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ABSTRACT 

With the increasing popularity and importance of Higher Education, degree cohorts are becoming 

larger and it is becoming increasingly difficult for lecturers and advisors of studies to engage with 

students personally. As a result, students who are struggling with course material are receiving 

feedback and advice too late or are being missed out altogether which increases the number of 

students failing or dropping out of higher education. 

The increase in research into machine learning and advances in technology have made complex and 

computationally expensive machine learning algorithms a viable solution to this problem. The aim of 

this study was to determine which machine learning algorithms were most suited to solving this 

problem and to determine whether it is possible to accurately predict a student’s performance early 

in a course. 

Using Scikit Learn, five machine learning algorithms were trained and tested using the Open 

Universities Learning Analytics data. The percentage of correctly classified failing students to the total 

number of failing students in the testing data set and the percentage of failing students correctly 

classified to the total number of students classified as failing were used as metrics to determine which 

of the algorithms were most suited to this problem. 

The results show that, with minimal amounts of parameter tuning for optimisation, Random Forest 

and K-Nearest Neighbours are both suited to predicting student performance even with only a small 

amount of available student data which would allow for accurate and early prediction. 
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1. Introduction 

1.1 Background and Motivation 
Higher education is increasingly seen as essential by many employers. This has led to an increase, not 

only in the number of people opting to pursue degrees in all fields, but also in the diversity of the 

students. While in the past students were likely to be affluent, young males seeking an academic 

career in a specific field, the backgrounds and motivations of students today are significantly more 

diverse. Due to the increase in student numbers and diversity it can be difficult for an advisor of studies 

to get to know each student personally and provide meaningful feedback on their academic 

performance. This can ultimately lead to student dissatisfaction and an increase in the number of 

students failing to complete their degree on time or dropping out of university. 

By identifying students at risk of failing early and providing feedback at an early stage in a degree it is 

believed that student performance can be improved and student retention rates can be increased, 

outcomes which benefit both the students and the institutions. A tool or application, made available 

to students and lecturers, which can take in student information and provide information of their 

expected performance and provide feedback on how to improve their current situation would be 

greatly beneficial in this regard. 

Technological advancements in recent years have made computationally expensive prediction 

methods such as machine learning a viable option for a variety of applications such as this and, with a 

great deal of research having gone into the development and improvement of machine learning 

algorithms, there are several algorithms available which are suitable for this specific task. Identifying 

a suitable algorithm is the first step in developing an application which can be used as means of 

properly engaging with students who would benefit most from engagement from lecturers. 

1.2. Project Aim 
The focus of this project will be to compare the performances of five machine learning algorithms to 

determine which are most suited to the task of predicting whether a student is likely to pass or fail a 

course. To be considered suitable, a trained machine learning algorithm must meet two criteria. First 

it must be able to correctly identify failing students from existing data sets of past student results, 

misclassifications of failing students as passing students must be kept to a minimum. Secondary to 

this, misclassifications of passing students as failing students must also be kept to a minimum. While 

the first of the two criteria is the most important, both must be met for an algorithm to be considered 

suitable.  

The greatest positive effect on a struggling student will be gained by identifying and engaging with 

them as early as possible. As such, another objective of this study will be to investigate how much 

relevant student grade data is required to produce accurate predictions and to determine if any other 

available student data can aid in providing improvements to the performance of the models. 

The project aims can therefore be summarised as follows: 

• To determine if machine learning models are viable as a means of identifying students at risk 

of failing. 

• To determine how early in a course it is possible to accurately identify whether a student is 

likely to fail or not. 

• To compare a range of machine learning algorithms and identify those which may be suitable 

for this purpose. 



• To determine how differences in data sets affect the performance of machine learning 

algorithms in an academic context. 

• To determine whether features other than student grades are beneficial in making 

predictions. 

 

  



2. Literature Review 
This section will be split into four main sections, with each part highlighting previous works relevant 

to that particular area. The first section will discuss studies into the correlation between grades 

achieved earlier in a student’s career, such as mid-term assessments or the early years in a multi-year 

course, and the final outcome of a class or course. While it may seem obvious that early grades will 

have a direct correlation with later grades it is important to develop an understanding of a variety of 

related factors such as what kinds of assessment correlate most, what is the earliest grade which can 

be used as a predictor before correlation drops off and how closely must subjects relate to act as valid 

predictors. 

The second section will explore how a student’s background factors into a student’s performance 

throughout their education. Factors such as gender, upbringing, parental education and level of 

poverty need to be investigated as it is not immediately clear how, or even if, these factors will have 

any effect and as such will allow for easier identification of relevant data pre-processing data.  

The third section will discuss previous studies offering information on the best performing and most 

reliable machine learning models and the methods available for improving the performance of those 

models. It will also discuss how to determine which models are best suited for any particular situation 

and what factors most affect model performance. By identifying the strengths and weaknesses of each 

model it will be possible to narrow down those available and maximise the performance of each. 

The final section will discuss the justification for feature selection, the feature selection methods 

available and the suitability of implementing feature selection methods in a given situation. This is 

another factor which allow for maximisation of the performance of the selected machine learning 

models. 

2.1 Student Grades as Predictors 
There have been many studies, especially in recent years, which have explored the relationships 

between the various teaching methods employed by educators and their effects on the grades of 

students. Many of these studies focus purely on the level of improvement seen through the use of 

particular assessment methods such as mid-term quizzes, practical assessments and written 

coursework while others investigate the impact of different kinds and levels of feedback. Previous 

grades in a class are expected to hold the greatest weight in predicting a student’s expected outcome, 

especially in this context where grades will be taken from mid-term assessments which should indicate 

a student’s early grasp of a subject. 

Day et al discussed the effectiveness of exam style assessments, written assignments and mid-term 

quizzes as well as the effect of lecturer feedback on a student’s performance (Day, Blankstein, 

Westenberg, & Admiraal, 2018). Through this study it was found that there is a clear correlation 

between assessments taken by students and the final grade of a class. A study carried out by Zhang 

and Henderson exploring the usefulness of formative assessments in improving and predicting student 

exam performance also posits that it may be possible to identify students likely to perform poorly in 

exams based on performance in the assessments (Zhang & Henderson, 2015). From these studies it 

becomes clear that using a student’s grades it should be possible to determine, with reasonable 

accuracy, how they are likely to perform in future assessments. 

Day et al also found that providing assessment feedback to most students often results in a slight 

overall improvement in final grades but identifying students who are at risk of failing and providing 

more detailed, corrective feedback may be required. Lemus‐Zúñiga et al agree with these findings 

(Lemus‐Zúñiga, et al., 2015). The results of this study show that monitoring student progress allows 



teachers to determine the level of feedback required for each student and give more focussed 

feedback to those that need it as assessments are complete. The study also provided further evidence 

that providing direct, detailed feedback to underperforming students can significantly improve the 

performance of those students, this is especially true when the feedback is returned in a timely 

fashion. As such, it is clearly important that any at risk students be identified early in a course to ensure 

that corrective feedback can be provided as soon as possible. 

Shaw and Bailey carried out a case study on the predictive validity of earlier education performance 

for use in determining the higher education performance of prospective students (Shaw & Bailey, 

2011). High school SAT scores and early university grades were taken into account as possible 

predictor. The effect of advance placement subject was also investigated to see if there was any 

impact on student performance. This study found that there was a direct correlation between all three 

of these factors and a student’s overall performance in university. Of note, it was also shown that 

there is a positive correlation between students taking relevant advanced placement courses prior to 

university and their final outcome when compared with students with similar SAT scores. 

A study by Adamson and Clifford looked at the correlation between grades earned prior to a higher 

education and outcomes of the first three years of an engineering degree and a final BEng project in 

two different universities (Adamson & Clifford, 2002). For one of the universities an MEng project is 

also checked, however this is shown to be have poor correlations, possibly due to inconsistent project 

structures. Three A-level grades were considered as predictors, one of which was Mathematics, the 

other two were the best two A-levels available for each student. A prior knowledge assessment, taken 

by students entering their first year of study was also considered as a possible predictor and the 

correlation between the PKA and each of the outcomes were investigated. Finally, the correlation 

between the outcomes of the years were also checked with each other and the final project. The 

results of the A-levels rankings show medium to strong, positive correlations between A-level grades 

and the PKA, first, second and third year results, with the correlation dropping in the later years. There 

are weak positive and negative correlations with the BEng projects suggesting early grades are not 

good indicators of a student’s more practical abilities. The PKA does have a positive correlation with 

all three years but the degree of correlation differs significantly between universities. Similar to A-

levels, the PKA does not seem to be a good predictor of project results as the correlations are almost 

non-existent. All university years show a strong positive correlation with each other and with the BEng 

projects. This supports the hypothesis that results taken earlier in a course will be good predictors of 

outcomes later in a course. 

Birch and Rienties carried out a similar study focussed primarily on students entering an engineering 

based degree looking at how A-level grades in classes related to the degree, such as Physics and 

Mathematics, affect individual course module grades and the average grades achieved in the first one 

or two years of higher education (Birch & Rienties, 2014). The results of this study show that there is 

a clear positive correlation between the earlier results and results gained in the first year of higher 

education and a lower positive correlation with second year indicating that grades in earlier relevant 

studies can be considered a valid predictor for a limited time period. 

2.2 Student Backgrounds as Predictors 
Along with studies into how previous grades affect student performance there have also been a 

significant number of studies into the relationship between degree exam performance and a student’s 

general background in an effort to determine which factors have a direct effect on the outcome of a 

student’s education. Identifying whether or not there is a relationship and to what degree that 

relationship has an effect on the outcome would increase an educators ability to become familiar with 



a student’s background and be prepared to provide more meaningful advice for each individual 

student which can aid in reducing student dissatisfaction, increasing student retention rate and 

ultimately improving student grades. 

Chee et al conducted a study to whether environmental factors have a noticeable effect on each 

gender’s performance (Chee, Pino, & Smith, 2005). The data used in this study included GPA, parental 

education, race, SAT score, time spent studying and a breakdown of time spent on other activities 

such as participating in societies and carrying out volunteer work. 

The results of this study show that the females with strong academic ethics perform slightly better 

than males with similarly strong academic ethic. It is also shown that male and female students are 

affected differently by environmental factors for example male academic performance is affected 

more by their employment status, class attendance while females are affected more by race, parental 

education and academic ethic. This shows that there is a correlation between gender, however that 

correlation is affected by other factors which may affect the validity of gender as a predictor. 

A study carried out by Tieben and Wolbers (Tieben & Wolbers, May 2010) which investigated the 

socio-economic impact of a student’s upbringing on the eventual outcome of their education noted 

that students with more privileged backgrounds achieved higher results or possessed skills which 

prove advantageous in an academic environment. This suggests that poverty levels and possibly even 

the area in which a student lives could affect, and therefore aid in predicting, how a student is likely 

to perform throughout their academic career. 

A study carried out in Serbia by Teodorovic in 2011 looked at several aspects of students such as 

gender, ethnicity and school background to determine which contributed most to student 

performance between two classes, mathematics and Serbian language (Teodorovic, 2012). From the 

results it was found that student affluence was one of the biggest factors to perform significantly more 

poorly in mathematics-based classes while grades in Serbian language were less affected, this smaller 

effect is believed to be due to everyday use of the language while mathematics may not be used often 

outside of school. Gender had a very small effect on grades with females performing better in Serbian 

language and males performing better in mathematics. This is likely due to traditional bias pushing 

students to perform better in specific subjects based on their gender, a factor which should be less 

prevalent in a higher education environment as preferences for subject should be well established in 

a student. This does suggest that in higher education gender is likely to have less impact as gender 

bias is expected to be less prevalent. 

2.3 Machine Learning Algorithms 
In the last few years machine learning has become much more popular as a tool for data analysis and 

prediction. As a result, there have been many studies looking into developing new machine learning 

algorithms and studying how to determine the best machine learning models for a whole host of 

different situations. Machine learning has also been suggested as a proposed tool for improving 

student experiences and to determine which factors in a student’s university career most significantly 

affect the ability to predict that student’s performance. The problem to be solved in this case is one 

where a machine learning algorithm needs to determine whether a student will pass or fail based on 

a number of input variables, referred to as features. In more complex problems the algorithm would 

be required to determine what grade or even degree outcome a student is expected to gain. All of 

these cases are supervised machine learning problems which require a classification model to solve. 

