
A Genetic Algorithm for Query Optimization

Alexandra Russell

Department of Computer and Information Sciences

University of Strathclyde, Glasgow

August 26, 2019



Declaration

This dissertation is submitted in part fulfilment of the requirements for the degree of
MSc of the University of Strathclyde.

I declare that this dissertation embodies the results of my own work and that it has
been composed by myself. Following normal academic conventions, I have made due
acknowledgement to the work of others.

I declare that I have sought, and received, ethics approval via the Departmental Ethics
Committee as appropriate to my research.

I give permission to the University of Strathclyde, Department of Computer and In-
formation Sciences, to provide copies of the dissertation, at cost, to those who may in
the future request a copy of the dissertation for private study or research.

I give permission to the University of Strathclyde, Department of Computer and In-
formation Sciences, to place a copy of the dissertation in a publicly available archive.
(please tick) Yes [x] No [ ]

I declare that the word count for this dissertation (excluding title page, declaration,
abstract, acknowledgements, table of contents, list of illustrations, references and ap-
pendices is 12702 words.

I confirm that I wish this to be assessed as a Type 5 Dissertation

Signature:

Date: 26/08/2019

i



Abstract

The growing quantities of unstructured textual information online can represent an

untapped goldmine of data, but one of the barriers to exploiting it is finding where

these resources are. Information retrieval systems and search engine technologies have

developed to tackle this need. However, there are elements of them that can be further

developped to suit our needs. In particular, the problem of user queries not being

optimal for the search they are trying to perform persists. If we could optimize the

query being provided to a retrieval system this could go a long way to improving the

quality of information users are receiving from search engines.

In this dissertation the applicability of a genetic algorithm to query optimization within

the context of information retrieval is explored. First and foremost the goal is to inves-

tigate whether this is an effective way of altering a search query to improve retrieval.

However, the research is done within the context of trying to develop technologies that

would allow easier research and data collection via internet search engines. This spe-

cific context requires a unique experimental design framework where the information

retrieval system, and the document collection it has indexed, provide limited informa-

tion to the query expansion techniques being applied.

This report shows that a genetic algorithm approach to query optimization proves

more effective than other query expansion techniques for retrieval, and introduces a

framework for performing such query optimization applicable to any search engine.
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Chapter 1

Introduction

Tim Berners-Lee gave a Ted Talk in 2009 entitled “The next web of open linked data”.

In this talk he speaks about the motivation behind creating the World Wide Web.

He was frustrated with the unlocked potential lying in isolated documents across the

world; if they could be linked together they could create new and exciting information

and opportunities. “If these documents could be linked and made available in some

big virtual documentation system in the sky”, he says, “life would be so much easier”.

Creating the World Wide Web allowed for just that. The availability of information

from wherever you are in the world has had an incalculable impact on our how our

lives, society and science have developed. In this Ted Talk, twenty years after creating

the World Wide Web, Tim Berners-Lee is speaking again about connecting data. This

time, he is introducing a project aiming to create linked data across the internet to

unlock the data potential that exists, untapped, online. His project proposal tackles

the problem lying in unstructured information online, or as he says: “we haven’t got

data on the web as data” (Ted 2009).

10 years on from this talk, the same problems still exist with information online. More

information is available online than ever before, and the rate of increase in information

is accelerating. Some estimates claim that by 2020 every person will be creating 1.7
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megabytes of new information every second (NodeGraph 2017). However, a lot of

that information is unstructured textual information scattered across the web. This

is inconvenient as there is no easy way for a computer to understand that kind of

information and collecting information sources on a topic can be a challenge. How-

ever, with necessity being the mother of all invention, this inconvenience has generated

countless new technologies that seek to help us exploit and understand the abundance

of information online.

Examples of these technologies include internet crawlers; applications that can fol-

low links online, crawling through web domains, collecting information as they go.

Another example is natural language processing, which takes unstructured text and

extracts information from it that computers can understand. However, arguably the

most wide spread technology to have come from the explosion of availability of online

data has to be the internet search engine.

Information retrieval systems are a type of application that takes unstructured in-

formation and allows you to search through it. Internet search engines are a subset of

these applications where the unstructured information in question is web pages. Infor-

mation retrieval system were around before the internet, but the rise of the World Wide

Web boosted the development of these types of technologies astronomically. However,

the development of information retrieval systems faces challenges and amongst them

sits the problem of converting a user’s abstract information need into a set of relevant

documents via the medium of a query string that is input into the information retrieval

system. It is this challenge that this paper explores.

The process from information need to relevant documents has two distinct groups

of difficulties. The first lies in the fact that often the query that the user formulates is

not the best way to characterize their information need, and many users with the same

need will not phrase it in the same way. The second difficulty concerns the application
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itself, going from a string of words to a collection of relevant documents is a complex

one. This paper focuses on the formulation of the best possible query to satisfy an

information need.

A technique used to address the problem of an initial query not being informative

enough for the system, or being unfit for the information need it is trying to charac-

terize, is query expansion. This involves adding terms to the search query in such a

way that the system returns better results. There are lots of ways to perform query

expansion, but some interesting ones involve using different types of algorithms to add

to the query based on the results returned by the initial search with the initial query.

When considering the different types of algorithms that can be used to expand a query,

one might consider the family of genetic algorithms.

Based on the mechanism behind the theory of evolution, genetic algorithms are a

promising way to explore large search spaces and converge to optimal solutions. This

paper explores whether a genetic algorithm that would ‘evolve’ towards an optimal

query string could be a good way to tackle query expansion.

Before beginning to explore this idea however, it is prudent to think about exactly

what kind of information need is most interesting for this type of query expansion.

Thinking back to the enormous amount of unstructured data that exists online, there

are some interesting opportunities it presents. In particular, there is huge potential for

researching topics that may not have centralized repositories of information. There are

many examples of such topics, however Milosevic et al. (2018) focuses on the particular

example of social innovation projects and illustrates the potential of online informa-

tion in that field. There is an appetite to collect data about social innovation projects,

however there are few comprehensive collections of data about them that would be

sufficient for in-depth research about the domain as a whole. However, because social

innovation projects are often small, run primarily with public good objectives and de-
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veloped by start-ups or small companies, there is a huge amount of information about

them made available publicly online (Milosevic et al. 2018). If the online, unstruc-

tured information about these types of projects was able to be harnessed, the research

opportunities in that field would be extensive.

With that kind of broad information need the first step in collecting information about

projects like this is being able to find the information sources you want to extract the

information from. This scenario is to be borne in mind throughout this paper; a user

seeking information on a topic and wants to create the best way of searching for infor-

mation or data about that topic. This scenario is particularly apt for applying query

expansion techniques to because a user will not have access to the inner workings of

the search engine they are using. So the only way to optimize the system is to optimize

the query.

In this paper the application of genetic algorithms is explored. First through an

overview of background information in chapter 2 and a literature review of the on-

going research in the field in chapter 3. A methodology is then proposed to evaluate

how feasible and useful such an application would be. Next, an implementation is

detailed, giving the ability to test the hypotheses outlined in chapter 4. The results of

those experiments are then presented in chapter 5, allowing a conclusion in chapter 6

on the effectiveness of genetic algorithms in this context and a presentation of the ways

this research could be furthered and improved.
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Chapter 2

Background

As is hopefully obvious, the two key topics of this dissertation are information retrieval

and genetic algorithms. This chapter covers background on both topics to establish

some common ground knowledge. It introduces how these two techniques can be used

in conjunction and what the desired outcome of such a pairing would be.

2.1 Information Retrieval

In the broadest sense of the term, information retrieval is a process that allows a user

to find some information amongst sources that are not explicitly searchable. Today,

the term is mostly applied to techniques and technologies for searching through un-

structured digital documents (often web pages) to respond to a users information need.

We can understand information retrieval broadly as the following process (Manning

et al. 2010):

Information retrieval (IR) is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from

within large collections (usually stored on computers).

In other words, an information retrieval system takes an information need and a collec-
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tion of documents and returns a subset of those documents, ranked according to their

relevance to that information need.

When it comes to the modern understanding of information retrieval we mostly think

about search engines for the world wide web. The first web search engine was de-

veloped about 30 years ago when, at McGill University, computer science students

Alan Emtage, Bill Heelan and J. Peter Deutsch developed Archie. This tool down-

loaded directory listings of files on public anonymous sites and created a searchable

database (Seymour et al. 2011). At the time this tool was sufficient given the small

searchable space, but since then the number of online resources has increased exponen-

tially, and thus information retrieval technologies have developed fast.

The use of information retrieval systems quickly overtook querying databases as the

most popular form of finding information. The information retrieval technologies that

search the web have developed and today the search engine industry is huge. Forbes

recently estimated that in the United States the search engine optimization (SEO)

industry would be worth 80 billion US dollars by 2020 (McCue 2018).

