accelerometer and gyroscope on the three recorded axes and although the not

brilliant performances shown in Tab. 4.9 was expected, however, the negligible improve-

ments obtained with the non linear SVM in Tab. 4.10 has been a bit disappointing.

As can be noticed the accuracy, precision and recall, along with the record of the num-

ber of real and predicted steps has been measured over the three datasets. Nevertheless,

being these appositely made up to training purposes, the algorithms have been tested

even over the originally chronologically recorded and averaged data. This will simulate

the behaviour of the model over real conditions and will provide a term of comparison

with the LSTM algorithm.

Created Balanced Dataset Prediction over Balanced Validation Prediction over Original Dataset Prediction over Same Validation as LSTM

Total samples Training Validation Steps Predicted Accuracy Precision Recall Steps Predicted Accuracy Precision Recall Steps Predicted Accuracy Precision Recall

Training over 10X Dataset 168140 117698 50442 25585 22987 0.70 0.73 0.65 8407 253934 0.75 0.02 0.65 2539 74495 0.76 0.02 0.61

Training over 2X Dataset 33628 23539 10089 5063 4666 0.71 0.73 0.67 8407 259276 0.75 0.02 0.66 2539 75642 0.75 0.02 0.62

Training over 1X Dataset 16814 11769 5045 2516 2320 0.71 0.73 0.67 8407 261426 0.75 0.02 0.66 2539 76444 0.75 0.02 0.62

Table 4.9: Prediction results of Linear SVM comparison

Created Balanced Dataset Prediction over Balanced Validation Prediction Same Validation Dataset

Total samples Training Validation Steps Predicted Accuracy Precision Recall Steps Predicted Accuracy Precision Recall

Training over 10X Dataset 168140 117698 50442 25468 26950 0.77 0.76 0.80 2539 80292 0.75 0.03 0.82

Training over 2X Dataset 33628 23539 10089 5166 5422 0.74 0.74 0.77 2539 85207 0.73 0.02 0.77

Training over 1X Dataset 16814 11769 5045 2562 2585 0.75 0.75 0.76 2539 78277 0.75 0.02 0.75

Table 4.10: Prediction results of Non Lineas SVM comparison

The �rst noteworthy thing to notice is how the algorithm is not able to transfer

the decent performances obtained over the training dataset to the real data noticeably

in the drastic drop of precision and the astronomical number of step detected.

Moreover as could have been predicted the non linear classi�cation produced better

results over the validation dataset; nevertheless these are not entirely re�ected over

the original data.

It can also be seen in Tab. 4.10 how although the increase of the dataset's size has

made it possible better results in the training evaluation dataset; however, these are

56

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

again not signi�cantly re�ected over the original dataset.

This somehow indicates how this approach as it has been applied is not suitable to

this problem, as no matter how will be increased the amount of data recorded, it will

not produce better performances.

A �nal consideration will be made on how the small increase in performances due

to the use of a non linear SVM it is not worth in this scenario, as it is not propor-

tional to the more time required to process the data, being this one signi�cantly higher.

These results are not totally unexpected, as, how due to resource, time and even

skills limitation, a series of imprecisions and simpli�cation has been tolerated, starting

from the methodologies adopted in the recording methods, to android sensor managing

limitation, to �nally data preprocessing.

As a simple example, a di�erent methodology in the recording of steeps, it is believed

that, will already signi�cantly improve the level of classi�cation prediction. It indeed

can be noticed in Fig. 4.9 how even after the preprocessing of data, the recorded steps

do not perfectly match with the peeks of rotation. It can be imagined how this is

particularly relevant with a classi�cation algorithm so highly based on the accuracy of

data. Indeed it only has them to learn from, as it does not have any temporal context

to help.

Therefore a di�erent possible approach could be �lming the running experiment or

using a professional pedometer, in order to have the highest accuracy possible avoiding

human and Android delays and inaccuracies in the recording process.

4.1.5.3 Long Short Term Memory Neural Network

To provide a simple explanation of the type of network that will be used a brief intro-

duction over RNN must be made since they are the predecessors of LSTM.

It use the concept of hidden state (ht), introduced in the Hidden Markov model to hold

information on previously seen data and act as the NN memory.

To understand how the (ht) is calculated it is possible to refer to Fig. 4.10 observing

how the previous (ht-1) is combined with the current input (xt) to be passed through

57

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

the tanh activation function, resulting in the (ht) to be passed to the next cell.

Figure 4.10: Structure of consecutive cells in a RNN

The just mentioned tanh function regulates the �ow through the network, avoid-

ing that values that undergo through many transformations reach astronomical levels,

resulting unbalanced compared to new values.

tanh(x) =
1− e−2x

1 + e−2x

This is achieved �squashing� them into a range tanh(x) ∈ (−1, 1). It can be seen how

the cellular structure is quite simple compared to the LSTM one in Fig. 4.11; this is

because this last one is also provided with the ability to forget information when not

considerate useful.

LSTM networks introduce two new concepts:

• the cell state that acts as the memory of network, transferring information along

the sequence chain, allowing it to have a long term memory.

• gates, that decides which information is passed to the cell state; Therefore, during

training, it will learn which informations are worth to remember or forget.

Here it must be introduced the sigmoid function, i.e. what allows the cell to decide

that.

σ(x) =
1

1 + e−x

This will produce a result in range σ(x) ∈ (0, 1), it is indeed through that how values

are forgotten, as any number multiplied by 0 results 0, causing it to vanish and

58

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

oppositely by 1 remain the same then it persists and is remembered.

Focusing now on the new elements introduced in the cells, it is possible to see four of

them.

Figure 4.11: Forget Gate of a LSTM cell Figure 4.12: Input Gate of a LSTM cell

As highlighted in Fig. 4.11 the �rst element ìs the forget gate, the cell indeed

receive information from the previous hidden state (ht-1) and from the current input

(xt) and after combining them to form a vector apply to it the sigmoid function,

determining the forget rate output(ft).