Tan and Gilbert investigated how to determine the best machine learning model for any particular 

purpose and what kind of kind of algorithm typically performed best (Tan & Gilbert, 2003). A mixture 



of rule-based (Decision Tree, One Rule and Decision Rules), statistical (Naïve Bayes, Instance Based, 

Support Vector Machines (SVM) and Neural Network) and ensemble (Stacking Bagging and Boosting) 

machine learning models, used as binary classifiers, were compared as part of this study along with 

four sets of unrelated data of varying size. In order to evaluate each outcome confusion matrices were 

used to calculate the accuracy and the positive predictive accuracy of each model used on each data 

set. The results of this study show that the performances of the models examined are highly 

dependent on the available data and the desired outcomes. When considering the features of the data 

sets, statistical models perform better with continuous features while rule-based models perform 

better with discrete features. When considering the information needed from predictions based on 

the data used it is given that rule-based models provide simpler, more understandable outcomes than 

other models. Finally, it is shown that ensemble models tend to perform better than any individual 

model. It is hypothesised that, when only small data sets are available ensemble methods may provide 

a better prediction than any individual model by averaging outcomes. From this it may be that 

ensemble methods are capable of adapting to the variations which will be found in real student data 

and may give the most consistently strong results. 

Maclin and Optiz carried out a study evaluating the performance of Bagging (Bootstrap Aggregating) 

and Boosting ensemble machine learning methods using Neural Networks and Decision Trees (Maclin 

& Opitz, 1997). Neural Networks were tested using a single Neural Network and ensemble Neural 

Networks using a simple ensemble method, Bagging, Arcing Boosting and Ada Boosting methods. 

Decision Trees were tested using a single Decision Tree and ensemble Decision Trees using Bagging 

and Ada Boosting. All models were evaluated using error rates after training and testing on several 

unrelated data sets. In almost all cases, the simple and Bagging ensemble methods reduced the error 

rate by a significant amount compared to an individual model. The Boosting methods had much more 

varied results depending on the data set being used, in some cases the improvements were significant 

but most of the improvements were less than with the Bagging method. As such, it appears Bagging 

is a much more reliable ensemble method, especially when using varying data sets. When comparing 

ensemble Neural Nets and end ensemble Decision Trees no one method stood out as better than the 

other. Bagging and Boosting were also shown to improve both models in a similar way showing that 

the improvement is dependent on the data set used and not on the model.  

Jacob et al carried out a comparison of a variety of classification models known for having relatively 

high accuracy scores using a selection of multiple performance characteristics (Jacob, Sridhar, & 

Murugavel, 2017). The models compared were Bayesian Network, Sequential Minimal Optimisation 

(SMO), J48, Random Forest, Logistic Regression and Multilayer Perceptron. The performance metrics 

used for all models were time taken to train the model and the accuracy of the model which was 

calculated as the percentage of correct predictions made in a test data set. This study also looked at 

how correlation-based feature selection affected the performance of each model. From the results it 

can be seen that the SMO model has the highest accuracy, usually by a significant margin, on all data 

sets used for this study, with Logistic Regression and Random Forest performing second and third in 

terms of accuracy. All other models varied in their performance with respect to each other. While 

Logistic Regression and SMO performed better than Random Forest in terms of accuracy, in most cases 

they performed worse in the time taken by a significant amount which would be significantly more 

problematic on larger data sets as the accuracy is unlikely to rise by much, especially for more accurate 

models, while the time taken is likely to rise linearly with the amount of data available. The results of 

all models after feature selection show no significant changes to accuracy for any of the data sets, 

however almost all results show a reduction to the time taken. The correlations between features in 

each data set were not given as part of this study so it is not possible to determine the level of 



correlation between the features and the outcome in order to determine which features may have 

had the most impact on the accuracy when removed. 

A similar performance study by Amancio et al compared 9 different classification models which were: 

Naïve Bayes, Bayesian Network, C4.5 Decision Tree, Random Forest, Simple Classification and 

Regression Tree, k-Nearest Neighbours, Logistic, Multilayer Perceptron and Support Vector Machine 

(Amancio, et al., 2014). In this study the performances of the models were measured using the 

accuracies of each model while varying the number of features, the number of classes and the number 

of elements for each class on a series of artificial data sets. A comparison was also made between the 

accuracies of models using the default parameters in the library used and models with varied 

parameters. While comparing the default parameters, the accuracies of two individual models across 

all data sets and data configurations gives a clear indication of the best performing defaults models. 

K-Nearest Neighbours performs better than all other models with the Perceptron performing better 

than all but the KNN model, however it is noted that KNN performs significantly worse with less 

features than many of the other models. Naïve Bayes performs well with a low number of features 

compared to others and Random Forest performs almost as well as the Perceptron model with a 

higher number of features.  

Anderson and Anderson conducted a study in 2017 attempting to use machine for student grade 

prediction compared Naïve Bayes, K-Nearest Neighbours and Support Vector Machine algorithms 

(Anderson & Anderson, 2017). This study used historical grade data only from previous years as a data 

set with 10-fold cross validation to split the data and evaluate performance. In this study it was found 

that SVM outperformed the other classifiers used but it is noted that there is a significantly higher 

computational cost in using SVM over simpler methods, which may not be worth it for a marginal 

performance gain. It is also noted that lower performance using the simpler models may be caused by 

using only grade data results as features which have a high correlation between each other, a factor 

known to negatively affect the Naïve Bayes classifier. 

2.4 Feature Importance and Selection 
Given that the suitability and performance of any machine learning model is highly dependent on the 

data set being used, it is important to ensure the selection of features from the data set is optimised 

to maximise the performance of the selected model. As with the algorithms themselves, there are 

many studies on feature importance and several methods available for determining which features to 

use in a given context. 

Kira and Rendell proposed that reducing the feature set would increase the speed of training by 

reducing the amount of data being processed, improve the quality and relevance of the data being 

used and increase the overall accuracy of the model (Kira & Rendell, 1992). This hypothesis was 

supported by Khalid et al in a separate study in which some of the more popular feature selection and 

feature extraction techniques were analysed in order to determine if they were indeed effective in 

improving the performance of machine learning models (Khalid, Khalil, & Nasreen, 2014).   

In a study comparing wrapper and filter methods of determining a useful subset of data from the 

available data Hall and Smith hypothesise that “Good feature subsets contain features highly 

correlated with (predictive of) the class, yet uncorrelated with (not predictive of) each other.” (Hall & 

Smith, 1999) The wrapper method in this case was a ten-fold cross validation of the data being used 

to train while the filter method used was correlation-based feature selection, the accuracy changes 

were checked using Naïve Bayes and Decision Trees. The results of this experiment showed that 

correlation-based feature selection improved accuracy on both models more reliably when there were 

less than twenty features in the data set while the wrapper method improved accuracy when there 



were more features. Both methods did sometimes result in degradation of accuracy so it is important 

to ensure testing is carried out with all features before feature selection to make sure that it was 

necessary. 

Forman found that the SVM model tends to have a high performance with all available features and 

that feature selection may be unnecessary. It was also found that decision tree-based models may 

benefit from feature selection when any class is over represented in the data set being used (Forman, 

2003). This is particularly interesting as it is likely that, in much past degree data, the classes will be 

skewed in favour of passing students. 

Liu et al investigated how heavily skewed data sets affect feature selection (Liu, Kubler, & Yu, 2014). 

It is shown in this study that there is no definitive best method of feature selection and the 

effectiveness ultimately depends on the machine learning model, the data set and the desired 

outcome, it was also found that, for data sets with large numbers of features, feature selection will 

only make any meaningful positive difference if the distribution of classes is balanced. This may not 

be the case in data sets with smaller numbers of features even when the classes are skewed.   

  



3. Methodology 
This section will describe the tools used to develop an environment in which data sets can be used to 

train and test machine learning models and provide details of the results of testing. 

3.1 Requirements 
The application will be a Python program which will take in a data set and process it into a format 

useable by Scikit Learn’s algorithms. The data will then be split into training and testing data sets. The 

model will be trained using the testing data set and performance results will be obtained using the 

results of the testing data set.  

The final requirements for the proposed application are as follows: 

• Data sets must be read in as a single CSV file and converted into a format which is compatible 

with the machine learning library used. 

• It must be possible to remove any features from the data as desired. 

• Once the data has been processed the environment must be able to use the available data to 

train the model and then test the trained models performance. 

• Each model must be able to be tested independently of any others. 

• The percentage of correctly identified failing students out of the total number of failing 

students in the test data set must be provided as a metric. 

• The percentage of correctly identified failing students out of the total number of students 

classified by the model as failing must be provided as a metric. 

3.2 Build 

3.2.1 Technology Used 
This section provides a short description of the technologies used in developing an environment in 

which the data could be processed, and the machine learning models could be implemented and 

evaluated. 

Python 3.6.5 

Python is a high-level, object-oriented programming language. Python is generally considered an ideal 

language for developing high quality applications in short periods of time due to it being a relatively 

concise language compared to other languages such as Java and for having a simple syntax which 

makes its code very readable and easy to learn. Due to its popularity Python also has access to many 

large, well-maintained libraries which give access to a great deal of essential functionality. Amongst 

these are libraries specifically designed to aid in the development of AI and Machine Learning 

applications. 

PyCharm IDE 2018.2.3 

A good IDE can provide all the functionality required to develop an application as efficiently as 

possible. PyCharm is a professional level IDE which provides quality of life functionality such as easy 

refactoring, code completion and debugging tools. 

Scikit Learn 0.21.2 

Scikit Learn is a Python library1 specifically created for the development of machine learning 

applications. Scikit Learn comes equipped with a large number of machine learning models suitable 

for different kinds of machine learning problems, including regression problems and classification 

problems, which due to the popularity of the library, are regularly maintained by experts in the 

                                                           
1 https://scikit-learn.org/stable/ 



machine learning field. The library also contains several methods for evaluating each model which 

allows for easy analysis of results. 

Pandas 0.24.2 

Pandas is a Python library2 useful for creating structured data sets and for data analysis. Pandas is 

perfectly suited for reading in data from a CSV and organising it into a data frame which can be used 

by Python. Pandas also has functionality to detect null values and drop any rows which contain null 

values by using the dropna() function which is useful when using large external data sets as it cannot 

be guaranteed that no errors have occurred and there is a value for every point of data. Failing to 

correctly remove all null data in a data set would result in the algorithm failing to run. For each course 

all of the data comes from a single CSV file, with Pandas, splitting this data into features and labels is 

also a trivial task. 

NumPy 1.16.4 

NumPy is a Python library3 which provides additional functionality for mathematical operations on 

arrays. In the context of this project it is necessary for the creation of n-dimensional arrays which are 

necessary for the algorithms provided by Scikit Learn to process the data. 

3.3 Data Description 
The data for this experiment came from the Open University Learning Analytics data set4 which 

contains anonymised data from single semester courses including the personal details, assessment 

marks achieved throughout the course and whether a student passed, failed or withdrew from their 

chosen course.  

Each available course was given a three-character identifier which anonymised the course name and 

degree that the course belonged to, so it was impossible to know if any of the courses were in any 

way related in terms of degree or even subject matter. A list of assessments for each course was 

provided showing the assessment identifier code, the type of assessment and the weighting of each 

assessment. The types of assessment provided were tutor marked assessments, for which students 

received a percentage mark ranging from 0 to 100, and computer marked assessments, which were 

multiple choice assessments with five questions were marked out of 100 in steps of 20.  The personal 

information provided for each student consists of a unique student identifier, the student gender, the 

region in the UK the student comes from, the highest qualification achieved previously, the IMD (index 

of multiple deprivation) band of the student, the age group the student belongs to and the students 

final course result. The individual marks for each assessment for all students were also provided.  