The architecture of most information retrieval systems is shown in Figure 2.1. This

paper focuses on the development of the best query possible to characterize an infor-

mation need, so the section of the architecture we will focus on are the steps from

information need to query. An example of this particular stage of the process would

be when using an online search engine, the user has an abstract information need that

they wish to satisfy. The user formulates that need into a query, which is then typed

into the search bar and submitted to the search engine. However, that is a very basic

example of the process which assumes that the search engine used takes the query

as is and uses it for matching. In reality, there will probably be much more going

on behind the scenes with that initial query before the matching algorithm handles

it. More information will be added surrounding that initial query. That information
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could be data about the user themselves, information about their previous searches, or

additional terms might be added to the user’s original search terms to make the query

be more informative.

Often the user input query text is not sufficient for the information retrieval system,

so they are built to expand the query to return more relevant results. The reason the

query text is often not sufficient is is two-fold. The first reason relates to the nature

of language and the second relates to the nature of users interacting with such a sys-

tem. Firstly, language creates difficulties in effective querying, which Deerwester et al.

(1990) boils down to two factors; ‘synonymy’ and ‘polysemy’. Synonymy refers to the

fact that you can use multiple words or phrases to refer to a singular object or con-

cept. Examples include ‘sidewalk’ and ‘pavement’ or ‘buy’ and ‘purchase’. Synonymy

creates situations where a user offers a query using a particular word, but a useful

document only contain it’s synonyms. Polysemy is the opposite side of the linguistic

coin, where one word refers to two different things. Examples of this include ‘Apple’,

which could designate the fruit or the tech company . However, additional difficulties

lie in the inherent nature of search engines, mainly that users are trying to satisfy an

information need so by definition this need represents a blind spot in their knowledge.

Thus the chances are the user isn’t using the best terms to characterize this need, or

they wouldn’t be searching for it in the first place. This second issue is perhaps the

most difficult to tackle as it is the most intangible.

Many different techniques have been developed to combat these difficulties, but a

popular technique has proved to be altering the initial query. This is known as query

expansion (if you are adding terms to the initial query) or query reformulation (if you

are changing the initial query). Both are query optimization techniques, the technique

at the core of this paper’s research.

Query optimization is a particularly interesting aspect of search engine optimization

7



because it has two different possible points of application. It can be an internal compo-

nent of your information retrieval system or be a technique applied externally. It is the

latter case focused on here due to the applications it has to the generalized collection

of information via the medium of a pre-existing search engine.

Consider a scenario where a user is trying to collect information on a certain topic

using a search engine. This is an increasingly popular task as there is an abundance

of unstructured information available on the web and if this can be appropriately

harnessed there are ample research opportunities. The user cannot alter the search

engine’s algorithm, all they can change is the query being input; it would be prudent

to optimize it to return the best results. This is the case this paper addresses, looking

at different techniques to optimize an input query to maximize the relevant results

returned to the user.
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Figure 2.1: Information retrieval system architecture
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2.2 Genetic Algorithms

Genetic algorithms are an optimization technique inspired by the biological theory of

evolution (Kramer 2017). In the natural world, populations evolve slowly over time

to become more optimal (or more adapted to their environment). This change occurs

through successive populations being generated through breeding. The populations

improve because the better an individual, the more likely they are to be a successful

breeder and generate viable offspring.

Algorithms for finding optimal solutions to problems have been inspired by this process

in nature and now genetic algorithms are a popular mechanism for exploring search

spaces and returning solutions. They are particularly useful in large search spaces were

hill climber or gradient descent models are likely to converge towards locally optimal

solutions (Ingber & Rosen 1992). Genetic algorithms tend to follow the general pro-

cess in Figure 2.2.

initialize
population

evaluation

selection crossover

mutationend

Figure 2.2: Genetic algorithm process
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We can take a brief look at each of these stages to understand how the process functions.

• Initialize Population: During this first step the initial population is created

to start the algorithm. At this stage the representation of an individual must be

determined (which will represent a potential solution to your problem). Usually

an individual is represented by an array and is initialized with random contents

(or as random as they can be according to certain rules of the problem domain).

• Evaluation: Individuals in the population are evaluated to find the best solution

(or set of solutions) so far.

• Selection: Pairs of individuals are chosen to breed and create the next gener-

ation. There are a variety of ways to make this selection, typically a balance is

being struck between over-fitting and being completely random.

• Crossover: With the ‘parents’ chosen, they are combined using whatever tech-

nique is most appropriate to create new ‘children’. The simplest technique, as-

suming the individuals are represented by an array, is to take the first half of one

parent and combine it with the second half of the other to generate a child.

• Mutation: To further mimic the natural evolutionary process, random muta-

tions are introduced into the child population. This creates more diversity in the

population and helps to avoid converging towards locally optimal solutions.

• Iterate: This brings us back to the evaluation phase. Here, the process its

iterated a set number of times or until the individuals reach a certain predefined

criteria.

• End: At the end of the algorithm’s iterations the best solution will have been

recorded and is returned as the proposed solution to the problem.

With respect to query expansion, a genetic algorithm could be an interesting way to

explore the search space of potential query terms, and as we shall see is particularly
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adept when considering a system where we have no interaction with the rest of the

retrieval system.
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Chapter 3

Literature Review

3.1 Query Optimization

Query optimiztion is a method whereby words are added, removed or changed in the

original query supplied by the user of an information retrieval system. This method

is applied to overcome the inaccuracy within information retrieval systems that comes

from the initial query users supply, which is arguably the source of most inaccuracies

within IR systems (Carpineto & Romano 2012). There is considerable research into

this method, with even some work done into machine learning techniques to recommend

the best query expansion method to a user (Haiduc et al. 2013). There are a variety

of techniques that can be used for query optimization and these can be categorized as

either automated or semi-automated. Semi-automated techniques will typically pro-

duce potential terms to expand the query, but the user makes the final decision about

whether they should be added to the query or not (Qiu & Frei 1993). However these

techniques have not been very successful, as discussed in the Cuna Ekmekcioglu et al.

paper (1992) where they explore semi automated expansion compared to initial query

search results. This lack of success is likely caused by the fact that the user query

represents an information blind spot for the user, so choosing better query terms can

be a stab in the dark. In addition, when we are trying to those better query terms,
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‘better’ will be entirely dependant on the way the information retrieval system works

internally, which the user will have no visibility of. For this reason, this paper focuses

on automated query optimization, as it bypasses the issues created by the user, which

is an advantage to the system but also the user.

Within the field of automated query optimization techniques, some are known as rel-

evance feedback systems. This is where the optimization uses information or terms

from relevant documents retrieved in a previous search (Robertson 1990). Alterna-

tives techniques can use information about the initial query (adding synonyms of query

terms for example) or information about the user (how they have interacted with a

search system in the past for example) as a way to expand (Cui et al. 2003). This

paper focuses on relevance feedback systems primarily due to the availability of data

to perform that kind of task, but also because when considering applying these tech-

niques to research purposes, you wouldn’t want to build a system to dependant on a

particular individual’s profile.

When considering automatic relevance feedback based query optimization there are

lots of different techniques to chose from. A tried and tested method is the Rocchio

algorithm (Rocchio 1971), which produces a new weight vector from an existing weight

vector using a set of training examples (Lewis et al. 1996). Weight vectors in this con-

text refer to vectors that represent potential queries within a vector space of features

(features here meaning words that are potential query terms).

As an aside, it is worth explaining at this point what the vector space model is as

it features heavily in the query optimization methods and also features later in the

implementation section of this report. The vector space model is a way of representing

text. Each text element you need to model is represented by a vector of terms. These

terms are typically words, with every word in the vocabulary being an independent

dimension in a very high dimensional vector space (Singhal et al. 2001). So each doc-
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ument is represented by a vector, and the elements of that vector are the frequencies of

different terms. Using this representation, you can determine similarity between doc-

uments and queries using some measure of distance between the vector of the query

and the vector of the document. In this paper the vector space model is not used to

determine similarity between documents and queries, however it is used to represent

queries and documents as vectors in order to apply different algorithms to them for

the purposes of query expansion and feature selection.

Other algorithmic techniques for query expansion include the Widrow-Hoff Algorithm,

the Kivnen Warmuth Algorithm (Lewis et al. 1996) and perceptron learning algo-

rithms (Ng et al. 1997) all of which use gradient descent procedures and the vector

space model representation. The weights of the query vector are updated as you iterate

through a series of training data instances. At this point we can note the appeal of a

genetic algorithm for this kind of problem as they have been praised in the past for

outperforming gradient descent procedures as they are less likely to converge to a local

optima (Ingber & Rosen 1992).

At this point it would be amiss not mention how different machine learning tech-

niques have been applied to information retrieval systems. Mostly these techniques are

not applied to query expansion but rather to optimizing the system itself. In fact they

are particularly popular when it comes to the classification of retrieved documents

rather than query based retrieval. For example, in the work by Lei (2012) a Naive

Bayes classifier is used to classify text documents, and in the work by Uğuz (2011) a

K-Nearest-Neighbours method and a decision tree are also applied to a similar prob-

lem. Interestingly both of these retrieval systems have genetic algorithm components,

as will be discussed in the next section. There has also been work into using Support

Vector Machines, but again mostly for the purposes of classification (Glover et al.