The next step encountered in Fig. 4.12 is the input gate, the vector composed by

(ht-1) and (xt) is passed into the sigmoid function that decides which values will be

updated. The same vector [(ht-1) + (xt)] is also passed into the tanh function, helping

the regulate the network. Finally the two output are multiplied, allowing the sigmoid's

output to establish which information from the tanh are considered relevant and will

be remembered. The results will then be the input gate output(it).

It can be then observed in Fig. 4.13 how is calculated the cell state, �rstly the

previous cell state(ct-1) is multiplied by the (ft), allowing to drop values if the forget

rate is close to 0. The obtained results is then summed with the (it) updating the new

cell state(ct) with values considerate relevant.

59

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

Figure 4.13: Cell State of a LSTM cell Figure 4.14: Output Gate of a LSTM cell

Finally the last phase is actuated by multiplying the result of (ht-1) and (xt) passed

into the sigmoid function with (ct) passed in the tanh function, obtaining the hidden

state(t) of the current cell, that together with the (ct) will be transmitted to the next

cell.

Whit now in mind how a cell is composed it will be now possible to introduce

the concept of Layer, that, as far as could have been investigated, in the Keras used

framework di�ers a bit from the literature's de�nition, indeed it indicates a number of

parallel and identical LSTM cells, although each eventually "learning to remember"

di�erent thing.

Creating the �rst layer then it is expected to be speci�ed its dimension in the form of

[time steps, features] these will must be then re�ected in the number of units(o�cial

Keras documentation term), that for simplicity purpose may be regarded as cells, in

the layer.

60

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

Figure 4.15: LSTM Architecture for Step Detection

It can be indeed seen in Fig. 4.15 each cell is passing its (ht) to the cell at its right,

a�ecting its (ct), but also is used as input to the following layer.

This particular behaviour it is activated by the parameter return_sequence=True,

di�erently if setted to False, as it is shown in Fig. 4.16, is just returned the (ht) of the

�nal cell of the layer.

Figure 4.16: LSTM layer with return_sequence=False

This is not the desired behaviour in this case, as the succession of layers is used to

increase the power of the network, increasing its ability to learn layer after layer.

Moreover, this also allows to use after the 3 LSTM layers a TimeDistributed layer,

this will predict one value per time step considering the full sequence provided as

61

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

input. This means that, as shown in Fig. 4.15, all the 50 considerate time steps will

in�uence the prediction of each of them, e.g. if there is an overall increase of the values

of the provided sensors to start then decreasing it is highly likeable that it will be a

step.

The 50 value has been chosen considering the averaged dataset created, as 50 consecu-

tive time steps believed an optimal sequence length to produce predictions.

it must furthermore be mentioned that the activation='tanh' and recur-

rent_activation='hard_sigmoid' of layers hasn't been modi�ed, as after some

testing over relu and PReLU, resulted the ones to with better performances.

Finally it has been assigned to the TimeDistributed layer a sigmoid activation

function to produce an output between 0 and 1, since our predictions will be binary

value.

This model has then been compiled using binary_crossentropy to compute the cross-

entropy loss between true labels and predicted labels, Adam optimiser and metrics

accuracy. Again here has been tested di�erent parameter on the optimiser, partic-

ularly learning rate, increasing it and decay, these two values are related as former

in�uence latter as:

lr = initial_lr ∗ 1

1 + decay ∗ iteration

The methodology used here has been increasing the learning rate to have a quick

initial learning, then when it would stop improving, stalling over a percentage of

accuracy, the training would be shut down and have saved the best weights for each

epoch, then load the best-performing ones and restart training using a lower learning

rate and adding a decay to slowly after each epoch reduce the learning rate obtaining

always �ner results.

The model using the Keras's provided method predict_classes() will be then able

to pick the output values, as mentioned, in a range between 0 and 1 and produce a

one-dimensional array of exactly 0s and 1s.

To be �nally able to �t data on this model, it is necessary to reshape the

62

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

dataset created to �t the structure of the network, to do that it is useful the li-

brary numPy with he method reshape, indicating as the 3 new desired dimen-

sion: (original_dataset_len/time_steps, time_steps, number_of_features)

This section will be concluded mentioning how, di�erently from the previously ex-

plained SVM model, it has been possible to apply weights, particularly creating them

as mentioned with Scikit-learn using the method compute_sample_weight(), obtaining

a one-dimensional array of values. Each of them corresponds to the weight calculation

of the corresponding sample. This obtained array has been then reshaped as happened

with the samples and �tted alongside the samples to the model.

4.1.5.4 Long Short Term Memory Neural Network Results

In this section, it will be provided an overview of the di�erent approaches attempted

and the consequent results.

Considering how the network will require to be trained several times over the same

dataset to learn from it, it must be reckoned how the time required for the process will

likewise rise too.

Therefore some preliminary evaluation has been made to be then able to proceed just

in one direction.

The �rst question to be addressed was which dataset use between the one averaged

over 3 or 5 time steps, hence has been tested their accuracy over 100 epochs (number

of time that the training dataset is analysed by the algorithm).

Figure 4.17: Accuracy and Binary Crossentropy
loss development over training on 100 epochs with
dataset averaged over 5 time steps

Figure 4.18: Accuracy and Binary Crossentropy
loss development over training on 100 epochs with
dataset averaged over 3 time steps

Although not being that dissimilar, observing the di�erences inaccuracy and Binary

63

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

Crossentropy logarithmic loss visible in Fig. 4.17 and Fig. 4.18, it can be noticed how

training over the dataset averaged with a mean value of 3 showed a more linear and less

jittery learning curve in the accuracy over both training and validation data, seeming

more promising to further investigation.