From the available courses, those used in this study are AAA and BBB, referred to as Course A and 

Course B respectively in this paper. Course A consists of five tutor marked assessments and no 

computer marked assessments. Before pre-processing there are 748 student examples available. 

Course B consists of six tutor marked assessments and five computer marked assessments. Before 

pre-processing there are 5572 student examples available. 

These courses were selected to the significant differences in the number of examples available, the 

number of features available and the relative skew in passes to fails which would allow for the 

identification of how well each algorithm performs with realistically varied data as it is unlikely in 

reality that all degree programmes will have the same level of available past data to draw upon. 

                                                           
2 https://pandas.pydata.org/getpandas.html 
3 https://www.numpy.org/ 
4 https://analyse.kmi.open.ac.uk/open_dataset#data 



Due to the format large portions of the data was provided in, it was necessary to carry out some pre-

processing to convert it to a numeric form which could then be used in the machine learning models. 

The assessment mark data was provided in numeric form and required no alteration. The personal 

information of the students and the final outcomes were given in text format so numbers were 

assigned and the data was transformed. Table 1 to Table 6 shows the original form the of the data and 

the numerical assignment given after pre-processing of the data. 

Gender 

M 1 

F 2 
Table 1: Gender Pre-Processing 

Student Region 

East Anglia 1 

East Midlands 2 

Ireland 3 

London Region 4 

North Region 5 

North Western Region 6 

Scotland 7 

South East Region 8 

South Region 9 

South West Region 10 

Wales 11 

West Midlands Region 12 

Yorkshire Region 13 
Table 2: Student Region Pre-Processing 

Highest Previous Education 

Lower than A Level 1 

A Level or Equivalent 2 

Higher Education Qualification 3 

Post Graduate Qualification 4 
Table 3: Highest Previous Education Pre-Processing 

IMD Band 

0-10% 1 

10-20% 2 

20-30% 3 

30-40% 4 

40-50% 5 

50-60% 6 

60-70% 7 

70-80% 8 

80-90% 9 

90-100% 10 
Table 4: IMD Band Pre-Processing 

  



Age Band 

0-35 1 

35-55 2 

55+ 3 
Table 5: Age Band Pre-Processing 

Final Result 

Withdraw 0 

Fail 1 

Pass 2 

Distinction 3 
Table 6: Final Result Pre-Processing 

After pre-processing, the data was combined into a single CSV file which could be read by Python. The 

CSV file was read in and converted into a single Pandas dataframe, student examples for which the 

final result was a withdrawal were then removed as leaving them in resulted in outliers as often the 

students grades in all assessments were zero, all student examples for which the final result was a 

distinction were treated simply as passes as, for the purposes of this study, it is not necessary to know 

how successfully a student passes, it is only important to know that they pass. This also simplifies the 

classification as it will be a binary classification problem. 

The next step was to remove all examples containing any null values from the data as attempting to 

use null values in any machine learning algorithms resulted in errors.  

3.4 Model Selection 
As mentioned earlier in this report, there have been many studies into the most effective classification 

models available for prediction and it is clear that this is dependent on the data set available and the 

purpose. As such, multiple models will be selected for comparison in order to determine if a suitable 

candidate can be identified. This section will describe each of the models selected and offer a rationale 

for their selection. 

3.4.1 Gaussian Naïve Bayes 
The Gaussian Naïve Bayes model is a relatively simple machine learning model based on Bayes 

theorem which used for solving classification problems. Bayes Theorem can be shown by the equation: 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

Where P(A|B) is the probability of outcome A while condition B is true. This is a popular model due to 

the relative simplicity in setting up and running this algorithm and the speed with the overall speed in 

predicting outcomes. The Naïve Bayes model performs well when the data set available has a very 

small number of features and when the data set itself is small, in these situations Naïve Bayes may 

even outperform more complex models, especially using the default Scikit Learn parameters. Given 

the data sets being used in this experiment will not have a feature quantity exceeding 20 and the 

available data records will not exceed ten thousand which is idea for helping to increase the 

performance of this particular model. 

Unlike many other more complex models, Gaussian Naïve Bayes does lack tuning parameters and, 

while this does contribute to the simplicity of the model, it also means that any improvements to 

accuracy will have to be gained through data processing. 



Another potential issue is that the Naïve Bayes algorithm assumes that all features in a data set are 

fully independent of each other. As such, the performance of Naïve Bayes may be adversely affected 

due to the correlations between marks achieved in assessments. Conversely this may prove to not 

have any negative impact when using a smaller selection of grades as features. 

As a simple algorithm which relies entirely on the data set for its performance Gaussian Naïve Bayes 

is an important algorithm to explore as it will provide insight into the degree to which differences in 

the size of the data set and the available features affects all algorithms. 

3.4.2 K-Nearest Neighbours 
K-Nearest Neighbours is one of the simplest and most popular tuneable algorithms used to solve 

classification problems (Cunningham & Delany, 2007). Classification of an example is carried out by 

plotting the example to be classified against all the training data and determining the nearest training 

data set examples, a weight can then be assigned to each of these neighbours which determines how 

influential each training example is – this weight is usually determined by the distance to the 

neighbour – or each neighbour can be considered to have an equal weight regardless of distance, a 

majority vote on each of the nearest neighbours will then determine the predicted class. K-Nearest 

Neighbours is considered an instance-based algorithm as no training is carried out prior to making a 

prediction, instead the training data is stored in a database and queried when a prediction is required. 

This reduces the training time but can result in longer prediction times, especially when using data 

sets with large numbers of features or with many training examples. 

One of K-Nearest Neighbours’ most important parameters for use in tuning is k, which is the number 

of neighbours which will be identified and used when attempting to classify an example. By increasing 

k the variance will be reduced while the bias is increased which will reduce the complexity of the 

model and reduce overfitting, however increasing k by too much will result in underfitting due to the 

increase in bias so it is important to find a value for k which does not increase bias too much. The best 

value of k will differ from data set to data set and will require investigation to determine.  

Figure 1 shows an example of a prediction being carried out. In this example k is equal to five which 

will result in the five nearest neighbours being considered. It can be seen that of these five, four are 

in Class 1 while only one is in Class 2. Assuming in this case that the weighting is uniform, the majority 

vote will be Class 1. 

 



 

Figure 1. K-Nearest Neighbour Example 

K-Nearest Neighbours tends to work best with features which are continuous as the geographical 

location of each example will tend to vary more. This is ideal for grade data where a percentage mark 

is given but is likely to be more problematic for examples containing discrete features such as gender. 

For this reason, it will be important to remain aware of the effect student background features have 

on the performance of the model. 

3.4.3 Random Forest 
The Random Forest model is an ensemble machine learning model which consists of multiple decision 

trees where the trees are built using random samples of training data and random subsets of features 

to determine node splits.  

A decision tree is itself a machine learning model which is built by taking the training data set, splitting 

it down and building a tree of nodes where each node splits depending on the feature conditions. 

Every feature used is considered a parent node and the data the parent splits into are child nodes, 

which themselves split into further child nodes until a classification is decided. This is a very simple 

model for humans to understand as the model resembles a flow chart when visualised. They are also 

very fast to train when compared with other classifiers. 

Decision trees have their weaknesses however, for example, allowing a decision tree to split each 

feature into the smallest possible pieces of data will result in massive variance increases and 

overfitting, while pruning of data to limit the overfitting can increase bias and end up reducing the 

accuracy considerably. Changes to the training data set can also result in significant changes to the 

accuracy of the model. 

The Random Forest model overcomes the weaknesses of a single decision tree by combining several 

decision trees, with no depth limit, into a single model. Each individual tree will have high variance 

due to the lack of depth limit, but by varying the training data samples used and the features used to 



determine node splits and then, when it comes to testing, averaging the predictions of each tree the 

overall variance can be reduced. In this way the variance problem is dealt with which prevents 

overfitting while any increases to bias are limited. For the available data this makes Random Forest 

ideal as there are cases where the data will be heavily skewed which will introduce more bias. By 

reducing any additions in bias the model may be able to balance variance and bias and maintain high 

performance. 

3.4.4 Support Vector Machine 
SVM (Support Vector Machine) is a machine learning algorithm which is more complex than the likes 

of Naïve Bayes and K-Nearest Neighbours but is no less popular. The early stages of classification with 

SVM are similar to K-Nearest Neighbour in that the training examples are initially plotted in an n-

dimensional plot where n is the number of available features in the data set. The SVM algorithm then 

determines a linear (n-1)-dimensional hyperplane, or decision boundary, which splits the training data 

in such a way that examples from each class are on separate sides of the decision boundary while 

maximising the distance between the boundary and the nearest points from each class. Figure 2 shows 

an example of a binary classification problem where the maximisation of the margin between the 

nearest examples has been sacrificed in order to prevent any classification errors. 

 

Figure 2. Support Vector Machine Hyperplane 

In a real situation it, more often than not isn’t possible to separate the examples into classes perfectly 

and so the algorithm seeks first to determine the best fit decision boundary which maximises accuracy. 

To overcome this an error tolerance is introduced which allows for the model to tolerate misclassified 

examples to produce a more suitable margin. 

SVM can also produce a nonlinear decision boundary through the use of a method known as Kernel 

Trick. This can transform existing features into new features which then allows for a curved decision 

boundary and margin. The Kernel Trick which will be employed in this study is RBF (Radial Basis 



Function) which curves the decision boundary by allowing features to have an influence over it, the 

influence each example has is determined by the position of the decision boundary and the position 

of that example, essentially weighting each example when making a classification. The weight of each 

individual training example can also be changed using the gamma parameter.  

From the previous studies it can be seen that SVM performs well in a variety of situations, often 

outperforming other classifiers it is compared against. 

SVM is an effective classifier when there is a distinct margin between training data classes which may 

be the case with student grade data. SVM also performs better with smaller data sets, however large 

datasets most heavily affect the time taken to train and, while time taken to train should be considered 

when selecting a model, in this experiment it is not the important, which work well with the data sets 

available. There are drawbacks to SVM in that performance is generally better with large numbers of 

features, where the available data sets have less than twenty features for this experiment.  

3.4.5 Multi-Layer Perceptron 
A Single Layer Perceptron is binary classifier which classifies data by taking in feature data, applying 

weights to each piece of data and then determining a suitable linear hyperplane to separate the data 

into appropriate classes. 

Multi-Layer Perceptrons are artificial neural networks which consist of a great number of Single Layer 

Perceptrons acting as neurons. Input data from the features is fed into an initial layer of neurons 

where they are then modified by nonlinear transfer functions. The outputs of these neurons are 

weighted and fed into the next layer of neurons where they are further modified by nonlinear transfer 

functions and passed to the next layer of neurons. Every node in a layer is connected to every node in 

the next layer with different weights applied to each connection. This process continues until a final 

output layer is reached. (Gardner & Dorling, 1998) 

Multi-Layer perceptrons are extremely flexible and well suited to taking numerical inputs and directly 

determining outputs regardless of the size of the data set and the number of available feature which 

is advantageous in this case as data availability will likely differ greatly from course to course. One of 

the main drawbacks may be the computation time required when training.  Another drawback is that, 

while they often perform well, in the event that they perform poorly it can be difficult to determine 

the root cause. 

3.4.6 Model Evaluation 
As mentioned previously, Scikit Learn provides a variety of evaluation methods which can be used to 

determine the performance of each model. In this experiment students will be classified as either a 

pass or a fail and the problem to be solved is to identify students at risk of failing. While all evaluation 

metrics are useful in some way, it is most important to know how often failing students are being 

misclassified as passing. 

The evaluation metrics used rely on knowing how each test example has been classified. This 

knowledge can be obtained by constructing a confusion matrix for each experiment carried out which 

will give a 2x2 grid showing whether each training example was classified as true positive, false 

positive, true negative or false negative where positive is a failing result while negative is a passing 

result. While confusion matrixes themselves will not be used as metrics, it helps to understand how 

the values gained from the metrics used are calculated. 