2001).
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3.2 Genetic Algorithms

Genetic algorithms have been widely used within the field of information retrieval sys-

tems, but are less common within that of query optimization. They have been used

when applied to the indexing and matching components of the retrieval system (Chen

1995, Vrajitoru 1998, Pathak et al. 2000). They are very often applied to ‘feature se-

lection’ techniques, such as in the aforementioned works of Lei (2012) and Uğuz (2011)

as well as the work of Chen et al. (1998) and many more. Or they are used to modify

the representation of documents and queries (Pathak et al. 2000).

Feature selection is the process by which important features (here, words) are cho-

sen to help improve efficency and accuracy of a retriveal system. This technique is

discussed in the next section as it will prove to be a crucial component of the final

implementation, however at this stage we can note that genetic algorithms are a pop-

ular tool for performing such a selection. In the three papers mentioned above genetic

algorithms are used to reduce the dimensions of documents to improve search speeds

and reduce complexity and all note the effectiveness of these techniques.

When looking at how query expansion can be performed using genetic algorithms the

papers by Horng and Teh (2000), Al Mashagba et al. (2011) and Abdelmgeid (2007) all

propose implementations. These three papers use genetic algorithms to expand queries

and are applied to document collections in Chinese, Arabic and English respectively.

Each reports improved retrieval results after the application of the genetic algorithm to

the query compared to the original seed query. Among those papers the Al Mashagba

et al. paper is of particular interest for it’s experimental design. The genetic algorithm

component does not use any information about the retrieval system or the overall doc-

ument collection. In short, any retrieval system could be used and the mechanism of

the genetic algorithm would be the same. The query expansion uses only information

from documents that are returned from an initial seed query put to the system. This
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method means that this technique could be applied to any information retrieval system

out there so long as it accepts a query and that there is some mechanism for identifying

relevant documents once a set of potentially relevant documents has been returned by

the system. This mechanism for identifying relevant documents could be a purpose

built classifier or a manual, on the fly, identification by a user for example.

This brings us back to the appeal of query expansion mentioned in the introduction;

that it can be done regardless of the type of information retrieval system you use.

In fact the paper by Abdelmgeid highlights the applicability of a genetic algorithm

to that kind of situation. However, this paper dealt exclusively with text in Arabic

and reminds us to bare in mind that the Arabic language is very different to English,

particularly with respect to the frequency of individual words. With this in mind it

can be argued it is worth recreating a system similar to the one devised in that paper

to measure the effectiveness of a genetic algorithm being applied to query expansion

in this way, using document collections and queries in English. There is also scope to

test different parameters and design of genetic algorithm as well. Finally, it could be

interesting to evaluate the system in different ways, comparing the genetic algorithm

approach to other query expansion techniques, as the paper only compares the results

of the genetic algorithm to the initial query’s rate of success.

3.3 Feature Selection Techniques

As previously mentioned, the feature selection mechanism is a practice where a subset

of features are chosen amongst the full original feature set according to some criteria

of feature importance (Uğuz 2011). It can be used as a way to reduce the number of

dimensions in your document representation, improving the efficiency of your retrieval

(as a document is represented by a smaller object), or it can be used to select potential

features for query expansion. This is typically applied when the model of the infor-

mation retrieval system is already a vector space model, but can also be used in other
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cases. For our purposes we will be using feature selection to create a subset of terms

which are candidates for the query expansion, as it would be unrealistic and inefficient

to test all terms that exist within a collection.

There are different techniques that can be used for this selection and as with informa-

tion retrieval systems as a whole, there are automatic and semi-automatic techniques

for feature selection. In fact the research done by Ng, Goh and Low found that at least

some manual input into feature selection improved the results of the querying (Ng et al.

1997).

However, for our purposes we will focus on automatic techniques and the most popu-

lar automatic techniques are information gain, statistical document frequency, mutual

information, x2-test and term strength (Yang & Pedersen 1997). The comparative

study by Yang and Pedersen finds that the most effective techniques for feature se-

lection (using a KNN classifier) were information gain and mutual information, with

document frequency close behind and being the simplest method to use. However their

case was feature selection for the purposes of document classification rather that re-

trieval. As mentioned before, genetic algorithms have also been used successfully for

feature selection.

Armed with the promising results of genetic algorithms within query expansion, this

paper proposes an information retrieval system that uses a genetic algorithm to expand

queries to return more relevant documents. The implementation is such that it models

a scenario where the query expansion has no visibility into the underlying structure

of the information retrieval system, or the document collection it is retrieving from.

This allows these techniques to be completely applicable to any information retrieval

system.
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Chapter 4

Methodology

This chapter covers the hypotheses we are seeking to test, the experimental design used

to test them, and finally the implementation of the experimental design.

4.1 Hypotheses

This paper seeks to explore how effectively a genetic algorithm can be used to optimize

a query submitted to an information retrieval system. To explore this area three re-

search hypotheses have been formulated. These will be evaluated to prove or disprove

their statements and, in doing so, assess this research area.

The first hypothesis is simple and obvious;

1. A genetic algorithm can be used as a tool for query optimization.

This hypothesis has already been addressed in previous research as outlined in the

literature review. However, we can consider the fact that many of those studies used

languages other than English and that their experimental designs were slightly differ-

ent. With this in mind it is interesting to address this hypothesis again, as a stand

alone problem. This hypothesis will be addressed simply by implementing a function-

ing information retrieval system with a genetic algorithm for query optimization.
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Next, we would like to address the quality of the genetic algorithm’s performance

with the following hypothesis;

2. A genetic algorithm method of query expansion will perform better than other

query expansion methods.

Addressing this will involve implementing alternative query expansion techniques to

compare the genetic algorithm to.

The final hypothesis is perhaps the most interesting one, as addressing it is the first

step in exploring this type of query optimization’s practical applications. We shall be

exploring whether or not a genetic algorithm approach to query expansion would be

useful for information gathering across the internet using pre-existing search engines.

3. Query optimization can be effectively performed using a genetic algorithm with-

out input from the information retrieval system itself.

The design of our information retrieval system will be crucial to evaluate this hypothe-

sis, and we shall have to be mindful of all information that crosses from the information

retrieval system to the query development side.

Using these hypotheses as a guide, the next section explores the experimental de-

sign used in this project, making reference to how components of the design allow us

to evaluate specific hypotheses.
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4.2 Experimental Design

Having defined the hypotheses for this project the following experimental design will

serve as a framework in which to evaluate them. The actual implementation of this

design is detailed in section 4.3.

Overall, this experiment takes a simple information retrieval system into which a query

is input and a list of documents the system deems relevant is output. This system is

built in java using Lucene, a java text search engine library. The document collection

is a TREC collection which is accompanied with a list of predefined queries and an

associated list of relevant documents. The system uses these to evaluate the system’s

effectiveness at returning relevant results.

An initial search will be run using a seed query from the predefined list of queries,

this will return a set of documents that may or may not be relevant to the query. This

first set of returned documents will serve as the baseline comparison when evaluating

the effectiveness of the genetic algorithm’s query expansion. However in addition to

this, it serves to provide a set of documents that will form the basis of the query ex-

pansion techniques. It is only using the content of the documents returned by the seed

query that allow us to satisfy the experimental design conditions to evaluate hypothesis

3. By only using documents that have been returned we ensure that this experiment

could be repeatable using any information retrieval system so long as it returns docu-

ments.

A feature selection technique will be applied to the returned set of documents to create

a list of potential query terms. This is an example of a case when hypothesis 3 can

be evaluated because the feature selection only uses documents returned by the infor-

mation retrieval system. As we are only using the information that the information

system has made externally available, this accurately models an external search engine
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system. The feature selection will be performed using a technique called information

gain, mentioned in chapter 3 and highlighted for it’s efficiency in scenarios like this one.

Once features have been selected, two different query optimization techniques will

be used to optimize the seed query. The first method is the Rocchio algorithm and

the second is a genetic algorithm. Both were implemented from scratch in java and

the design choices for both are detailed below. The Rocchio algorithm will serve as

our comparison tool for the genetic algorithm implementation, allowing us to evaluate

hypothesis 2. The successful implementation of the genetic algorithm will serve to

evaluate hypothesis 1.