This dataset has then been used again for the training, this time over 300 epochs in

Fig. 4.19 and then since it has not shown sign of over�tting or major stops in learning,

the saved best weights has been loaded again and trained other 300 times.

Figure 4.19: Accuracy and Binary Crossentropy
loss development over training on 300 epochs

Figure 4.20: Accuracy and Binary Crossentropy
loss development over training on other 300 epochs

It can be noticed in Fig. 4.20 how although the growth seems more jittery, it is

mostly due to the di�erent scale of the two plots. What is interesting is how, albeit

if slowed the learning phase did not seem to be stopped, suggesting that with more

training, even better results could be achieved. However the time restriction of the

project did not allow further analysis to test this theory, but these clues highly suggest

it.

It must be speci�ed that these results have been achieved using Keras default batch

size of 32 as seemed an opportune enough length of the sequence to be observed.

To now de�ne what the batch size is, it can be expressed as the number of inputted

samples after which the state of the model is reset and hence its gradient and

weights or parameters updated, increasing the batch size would mean lengthen the

backpropagation, having a better gradient estimation and prediction.

Moreover, the obtained optimal weights founded after this training has then been

tested using as �nal layer a TimeDistributed one, as previous mentioned, as well

as with just a normal Dense one, to test the di�erence in performances between the two.

64

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

Prediction over Validation Dataset

Steps Predicted Accuracy Precision Recall

LSTM Dense �nal layer 2539 5250 0.99 0.05 0.10

LSTM TimeDistributed �nal layer 2539 9711 0.98 0.04 0.17

SVM 2539 78277 0.75 0.02 0.75

Table 4.11: Prediction results �nal comparison between tested algorithms

As can be observed in Tab. 4.11 surprisingly similar and even better results

has been achieved using the Dense layer, this could be probably addressed to the

previously discussed learning mechanism of each cell and how the previous context is

already considered with forget and input gate, therefore it could be that this is already

the right amount of information needed and having to decide over each data-point

considering the 50 provided time steps could result overwhelming.

It can also be noticed in Fig. 4.21 how this has been achieved with a training over 10

epochs, and after an expected initial adjustment there is an organic growth, indicating

how there is still margin for optimization over these weights, it is indeed likely that

with more training will further improve reaching results that are reasonably acceptable

for the project's purposes.

Figure 4.21: Learning curve obtained using a Dense layer as �nal one

As a �nal analysis, it can be observed in Fig. 4.22 how the surplus detected steps

are located compared to the manually detected ones, it is interesting to notice how

instead of being predicted randomly they are grouped around the actual steps.

65

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

Figure 4.22: Comaprison between placements of manually detected and predicted steps

Seeing this it is possible to formulate two observation: �rstly, the initial belief that

the model could use the available context, even as a sort of autocorrelation function

to predict where the next possible beat will be, could not be entirely accurate; since

more than one are predicted where there should be just one. Secondly, it means that to

improve prediction accuracy, it will be simply possible to don't use the Keras provided

method predict_classes, but instead predict. This latter will return the probability

of a step in a range between 0 and 1 to then apply to these results another algorithm

that will check if nearby there are already predicted steps and if so keeps the one with

the highest probability.

This should reduce the number of multiply detection for the same step, leaving just the

problem of the not predicted steps, as can be seen on the extreme right of Fig. 4.22.

4.2 Beats Detection and Counting

In this section will be introduced and examined the beat detection problem, enriching

with new analysis the proposed knowledge regarding LSTM networks.

4.2.1 Experimental Set-Up

In order to have a diverse and appropriate music dataset, it has been decided to do not

use the few available ones. It has been instead decided to develop a new one to be able

to select songs that could be considerate contemporary and "motivational", therefore

likely be as close as possible to what could possibly be in the �nal user playlist.

This choice is justi�ed by the fact that most of the dataset available have di�erent

66

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

features labelled. Prevalent examples are music genre or mood of the songs and some

even total BPMs, but it has been hard to �nd something where each beat is labelled.

Furthermore, some datasets do not provide the actual audio �les, but just the extracted

features, while it was the interest of this project to explore this process as it would be

required to be performed over the �nal user's playlist. Therefore has founded as an

optimal solution the use of music downloaded under creative commons license, being

also extra careful to select only songs that did not require attribution of any credits.

Moreover, the �les will not be made available, distribute or reproduced anywhere.

This allowed choosing music manly between the rock, hip-hop, electronic and pop

genres, in accordance with preferences extracted in the questionnaire carried out, visible

in Fig. A.5.

4.2.2 Data Preparation

All the downloaded songs have been collected on a speci�c directory, however, all of

them were of mp3 �le format, hence it has been necessary to write a Python script

that uses the "�mpeg" framework to convert each of them into the more usable wav

format and place them on a new folder.

4.2.3 Data Analysis and Preprocessing

From this point forward it will be most useful the Python library LibROSA that allow

loading wav �les and perform many feature extraction, beat and tempo detection and

plotting functions essential to this project. The collected �les have been loaded on

Python through librosa.core.load(), this method allows to select some parameters

in this process, particularly has been used res_type='kaiser_fast' (it not use the

default best quality resampling mode in favour of a superior speed) and sr=22050 (it

de�ne the target sampling rate). These two choices have been made to reduce the time

required by the process since it is not required high quality, as actually, it is better

to lower it to reduce the incredible amount oh samples. Moreover, by sample rate

it is meant the number of samples recorded in a second and usually, songs collected

included, is 44100. It has been decided to halve this number as, after some attempts,

67

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

resulting in the lowest possible without then losing accuracy on beats detections.

This is indeed the main goal here and has been achieved in a three steps process.

The �rst thing has been to �nd the track's BPM and to do that has been used the very

popular DJ software Traktor, that has between his best features an automatic and

quite reliable BPM's recognition tool.