One of the most commonly used methods of evaluation is the classification accuracy. This is the 

number of correctly classified examples divided by the total number of classification attempts using 

the test data set represented by the following equation: 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 This is a good all-purpose evaluation for all classification models which gives a general idea of how 

classifiers stack up against each other at a glance. While accuracy does give a good idea of general 

performance, in data sets which are heavily skewed high accuracy may be achieved but the rate of 

correct predictions from the class with the smaller number of examples may still be extremely low. 

Accuracy will be used as a performance indicator in this experiment but will be considered a tertiary 

metric. 

Two more relevant evaluation metrics are Precision and Recall. 

Precision, also known as the positive predictive value, is the percentage of positive predictions made 

which are correct and is represented by the following equation: 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

While more relevant than accuracy as an evaluation metric, for this experiment this will be a secondary 

evaluation metric when considering the rate of false negatives but will remain very useful as a general 

evaluation metric when considering other factors such as class size as it provides more relevant 

information when too many false positives can cause problems. In the case of a course with large 

numbers of students a poor precision score means an educator will spend much more time providing 

more detailed feedback for those students who do not require it, thus contributing to a lack of 

timeliness in delivering feedback to those who do need it which has been seen to be detrimental to 

student performance. 

Recall, also known as the true positive rate is the percentage of correctly classified positive examples 

from the test data set and is represented by the following equation: 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The recall is arguably the most important evaluation metric available in the context of this problem. 

The ultimate goal of a machine learning system in predicting student grades is to identify those in 

need of help. A high rate of false negatives, or a low recall, means that many of the students who are 

at risk of failing are being identified as passing and, as such will receive unsuitable feedback. 

 

The last of the performance metric which will be considered in this study is the F-1 score, or the 

harmonic mean of the precision and recall, which is given by the equation: 

2 ∙  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

The F1-Score is a metric which becomes more useful as course sizes increase and should be taken into 

account when trying to determine the best classifier as, with smaller student cohorts the greatest cost 

is incurred when failing students are misclassified as passing, however when student cohorts increase 



in size, the cost of misclassifying either passing or failing students begins to even out as available 

lecturer time has to be taken into account. 

Testing with these metrics can be carried out by splitting the available data set into training data, used 

to train the machine learning model, and test data, used to determine if the model can correctly 

predict outcomes. How the and where the data is split can result in vastly different evaluation results 

however, especially in heavily skewed data or smaller data sets. 

In order to obtain evaluations which are as accurate as possible it is best to test and train with all data 

using a variety of different splits. A technique known as K-Fold Cross Validation exists for this exact 

purpose. The data set is split into a number of sections equal to K, e.g. if K is 10 then the data will be 

split into 10 equal sections each containing 10% of the data. The first section is selected as the test 

data set while the rest of the sections are used to train the model, after training the evaluations are 

carried out. The next section is then selected as test data and the other nine are used as training data. 

This goes on until all sections have been used to test. 

3.5. Feature Importance 
Feature selection is an important process in machine learning which can have drastic effects on the 

overall performance of a machine learning tool. As more features are introduced to a model, it 

becomes more likely that one or more features will begin to have a detrimental effect on the overall 

performance of the model. Of course, this is not true for all models so it is not as simple as stating that 

one feature is causing problems so removing it will improve all models, some complex algorithms can 

benefit from extra features and data while others require highly correlated data. Determining which 

features from the available data are most relevant to predicting the outcome and selectively removing 

the least relevant can increase the model accuracy and reduce overfitting due to irrelevant data and 

reduce the time spent on training the model due to there being less data to work with. 

There were a few methods used to determine the relevance of each feature. Tree based algorithms 

are well suited to computing feature importance and Scikit Learn provides a function using Random 

Forests which evaluates the importance of each feature and provides these in an array. The higher the 

feature importance value assigned, the more important the feature is to the classification. 

The feature importances when all available features for the course A and course B student data are 

taken into consideration are shown below in Table 7 and Table 8. 

Course A 

Gender 0.00756783 

Region 0.06281934 

Highest Education 0.01748003 

IMD Band 0.04190574 

Age Band 0.01914752 

TMA1 0.09935294 

TMA2 0.05216397 

TMA3 0.18376428 

TMA4 0.22085948 

TMA5 0.29493889 
Table 7: Course A Feature Importance - All Features 

  



Course B 

Gender 0.00777707 

Region 0.03715455 

Highest Education 0.0120538 

IMD Band 0.03533203 

Age Band 0.00652249 

CMA1 0.01150146 

CMA2 0.02948499 

CMA3 0.02154071 

CMA4 0.06813567 

CMA5 0.21310302 

TMA1 0.04680448 

TMA2 0.04520593 

TMA3 0.06327904 

TMA4 0.06854425 

TMA5 0.21336033 

TMA6 0.12020017 
Table 8: Course B Feature Importance - All Features 

This shows, in almost all cases, that the tutor marked assessment grades are most important in 

predicting final outcome which is unsurprising as these will required the greatest knowledge in the 

given course. What is new however, is that student region and IMD band are almost important as the 

tutor marked assessments and, in some cases, more important than the computer marked 

assessments. Gender and age band show very low importance which is expected given the previous 

works showing their lack of correlation with student performance and given they have two and three 

categories respectively.  

It is also advantageous to split the sets of features to see importance without other features. Tables 

Table 9,  Table 10, Table 11 and Table 12 show the importances of student information and grades 

when separate from each other. 

Course A Student Info 

Gender 0.09116148  

Region 0.34065359 

Highest Education 0.12512761 

IMD Band 0.33448967 

Age Band 0.10856766 
Table 9: Course A Feature Importance - Student Information 

Course B Student Info 

Gender 0.04213622 

Region 0.5110228 

Highest Education 0.09774718 

IMD Band 0.28927658 

Age Band 0.05981723 
Table 10: Course B Feature Importance - Student Information 

  



Course A Grades 

TMA1 0.09184333  

TMA2 0.0889804   

TMA3 0.11916211 

TMA4 0.21408078 

TMA5 0.48593339 
Table 11: Course A Feature Importance - Grade Information 

Course B Grades 

CMA1 0.01607847 

CMA2 0.04287737 

CMA3 0.02621958 

CMA4 0.11867723 

CMA5 0.19176719 

TMA1 0.0707873 

TMA2 0.06974694 

TMA3 0.10159528 

TMA4 0.07103388 

TMA5 0.16154711 

TMA6 0.12966963 
Table 12: Course B Feature Importance - Grades 

Looking at the student information, it can clearly be seen that region and poverty have significantly 

higher importance than any of the other available features. Gender and age band once again show 

very low importance while highest education remains firmly in the middle of the others. 

The grade information shows a clear increase in feature importance for assessments submitted later 

in the course. This could be due to an increase in difficulty and relevance making it easier to identify 

poorer performing students. Interestingly the later computer marked assessments have a higher 

importance than most of the tutor marked assessments while the tutor marked assessments have a 

higher overall importance. Again, the higher individual importance could be down to relevance and 

experience while the tutor marked assessments may be more consistent due to tutor feedback after 

marking. 

Heatmaps were also created using the available data. These show how each feature correlates with 

each other and with the final outcome label. This allows us to determine how independent each 

feature is, which is a factor which affects Naïve Bayes models, and will provide more information on 

the importance of the features to the outcome. Figure 4 shows the heatmap for all available data for 

course B. 



 

Figure 3: Course A Heatmap 



 

Figure 4: Course B Heatmap 

The correlations of each of the features to the final result agree with the feature importances 

previously shown in that the later assessments correlate more heavily while earlier assessments are 

still reasonably correlated. The student information is again showing a low correlation with the final 

result though, where the feature importance showed IMD band and region being as important as 

some grades, the heat map shows less correlation than the grades. In fact region is least correlated 

with the final result, with gender remaining very low also. It should be noted that all student 

information features have a very low correlation to all other features so, despite the low correlation 

with the final result, retaining these features may benefit algorithms which depend on feature 

independence. 

For Course B TMA1 shows relatively low correlation with the final result and with all other grade 

features, this may be down to it being early in the course but it may also suggest that the material in 

the assessment itself is less relevant to the course. Despite this, TMA1 still has a high enough 

correlation to the final result that it will be considered as necessary, especially when attempting to 

predict the final result using only earlier grades. 



For both courses it can be seen for the rest of the grades that correlation increases with later 

assessments which supports the feature importances in that later courses are more highly correlated 

with the final result which is to be expected. 

From both methods it can clearly be seen that the feature most likely to reduce performance is a 

student’s gender as it holds very low importance and correlation in all situations. It may also be 

possible for model performance to improve with the removal of age band which similarly has low 

importance and correlation or with the removal of student region as it has an extremely low 

correlation. Tests will be carried out with these removed individually to determine if there is any 

significant change in performance.  



4. Analysis 
This chapter will describe and discuss the results of the experiment after having processed the data 

into a usable state and having implemented the application. 

4.1. Results 
As mentioned, the classifiers being compared are Gaussian Naïve Bayes, K-Nearest Neighbours, 

Random Forest, SVM and Multi-Layer Perceptron. The data sets used are Course A and Course B. The 

results of each set of experiments will be provided in tables as mean scores of the results gained 

through 10-fold cross validation. 

Each model was first tested using the full dataset, the student information only and then the grades 

only. Next the models were tested with the removal each of the three student information features 

identified as possibly negatively affecting the performance of models having been removed 

individually and then with all three removed. Tests were then carried out with all student information 

and one, two, three and four grades, or pairs of grades in the case of Course B. 

4.1.1 Gaussian Naïve Bayes 
As Gaussian Naïve Bayes possesses no tuning parameters only one set of experiments using each data 

set was carried out. 

With the Course A data set Gaussian Naïve Bayes performs poorly as a classifier. Accuracy is high 

however, this is likely very much due to the data being skewed in favour of passes. Any single false 

negative results in a large drop in recall but a near negligible drop in accuracy. Removing features 

which were deemed unimportant results in almost no drop in accuracy, in fact using only student data 

results in a complete failure to accurately identify any failing examples. As grades are added as 

features, the precision and F1-Score steadily rise, however the recall remains relatively unchanged 

after using only two early grades. Grade data can be seen as the only important data in this data set 

when using this algorithm. 

Data Accuracy Precision Recall F1-Score 

All Features 0.911546339 0.754300144 0.679898157 0.702633994 

Student 
Information Only 

0.853507 0 0 0 

Grades Only 0.911546339 0.754300144 0.679898157 0.702633994 

Gender Removed 0.913133641 0.754300144 0.686564824 0.706555563 

Age Removed 0.911546339 0.754300144 0.679898157 0.702633994 

Region Removed 0.911546339 0.754300144 0.679898157 0.702633994 

Age, Gender and 
Region Removed 

0.911546339 0.754300144 0.679898157 0.702633994 

TMA2 – TMA5 
Removed 

0.868049155 0.23479798 0.518333333 0.313738418 

TMA3 - TMA5 
Removed 

0.884178187 0.464574315 0.681746032 0.529577498 

TMA4 - TMA5 
Removed 

0.889042499 0.582655123 0.648683261 0.584936551 

TMA5 Removed 0.903558628 0.686479076 0.663603896 0.658116883 
Table 13: Evaluation Results for Gaussian Naive Bayes Experiments with Course A Data 

The Course B results fare much better, with significantly higher recall rates. Removal of unimportant 

features results in a negligible change in all evaluation metrics. Student information alone gives poor 

precision but a surprisingly high recall score. Again, using only one or two early grades brings the recall 



to a similar score as with a higher number of grades, however we do see the precision steadily 

increase.  

Data Accuracy Precision Recall F1-Score 

All Features 0.879545 0.771786 0.815241 0.79195 

Student 
Information Only 

0.657683 
 

0.239767 
 

0.507051 
 

0.324418 
 

Grades Only 0.877659 
 

0.770399 0.812008 0.789721 

Gender Removed 0.879813 0.772655 0.815367 0.792538 

Age Removed 0.878466365 0.771327134 0.813031622 0.790603639 

Region Removed 0.878736632 0.771227706 0.813734616 0.790820862 

Age, Gender and 
Region Removed 

0.87846709 0.770256832 0.813518982 0.790236578 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.768524476 0.363789609 0.727397244 0.484063824 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.797090108 0.539277348 0.711952327 0.612432776 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.820800365 0.656135772 0.719343797 0.684650438 

TMA5 – TMA6 
and CMA5 
Removed 

0.839390778 0.712455728 0.742204374 0.72509174 

Table 14: Evaluation Results for Gaussian Naive Bayes Experiments with Course B Data 

From these results it seems that a larger dataset had the most effect on the Recall score for Gaussian 

Naïve Bayes as the Course B results show significantly higher recall scores in all situations. Reducing 

the number of features has marginal effect in all but the most extreme situation where grades were 

not taken into account, and even in this scenario Course A misclassified all failing students while 

Course B resulted in only half of all failing students being misclassified. 