4.2.1 Feature Selection - Information Gain

‘Information gain’ is a value calculated for individual terms to determine how useful

they are for classifying a particular set of documents in a collection. The function to

calculate the information gain value for a term is as follows:

IG(t) =−
|C|∑
i=1

P (Ci)log(P (Ci))

+ P (t)

|C|∑
i=1

P (Ci|t)log(P (Ci|t))

+ P (t̄)

|C|∑
i=1

P (Ci|t̄)log(P (Ci|t̄))

(4.1)

In this equation:

• t is a term in the collection

• C is all the categories in the document collection (in our case there are only two,

relevant and irrelevant)
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• P(Ci) is the probability of the category Ci within the document collection

• P(t) is the probability of term t occurring in the collection

• P(Ci | t) is the probability of Ci given t

• P(Ci | t̄)is the probability of Ci given not t

The information gain score is calculated for all terms in relevant documents returned

after the first run of the seed query. The higher the information gain value, the more

useful the term is to differentiate between relevant and non relevant documents. Dif-

ferent quantities of features are tested as will be recorded in chapter 5 of this report.

Information gain was chosen as a technique for feature selection because of the favor-

able results yielded in the paper by Yang and Pedersen (1997). It has the advantage

over simpler techniques such as term frequency (where the top occurring terms are

chosen) because it accounts for the scenario where a term might be very popular in

relevant documents, but also in irrelevant documents, thus not making it a very useful

term.

To reiterate, it is the fact that the feature selection is only performed using documents

that the retrieval system has returned that allows us to evaluate hypothesis 3, since it

keeps the implementation of the information retrieval system and the implementation

of the query expansion separate form each other.

4.2.2 Rocchio Algorithm

The query expansion technique chosen as a comparison tool for the genetic algorithm

method is the Rocchio algorithm. This algorithm was chosen as a comparison due to

it’s historical use in the field. Additionally, as is apparent in the equation, it takes into

account the initial query, assuming it will hold some relevance to the documents it is
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trying to retreive. The technique is explicitly defined in terms of document and query

vectors, concepts defined in the chapter 2. The algorithm functions as follows;

~Qm =(a× ~Q0)

+ (b× 1

|Dr|
×

∑
~Dj∈Dr

~Dj)

− (c× 1

|Dnr|
×

∑
~Dk∈Dnr

~Dk)

(4.2)

In this equation:

• ~Qm is the modified (expanded) query vector

• ~Q0 is the seed query vector

• |Dr| is the set of relevant documents

• |Dnr| is the set of non-relevant documents

• ~Dj is a document vector

• a, b and c are constants that must be determined

This will generate a vector to represent the new query. When translating between the

vector and the query, each element of the vector that is greater than a certain threshold

is input into the new query. Initially that threshold was set to 0, but as is explored

in chapter 5 changing this threshold significantly improves the results returned by the

Rocchio algorithm.

This tried and tested method will allow us to situate the results of the genetic algo-

rithm query expansion within a wider context, thus helping us to evaluate hypothesis

number 2.
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4.2.3 Genetic algorithm

The genetic algorithm technique is explained in detail in the Implementation section,

but here we will broadly cover the theory of how it is going to find the best query.

Random queries will be generated, using the words provided by the feature selec-

tion. New generations of queries will be created by breeding queries from the previous

generation. The better a query is at returning relevant results, the more likely it is

to be chosen to breed. This should generate successively stronger generations of queries.

For each generation we will save the best individual and after a certain number of

generations have been created, the best individual found will be returned. Using this

final query the effectiveness of the system will be evaluated allowing us to evaluate

hypothesis 1. Comparing the genetic algorithm’s results to the results returned by the

queries created by the Rocchio Algorithm and the seed queries will allow us to evaluate

hypothesis 2.

4.2.4 Evaluation

To evaluate the effectiveness of an information retrieval system typically precision and

recall are the two metrics used and they are defined as follows:

precision =
|{relevant documents} ∩ {retrieved documents }|

|{retrieved documents}|
(4.3)

recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
(4.4)

The precision value indicates the proportion of the returned results that are relevant

whilst the recall value indicates the proportion of relevant results that have been re-

turned. In our case we have chosen to use recall as our primary measure of effectiveness
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as there is a maximum number of returned documents regardless so precision is less

informative.

In addition to this, we will be measuring both the increase in recall between the seed

queries and the expanded queriess. This will allow us to get an idea of how much the

expanded queries are improving the retrieval. Finally in some cases we will look at

actual number of additional retrieved documents for increased contextual information

about the queries.
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4.3 Implementation

In this section shall be detailed the implementation of the system. First and foremost,

all of the implementation has been done in Java using Java version SE-12. This lan-

guage was chosen due to the availability of the Lucene package to handle the indexing

of documents.

In the code submission that accompanies this report there is a Readme file which

indicates how to run the code that supports this report. It assumes the code will be

run in Eclipse. This paper doesn’t go into extensive detail about the programming

side of the implementation, but will make reference to some of the java classes that

implement the functionality discussed. However, we will discuss the parameter file

LuceneConstants.java because this makes explaining certain functionality and imple-

mentation choices later on easier to understand.

4.3.1 LuceneConstants.java

The LuceneConstants class does what it says on the tin. The constants are mostly file

locations and referencing them explicitly before discussion the implementation in more

detail will make the implementation more understandable. Obviously these file paths

need to updated for your own environment when running the code. Below is the code

in the LuceneConstants.java file.

// LuceneConstants.java

public class LuceneConstants {

public static final String OUTPUTFILE =

"C:\\Users\\Alex\\Documents\\output";

public static final String INDEXFILE =

"C:\\Users\\Alex\\Documents\\Index";

public static final String DATAFILE =
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"C:\\Users\\Alex\\Documents\\DOTGOV";

public static final Boolean REINDEX = false;

public static final String QRELS =

"C:\\Users\\Alex\\Documents\\qrels.txt";

public static final String QUERIES =

"C:\\Users\\Alex\\Documents\\querytext.txt";

}

The ‘OUTPUTFILE’ is the directory of an empty folder on your machine. It is used as

a storage space for some certain processes that require it, namely the indexing process.

The ‘INDEXFILE’ is the directory where either the index will be stored if it has

not already been created, or when it is currently stored.

The ‘DATAFILE’ is the DOTGOV folder, this is where the TREC collection is stored

in the specific TREC storage format.

The ‘REINDEX’ boolean is used to determine whether or not the collection need to

be indexed, as the indexing process is long and should only be performed if necessary.

Finally the ‘QRELS’ and ‘QUERIES’ are references to the location of the text files

containing the qrels and string seed queries respectively.

4.3.2 Lucene

Apache Lucene is an open-source search package in Java, it implements “indexing and

search technology, as well as spell checking, hit highlighting and advanced analysis/-

tokenization capabilities” (Lucene 2000). It is used in this application firstly to index

the document collection and secondly to query the collection (using either the seed

query or the expanded queries). The ‘skeleton’ of the code was developed following a
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basic Lucene tutorial (Tutorialspoint 2019), but has been developed far beyond the

framework provided by the tutorial.

This implementation uses the StandardAnalyzer class to index the collection. This

uses the StandardTokenizer class which breaks down the document into individual

tokens (words) according to Word Break Rules from the Unicode Text Segmentation

Algorithm (Davis 2019). The tokens, once extracted, are normalised using two Lucene

classes; LowerCaseFilter and StopFilter. This normalizes all the tokens by converting

them to lowercase and discounts tokens that match stopwords in a list of English stop

words provided by Lucene. Stop words are terms that occur so frequently that they

are unlikely to be useful when indexing and querying a document collection. This will

include words like ’a’, ’the’, ’at’, ’be’ etc...

Lucene uses an inverted index for searching purposes. Without going into too much

detail about an inverted index, it is a very common way of indexing documents in a

collection and retrieving them. It is so popular because of how efficiently it facilitates

retrieval, although comes at the cost of being slower to index the documents in the

first place. Simply put, the inverted index creates a mapping between terms and the

documents containing them.

When indexing, the Lucene indexer creates Documents objects to represent all the

documents in the collection using different fields as the components of the document.

These fields can include whatever you need, the documents name, the path to access

it, etc. Crucially in this case the implementaion is such that the document stores the

term vector information which will simplify the access to term frequency information

needed for feature selection. The term vector information is a vector space model rep-

resentation of the document.

Technically, when the term vector component is used to facilitate the access to term
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frequency information this is an instance of the information retrieval system interacting

with the query expansion technique in a way that wouldn’t be feasible in the case of

an external information retrieval system such as a search engine. This would appear to

contravene the design choices made to allow us to evaluate hypothesis 3. This will be

further discussed in subsections 4.3.4 and 4.3.5, but this choice was made for efficiency

reasons and it would be easy to same extract the information from the returned text

documents directly, without accessing the index information.

Once the index has been created, a Searcher object is used to search the index using

a query parser. The QueryParser can be implemented in a variety of ways, however

this implementation uses simple Boolean querying to the indexed content of the body

of the files.

4.3.3 TREC

We are using a TREC collection of web pages as the document collection for our re-

trieval system. The Text REtrieval Conference (TREC) supports “research within the

information retrieval community by providing the infrastructure necessary for large-

scale evaluation of text retrieval methodologies” (NIST 2000) and provides collections

of documents along with queries and the associated documents these queries should

retrieve.