Secondly has been used the provided method librosa.beat.beat_track. This detect

beats with the following methodology:

1. measuring the onset strength,

2. estimating the tempo from the onset correlation,

3. picking peaks in onset strength approximately consistent with estimated tempo.

[19]

This will return the predicted BPMs and beats location in the speci�ed units(frames,

samples or time).

To check the accuracy of the estimated tempo, it has been compared with the results

obtained with Traktor and, as can be seen in Tab. 4.12, although being acceptable in

most of the cases, still some inaccuracy exist.

TraktorBPMs 102,000 107,997 108,000 110,000 111,000 119,999 120,004 123,996 124,500 125,041

LibrosaBPMs 103,359 107,666 107,666 112,347 112,347 117,454 117,454 123,047 83,354 123,047

TraktorBPMs 127,349 128,000 130,000 131,999 132,000 139,751 148,001 153,998 80,000 87,490

LibrosaBPMs 129,199 129,199 129,199 129,199 89,103 143,555 151,999 151,999 161,499 117,454

Table 4.12: Comparison between Traktor and LibROSA detected BPMs

However, to overcome that, librosa.beat.beat_track also provides the possibility

to pass as a parameter(start_bpm=), i.e. the previously known BPM if available and

hence it was inserted here the values obtained with Traktor, in order to increase the

accuracy.

The �nal results have been then manually analysed to check the precision of predictions.

This was performed �rstly by ear, counting if the number of beats was reasonable and

when matching between Kick drum and beats was linear through plots analysis.

68

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

This is evident in Fig. 4.23, where the peaks of amplitude caused by the high energy

produced by the kick drum are nicely matched with the beats.

Figure 4.23: LibROSA Detected Beats

Since librosa.beat.beat_track returns the index of samples where a beat is es-

timated this had to be converted in an array of zeros and ones to then be used as

labels:

def gen_labe ls (beats , l enght) :

for e in range (beats [1] , l enght) :

i f e in beats :

y i e l d 1

else :

y i e l d 0

Listing 4.4: Conversion of LibROSA detected beats into binary labels

This method would then just rwquired to be called inside a list to be able to have a

dataset of the desired labels.

The next step of investigation has been the feature extraction, and mainly three

option has been evaluated:

• STFT di�erently from the standard Fourier transform, that return information

about the frequency of a signal averaging them over the whole length, STFT

present time-localized frequency information calculating the FFT on a window

that is moving all along the signal length;

69

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

• mel spectrogram, to determine it is �rst calculated the magnitude of its spec-

trogram, that then is mapped using the Mel scale;

• Revisited Moving Average, very similar to the one applied in the data pre-

processing for step detection, but with di�erent objectives and mean_value.

Now a graphic representation will be provided in order to have a better visualization

of these concepts and allow an easier comprehension of the mental process followed to

arrive at a �nal decision on which one could be the optimal feature to be �t in the NN.

Figure 4.24: Spectrogram mapped onto the Mel scale compared with LibROSA Detected Beats

As can be seen in Fig. 4.24 the mel spectrogram has been applied over 30 seconds

of a song, and precise and reliable indications over the positioning of the beats can

not easily be evinced, not surprisingly indeed has o�ered its best results when used

as a mere tool for classi�cation instead to be analysed as a time sequence. This can

be better exempli�ed providing the example of the music genre recognition or speech

recognition problem, in this case indeed the particular characteristics of diverse genres

or sounds can be re�ected in a recognisable spectrogram.

70

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

Figure 4.25: Magnitude of frequency calculated with STFT compared with LibROSA Detected Beats

Even if in Fig. 4.25 a more readable output is produced, however the same

argument can be reapplied here. Furthermore, these methods add complexity in the

labelling of the data, since it is straightforward to apply a label as music genre over

the spectrogram of a song or segment of it, di�erent instead is having to apply labels

exactly where several beats are. This will be clearer providing as example the analysis

of a random song picked from the dataset.

It is has a shape of a one-dimensional array of 4137618 samples; it is, therefore, a

straightforward process to assign labels to each sample, on the contrary, the STFT

will produce a bidimensional array of size (1025, 8082) and the melspectrogram (128,

8082).

This means that the labels produced, of the same form of the samples, must be

converted into these formats, and time constraints of this project did not allow to

investigate the subject further.

Therefore the most appropriate solution seemed to apply the Revisited Moving Av-

erage since it allows to achieve simultaneously two interesting goals. Firstly to reduce

the signal complexity to have more meaningful data to �t in the ML model. Secondly

to reduce the number of samples in order to decrease the computational power and

memory required to train the model, since the available GPU (Nvidia GeForce GTX

1060) was struggling to produce result otherwise.

Not to mention that, as can be imagined, the database is again heavily unbalanced,

therefore reducing that it is another welcomed consequence.

71

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

Figure 4.26: Original samples compared with Detected Beats

Both of these goals can be observed analysing a minute of a random song, com-

paring the original signal in Fig. 4.26 too noisy and complex, moreover with more

than 1 000 000 samples, compared to Fig. 4.27 where the peeks nicely match with the

detected beats and just 600 samples.

Figure 4.27: Original samples compared with Detected Beats

It has been probably noticed how to a minute of song corresponds exactly 600

samples, this is because as a mean_value in the moving average has been chosen 2205,

i.e. 1
10 of the selected sampling rate.

This becomes particularly useful in the next step of the data preprocessing, as each

song, according to his length has been trimmed from the second beat detected (the

�rst one usually happens before than the music, and particularly the kick drum,

properly starts) to a multiple of a minute.

Having then the audio segment all a �xed and known size, it is hence possible to take

72

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

advantage of the remembering abilities of RNN. Indeed it is possible to �t it with a

de�ned number of time steps such that it will learn just from a song, avoiding the

sudden variation in the tempo between two songs, that could result confusing.