Precision was similar for both data sets with higher numbers of features and was dramatically affected 

by reducing the number of important features. Removing features of lower importance had a 

negligible effect on any of the performance metrics. 

4.1.2 K-Nearest Neighbours 
K-Nearest neighbours possesses the parameter K with which the number of nearest neighbours can 

be determined in order to tune the model. Experiments were carried out with K equal to 1, 2, 5, 10 

and 20 to determine if and how this varied the performance. 

From Table 15 and Table 16, it can be seen that, while using the Course A results, the performance 

saw a slight dip at the lowest K values. Both Precision and Recall were severely affected by the 

reduction in important features, with the removal of more important features such as region and 

grades. 

  



Data Accuracy Precision Recall F1-Score 

All Features 0.909831029 0.657463925 0.724254912 0.679850488 

Student 
Information Only 

0.747644649 0.155454545 0.126126374 0.12808866 

Grades Only 0.898566308 0.694451659 0.671462704 0.677648655 

Gender Removed 0.909831029 0.657463925 0.724254912 0.679850488 

Age Removed 0.909831029 0.657463925 0.724254912 0.679850488 

Region Removed 0.89859191 0.680165945 0.648313353 0.655124224 

Age, Gender and 
Region Removed 

0.89859191 0.680165945 0.648313353 0.655124224 

TMA2 – TMA5 
Removed 

0.776548899 0.265353535 0.233225108 0.229829936 

TMA3 - TMA5 
Removed 

0.826369688 0.470046898 0.426282051 0.423416149 

TMA4 - TMA5 
Removed 

0.843881208 0.464220779 0.477056277 0.455517483 

TMA5 Removed 0.882565284 0.606580087 0.58998557 0.581051269 

Table 15: Evaluation Results for K-Nearest Neighbours Experiments with Course A Data and K = 1 

Data Accuracy Precision Recall F1-Score 

All Features 0.879288274 0.775808081 0.561232232 0.644907438 

Student 
Information Only 

0.65266257 0.311937229 0.144745843 0.188595166 

Grades Only 0.860035842 0.778585859 0.511965812 0.606932851 

Gender Removed 0.879288274 0.775808081 0.561232232 0.644907438 

Age Removed 0.880901178 0.775808081 0.566360437 0.647805988 

Region Removed 0.869738863 0.778585859 0.535374674 0.623605099 

Age, Gender and 
Region Removed 

0.869738863 0.778585859 0.5360157 0.623736851 

TMA2 – TMA5 
Removed 

0.723604711 0.335050505 0.209124209 0.24371211 

TMA3 - TMA5 
Removed 

0.795903738 0.603827561 0.389592652 0.455045767 

TMA4 - TMA5 
Removed 

0.813364055 0.568279221 0.409334979 0.46371996 

TMA5 Removed 0.855248336 0.722027417 0.504902646 0.579848791 

Table 16: Evaluation Results for K-Nearest Neighbours Experiments with Course A Data and K = 2 

Tables Table 17, Table 18 and Table 19 show results using higher K values. There is a clear increase in 

Recall scores as K values are increased, with a possible saturation after K=10 however, the precision 

score sees a significantly larger drop than the gain in Recall resulting in an overall drop in F1-Score.  

  



Data Accuracy Precision Recall F1-Score 

All Features 0.922708653 0.60011544 0.87265873 0.699491678 

Student 
Information Only 

0.835867896 0.02020202 0.1 0.033566434 

Grades Only 0.929160266 0.640916306 0.874444444 0.727530364 

Gender Removed 0.922708653 0.60011544 0.87265873 0.699491678 

Age Removed 0.922708653 0.60011544 0.87265873 0.699491678 

Region Removed 0.929160266 0.640916306 0.874444444 0.727530364 

Age, Gender and 
Region Removed 

0.929160266 0.640916306 0.874444444 0.727530364 

TMA2 – TMA5 
Removed 

0.84718382 0.205353535 0.47452381 0.268506787 

TMA3 - TMA5 
Removed 

0.888914491 0.412806638 0.7675 0.488633763 

TMA4 - TMA5 
Removed 

0.900204813 0.444372294 0.807857143 0.554095202 

TMA5 Removed 0.91953405 0.568802309 0.843492063 0.671092059 

Table 17: Evaluation Results for K-Nearest Neighbours Experiments with Course A Data and K = 5 

Data Accuracy Precision Recall F1-Score 

All Features 0.92593446 0.573600289 0.938928571 0.696761134 

Student 
Information Only 

0.848694316 0.009090909 0.05 0.015384615 

Grades Only 0.92109575 0.573600289 0.894920635 0.68475975 

Gender Removed 0.92593446 0.573600289 0.938928571 0.696761134 

Age Removed 0.92593446 0.573600289 0.938928571 0.696761134 

Region Removed 0.922708653 0.573600289 0.909206349 0.688681319 

Age, Gender and 
Region Removed 

0.922708653 0.573600289 0.909206349 0.688681319 

TMA2 – TMA5 
Removed 

0.863184844 0.216464646 0.502857143 0.29121741 

TMA3 - TMA5 
Removed 

0.8937532 0.426948052 0.766190476 0.528075666 

TMA4 - TMA5 
Removed 

0.897004608 0.42492785 0.821428571 0.527609407 

TMA5 Removed 0.921121352 0.549357864 0.870833333 0.662221164 

Table 18: Evaluation Results for K-Nearest Neighbours Experiments with Course A Data and K = 10 

  



Data Accuracy Precision Recall F1-Score 

All Features 0.924347158 0.52257215 0.953214286 0.664212571 

Student 
Information Only 

0.853507424 0 0 0 

Grades Only 0.924347158 0.52257215 0.953214286 0.664212571 

Gender Removed 0.924347158 0.52257215 0.953214286 0.664212571 

Age Removed 0.924347158 0.52257215 0.953214286 0.664212571 

Region Removed 0.924347158 0.52257215 0.953214286 0.664212571 

Age, Gender and 
Region Removed 

0.924347158 0.52257215 0.953214286 0.664212571 

TMA2 – TMA5 
Removed 

0.869636457 0.169747475 0.633333333 0.251648352 

TMA3 - TMA5 
Removed 

0.892140297 0.37023088 0.828333333 0.47958277 

TMA4 - TMA5 
Removed 

0.901792115 0.395761183 0.925 0.526502883 

TMA5 Removed 0.917921147 0.527766955 0.870833333 0.642910409 

Table 19: Evaluation Results for K-Nearest Neighbours Experiments with Course A Data and K = 20 

Table 20 and Table 21 again show low K values with the Course B data set. There is only a marginal 

improvement in Recall score with the larger data set, with a similar reduction moving from K=1 to K=2. 

Precision shows a larger improvement than with the Course A data set but not significantly so. 

Data Accuracy Precision Recall F1-Score 

All Features 0.845333015 0.736745478 0.743334679 0.739030608 

Student 
Information Only 

0.575566751 0.375769026 0.381720791 0.377665243 

Grades Only 0.847487175 0.738328713 0.7477307 0.74209466 

Gender Removed 0.845333015 0.736745478 0.743334679 0.739030608 

Age Removed 0.845333015 0.736745478 0.743334679 0.739030608 

Region Removed 0.847487175 0.737107134 0.748845867 0.741813544 

Age, Gender and 
Region Removed 

0.847756717 0.737926806 0.748999929 0.742307354 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.654537287 0.430566473 0.422839038 0.424845962 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.710859925 0.524780274 0.514336409 0.518518912 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.767988291 0.59966128 0.614567179 0.605124598 

TMA5 – TMA6 
and CMA5 
Removed 

0.800316639 0.663283352 0.66592619 0.663047113 

Table 20: Evaluation Results for K-Nearest Neighbours Experiments with Course B Data and K = 1 

  



Data Accuracy Precision Recall F1-Score 

All Features 0.80895212 0.791885926 0.646661735 0.710442021 

Student 
Information Only 

0.52115869 0.587553554 0.374955999 0.456602667 

Grades Only 0.809489755 0.795224064 0.647233454 0.711911912 

Gender Removed 0.809220937 0.791885926 0.647106246 0.710712571 

Age Removed 0.809221662 0.791885926 0.647143238 0.710742817 

Region Removed 0.809760021 0.792308715 0.648270059 0.711522499 

Age, Gender and 
Region Removed 

0.810029563 0.792308715 0.648736997 0.711793266 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.593635336 0.618740017 0.387538677 0.474943299 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.654804655 0.657398403 0.447395957 0.530888497 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.721911138 0.728587352 0.524267417 0.608515652 

TMA5 – TMA6 
and CMA5 
Removed 

0.775257949 0.770613825 0.594660588 0.669885406 

Table 21: Evaluation Results for K-Nearest Neighbours Experiments with Course B Data and K = 2 

Tables Table 22, Table 23 and Table 24 show a significant jump in Recall score at K=5 with only slight 

increases thereafter. The Precision score remains unchanged across higher K values which allows for 

marginal F1 score improvements.  

Data Accuracy Precision Recall F1-Score 

All Features 0.880089413 0.714014336 0.861412559 0.779653267 

Student 
Information Only 

0.622166247 0.31557923 0.432673073 0.363712506 

Grades Only 0.879819871 0.714789529 0.85982232 0.7794986 

Gender Removed 0.880089413 0.714014336 0.861412559 0.779653267 

Age Removed 0.880089413 0.714014336 0.861412559 0.779653267 

Region Removed 0.879280787 0.713159635 0.859460308 0.778243419 

Age, Gender and 
Region Removed 

0.879550329 0.713159635 0.860464324 0.778692828 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.726483929 0.403184828 0.558703421 0.466894773 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.772030693 0.487905095 0.661107557 0.560024607 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.814876243 0.57496373 0.749646693 0.648731866 

TMA5 – TMA6 
and CMA5 
Removed 

0.851522331 0.642605925 0.823453811 0.720690692 

Table 22: Evaluation Results for K-Nearest Neighbours Experiments with Course B Data and K = 5 



Data Accuracy Precision Recall F1-Score 

All Features 0.883860099 0.72759808 0.863109745 0.787808946 

Student 
Information Only 

0.618387909 0.38267232 0.438883196 0.407627121 

Grades Only 0.884130365 0.727475243 0.864275994 0.788486558 

Gender Removed 0.884129641 0.728411088 0.863232926 0.788375471 

Age Removed 0.883860099 0.72759808 0.863109745 0.787808946 

Region Removed 0.884669449 0.729224096 0.864462172 0.789517783 

Age, Gender and 
Region Removed 

0.884399907 0.728411088 0.864341558 0.788956432 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.732679042 0.42391103 0.571399139 0.485617416 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.777157059 0.512882098 0.66430996 0.577639098 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.827273715 0.604092726 0.77183744 0.675877991 

TMA5 – TMA6 
and CMA5 
Removed 

0.852328058 0.649611885 0.821840638 0.723855966 

Table 23: Evaluation Results for K-Nearest Neighbours Experiments with Course B Data and K = 10 

Data Accuracy Precision Recall F1-Score 

All Features 0.890058111 0.716814695 0.896164221 0.79490974 

Student 
Information Only 

0.644584383 0.313110977 0.472579217 0.375568366 

Grades Only 0.889519752 0.71594513 0.895053093 0.793954316 

Gender Removed 0.890058111 0.716814695 0.896164221 0.79490974 

Age Removed 0.890058111 0.716814695 0.896164221 0.79490974 

Region Removed 0.890058111 0.716814695 0.896164221 0.79490974 

Age, Gender and 
Region Removed 

0.890058111 0.716814695 0.896164221 0.79490974 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.756664638 0.390365997 0.656983832 0.488039114 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.795477205 0.486840417 0.741398039 0.586056798 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.834009362 0.578775794 0.815312776 0.67403841 

TMA5 – TMA6 
and CMA5 
Removed 

0.858257978 0.633787255 0.85732573 0.726852583 

Table 24: Evaluation Results for K-Nearest Neighbours Experiments with Course B Data and K = 20 

K-Nearest Neighbour’s Recall score seems to benefit more from a smaller data set and a smaller 

number of features in the experiments above with almost all Course A experiments outperforming 

those of Course B. Precision score suffers quite heavily with the loss of important features, especially 



in situations where the Recall score benefits i.e. with smaller datasets and high values of K. The F1 

score seems to benefit from the larger data set as the Precision and Recall are much more balanced. 