Our retrieval system will use a subset of the queries TREC provided, retrieve docu-

ments from the TREC document collection, and use the list of relevant queries TREC

provides to evaluate the systems effectiveness.

The specific TREC collection we are using is the DOTGOV collection distributed by

The University of Glasgow. It contains 1.25 million documents that are crawls of .gov

web sites collected in 2002. This particular collection was chosen as the documents
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represent web pages and the most obvious application of this work would be to web

search engines.

The documents are indexed using Lucene’s functionality as described above. Unfortu-

nately, both the index and the DOTGOV collection are too large to submit with this

paper, so will be provided separately. If you wish to recreated the index the REIN-

DEX parameter must be set to true, DATAFILE set to the location of the DOTGOV

collection, OUTPUTFILE set to an empty folder in your environment and INDEX to

where you would like the index stored.

This OUTPUTFILE is a crucial component of the implementation of the indexing

process in this application. Due to the large number of TREC documents in the collec-

tion they have been stored in a specific way, by TREC, to save space. Many documents

have been concatenated into a single text file and that has then been compressed into

a .gz file. There are 4,612 compressed files, stored across 47 larger folders. However,

each document needs to be stored as an individual text file to be indexed correctly

by Lucene. To account for this, the application handles each of the 47 larger folders

individually, and extracts the content of all the .gz files it contains. It reads the con-

tent of the .gz files and separates that into the individual documents. These individual

documents are stored as text files in the aforementioned OUTPUTFILE. Once all the

documents exists as text files in the OUTPUTFILE they are indexed by Lucene. After

they have been indexed, those text files are deleted and the now empty OUTPUTFILE

is used to store the documents from the next folder of the 47 larger folders. This

process of processing the documents is handled by the CleanDOTGOV class, and the

indexing by the Indexer class.

This design choice was made so as to use a minimal amount of storage space on the

machine running the application. This has runtime costs if you need to index the col-

lection again however this was deemed worthwhile given that the process must only be
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run once when the index is being compiled and stored.

During the process whereby the individual document are being extracted and stored

as individual text files for indexing, the CleanDOTGOV class also filters the informa-

tion in the documents. The Jsoup java HTML Parser is used to strip the web page

information down to the text content of the page and only this text content is saved in

the text file and indexed. This avoids a scenario when the indexer is confusing HTML

code as words to index.

The DOTGOV queries used and associated number of relevant documents in the col-

lection are in Table 4.1. Only a subset of queries are being used to test the system

because a significant number of the queries provided for this document collection only

return one or two relevant documents. Not only would this generate complications for

the implementation of the system, but this system is being designed for scenarios where

the user is trying to collect a collection of documents on a topic, so queries with only

one relevant document are not as interesting for us. In addition to this, for run time

purposes, using a subset of queries is advantageous. This particular set of queries were

chosen for their divers subject topics and their high number of relevant documents in

the collection.

The query and qrel files have been provided with this submission. The query file

contains all the text queries and their associated query number. The qrel file is a

cross reference of all query numbers and documents, indicating whether or not they

are relevant. There is not a ranking of relevant documents in this particular collection,

documents are simply relevant or irrelevant to a query. Importing this information is

handled by the ImportQrels class.
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Table 4.1: Queries

query no query
no of relevant

docs
5 ‘American music’ 27
12 ‘oil petroleum resources’ 33
15 ‘welfare reform’ 17
19 ‘toxic waste’ 40
48 ‘federal and state statistics’ 86
58 ‘automobile emissions vehicle pollution’ 34
104 ‘space exploration’ 85
136 ‘career information’ 114
153 ‘technology transfer’ 75
157 ‘federal grant programs’ 147

4.3.4 Feature Selection

The implementation of the feature selection function is undertaken in the TermFre-

quency class, and is pretty straight forward. The only element of note however is that

to calculate certain probabilities the document’s term frequency vectors, that were

generated when the index was created, are used. As mentioned before, this might

seem in contradiction with the experimental design whereby the query expansion does

not interact with the information retrieval system. However in reality this choice was

made for efficiency reasons, and because for storage reasons the documents are not

being stored as individual files, so reading them at this stage in the program would be

complicated. If this were implemented with, for example, and external search engine,

you would receive the text information contained in the web pages directly and calcu-

lating these probabilities would be easy. It’s for this reason that this design choice was

made and why it does not impede the validity of the experimental design.

4.3.5 Rocchio Algorithm

The implementation of the Rocchio algorithm is undertaken by the Rocchio class.

Again, is an application of the algorithm detailed in the experimental design section.
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Similarly to the feature selection implementation though, when the algorithm refers

to the sets of relevant and non relevant documents these sets are compiled from the

documents returned by the initial query. The parameters a,b and c are optimized for

our case as is the term threshold, as is detailed in 5 of this report.

Similarly to the section above, when implementing the Rocchio algorithm we use the

term frequency vectors generated during the indexing process. Again, these could be

created from the documents directly.

4.3.6 Genetic Algorithm

The implementation of the genetic algorithm is done via the functions in the Geneti-

cAlgorithm class and different parameters have been optimized, with the results of this

optimization detailed in Section 5.1. Here, we shall detail the implementation choices

of the algorithm.

The first step in the genetic algorithm process is to decide how the individuals in

your population are going to be represented. In this case, they are represented by

query vectors based on the features selected during the feature selection phase. This

query vector can contain values of 1 or 0 denoting whether or not the term the dimen-

sion in the vector refers to is included in the query.

An example of this is if your features are the terms [‘cat’, ‘dog’, ‘apple’, ‘sunshine’,

‘basket’, ‘yellow”] an individual might be represented by the vector [1,0,0,1,0,1], which

would denote the query ‘cat sunshine yellow’.

When initializing the first generation of individuals in the population, the individ-

uals were initially created completely at random. However, we also experimented with

biasing generation so that the vector values were slightly more likely to be 0 to see how
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this affected returns. This is discussed in 5.

When creating the next generation of individuals we have to breed parent individuals.

When choosing parents to breed, tournament selection is used. This is a technique

whereby two sets of three different parents are chosen at random from the population.

The best candidates from each of the two groups are determined and bred to create two

new children for the next generation. It is this step that causes the evolution towards

better solution; some better individuals are being chosen to breed, but they are not

the best of the whole group because that would create a next generation that wouldn’t

be diverse enough.

The mechanism for breeding parents is as follows. A random crossover point is se-

lected and the first child is created from the first part of the first parent (before the

crossover point) and the second part of the second parent (after the crossover point).

Following on from our example earlier, if we were breeding individuals [1,1,1,1,1,1] and

[0,1,0,0,1,0] and the random crossover point generated was 3 the children would be

[1,1,1,0,1,0] and [0,1,0,1,1,1]. Additionally, before a child is put into the new genera-

tion, in 5% of cases a mutation occurs. This means that, in 5% of children, a random

element of the vector will change from a 0 to a 1 or vice versa. This is done to introduce

some random changes into the population for increased diversity.

Finally, we have to define how we are determining the best solutions. This is done

quite simply by inputting the query into the previously explained Lucene IR system

and counting the number of relevant documents returned. The query that returns the

most documents is the best solution.
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Chapter 5

Analysis

5.1 Optimization of Parameters

Most of the components of this implementation have some parameters that need to be

defined. This section explores and analyses the different results from these optimiza-

tion processes. Lastly, the final results of the best version of the query optimization

techniques are presented and discussed.

5.1.1 Feature Selection

With respect to the feature selection process, the only aspect that needs to be defined is

how many features are provided. Specifically, when we consider the genetic algorithm,

this could be interesting. There may be terms that are not very useful when it comes

to differentiating between relevant and irrelevant documents amongst those returned

by the seed query. However these terms, in the wider collection, might be very useful.

Providing the genetic algorithm with too few terms could deprive our solution of useful

terms.

As such, figure 5.1 shows the average change in recall between the seed query and

the queries generated by both the Rocchio algorithm and the genetic algorithm, ac-
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cording to the number of features they were provided with. The number of features

ranges from 25 to 300.

Figure 5.1: Increase in recall compared to seed query, according to number of features

As far as the genetic algorithm is concerned, the best number of features is 75, al-

though the number of features doesn’t effect recall significantly. However it is in our

best interests to pick the smallest number of features since the larger the number of

features the longer the algorithm takes to run.

It would seem that the best number of features with respect to the Rocchio algo-

rithm is also around 75. However what is striking about these results is how poorly

the Rocchio algorithm is performing, consistently retrieving fewer results than the seed

query. This is concerning and explored further in the next section.
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5.1.2 Rocchio Algorithm

Mindful of the appauling results obtained when trying to optimize the number of fea-

tures to use, we can look to how to improve the results of the Rocchio algorithm by

changing the parameters. The first way to optimize the algorithm is by altering the

three constants; a, b and c. When trying to optimize the number of features, the

parameters a, b and c had been set to 1, 0.8 and 0.2 respectively but we will now

explore whether it would prove effective to change them. Different values were tested

for these three variables using values between 0 and 1 in increments of 0.2. They are

evaluated using the average increase in recall between the query returned by the Roc-

chio algorithm and the seed query (the average o 5 queries out of the 10, for efficiency).