Again, as mentioned, to complete the balancing of the dataset has been required

the use of appositely created weights. It has been then applied the same scikit-learn

method as for the step detector.

Since the data preprocessing process it requires some time it has then been created

a �nal dataset on CSV �les, containing one for each row on of the 45 trimmed in length

songs to which it has been applied the Revisited Average.

4.2.4 Data Classi�cation and Training

In the classi�cation process, due to the increased complexity of the problem compared

to the previous one, it has manly considerate NN. Mainly two option: similarly as hap-

pened with the step counter an LSTM on averaged results, or a CNN over STFT and

Mel spectrograms produced data, since these produce a 2D output that will �t well on

CNN.

However, after some experimentation on the second option has been chosen to go with

the �rst one. This has been mainly motivated by the time limitation and the assump-

tion that CNN could be more appropriate to genre recognition, rather than for the

examined problem. Furthermore, it has been preferred to furtherly investigate the

various potentiality of di�erent con�guration in a LSTM network increasing the level

of con�dence in the understanding of how data are processed during the training and

therefore produce better results for both the treated problems.

Therefore three di�erent con�gurations of the network have been explored to test its

remembering and prediction abilities.

To start this investigation has been selected the network structure visible in Fig. 4.28

selecting a layer with 200 cells, therefore corresponding to 200 samples, which in turn,

considering the chosen sampling rate are exactly 20 seconds of a song.

This unit of measurement has been chosen to provide a meaningful length to be anal-

73

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

ysed, from which it is possible to understand and extract the beats having enough

context to learn from. The hope here has been that information about the repetitive-

ness of beats can be transmitted along the cells' chain in the layer, providing the next

cells with more context about the probability of when could be the next beat.

Moreover, it has been chosen to use a single layer to reduce the training time, reducing

the complexity of the network, to then continue with further investigations only on the

best performing one.

Figure 4.28: LSTM structure for
BPM recognition

Figure 4.29: Learning curve obtained using a
TimeDistributed �nal layer, making the network
stateful

The �rst approach attempted has been to expose the network to the entire sequence,

hoping that it could autonomously learn inter-dependencies, rather than having to �t

it with data organized, as mentioned, in a way that it will learn just from a single song.

This can be achieved using the Keras framework by making the LSTM layer stateful.

This means that the state of the network will not be reset after the provided sequence

of time steps or de�ned batch size, but instead, it will require to be manually reset after

every epoch. This is the proper way to take full advantage of the LSTM potentiality.

Indeed all the data in training dataset will be considered during prediction.

Nevertheless, despite this the results of training over 100 epochs, shown in Fig. 4.29,

are quite disappointing.

It is indeed shown a clear case of over�tting, i.e. the model concerned learns too in

details data and noise in the training dataset, impacting negatively on its ability to

generalize and therefore predict over di�erent data.

This can be noticed in how the learning progress visible on the training data are not

re�ected over the validation ones and how oppositely the binary cross-entropy loss while

decreasing in training has an opposite behaviour on the validation.

74

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

This could be probably imputed to the relatively small size of the dataset, as it has

been trained over just 45 songs, using a relatively high averaging mean value of 2205

that reduces the number of data-point available signi�cantly.

Moreover, this implementation could not be too well suited to this issue, since although

it is not really a time sequence, as indeed a series of di�erent consecutive sequences.

Therefore the transition between songs and hence diverse tempo could be learned as a

concept from the model, producing the mentioned over�tting. This would indeed be

more indicated to pure time sequences as it could be the case of stocks in �nancial

markets.

Figure 4.30: Learning curve ob-
tained using a TimeDistributed �nal
layer without shu�ing samples

Figure 4.31: Learning curve obtained using a
TimeDistributed �nal layer shu�ing samples after
each epoch

Hence two di�erent approaches has then been tested to treat di�erently this problem

again over 100 epochs:

• �rstly, considering how in a non-stateful LSTM layer the state is reset after each

batch it has hence considered to use a batch size of 3, therefore, since the network

is fed with sequences of 200 samples, it will learn considering 3 of these. However,

this context will not be available when it produces prediction, as only the inputted

sequence is used. Summarising the model will learn considering 60 seconds of a

song and predict over 20.

• secondly, has been tested the dataset as a group of 20 seconds length input, hence

maintaining the same 200 input shape, but reducing the batch size to 1 and after

each epoch randomly shu�ing these sequences. In doing so, the model, will reset

its state after each provided input learning and predicting over 20 seconds but

will be trained with a dataset reordered each time resulting as new to it. This

75

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

was an attempt to completely avoid cases of the aforementioned over�tting .

However, neither of the results produced by the former in Fig. 4.30 nor by the latter in

Fig. 4.31 has been particularly promising. Both have indeed shown how the learning

curves faced a drastic drop closer to an accuracy of 80%. The reason for this has been

again imputed to the dimension of the dataset, not being big enough. Therefore other

45 songs have been included to approximately double its size.

The new dataset has then been tested using a more robust network, to see if rising the

number of layer to 3, as shown in Fig. 4.32, it is possible to increase the learning ability

of it.

Figure 4.32: Model structure
composed by 3 LSTM layers and
a TimeDistributed �nal layer

Figure 4.33: Learning curve obtained using a 3 LSTM layers
without shu�ing samples over 300 epochs

Unfortunately, as can be observed in Fig. 4.33, even over a major number of

epochs, it is not yet su�cient to signi�cantly improve its learning abilities. It can be

noticed how still the 80% of accuracy over the training data is an insurmountable

barrier, and furthermore, its ability to generalise is rather reduced, observing the

substantial di�erences in accuracy between training and validation data. Therefore

it can be imagined how the precision of the model would be very modest, as indeed

just 21% over-predicting 15881 beats against the actual 5319 present in validation data.