4.1.3 Random Forest 
Tuning of Random Forest classifiers is dependent on the number of trees in the model n. In this case 

experiments were carried out with n equal to 4, 8, 16 and 32 to determine how increasing the number 

of trees affects performance.  

Tables Table 25, Table 26, Table 27 and Table 28 hold the results for experiments carried out using the 

Course A data set. The Recall score sees a clear increase with diminishing returns as the number of 

trees is increased, with very little improvement between n=16 and n=32. The Precision score sees a 

small decrease as the number of trees increases. With higher n values the Recall score is much more 

tolerant to losing important features, Precision has no such tolerance and is affected heavily in all 

cases. 

Data Accuracy Precision Recall F1-Score 

All Features 0.905069124 0.720487013 0.679935065 0.67269178 

Student 
Information Only 

0.729953917 0.140725108 0.114722222 0.116361474 

Grades Only 0.909856631 0.734098124 0.677727273 0.695116622 

Gender Removed 0.919559652 0.753189033 0.718517316 0.722767684 

Age Removed 0.8937532 0.691908369 0.632647908 0.650354582 

Region Removed 0.901792115 0.664047619 0.695367965 0.66763147 

Age, Gender and 
Region Removed 

0.8906298 0.691800144 0.59965812 0.636117588 

TMA2 – TMA5 
Removed 

0.810368664 0.351753247 0.382446304 0.33685142 

TMA3 - TMA5 
Removed 

0.835995904 0.440324675 0.457713675 0.42881717 

TMA4 - TMA5 
Removed 

0.847388633 0.592857143 0.507735043 0.513955466 

TMA5 Removed 0.885893497 0.667943723 0.604519925 0.613594004 

Table 25: Evaluation Results for Random Forest Experiments with Course A Data and n = 4 

  



Data Accuracy Precision Recall F1-Score 

All Features 0.913082437 0.641637807 0.74284188 0.677597671 

Student 
Information Only 

0.760419867 0.096237374 0.106581197 0.08725957 

Grades Only 0.916282642 0.647741703 0.760984848 0.687988925 

Gender Removed 0.917946749 0.683340548 0.763322511 0.70603393 

Age Removed 0.92749616 0.709603175 0.824603175 0.760068762 

Region Removed 0.92437276 0.711244589 0.780912698 0.730396724 

Age, Gender and 
Region Removed 

0.921121352 0.654047619 0.808441558 0.707949945 

TMA2 – TMA5 
Removed 

0.837608807 0.30713925 0.433095238 0.331540795 

TMA3 - TMA5 
Removed 

0.84889913 0.428751804 0.491515152 0.43070114 

TMA4 - TMA5 
Removed 

0.887429595 0.521284271 0.691587302 0.562997679 

TMA5 Removed 0.898694316 0.633726551 0.686388889 0.631745052 

Table 26: Evaluation Results for Random Forest Experiments with Course A Data and n = 8 

Data Accuracy Precision Recall F1-Score 

All Features 0.930747568 0.693423521 0.843008658 0.757049274 

Student 
Information Only 

0.79078341 0.098023088 0.22202381 0.108957688 

Grades Only 0.929083461 0.691673882 0.843481241 0.755173547 

Gender Removed 0.930773169 0.690645743 0.847175325 0.754794372 

Age Removed 0.933998976 0.695569986 0.853088023 0.759599617 

Region Removed 0.933973374 0.690645743 0.865595238 0.760290463 

Age, Gender and 
Region Removed 

0.930798771 0.667034632 0.843567821 0.733035788 

TMA2 – TMA5 
Removed 

0.847132616 0.230775613 0.463333333 0.282753358 

TMA3 - TMA5 
Removed 

0.874577573 0.436580087 0.642619048 0.488223679 

TMA4 - TMA5 
Removed 

0.887378392 0.495887446 0.71010101 0.548700412 

TMA5 Removed 0.914695341 0.628405483 0.790025253 0.676060606 

Table 27: Evaluation Results for Random Forest Experiments with Course A Data and n = 16 

  



Data Accuracy Precision Recall F1-Score 

All Features 0.930773169 0.655526696 0.867691198 0.738877665 

Student 
Information Only 

0.794086022 0.086911977 0.132619048 0.093717949 

Grades Only 0.937224782 0.691673882 0.883531746 0.770142409 

Gender Removed 0.932360471 0.685487013 0.855786436 0.754657718 

Age Removed 0.925908858 0.665284993 0.827849928 0.729850026 

Region Removed 0.932386073 0.669054834 0.872420635 0.751293363 

Age, Gender and 
Region Removed 

0.934024578 0.692431457 0.840551948 0.750224432 

TMA2 – TMA5 
Removed 

0.853584229 0.234437229 0.478333333 0.296178266 

TMA3 - TMA5 
Removed 

0.885765489 0.419119769 0.723452381 0.49469973 

TMA4 - TMA5 
Removed 

0.885791091 0.47012987 0.715952381 0.525369532 

TMA5 Removed 0.914720942 0.601378066 0.801111111 0.66401475 

Table 28: Evaluation Results for Random Forest Experiments with Course A Data and n = 32 

Tables Table 29, Table 30, Table 31 and Table 32 hold the results for experiments carried out using the 

Course B data set. Performance trends are very similar to those seen with Course A data. The Recall 

score  

The Recall score has a clear increase with diminishing returns as the number of trees is increased, with 

very little improvement between n=16 and n=32. The Precision score sees a small decrease as the 

number of trees increases, though the decrease becomes negligible at higher values for n and given 

the F-1 score increases, it can be taken that the trade-off is not too severe. 

Data Accuracy Precision Recall F1-Score 

All Features 0.855835724 0.782022955 0.746738323 0.762586153 

Student 
Information Only 

0.613853904 0.359316224 0.42545775 0.388592964 

Grades Only 0.845059125 0.770119792 0.727965588 0.747230336 

Gender Removed 0.852599049 0.76374576 0.748794093 0.754884669 

Age Removed 0.851793322 0.782099792 0.737962762 0.758519856 

Region Removed 0.853946034 0.77008155 0.747881315 0.75703088 

Age, Gender and 
Region Removed 

0.849090659 0.785558033 0.729913396 0.75540221 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.672057502 0.500142135 0.454903734 0.474182881 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.718141901 0.59514514 0.523916308 0.556176845 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.780921224 0.675156959 0.623256763 0.647034461 

TMA5 – TMA6 
and CMA5 
Removed 

0.803013506 0.718578039 0.655099051 0.684572831 



Table 29: Evaluation Results for Random Forest Experiments with Course B Data and n = 4 

Data Accuracy Precision Recall F1-Score 

All Features 0.875236936 0.754326517 0.818478198 0.783571235 

Student 
Information Only 

0.604282116 0.346341244 0.411420473 0.374314984 

Grades Only 0.872807437 0.747917553 0.813237067 0.777543236 

Gender Removed 0.877659189 0.754183941 0.823948703 0.785117641 

Age Removed 0.876846216 0.758833262 0.818047369 0.786432599 

Region Removed 0.874965945 0.758956225 0.81150641 0.783358008 

Age, Gender and 
Region Removed 

0.88197548 0.758852043 0.832641509 0.792604347 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.696309017 0.469417911 0.490869524 0.478567842 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.744537432 0.540394356 0.579297874 0.557517443 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.806791438 0.635455894 0.696631108 0.661791093 

TMA5 – TMA6 
and CMA5 
Removed 

0.841552908 0.68346779 0.761921106 0.719127442 

Table 30: Evaluation Results for Random Forest Experiments with Course B Data and n = 8 

Data Accuracy Precision Recall F1-Score 

All Features 0.887361969 0.737869633 0.866070894 0.795881982 

Student 
Information Only 

0.608312343 0.330878676 0.412299027 0.366065733 

Grades Only 0.885749065 0.736490807 0.86222476 0.792989236 

Gender Removed 0.88735907 0.737711504 0.866221925 0.795701268 

Age Removed 0.88951468 0.746723821 0.8660529 0.800568181 

Region Removed 0.889248036 0.737515395 0.873774903 0.798535104 

Age, Gender and 
Region Removed 

0.883857201 0.736434336 0.856235199 0.790393368 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.712209808 0.439857108 0.520722709 0.475603244 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.772834971 0.529428047 0.646826527 0.580625679 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.830235052 0.638346603 0.758830743 0.691759444 

TMA5 – TMA6 
and CMA5 
Removed 

0.851249891 0.662215971 0.810350485 0.727180193 

Table 31: Evaluation Results for Random Forest Experiments with Course B Data and n = 16 

  



Data Accuracy Precision Recall F1-Score 

All Features 0.88844086 0.730799451 0.877358283 0.796307189 

Student 
Information Only 

0.610327456 0.330220711 0.41554297 0.366747851 

Grades Only 0.890325479 0.732757104 0.880149581 0.798404436 

Gender Removed 0.891403646 0.727444988 0.890869626 0.799808482 

Age Removed 0.887360519 0.731536438 0.871438546 0.794037747 

Region Removed 0.892211547 0.733277567 0.887152442 0.801615481 

Age, Gender and 
Region Removed 

0.888711851 0.732978699 0.876107306 0.796969515 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.717056488 0.424040406 0.535212749 0.471528205 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.780384314 0.508169603 0.677194964 0.579824873 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.831044402 0.606387171 0.779902402 0.679906713 

TMA5 – TMA6 
and CMA5 
Removed 

0.857450801 0.653721463 0.838721906 0.732821308 

Table 32: Evaluation Results for Random Forest Experiments with Course B Data and n = 32 

Random Forest performs well with either small or large data sets as can be seen from the results above 

with marginal performance increases with larger data sets when there are enough important features 

available. With the removal of important features, the Precision scores for Course A dropped 

significantly more than those for Course B suggesting that the magnitude of this effect may be 

dependent on the data set size. Due to the increase in number of trees negatively affecting Precision 

score to a greater degree in larger data sets, and assuming a larger data set is due to greater numbers 

of students in a cohort, for the purposes of identifying failing students it may actually be beneficial to 

restrict the number of trees as the cost of false positives increases in larger courses. 

The performance changes from the removal of less important features, whether individually or in 

groups, results in small, almost negligible, changes in all performance metrics. For the most part, when 

the feature removed has very low performance, this change is positive however, several situations 

result in a performance drop. This change is small and unpredictable and should only really be 

considered if it is necessary to increase training times. 

4.1.4 Support Vector Machine 
Tuning of SVM classifiers is most often carried out in Scikit Learn by altering the value of the cost of 

misclassified examples , C, and the gamma of the kernel. After some investigation it was found that 

tuning using C produced negligible change for these data sets, while tuning gamma resulted in 

significant performance differences. As such the experiments were conducted using the default C 

value and gamma values of 0.1, 0.01 and 0.001.  

Tables Table 33, Table 34 and Table 35 hold the results for experiments carried out using the Course 

A data set. Recall scores see a sharp increase with the first reduction to the gamma with a minor 

increase to the Precision score. With the second gamma reduction there is a very large jump in 

Precision score with a relatively small, but still significant, drop in Recall. Precision suffers heavily when 

important features are removed while Recall seems to remain relatively high however, this holds true 



until too many important features are removed, at which point all positive examples are misclassified. 