However unfortunately none of the combinations generated solutions that performed

better that the initial query. These results were abysmal and have not been reported

in this paper.

At this point, to try and remedy this, the threshold parameter for term selection

was experimented with. The Rocchio algorithm returns a query vector and initially

the optimized query was built by taking the associated term of any vector element

above 0. However, with the Rocchio algorithm performing so poorly and the proposed

queries being fairly long, it was conjectured that perhaps altering this threshold could

help. Different threshold values were tested between 0 and 1 in increments of 0.1, and

between 1 and 5 in increments of 1. The results are in tables 5.1 and 5.2 where we

see the average increase in recall compared to the seed query. We can see that when

the threshold takes larger values there is no increase. This means that the query vec-

tors proposed were empty and the system defaulted to the initial seed query. However

for threshold values around 0.5, the recall and net increases in retrieved results are

improved. As such the threshold was set to 0.5 for the Rocchio algorithm.
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Table 5.1: Testing the threshold for term selection in Rocchio algorithm (average over
5 queries)

Threshold Recall increase Net increase
0.0 -0.076 -3.5
0.1 -0.078 -2.9
0.2 -0.062 -1.8
0.3 -0.023 0.0
0.4 0.043 2.9
0.5 0.061 2.9
0.6 0.045 2.1
0.7 0.005 0.2
0.8 0 0
0.9 0 0
1.0 -0.033 -0.9
2.0 0 0
3.0 0 0
4.0 0 0
5.0 0 0
10.0 0 0

Table 5.2: Testing the threshold for term selection in Rocchio algorithm (average over
10 queries)

Threshold Recall increase Net increase
0.0 -0.043 -2.05
0.1 -0.032 -1.52
0.2 -0.020 -0.95
0.3 0.005 0.23
0.4 0.010 475
0.5 0.236 11.3
0.6 0.160 7.6
0.7 0.015 0.71
0.8 0 0
0.9 0 0
1.0 -0.023 -1.1
2.0 0 0
3.0 0 0
4.0 0 0
5.0 0 0
10.0 0 0
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After selecting this 0.5 threshold, the testing of a, b and c parameters was performed

again and the results table is in the Appendix. This time the parameters give more of a

range of results and crucially in many cases the Rocchio algorithm was an improvement

compared to the seed query. The best weights found were a = 1, b = 0.8 and c = 0.2,

coincidental what had been chosen at the beginning! These parameters are used for

the implementation of the Rocchio algorithm. The table in the appendix shows only

the average results ove 5 queries (for efficiency’s sake), this is why Table 5.1 features

in this report, so the values can be compared.

5.1.3 Genetic Algorithm

There are a few components of the genetic algorithm that can be optimized. The

size of the initial population, the number of generations to go through, and how the

population is initialized in the first place. We look first at the number of individuals

in a population at the start. Figure 5.3 shows the recall and net number of returned

documents for initial population sizes of 50, 100 and 150, 200, 250 and 300.

Table 5.3: Testing the initial population size in a genetic algorithm
Population Size Recall Net increase

50 0.08 3.5
100 0.12 5.3
150 0.10 4.5
200 0.09 3.9
250 0.08 3.4
300 0.09 3.9

We can see that a population size of 100 yields the best recall and net retrieval on

average across the 10 test queries.

In a similar way, we can test the number of generations the algorithm will go through

before stopping and returning the best solution. Figure 5.4 is similar to figure 5.3 and

we can see that the best number of generations appears to be 150. However it seems
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that the results begin to plateau after 100, so we will use 100 generations, as it will be

more efficient to keep the generations at a lower number for runtime’s sake.

Table 5.4: Testing the initial population size in a genetic algorithm
Population Size Recall Net increase

50 0.09 3.9
100 0.12 5.2
150 0.13 5.7
200 0.12 5.2
250 0.12 5.1
300 0.13 5.7

Finally, it was noted that a lot of the final queries were considerably long, similarly

to the Rocchio algorithm, so we tested using a bias when initializing the population.

Instead of initializing individuals in the population with a random assortment of 1’s

and 0’s, we tested making it more likely that the elements be 0’s than 1’s. It was found

that on average across the 10 queries we were testing, having a greater bias improved

recall considerably. The results can be seen in Figure 5.2.
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Figure 5.2: Recall according to the bias during the population initialization

5.2 Results

The best parameters found for the genetic algorithm are as follows: an initial popula-

tion size of 100, 100 generations to be bred before returning a solution and a bias when

generating the initial population whereby the individuals will have on average 10% of

all terms in the vocabulary. Concerning the Rocchio algorithm, there is a threshold for

term selection of 0.5, and the variables a, b and c are set to 1, 0.8 and 0.2 respectively.

Finally, the best number of features to be selected in both algorithmic cases is 75.

The results outlining the performance of the two algorithms and the seed query are

detailed in the following three tables. The final number of relevant documents returned

per query by basic retrieval, the Rocchio query optimization and the genetic algorithm

are in table 5.5. Table 5.6 shows the recall, per query, on each of these for each of the
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three query types. Finally table 5.7 shows the increase in recall for both the query

expansion techniques compared to the initial query.

Table 5.5: Raw number of documents returned for each query
Query no No expansion Rocchio expansion Genetic algorithm

5 16 21 24
12 8 8 7
15 13 15 17
19 2 3 8
48 6 11 9
58 7 8 13
104 4 5 8
136 13 13 21
153 17 17 20
157 13 24 27

average 9.9 12.5 15.4

Table 5.6: Recall for each query
Query no No expansion Rocchio expansion Genetic algorithm

5 0.59 0.77 0.88
12 0.24 0.24 0.21
15 0.76 0.88 1
19 0.05 0.07 0.2
48 0.07 0.13 0.10
58 0.21 0.23 0.38
104 0.05 0.06 0.09
136 0.11 0.11 0.18
153 0.22 0.22 0.27
157 0.09 0.16 0.18

average 0.24 0.29 0.35
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Table 5.7: Increase in recall compared to initial query
Query no Rocchio expansion Genetic algorithm

5 30.5 % 49.1 %
12 0 % -12.5 %
15 15.8 % 31.6 %
19 40 % 300 %
48 53.8 % 42.8 %
58 9.5 % 80.9 %
104 20 % 80 %
136 0 % 63.6 %
153 0 % 22.7 %
157 77.7 % 100 %

average 24.7% 75.8%

Table 5.5 shows that in almost all of the queries the genetic algorithm returns the most

relevant documents. The same is seen for recall in table 5.6. These results are very

promising, in particular the difference in recall shows how much the query optimization

techniques are working and returning more relevant documents.

It can said that the actual quantity of relevant documents being returned is not par-

ticularly high, which is a fair criticism. Having said this, if we look at the increase in

recall in figure 5.7 we can see that compared the number of relevant documents being

returned by the seed queries, the optimized queries are functioning very effectively, in

particular those optimized via the genetic algorithm.
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Chapter 6

Conclusion

6.1 Final Results

The final results are very promising. Both query expansion techniques yield improved

retrieval results, with the genetic algorithm proving the most effective. The success of

the implementation of the genetic algorithm allows us to confirm the first hypothesis

(“A genetic algorithm can be used as a tool for query optimization”). The fact that the

genetic algorithm returned more relevant documents and better recall that the Rocchio

algorithm and the seed query allow us to confirm the second hypothesis (“A genetic

algorithm method of query expansion will perform better than other query expansion

methods”).

The third hypothesis (“Query optimization can be effectively performed using a

genetic algorithm with-out input from the information retrieval system itself”), sought

to explore whether a genetic algorithm query optimization technique would be effective

when applied to an information retrieval system which modeled a search engine, where

you have no access to the back end mechanics. This hypothesis can also be confirmed

due to the combination of the particular experimental design used and the successful

results produced for the genetic algorithm implementation.
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6.2 Future Work

Despite the positive results there is much future work for this system, existing in two

broad categories. The first category is all the ways in which this particular system

could be further optimized and tested, and the second category is applications for

these kinds of techniques in the future.

Starting with the former, the first techniques that could be explored are novel ways

of handling the terms that are used by the query expansion techniques. For example,

perhaps adding synonyms of important terms to the list of features could be useful.

This would explicitly tackle the problem of synonymy in the query formulation process.

In addition to this, an implementation could be designed when additional terms are

added to the vocabulary as more documents are discovered. This would be more of

an iterative query expansion technique but intuitively it would seem this could be an

effective method. There would be other ways to apply genetic algorithms to this field

as well. In the paper by Araujo et al. (2008) a genetic algorithm is used to alter the

query using a morphological thesaurus which means that the query is altered by using

words with the same root as those in the original query.