It is, therefore, observing how has been challenging to achieve results �tting the

model with well-de�ned sequences, bothering to reset the model state when there is a

change in song or tempo. It has then been tested the model reaction being exposed to

these variations observing if its ability to generalise could improve.

The batch size has been then increased to 20, and the model trained over other 100

76

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

epochs obtaining slightly better results with accuracy just above 80% and precision

increased to 25%.

That con�rms how the e�ort made to �t clean data did not pay, and sometimes more

raw data can be better generalised, besides the fact that a batch size of a substantial

dimension means learning from a more extended sequence of data and not to be

underestimated considerably shorter training times.

Finally, over these considerations and remembering how the dataset has been con-

sidered too small, another approach has been attempted. In order to increase its size

and at the same time test the network in a di�erent but intriguing way, the dataset

has been modi�ed with the goal to �t the model, not with distinct and not overlapping

sequences, but instead with moving windows.

Being not that simple to explain that in words it would be provided an example, hence

considering a dataset hypothetically composed by [1,2,3,4,5,6,7,8,9] the �rst and until

now applied method would be to �t the model with 3 samples, composed in this way

[1,2,3], [4,5,6] and [7,8,9]. The new method applied here instead will �t [1,2,3], [2,3,4],

[3,4,5], [4,5,6], [5,6,7], [6,7,8], [7,8,9].

It is evident how the number of samples provided would increase considerably and will

allow analysing the same time step multiple time with di�erent context available.

def gen_window_dataset (X, window=200):

l = len (X) − window

newX =[]

for i in range (l) :

newEntry = df [i : i + window]

newX . extend (newEntry)

return newX

Listing 4.5: Used method to generate a windowed dataset

It is possible to see in Listing 4.5 how this has been achieved using a for loop iterating

each data-point in the dataset and each time adding a window of the selected size to

the newly created dataset. Then it would be just necessary to reshape the obtained list

to a 2D NumPy array with as a �rst dimension the length of the dataset divided by

the window size and as a second one the actual window size, as shown in Listing 4.6,

77

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

to have a dataset shaped as desired.

newX = newX . reshape (len (newX)//window , window , 1)

Listing 4.6: Used method to reshape the windowed dataset

In doing so, through a moving window of size 100, from a dataset shaped for training

as (392, 200, 1) and for evaluation (169, 200, 1), the new one would result respectively

of dimension (39235, 200, 1) and (16815, 200, 1).

This dataset was then used for training over 50 epochs again the same three-layer LSTM

model, but using a batch size of 100 to include more context and reduce the computing

time of a larger dataset.

Figure 4.34: Learning curve obtained using 3 LSTM layers without shu�ing samples using a windowed dataset
over 50 epochs

It is possible to notice how in Fig. 4.34 even with this model accuracy of 80%

seemed the maximal possible in training, again not well re�ected over the validation

data.

Moreover, the logarithmic loss seems to follow di�erent trends in training and

validation, showing sign of over�tting.

It is main possible that the validation data are notably di�erent from the training data

and dividing the dataset di�erently better results could be achieved.

Overall, it seems evident how this approach is not producing accurate results. This

can be addressed to a lack of features provided to the model, in the step counter one it

has been indeed observed how �tting six di�erent features produced excellent results.

It is not easy here to �gure it how to combine di�erent features, but probably it would

be required to consider some frequency or magnitude measurements such as the STFT

78

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

as in fact applied by [12] or maybe �tting the MFCC (computing the DCT over the

mel-spectrogram) on a CNN.

Furthermore, another possible approach would be to consider the use of bidirectional

LSTM layer as suggested in [18], this has quickly attempted, but again, the di�culty

to �t weights has stopped further analysis.

It must hence be noticed how this, due to time restriction, it has not been fully exper-

imented and probably implementing weights at a class level instead of at samples one

could be implemented. This will require to modify the labels to transform them into

a binary matrix with two columns, one of them representing beats and the othernon

beats.

It will be furthermore required to change the activation function of the �nal

TimeDistributed layer from sigmoid to softmax. This is because, as mentioned, la-

bels now are two columns; therefore, e a sigmoid function can not be applied anymore.

However using a softmax activation on two classes will produce the same results, as

they are mathematically equivalent.

The use of bidirectional LSTM layers will then allow the network to analyse al the

�tted sequences of timesteps in both the direction allowing to have a much broader

context without overloading the memory and then computational time.

This amendment could possibly lead to better performances and predictions.

4.3 Prototype Evaluation

As a �nal step of this research, it has been tested the produced prototype to evaluate

its behaviour over the same condition to the data acquisition experiment, to have a

comparison and evaluate how well the implementation of the model could �ts in the

produced prototype.

It has been mainly tested availability and usabilIty and the app, as far has it has been

possible to test, resulted bug-free and pleasant to use.

This obviously is just the biased opinion of the researcher itself; however, it is still

79

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 4. Research Methods

noticeable how the songs are actually reproduced with the desired logic, and they are

sensitive to di�erent paces.

80

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 5

Conclusion and Future Work

After having concluded as much as possible experimentation and discussed their

implementation and results, it is now possible to conclude evaluating how well it has

been achieved the objective of this dissertation.

Furthermore, the areas of possible improvements, as it was not possible to cover them

through this dissertation, will be highlighted to encourage future works.

As one the main interest of this dissertation was to explore the whole process of

developing required to build Neural Networks model, regarding the step detection and

beat detection problems, it can be stated that it has been individuated methodologies

capable of producing results.

In details, the approach proposed to step detection can be considerate a remarkable

result, compared to the lack of resources and time.

It has indeed been achieved similar results to the Android's built-in step counter, with

both detecting approximately the double of the actual steps.

Not to mention, how with the proposed Improvements, i.e. a further long training, use

of more accurate methodologies in the collecting of the data and implementation of an

algorithm to re�ne the model prediction, it would be ideally possible to obain better

performaneces than th eones achieved by the Android's detector.