This may be due to the heavily skewed nature of this data set. Removal of less relevant student 

information has only negligible effect on each of the performance metrics. 

Data Accuracy Precision Recall F1-Score 

All Features 0.863159242 0.095 0.5 0.155081585 

Student 
Information Only 

0.853507424 0 0 0 

Grades Only 0.874423963 0.168502886 0.85 0.27528083 

Gender Removed 0.863159242 0.095 0.5 0.155081585 

Age Removed 0.863159242 0.095 0.5 0.155081585 

Region Removed 0.867997952 0.124292929 0.65 0.200769231 

Age, Gender and 
Region Removed 

0.867997952 0.124292929 0.65 0.200769231 

TMA2 – TMA5 
Removed 

0.861571941 0.111161616 0.55 0.171208791 

TMA3 - TMA5 
Removed 

0.858320533 0.095 0.45 0.153982684 

TMA4 - TMA5 
Removed 

0.863159242 0.095 0.5 0.155081585 

TMA5 Removed 0.863159242 0.095 0.5 0.155081585 

Table 33: Evaluation Results for SVM Experiments with Course A Data and gamma = 0.1 

Data Accuracy Precision Recall F1-Score 

All Features 0.880824373 0.225970418 0.933333333 0.354997225 

Student 
Information Only 

0.853507424 0 0 0 

Grades Only 0.890501792 0.316020924 0.925 0.452905983 

Gender Removed 0.880824373 0.225970418 0.933333333 0.354997225 

Age Removed 0.880824373 0.225970418 0.933333333 0.354997225 

Region Removed 0.884024578 0.279505772 0.9 0.408440448 

Age, Gender and 
Region Removed 

0.884024578 0.279505772 0.9 0.408440448 

TMA2 – TMA5 
Removed 

0.86641065 0.149545455 0.625 0.224725275 

TMA3 - TMA5 
Removed 

0.893778802 0.35523088 0.841666667 0.481412656 

TMA4 - TMA5 
Removed 

0.884050179 0.272756133 0.91 0.397545788 

TMA5 Removed 0.885637481 0.296966089 0.908333333 0.423536464 

Table 34: Evaluation Results for SVM Experiments with Course A Data and gamma = 0.01 

  



Data Accuracy Precision Recall F1-Score 

All Features 0.922708653 0.600873016 0.870833333 0.688222026 

Student 
Information Only 

0.853507 0 0 0 

Grades Only 0.922708653 0.600873016 0.870833333 0.688222026 

Gender Removed 0.922708653 0.600873016 0.870833333 0.688222026 

Age Removed 0.922708653 0.600873016 0.870833333 0.688222026 

Region Removed 0.922708653 0.600873016 0.870833333 0.688222026 

Age, Gender and 
Region Removed 

0.922708653 0.600873016 0.870833333 0.688222026 

TMA2 – TMA5 
Removed 

0.871223758 0.158636364 0.7 0.251684982 

TMA3 - TMA5 
Removed 

0.892140297 0.378564214 0.816428571 0.485138326 

TMA4 - TMA5 
Removed 

0.901792115 0.42492785 0.871428571 0.540401191 

TMA5 Removed 0.917921147 0.531176046 0.882380952 0.644110276 

Table 35: Evaluation Results for SVM Experiments with Course A Data and gamma = 0.001 

Tables Table 36, Table 37 and Table 38 hold the results for experiments carried out using the Course 

B data set. For these experiments the Recall scores were highest, in some cases perfectly classifying 

all failing students correctly, with a higher gamma value and dropped when it was lowered. Precision 

scores react similarly to Course A in that they rise as the gamma is lowered with the rate of increase 

in the score being almost the same. Again, the drop in performance from the removal of more 

important features is noticeable but not too severe until there are not enough important features, at 

which point performance drops off severely. Removal has negligible effect on any of the performance 

metrics for Course B. 

  



Data Accuracy Precision Recall F1-Score 

All Features 0.741853607 0.136588745 1 0.23974558 

Student 
Information Only 

0.661712846 0.109926958 0.56935814 0.180855948 

Grades Only 0.769344695 0.230168379 0.994117647 0.372606833 

Gender Removed 0.741853607 0.136588745 1 0.23974558 

Age Removed 0.742662232 0.139434727 1 0.244151464 

Region Removed 0.756137872 0.185470389 0.99375 0.31132924 

Age, Gender and 
Region Removed 

0.756676956 0.187400359 0.99375 0.313900373 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.738616207 0.312224891 0.625368962 0.414231254 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.741583341 0.192831614 0.769481889 0.307315773 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.743201316 0.141213495 1 0.246807997 

TMA5 – TMA6 
and CMA5 
Removed 

0.741853607 0.136588745 1 0.23974558 

Table 36: Evaluation Results for SVM Experiments with Course B Data and gamma = 0.1 

Data Accuracy Precision Recall F1-Score 

All Features 0.793597658 0.313351872 0.989467593 0.474876092 

Student 
Information Only 

0.655416 0 0 0 

Grades Only 0.799525404 0.336432642 0.985945517 0.500045362 

Gender Removed 0.793597658 0.313351872 0.989467593 0.474876092 

Age Removed 0.7938672 0.314322745 0.98956229 0.47600899 

Region Removed 0.798179144 0.330747372 0.987742053 0.49394883 

Age, Gender and 
Region Removed 

0.798179144 0.330747372 0.987742053 0.49394883 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.759632496 0.348810026 0.696603521 0.463125297 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.782813813 0.465981115 0.712573619 0.560997125 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.794133843 0.387659477 0.838095792 0.527246247 

TMA5 – TMA6 
and CMA5 
Removed 

0.797369794 0.334083181 0.970749747 0.495585244 

Table 37: Evaluation Results for SVM Experiments with Course B Data and gamma = 0.01 

  



Data Accuracy Precision Recall F1-Score 

All Features 0.869584529 0.6200491 0.923886736 0.740214135 

Student 
Information Only 

0.655416 0 0 0 

Grades Only 0.870662696 0.623568968 0.924321984 0.742970863 

Gender Removed 0.869584529 0.6200491 0.923886736 0.740214135 

Age Removed 0.869584529 0.6200491 0.923886736 0.740214135 

Region Removed 0.870393154 0.623533939 0.92319448 0.74252273 

Age, Gender and 
Region Removed 

0.870393154 0.623533939 0.92319448 0.74252273 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.761789555 0.309306073 0.743946564 0.435340136 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.800057966 0.483142771 0.761602419 0.58937054 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.833198562 0.572453517 0.818108997 0.671235538 

TMA5 – TMA6 
and CMA5 
Removed 

0.857718894 0.650112309 0.840646386 0.731815163 

Table 38: Evaluation Results for SVM Experiments with Course B Data and gamma = 0.001 

SVM seems to have a better overall performance with a larger data set and more heavily correlated 

features. The performance in both data sets remains relatively good even with a very small number 

of features highly correlated with the outcome. Using student information benefits neither situation 

in this case and, for the sake of simplification, would be best left out when using SVM. From the 

experiments conducted it is clear that the effects of changing the gamma are significantly different on 

different data sets. More experiments would need to be conducted to if there is a common trend as 

the parameters are tuned. 

4.1.5 Multi-Layer Perceptron 
In this experiment the tuning of the Multi-Layer Perceptron was done by altering the size of the hidden 

layer. The experiments were conducted using the hidden layer sizes of 100, 250 and 500. 

Tables Table 39, Table 40 and Table 41 hold the results for experiments carried out using the Course 

A data set. The Recall score is almost always best when using more available features while the 

precision score is severely negatively affected by the removal of important features. Increasing the 

hidden layer size seemed to have very little effect on any of the performance metrics, there were 

slight positive and negative variations but no concrete trends. Training times were extremely slow 

compared with other algorithms, especially with a larger hidden layer size, often upwards of ten 

seconds. 

  



Data Accuracy Precision Recall F1-Score 

All Features 0.925908858 0.571580087 0.902380952 0.683082707 

Student 
Information Only 

0.853507 0 0 0 

Grades Only 0.922708653 0.602893218 0.865277778 0.691128009 

Gender Removed 0.922734255 0.629408369 0.831666667 0.692985348 

Age Removed 0.92109575 0.600386003 0.869325397 0.67578954 

Region Removed 0.92109575 0.593044733 0.8675 0.680717178 

Age, Gender and 
Region Removed 

0.927547363 0.605310245 0.905992063 0.701177208 

TMA2 – TMA5 
Removed 

0.86641065 0.158636364 0.623333333 0.238113553 

TMA3 - TMA5 
Removed 

0.879237071 0.332604618 0.765833333 0.420716827 

TMA4 - TMA5 
Removed 

0.900256016 0.433665224 0.835833333 0.52854817 

TMA5 Removed 0.908269329 0.531807359 0.825 0.607966573 

Table 39: Evaluation Results for MLP Experiments with Course A Data and hidden layer size = 100 

Data Accuracy Precision Recall F1-Score 

All Features 0.924347158 0.61261544 0.860992063 0.690035572 

Student 
Information Only 

0.853507 0 0 0 

Grades Only 0.919508449 0.558448773 0.856944444 0.660541928 

Gender Removed 0.921070148 0.623095238 0.826904762 0.685951162 

Age Removed 0.92109575 0.62511544 0.829325397 0.684602116 

Region Removed 0.927521761 0.638012266 0.865873016 0.717846766 

Age, Gender and 
Region Removed 

0.92109575 0.624484127 0.831547619 0.695759194 

TMA2 – TMA5 
Removed 

0.863184844 0.158636364 0.556666667 0.233731269 

TMA3 - TMA5 
Removed 

0.882514081 0.346619769 0.751428571 0.44022311 

TMA4 - TMA5 
Removed 

0.900204813 0.44262987 0.835 0.547986523 

TMA5 Removed 0.909856631 0.53761544 0.806060606 0.611270264 

Table 40: Evaluation Results for MLP Experiments with Course A Data and hidden layer size = 250 

  



Data Accuracy Precision Recall F1-Score 

All Features 0.922708653 0.653297258 0.815183983 0.699013881 

Student 
Information Only 

0.853507 0 0 0 

Grades Only 0.917869944 0.591782107 0.847420635 0.672747442 

Gender Removed 0.917895545 0.606706349 0.823888889 0.674435564 

Age Removed 0.92109575 0.653297258 0.801111111 0.69309813 

Region Removed 0.917869944 0.63281746 0.796944444 0.68675053 

Age, Gender and 
Region Removed 

0.921121352 0.601782107 0.858611111 0.676018118 

TMA2 – TMA5 
Removed 

0.864797747 0.158636364 0.573333333 0.236295371 

TMA3 - TMA5 
Removed 

0.885714286 0.378564214 0.785833333 0.469049736 

TMA4 - TMA5 
Removed 

0.897004608 0.423185426 0.841666667 0.523045778 

TMA5 Removed 0.908294931 0.506453824 0.81 0.593623277 

Table 41: Evaluation Results for MLP Experiments with Course A Data and hidden layer size = 500 

As with the Course A data set, changing the hidden layer size had minimal effect on the performance 

scores in any of the metrics when carrying out experiments using the Course B data. The effects of 

features are similar with good Recall scores for the most part, even when using only the earliest 

available grades, while Precision was heavily reliant on important features. The training times for this 

data set using Multi-Layer Perceptron were significantly higher than any other data set with any other 

model with the longest times being nearly a minute. 