There are also different ways to handle the vocabulary in general that could be ex-

plored. For example innovative ways of stemming terms (Araujo & Pérez-Agüera

2008). It might also be worth experimenting with different feature selection methods,

either more complex methods to test how they perform, or choosing ones specifically

adapted for information retrieval tasks citepgeng2007feature. A more complicated

model specifically tailored to query searching feature selection might help further im-

prove the recall results.

If we were to test new feature selection models, it might be worth testing another

query expansion optimization techniques too. In particular since the Rocchio algo-
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rithm proved to be a bit temperamental when optimizing the parameters, future work

could explore more comparison techniques.

In this implementation, the parameters optimized were done so for all the queries,

taking the best parameters on average. However it is arguable that this should be

done on a query by query basis. Especially given that the application would likely be

to specific themes or domains, and that a few of the see queries were not improved

by the genetic algorithm. Optimizing the parameters for each query would most likely

generate better accuracy, however there is something to be said for creating a general-

ized model.

Another way to make the implementation here more robust would be to use more

divers evaluation tools. For example, it might be useful to have some kind of measure

of how well ranked the documents returned are. For example the system could be re-

turning lots of relevant documents but if they are all on the second page of the search

engine interface, the user is very unlikely to see them. To tackle this we could use

recall at different ranks instead of just overall recall. Or indeed institute mechanisms

specifically to improve the ranking, like, for example, a genetic algorithm!

However, it can be argued there are two major issues with the implementation that

would need to be addressed first. The biggest problem with this implementation, and

the first aspect that would need to be addressed in future work, is the runtime. The ge-

netic algorithm in particularly is slow to run. Arguably this isn’t too major of an issue

since speed is not essential at this point, and even in applications we are probably not

facing a scenario where the query is needed immediately. However it is worth baring

in mind. Additionally the faster the runtime the easier to test and improve all other

parameters. The second issue is that the basic retrieval system is not very good, there

are still very small number of document’s being returned by the seed query. Improving

this system would allow us to determine the effect on the other techniques since they
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depend on the initial documents returned.

In conclusion of this paper, we will touch upon the possible future applications of

the techniques developed over the course of this research paper. As has been men-

tioned, the query expansion techniques could be used as part of bigger applications, to

develop systems that would search through the web, using a search engine of the user’s

choice, collecting information on a topic a user wants to research. In fact, so long as

you had some kind of classifier able to identify relevant web pages, any topic could be

researched.

We can think back to the example in chapter 1 about collecting information about

social innovation projects and the paper by Milosevic et al. (2018). If you wanted

to build a system that used a search engine to identify web pages about social inno-

vation projects, even though those projects might be very different, you could use a

genetic algorithm to evolve towards a query that would return the most relevant pages.

In fact it could be interesting to incorporate some of the other technologies men-

tioned in the introduction that have been developed as a result of the desire to harness

some of the abundant information online. In fact, this has already been done for the

example above. Milosevic et al. used natural language processing techniques to ex-

tract information from different web pages about social innovation projects, they also

used internet crawlers to crawl through web domains collecting web pages and classi-

fying them to see if they were relevant to their research topic. If you could pair that

technology with research via a search engine, you could use query expansion to find

other relevant web pages and collect more information about the topic you want to

research. In fact, to go further you could not only find other relevant web pages but

potentially find web pages that simply contain a lot of links to the types of projects

you are interested in. In a case like that it might be difficult for a user to construct

a query that would characterize those kinds of pages, however a classifier would be
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able to identify those pages and the genetic algorithm could evolve a query to return

more of them. This scenario would be extremely relevant to the type of query ex-

pansion we have been discussing, as the user wouldn’t need to understand anything

about what such web pages would look like or contain, the query expansion would be

able to evolve to a query that would return the web pages with the most links, thus

maximizing the amount of information you can collect for the purposes of your research.

In conclusion, the research done in this paper allowed us to confirm our hypotheses

about using genetic algorithms to optimize queries in information retrieval systems.

Indeed it is possible to return more relevant documents when using a query optimized

using a genetic algorithm. In fact this is a more efficient technique than using the Roc-

chio query expansion technique, a tried and tested method. Additionally the design of

our system is such that these techniques could be applied to any information retrieval

system or search engine, as it does not depend on any information about the workings

of the retrieval system or the broader document collection. This means there are many

practical applications for these techniques to collecting data and information on topics

using the web.
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Uğuz, H. (2011), ‘A two-stage feature selection method for text categorization by using

information gain, principal component analysis and genetic algorithm’, Knowledge-

Based Systems 24(7), 1024–1032.

Vrajitoru, D. (1998), ‘Crossover improvement for the genetic algorithm in information

retrieval’, Information processing & management 34(4), 405–415.

Yang, Y. & Pedersen, J. O. (1997), A comparative study on feature selection in text

categorization, in ‘Icml’, Vol. 97, p. 35.

53

https://www.youtube.com/watch?v=OM6XIICm_qo&t=338s
https://www.youtube.com/watch?v=OM6XIICm_qo&t=338s
https://www.tutorialspoint.com/lucene/lucene_overview.htm
https://www.tutorialspoint.com/lucene/lucene_overview.htm


Appendix

Below is a table from the results section which was too large to include in the main

text body. It contains the results from an exploration of the a, b, and c parameters of

the Rocchio Algorithm implementation.
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a b c Recall increase Net retrieval increase

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.2 0.0 0.0

0.0 0.0 0.4 0.0 0.0

0.0 0.0 0.6 0.0 0.0

0.0 0.0 0.8 0.0 0.0

0.0 0.0 1.0 0.0 0.0

0.0 0.2 0.0 0.0 0.0

0.0 0.2 0.2 0.0 0.0

0.0 0.2 0.4 0.0 0.0

0.0 0.2 0.6 0.0 0.0

0.0 0.2 0.8 0.0 0.0

0.0 0.2 1.0 0.0 0.0

0.0 0.4 0.0 0.0 0.0

0.0 0.4 0.2 0.0 0.0

0.0 0.4 0.4 0.0 0.0

0.0 0.4 0.6 0.0 0.0

0.0 0.4 0.8 0.0 0.0

0.0 0.4 1.0 0.0 0.0

0.0 0.6 0.0 4.889073317840178E-4 0.9

0.0 0.6 0.2 0.0 0.0

0.0 0.6 0.4 0.0 0.0

0.0 0.6 0.6 0.0 0.0

0.0 0.6 0.8 0.0 0.0

0.0 0.6 1.0 0.0 0.0

0.0 0.8 0.0 0.03696202888014496 2.1

0.0 0.8 0.2 0.020546160207094346 1.3

0.0 0.8 0.4 -0.12624641775902282 -3.6

55



0.0 0.8 0.6 -0.016827094474153297 -0.8

0.0 0.8 0.8 -0.004705882352941176 -0.4

0.0 0.8 1.0 0.0 0.0

0.0 1.0 0.0 0.008638120901217081 1.9

0.0 1.0 0.2 0.013509810313601595 1.7

0.0 1.0 0.4 0.007627457372425125 1.4

0.0 1.0 0.6 -0.0979023669604088 -3.4

0.0 1.0 0.8 -0.12799440377513466 -4.0

0.0 1.0 1.0 -0.15953368615475316 -4.3

0.2 0.0 0.0 0.0 0.0

0.2 0.0 0.2 0.0 0.0

0.2 0.0 0.4 0.0 0.0

0.2 0.0 0.6 0.0 0.0

0.2 0.0 0.8 0.0 0.0

0.2 0.0 1.0 0.0 0.0

0.2 0.2 0.0 0.0 0.0

0.2 0.2 0.2 0.0 0.0

0.2 0.2 0.4 0.0 0.0

0.2 0.2 0.6 0.0 0.0

0.2 0.2 0.8 0.0 0.0

0.2 0.2 1.0 0.0 0.0

0.2 0.4 0.0 -0.037068357998590554 -0.9

0.2 0.4 0.2 0.0 0.0

0.2 0.4 0.4 0.0 0.0

0.2 0.4 0.6 0.0 0.0

0.2 0.4 0.8 0.0 0.0

0.2 0.4 1.0 0.0 0.0

0.2 0.6 0.0 0.010284538057647303 1.1
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0.2 0.6 0.2 -0.032068357998590556 -0.7