It can then be addressed to future work more test of how to implement SVM models

81

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Chapter 5. Conclusion and Future Work

assigning weights at classes or samples level.

It was then proposed a suitable solution and an in-depth overview of how to record

data from Android's accelerometer and gyroscope sensors whit the con�dence that

even more sensors could be recorded without notably raising the recording delay.

This is achieved thanks to the combination of using a ThreadPool and multiple

SensorEventListener.

Regarding the beat detection algorithm, the results have been instead disappointing,

leading to questioning the approach attempted to follow a more canonical one.

It has been already proposed how the use of STFT or MFCC to �t CNN or bidirectional

LSTM could probably lead to better results.

Nevertheless, it has to be admitted to how the design of a precise methodology to

record steps, as well as the implementation of the relative model, required more times

that estimated and therefore it has not been possible to evaluate as desired the beat

detection problem.

Nonetheless, a practical methodology to identify beats and convert them to labels ready

to be �tted in a model has been provided, obtained combining LibROSA Python's

library and the software Traktor.

Further study should also be deserved to test how it would be possible to have

a matching not between BPM and steps per minute, but at a single beat-step level.

However, to be able to accomplish that it would be before accomplished an accurate

detection of both.

Finally, it has been proved possible to match user running pace with a song's BPM,

realizing a fully functional prototype, to which in future work would be interesting

to implement in it the developed ML algorithms and test if and how the smartphone

hardware's lower specs can handle them.

Moreover, the proposed algorithms have to be tested on live scenarios to check if they

replicate the same performances proposed.

82

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Appendix A

Figures

Figure A.1: Age Distribution Figure A.2: Gender Distribution

Figure A.3: Run Frequency Figure A.4: Music Frequency

Figure A.5: Music Genre Distribution
Figure A.6: Perceived boost in Perfor-
mances

83

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Appendix A. Figures

Figure A.7: Expressed Interest in the App
Figure A.8: Expressed Interest in Perfor-
mances Tracking

Figure A.9: Interest in Reproducing more
often Songs that Leads to better Perfor-
mances

Figure A.10: Focus on Music or Perfor-
mances Tracking

Figure A.11: Android Detected Steps over Z axis Accelerometer (5 min. approx.)

84

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Appendix A. Figures

Figure A.12: First part of MainActivity class

85

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Appendix A. Figures

Figure A.13: Third part of MainActivity class

86

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Appendix A. Figures

Figure A.14: Complete Song class

87

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Appendix A. Figures

Figure A.15: Complete SongAdapter class

88

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Bibliography

[1] Mobile operating system market share worldwide - july 2019, 2019. http://gs.

statcounter.com/os-market-share/mobile/worldwide.

[2] sklearn.preprocessing.maxabsscaler, 2019. https://scikit-learn.org/stable/

modules/generated/sklearn.preprocessing.MaxAbsScaler.html.

[3] Richard G. Alonso M., David B. A study of tempo tracking algorithms from

polyphonic music signals. 2003.

[4] Youssef M. Alzantot, M. Ubiquitous pedestrian tracking using mobile phones.

2012.

[5] AndroidDevelopers. Keeping your app responsive, 2019. https://developer.

android.com/training/articles/perf-anr.

[6] AndroidDevelopers. Sensorevent, 2019. https://developer.android.com/

reference/android/hardware/SensorEvent.

[7] AndroidDevelopers. Threadpoolexecutor, 2019. https://developer.android.

com/reference/java/util/concurrent/ThreadPoolExecutor.html.

[8] Karageorghis C.I. Bacon C. J., Myers T. R. E�ect of music-movement synchrony

on exercise oxygen consumption. 2012.

[9] Noury N. Barralon P., Vuillerme N. Walk detection with a kinematic sensor:

Frequency and wavelet comparison. 2006.

[10] Bailey B. P. Biehl J. B., Adamczyk P. D. Djogger: A mobile dynamic music device.

2006.

89

http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://developer.android.com/training/articles/perf-anr
https://developer.android.com/training/articles/perf-anr
https://developer.android.com/reference/android/hardware/SensorEvent
https://developer.android.com/reference/android/hardware/SensorEvent
https://developer.android.com/reference/java/util/concurrent/ThreadPoolExecutor.html
https://developer.android.com/reference/java/util/concurrent/ThreadPoolExecutor.html

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Bibliography

[11] Schedl M. Bock S. Enhanced beat tracking with context-aware neural networks.

2011.

[12] Widmer G. Bock S., Krebs F. Joint beat and downbeat tracking with recurrent

neural networks. 2016.

[13] Harle R. Brajdic A. Walk detection and step counting on unconstrained smart-

phones. 2013.

[14] Zhang Y. Z. Chen G .L., Fei L. I. Pedometer method based on adaptive peak

detection algorithm. 2015.

[15] Auld D. Multiple sensors on an android application,

2017. https://stackoverflow.com/questions/41859899/

multiple-sensors-on-an-android-application.

[16] Schrauwen B. Dieleman S., Braken P. Audio-based music classi�cation with a

pretrained convolutional network. 2011.

[17] Aksoy S. Dirican A .C. Step counting using smartphone accelerometer and fast

fourier trransform. 2017.

[18] Koppe E. Edel M. An advanced method for pedestrian dead reckoning using

blstm-rnns. 2015.

[19] Daniel P. W. Ellis. Beat tracking by dynamic programming. 2007.

https://librosa.github.io/librosa/generated/librosa.beat.beat_

track.html?highlight=beat%20track.

[20] Dooley J. F. Software Development, Design and Coding. 1990.

[21] Ferris J. Let's get physical: The psychology of e�ective work-

out music, 2013. https://www.scientificamerican.com/article/

psychology-workout-music/.

[22] Laroche J. E�cient tempo and beat tracking in audio recordings. 2003.