Data Accuracy Precision Recall F1-Score 

All Features 0.872273425 0.7101028 0.850798872 0.769798692 

Student 
Information Only 

0.667254408 0.168236055 0.563996784 0.25460796 

Grades Only 0.881972582 0.709546293 0.873410599 0.781426446 

Gender Removed 0.878198273 0.704786218 0.863723335 0.773855245 

Age Removed 0.875509376 0.70998991 0.854509296 0.772124576 

Region Removed 0.872540069 0.727676865 0.827786332 0.771208216 

Age, Gender and 
Region Removed 

0.879003275 0.728861491 0.852071954 0.78191185 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.760710663 0.33695002 0.716415755 0.451575214 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.78631206 0.43227985 0.761130187 0.543548351 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.827268643 0.551833853 0.822107132 0.6528426 

TMA5 – TMA6 
and CMA5 
Removed 

0.85475321 0.621316744 0.858481571 0.71648194 

Table 42: Evaluation Results for MLP Experiments with Course B Data and hidden layer size = 100 



Data Accuracy Precision Recall F1-Score 

All Features 0.881432774 0.691426634 0.892553707 0.774956704 

Student 
Information Only 

0.66675063 0.191505312 0.551660154 0.28190268 

Grades Only 0.87496522 0.708607326 0.854927548 0.771649148 

Gender Removed 0.873618236 0.719914396 0.841156148 0.772003893 

Age Removed 0.871999536 0.730160915 0.82439914 0.772680394 

Region Removed 0.884398458 0.714037766 0.879484903 0.786145789 

Age, Gender and 
Region Removed 

0.880354607 0.719771812 0.862174635 0.781375953 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.75558792 0.354382048 0.696048913 0.462768548 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.791434803 0.440487294 0.772384143 0.553424362 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.826467988 0.562719909 0.816570908 0.654427858 

TMA5 – TMA6 
and CMA5 
Removed 

0.853677941 0.665690752 0.822826707 0.729831456 

Table 43: Evaluation Results for MLP Experiments with Course B Data and hidden layer size = 250 

Data Accuracy Precision Recall F1-Score 

All Features 0.876043388 0.746851506 0.831099328 0.78246152 

Student 
Information Only 

0.662468514 0.185031219 0.544154079 0.270015698 

Grades Only 0.869305568 0.742873123 0.828317389 0.777306791 

Gender Removed 0.883857925 0.712434828 0.876659246 0.784741027 

Age Removed 0.867153581 0.766441369 0.791765558 0.773244536 

Region Removed 0.879278613 0.703865118 0.871548741 0.775950034 

Age, Gender and 
Region Removed 

0.88008579 0.701039108 0.877827522 0.776395251 

TMA2 – TMA6 
and CMA2 - 
CMA5 Removed 

0.760709214 0.36827274 0.688463675 0.476146105 

TMA3 – TMA6 
and CMA3 - 
CMA5 Removed 

0.783346376 0.445704944 0.739244542 0.546171557 

TMA4 – TMA6 
and CMA4 - 
CMA5 Removed 

0.824312379 0.538014675 0.830323296 0.641442208 

TMA5 – TMA6 
and CMA5 
Removed 

0.848287105 0.633902681 0.837528127 0.713107163 

Table 44: Evaluation Results for MLP Experiments with Course B Data and hidden layer size = 500 

The tuning parameter setting used in this experiment resulted in no real change in the performance 

with either data set. The only significant performance differences were seen when features were 



removed. This is the slowest algorithm so far with good, but not outstanding, results in most 

configurations.  

4.2. Discussion 

4.2.1 Feature Selection 
Having tested how different combinations affect machine learning model performance across all of 

the selected algorithms with a variety of parameter settings. 

The removal of features which were found to have lower importance or were not correlated with the 

final outcome was investigated first. Removing individual features resulted in almost no change or 

varying changes in almost all situations. Gender, being poorly correlated and unimportant, was 

expected to have a greater effect when removed however, the change was never significantly more 

than for the removal of any other student information feature. Removing all student information 

features mostly resulted in a small negative performance hit. From these results it would seem that 

the removal of the least important features would only be beneficial or worthwhile if it was required 

in order to improve the time taken to train or if more relevant features are available as these would 

further diminish the importance of those already of low importance. 

The use of student personal information as the only features cannot reliably produce accurate 

predictions with any of the algorithms and parameter configurations used in this study. Some form of 

relevant grade information is essential in order to develop a usable model. 

In situations where not much grade information is available there was a clear and expected drop in 

performance with all algorithms and configurations. It is clear that the further into a class or degree a 

student is, the more relevant information will be available and the more accurately the prediction of 

their final outcome is likely to be. In the experiments carried out, this improvement in classification 

performance seems to saturate about halfway through single semester class, with a full 

undergraduate degree worth of classes, and using only the final grades for those classes, it is likely 

that the final degree outcome could be predicted with good accuracy within the first year due to 

significantly more relevant features being available. With a single year postgraduate degree it is likely, 

given these results, that after a single semester, the final degree outcome could be accurately 

predicted. This would be improved by using assessment performance throughout the first semester 

as predictors.  

As should be expected, as more features with high importance or relevance are added the increase in 

performance for each additional feature decreases. It may be important to note the point at which 

very little improvement is seen and begin to determine which of the earlier grades being used are 

losing importance as these are likely to lose some relevance in longer degree programs though this 

would require further investigation out with the scope of this study. 

4.2.2 Machine Learning Models 
The Gaussian Naïve Bayes algorithm is clearly very heavily dependent on the data set available. While 

the resilience of the Recall score when using small numbers of features is advantageous, larger data 

sets are required to improve performance to a level which would be viable. This would likely be 

possible for popular, well established undergraduate courses but performance would be too poor to 

be workable in smaller courses such as post graduate masters programs. In the event that all of the 

courses for which predictions are being made have large training data sets available then Gaussian 

Naïve Bayes would be an ideal algorithm due to the simplicity and lack of any need for tuning. 



K-Nearest Neighbours performed very well across all evaluation metrics with both data sets in most 

situations. Alongside this, it has very easy to tune parameters and has very short training times. The 

tuned algorithm is relatively resistant to changes in data set size and shape, able to handle large and 

small data sets as long as the features used are relevant. In the situation where the available data is 

changing or where more features are being added, e.g. as the year progresses and student 

performance is recalculated, the overall performance of K-Nearest Neighbours is likely to remain high. 

When correctly tuned K-Nearest Neighbours can perform well with even a small number of features 

making it ideal for early student performance prediction. The short training and testing times would 

also make it viable for further development of an application for predicting individual student 

performance. Of the five algorithms investigated in this study this was the easiest and most intuitive 

to set up and tune. It also provided some of the best results for prediction when considering Recall 

score as the most important metric though the Precision scores with smaller data sets and less 

features are very poor. K-Nearest Neighbours would work well for well established undergraduate and 

postgraduate degrees for which there is plenty of data available from previous cohorts for training. 

Similar to K-Nearest Neighbours, Random Forest performed well with all evaluation metrics in both 

data sets and with most parameter configurations. Random Forest does mostly benefit from the 

removal of the least important features which is unsurprising as the Random Forest feature 

importance functionality was used to determine the importance of the features. With more grades 

added the Random Forest performance extremely well and it can be assumed that this would be the 

case when using grade data from a full degree program. Where Random Forest falls short is with 

smaller data sets combined with a small number of features, this results in performance dropping off 

relatively sharply. For this reason Random Forest would only really be suitable for full undergraduate 

degree prediction where there is likely to be more past data available and more grades throughout 

the year to use as predictors. Where K-Nearest Neighbours has the best Recall scores, Random Forest 

has the best Precision scores. This supports the suggestion that it would be best suited for 

undergraduate degrees as these tend to have more students which can increase the cost of 

misclassifying passing students as failing students. 

When fully tuned to maximise performance Support Vector Machines seem to be excellent classifiers 

for the purposes of identifying struggling students. Unfortunately, it is getting to this point which is 

most difficult and unclear for SVM as a poorly tuned model can result in extreme overfitting as can be 

seen in the results using high Gamma, especially those on the Course B data set. The data set used can 

drastically change the values for optimal tuning which makes tuning more involved than for other 

algorithms. There are methods available with Scikit Learn for automatically tuning parameters which 

were not explored in this study however, they are known to be extremely computationally expensive 

and so would only really be suitable in a situation where the model is trained once before running a 

large number of predictions. For a university predicting student performance across a large number 

of degrees where each degree has its own large data set which would require identifying the best 

tuning parameter values or where those data sets frequently change this would likely be a poor 

solution. A more focussed study looking at the automatic tuning of the SVM parameters and 

optimisation of the data used may help to alleviate some of the issues found in this study. 

The experiments carried out using Multi-Layer Perceptron did not yield particularly good results. The 

tuning parameter configuration gave no real variation in any of the performance metrics and the 

performance differences seen between experiments carried out on each data set were not significant. 

The main benefit seems to be that the Recall score remained low even with a small number of 

important features which mean that even early in a course or degree this classifier would perform 

well. Despite this, most of the other algorithms investigated in this study performed better than this 



one and would be better suited for predicting student performance. The training time is also 

considerably higher for Multi-Layer Perceptron however, this is unlikely to be a deciding factor, 

especially in the situation where predictions are periodically carried out for an entire cohort. If an 

application was to be designed to make predictions on a student by student basis this would likely be 

a poor candidate.  

  



5. Recommendations and Conclusions 

5.1 Conclusion 
The main objectives of this study were: 

• To determine if machine learning models were viable as a means of identifying students at 

risk of failing. 

• To determine how early in a course is it possible to accurately make these predictions. 

• To compare a range of machine learning algorithms and identify those which may be suitable 

for this purpose. 

• To determine how differences in data sets affect the performance of machine learning 

algorithms in an academic context. 

• To determine whether features other than student grades are beneficial in making 

predictions. 

Through a series of experiments on two data sets using multiple classification algorithms with a variety 

of parameter configurations it can be concluded that, with the correct algorithm and optimised tuning 

parameters, machine learning is an extremely useful tool in predicting student performance, capable 

of being adapted to any course as long as there is sufficient data available from previous cohorts. The 

two algorithms which stood out as viable candidates were Random Forest and K-Nearest Neighbours, 

both of which performed well, are simple to set up and tune and are very quick to train even when 

using large data sets.  

The data available plays a significant role in the overall performance of any model. A larger pool of 

data will provide more training examples but will also allow for flexibility in culling outlying data in an 

effort to balance the examples from each of the classification outcomes. This will provide further 

improvements to the overall performance of the trained model. It has been shown that the features 

to be considered should be limited to earlier grades achieved when there are several available. In the 

event that not enough grades are available then limiting further features to those likely to affect a 

student’s academic career is best. In this study it was possible in some cases to achieve a good 

performance with around half of the assessment marks attained in a single semester. In a full degree 

program significantly more relevant grade data will be available and it can be reasonably assumed 

that this will be sufficient to provide accurate predictions as early as a year into a four year 

undergraduate degree program or a semester into a single year postgraduate masters program. 

The experiments carried out in an effort to determine what student information was relevant to 

prediction determined that, while the addition of certain information such as previous educational 

achievements or IMD band can sometimes have a positive effect on the overall performance of a 

model, any contribution is ultimately overshadowed by the far greater relevance of any previously 

achieved grades. Student personal information cannot stand as the only predictors, any predictions 

made without relevant grades will be extremely unreliable. As mentioned, in any full degree program 

there will be enough relevant grade information that using student personal information would be 

detrimental to the performance of any classifier. 

5.2 Recommendations for Future Work 
One of the greatest limitations faced during this study was the available data sets. The original plan 

for the study was to use a data set consisting of data taken from Strathclyde University students who 

had previously finished a full degree programme in an effort to predict degree outcomes. 

Unfortunately it was discovered at a very late stage that this data could not be made available and as 

such the Open University Learning Analytics data set, which consisted of student data from individual 



anonymised courses, was selected for use instead due to its ready availability. For this reason, it would 

be extremely beneficial for a similar study to be carried out on a variety of full degree programs to 

provide more conclusive evidence for the effectiveness of machine learning in predicting student 

performance. By selecting different degree programs, types of degree programs and different sizes of 

those degree programs more information could be gleaned on which of the classifiers investigated is 

most effective in most situations. 

Another limitation of this study is that the broad range of algorithms investigated made it difficult to 

explore the full range of tuning parameters available to the algorithms found to be most effective, in 

this case Random Forest and K-Nearest Neighbours. With the use of data sets for full degree 

programmes it would also be beneficial to investigate the effectiveness of tuning this smaller selection 

of algorithms. With the smaller selection of algorithms, it would be possible to comprehensively 

investigate how best to tune with different data sets and provide further evidence as to which 

algorithm is most fit for this purpose. 
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