0.2 0.6 0.4 0.0 0.0

0.2 0.6 0.6 0.0 0.0

0.2 0.6 0.8 0.0 0.0

0.2 0.6 1.0 0.0 0.0

0.2 0.8 0.0 0.05790677041312179 2.8

0.2 0.8 0.2 0.04908324100135708 2.5

0.2 0.8 0.4 0.011415944813443348 1.1

0.2 0.8 0.6 -0.016827094474153297 -0.8

0.2 0.8 0.8 -0.004705882352941176 -0.4

0.2 0.8 1.0 0.0 0.0

0.2 1.0 0.0 0.017461650312981785 2.2

0.2 1.0 0.2 0.027251882195208365 2.4

0.2 1.0 0.4 0.019392163254778067 1.8

0.2 1.0 0.6 0.013812153473087613 1.1

0.2 1.0 0.8 -0.12799440377513466 -4.0

0.2 1.0 1.0 -0.15953368615475316 -4.3

0.4 0.0 0.0 0.0 0.0

0.4 0.0 0.2 0.0 0.0

0.4 0.0 0.4 0.0 0.0

0.4 0.0 0.6 0.0 0.0

0.4 0.0 0.8 0.0 0.0

0.4 0.0 1.0 0.0 0.0

0.4 0.2 0.0 -0.03333333333333333 -0.9

0.4 0.2 0.2 0.0 0.0

0.4 0.2 0.4 0.0 0.0

0.4 0.2 0.6 0.0 0.0

0.4 0.2 0.8 0.0 0.0
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0.4 0.2 1.0 0.0 0.0

0.4 0.4 0.0 -0.03333333333333333 -0.9

0.4 0.4 0.2 -0.037068357998590554 -0.9

0.4 0.4 0.4 0.0 0.0

0.4 0.4 0.6 0.0 0.0

0.4 0.4 0.8 0.0 0.0

0.4 0.4 1.0 0.0 0.0

0.4 0.6 0.0 0.01910806746941201 1.4

0.4 0.6 0.2 -0.028333333333333332 -0.7

0.4 0.6 0.4 -0.032068357998590556 -0.7

0.4 0.6 0.6 0.0 0.0

0.4 0.6 0.8 0.0 0.0

0.4 0.6 1.0 0.0 0.0

0.4 0.8 0.0 0.05790677041312179 2.8

0.4 0.8 0.2 0.05790677041312179 2.8

0.4 0.8 0.4 0.02121157553930663 1.3

0.4 0.8 0.6 -0.03392219044065829 -0.7

0.4 0.8 0.8 -0.004705882352941176 -0.4

0.4 0.8 1.0 0.0 0.0

0.4 1.0 0.0 0.017461650312981785 2.2

0.4 1.0 0.2 0.03607541160697307 2.7

0.4 1.0 0.4 0.04195776454814954 2.8

0.4 1.0 0.6 0.034667768446349646 1.8

0.4 1.0 0.8 0.022037665900280716 1.3

0.4 1.0 1.0 -0.15953368615475316 -4.3

0.6 0.0 0.0 0.0 0.0

0.6 0.0 0.2 -0.06623600344530577 -2.2

0.6 0.0 0.4 -0.06623600344530577 -2.2
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0.6 0.0 0.6 -0.06623600344530577 -2.2

0.6 0.0 0.8 -0.06623600344530577 -2.2

0.6 0.0 1.0 -0.06623600344530577 -2.2

0.6 0.2 0.0 0.0 0.0

0.6 0.2 0.2 0.0 0.0

0.6 0.2 0.4 -0.06623600344530577 -2.2

0.6 0.2 0.6 -0.06623600344530577 -2.2

0.6 0.2 0.8 -0.06623600344530577 -2.2

0.6 0.2 1.0 -0.06623600344530577 -2.2

0.6 0.4 0.0 0.0 0.0

0.6 0.4 0.2 0.0 0.0

0.6 0.4 0.4 0.002325581395348837 0.2

0.6 0.4 0.6 -0.06623600344530577 -2.2

0.6 0.4 0.8 -0.06623600344530577 -2.2

0.6 0.4 1.0 -0.06623600344530577 -2.2

0.6 0.6 0.0 0.04503399339533794 2.1

0.6 0.6 0.2 0.005 0.2

0.6 0.6 0.4 0.005 0.2

0.6 0.6 0.6 0.0012649753347427767 0.2

0.6 0.6 0.8 -0.06623600344530577 -2.2

0.6 0.6 1.0 -0.06623600344530577 -2.2

0.6 0.8 0.0 0.061610474116825485 2.9

0.6 0.8 0.2 0.061610474116825485 2.9

0.6 0.8 0.4 0.04114621606218245 1.9

0.6 0.8 0.6 0.009206773618538324 0.4

0.6 0.8 0.8 0.0024414459229780707 0.3

0.6 0.8 1.0 -0.06623600344530577 -2.2

0.6 1.0 0.0 0.024869057720389193 2.4
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0.6 1.0 0.2 0.043482819014380475 2.9

0.6 1.0 0.4 0.049365171955556945 3.0

0.6 1.0 0.6 0.05184616435251573 2.6

0.6 1.0 0.8 0.03483227869489351 1.7

0.6 1.0 1.0 0.014390162454457938 0.4

0.8 0.0 0.0 0.0 0.0

0.8 0.0 0.2 0.0 0.0

0.8 0.0 0.4 -0.06623600344530577 -2.2

0.8 0.0 0.6 -0.06623600344530577 -2.2

0.8 0.0 0.8 -0.06623600344530577 -2.2

0.8 0.0 1.0 -0.06623600344530577 -2.2

0.8 0.2 0.0 0.0 0.0

0.8 0.2 0.2 0.0 0.0

0.8 0.2 0.4 0.0 0.0

0.8 0.2 0.6 -0.06623600344530577 -2.2

0.8 0.2 0.8 -0.06623600344530577 -2.2

0.8 0.2 1.0 -0.06623600344530577 -2.2

0.8 0.4 0.0 0.0 0.0

0.8 0.4 0.2 0.0 0.0

0.8 0.4 0.4 0.0 0.0

0.8 0.4 0.6 0.002325581395348837 0.2

0.8 0.4 0.8 -0.06623600344530577 -2.2

0.8 0.4 1.0 -0.06623600344530577 -2.2

0.8 0.6 0.0 0.04503399339533794 2.1

0.8 0.6 0.2 0.005 0.2

0.8 0.6 0.4 0.005 0.2

0.8 0.6 0.6 0.005 0.2

0.8 0.6 0.8 -0.0037350246652572234 0.0
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0.8 0.6 1.0 -0.06623600344530577 -2.2

0.8 0.8 0.0 0.061610474116825485 2.9

0.8 0.8 0.2 0.061610474116825485 2.9

0.8 0.8 0.4 0.04114621606218245 1.9

0.8 0.8 0.6 0.009206773618538324 0.4

0.8 0.8 0.8 0.0061764705882352946 0.3

0.8 0.8 1.0 0.0012649753347427767 0.2

0.8 1.0 0.0 0.024869057720389193 2.4

0.8 1.0 0.2 0.043482819014380475 2.9

0.8 1.0 0.4 0.049365171955556945 3.0

0.8 1.0 0.6 0.05184616435251573 2.6

0.8 1.0 0.8 0.04830697089735589 2.4

0.8 1.0 1.0 0.02348107154536703 0.7

1.0 0.0 0.0 0.0 0.0

1.0 0.0 0.2 0.0 0.0

1.0 0.0 0.4 0.0 0.0

1.0 0.0 0.6 -0.08682423873942342 -2.9

1.0 0.0 0.8 -0.06623600344530577 -2.2

1.0 0.0 1.0 -0.06623600344530577 -2.2

1.0 0.2 0.0 0.0 0.0

1.0 0.2 0.2 0.0 0.0

1.0 0.2 0.4 0.0 0.0

1.0 0.2 0.6 0.0 0.0

1.0 0.2 0.8 -0.06623600344530577 -2.2

1.0 0.2 1.0 -0.06623600344530577 -2.2

1.0 0.4 0.0 0.0 0.0

1.0 0.4 0.2 0.0 0.0

1.0 0.4 0.4 0.0 0.0
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1.0 0.4 0.6 0.0 0.0

1.0 0.4 0.8 0.002325581395348837 0.2

1.0 0.4 1.0 -0.06623600344530577 -2.2

1.0 0.6 0.0 0.04503399339533794 2.1

1.0 0.6 0.2 0.005 0.2

1.0 0.6 0.4 0.005 0.2

1.0 0.6 0.6 0.005 0.2

1.0 0.6 0.8 0.0 0.0

1.0 0.6 1.0 0.004825581395348838 0.3

1.0 0.8 0.0 0.061610474116825485 2.9

1.0 0.8 0.2 0.061610474116825485 2.9

1.0 0.8 0.4 0.04114621606218245 1.9

1.0 0.8 0.6 0.009206773618538324 0.4

1.0 0.8 0.8 0.0061764705882352946 0.3

1.0 0.8 1.0 0.005 0.2

1.0 1.0 0.0 0.024869057720389193 2.4

1.0 1.0 0.2 0.043482819014380475 2.9

1.0 1.0 0.4 0.049365171955556945 3.0

1.0 1.0 0.6 0.05184616435251573 2.6

1.0 1.0 0.8 0.04830697089735589 2.4

1.0 1.0 1.0 0.028132234336064703 1.1
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