90

https://stackoverflow.com/questions/41859899/multiple-sensors-on-an-android-application
https://stackoverflow.com/questions/41859899/multiple-sensors-on-an-android-application
https://librosa.github.io/librosa/generated/librosa.beat.beat_track.html?highlight=beat%20track
https://librosa.github.io/librosa/generated/librosa.beat.beat_track.html?highlight=beat%20track
https://www.scientificamerican.com/article/psychology-workout-music/
https://www.scientificamerican.com/article/psychology-workout-music/

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Bibliography

[23] Liu D. Jia B., Lv J. Deep learning-based automatic downbeat tracking: a brief

review. 2019.

[24] Qi G. Kang X., Huang B. A novel walking detection and step counting algorithm

using unconstrained smartphones. 2018.

[25] Priest D. L. Sasso T. A. Morrish D. J. Walley C. J. Karageorghis C. I., Mouzourides

D. A. Psychophysical and ergogenic e�ects of synchronous music during treadmill

walking. 2009.

[26] Karumi. Dexter, 2015. https://github.com/Karumi/Dexter.

[27] Jacobsen T. Schubotz R. I. Kornysheva K., Von Cramon D. Y. Tuning-in to

the beat: Aesthetic appreciation of musical rhythms correlates with a premotor

activity boost. 2010.

[28] H. Leppakoski. Error analysis of step length estimation in pedestrian dead reck-

oning. pages 1136�1142, 2002.

[29] Goto M. An audio-based real-time beat tracking system for music with or without

drum-sounds. 2001.

[30] Sabatini A. M. Mannini A. A hidden markov model-based technique for gait

segmentation using a foot-mounted gyroscope. 2011.

[31] Davies M. E. P. Klapuri A. McKinney M. F., Moelants D. Evaluation of audio

beat tracking and music tempo extraction algorithms. 2007.

[32] Community Manager meahtenoha. Retirement of our running fea-

ture, 2018. https://community.spotify.com/t5/Content-Questions/

Retirement-of-our-Running-Feature/td-p/4383603.

[33] Community Manager meahtenoha, 2019. https://www.music-ir.org/mirex/

wiki/MIREX_HOME.

91

https://github.com/Karumi/Dexter
https://community.spotify.com/t5/Content-Questions/Retirement-of-our-Running-Feature/td-p/4383603
https://community.spotify.com/t5/Content-Questions/Retirement-of-our-Running-Feature/td-p/4383603
https://www.music-ir.org/mirex/wiki/MIREX_HOME
https://www.music-ir.org/mirex/wiki/MIREX_HOME

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Bibliography

[34] mostar. Get multiple sensor data at the same time in an-

droid, 2012. https://stackoverflow.com/questions/12326429/

get-multiple-sensor-data-at-the-same-time-in-android.

[35] Wirth N. Program development by stepwise re�nement. 1971.

[36] Li Q. Asare P. Stankovic J. A. Hong D. Zhang B. Jiang X. Shen G. Zhao F.

Nirjon S., Dickerson R. F. Musicalheart: A hearty way of listening to music. 2012.

[37] Flores-Mangas F. Oliver N. Mptrain: A mobile, music and physiology-based per-

sonal trainer. 2006.

[38] Keller T. Dietz V. Morari M. Pappas I. P. I., Popovic M. R. A reliable gait phase

detection system. 2001.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825�2830, 2011.

[40] V. Garaj F. Cecelja W. Balachandran R. Jirawimut, P. Ptasinski. A method for

dead reckoning parameter correction in pedestrian navigation system. 2001.

[41] Padmanabhan V. N. Sen R. Z. Rai A., Chintalapudi K. K. Zero-e�ort crowdsourc-

ing for indoor localization. 2012.

[42] Bock S. Schluter J. Musical onset detection with convolutional neural networks.

2013.

[43] Chen Y. Chen H. H. Wang J. H., Ding J. J. Real time accelerometer-based gait

recognition using adaptive windowed wavelet transforms. 2012.

[44] Edwards B. Waterhouse J., Hudson P. E�ects of music tempo upon submaximal

cycling performance. 2010.

[45] Huang B. Yang, X. An accurate step detection algorithm using unconstrained

smartphones. 2015.

92

https://stackoverflow.com/questions/12326429/get-multiple-sensor-data-at-the-same-time-in-android
https://stackoverflow.com/questions/12326429/get-multiple-sensor-data-at-the-same-time-in-android

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Bibliography

[46] Schnitzer A. Leonhardt S. Schiek M. Ying H., Silex C. Automatic step detection

in the accelerometer signal. 2007.

[47] Chen Z. An lstm recurrent network for step counting. 2018.

93

�
D
R
A
F
T
�
A
u
g
u
st

1
9
,
2
0
1
9
�

Bibliography

94

	Abstract
	List of Figures
	List of Tables
	Preface/Acknowledgements
	Introduction
	Literature Review
	Effectiveness of music in the increasing of fitness performances
	Market and Peer-Reviewed analyses
	Overview of Step Detection's algorithms
	Time Domain approaches
	Frequency Domain approaches
	Feature Clustering approaches

	Overview of Audio Beat Tracking and Music Tempo Extraction's algorithms
	Objectives

	Methodology
	Requirement
	Requirement's Gathering
	Functional Requirements
	Non-Functional Requirements

	Methodologies
	Programming Languages and frameworks
	Design
	High-Level Design
	Low-Level Design

	Research Methods
	Steps Detection and Counting
	Experimental Set-Up
	Data Acquisition
	Data Preparation
	Data Analysis and Preprocessing
	Data Classification and Training

	Beats Detection and Counting
	Experimental Set-Up
	Data Preparation
	Data Analysis and Preprocessing
	Data Classification and Training

	Prototype Evaluation

	Conclusion and Future Work
	Figures
	Bibliography

