
University of Strathclyde

Department of Computer and Information Sciences

Developing Recommendation Systems for
Movies Using Graph Database Clustering

Author:
Daniel Moorhead

Supervisor:
Dr Clemens Kupke

Co-Supervisor:
Mr William Wallace

A thesis submitted for the degree of

MSc Advanced Computer Science with Big Data

August 18, 2019

Declaration

This dissertation is submitted in part fulfillment of the requirements for the degree of MSc of the
University of Strathclyde.

I declare that this dissertation embodies the results of my own work and that it has been composed
by myself.

Following normal academic conventions, I have made due acknowledgement to the work of others.

I declare that I have sought, and received, ethics approval via the Departmental Ethics Com-
mittee as appropriate to my research.

I give permission to the University of Strathclyde, Department of Computer and Information
Sciences, to provide copies of the dissertation, at cost, to those who may in the future request a
copy of the dissertation for private study or research.

I give permission to the University of Strathclyde, Department of Computer and Information
Sciences, to place a copy of the dissertation in a publicly available archive.

(please tick) Yes [] No []

I declare that the word count for this dissertation (excluding title page, declaration, abstract,
acknowledgements, table of contents, list of illustrations, references and appendices is 18074.

I confirm that I wish this to be assessed as a Type 1 2 3 4 5© Dissertation (please circle)

Signature:

Date: 18/08/2019

i

Abstract

This paper covered the idea of developing recommendation systems from clustering graph databases.
Graph databases are a form of storing data where each piece of information is stored as a node.
Each node is connected by an edge that is defined by some relationship in the data between the
nodes. This paper investigated two methods of representing movie data in a graph database sing
the TMDb 5000 Movie database. The first was by representing each node as either an actor, a
movie, a director or a genre. The relationships were between each non-movie node and the direc-
tor/genre/actor node associated with it. The second graph contained only movie nodes that were
connected by shared actors, directors, genres and keywords.

Clustering algorithms were tested on these graphs to see if the clusters found were suitable to
be used for a recommendation system where a user is associated a cluster that contains movies
they have enjoyed. Other movies in this cluster would then be recommended to the user by the
system. The clustering algorithms investigate where Connected Components, Strongly Connected
Components, Louvain Modularity and Label Propagation

The graph databases were successfully constructed, however none of the algorithms were able
to produce clusters that could be used for a recommendation system.

ii

Acknowledgements

I would like to acknowledge Billy Wallace and Clemence Kupke, whose help and guidance were
pivotal to the success of this project. And Esha Khimji, who got me through it all.

iii

Contents

1 Introduction 7

2 Literature Review 9
2.1 Recommendation Systems . 9
2.2 Importance of Search Recommendation Systems 9

2.2.1 Types of recommendation system . 10
2.2.2 Graph Databases . 11
2.2.3 Graph Databases for Recommender Systems 12

2.3 Clustering in Graph Theory . 13
2.3.1 Label Propagation . 14

3 Methodology 16
3.1 Building the Graph Database . 16

3.1.1 The data used . 16
3.1.2 The programs used . 17
3.1.3 Multi-label graph . 19
3.1.4 One node Label . 20

3.2 Clustering . 24
3.2.1 Cluster comparison metrics . 24
3.2.2 Neo4j clustering algorithms . 25
3.2.3 Multi-label graph . 26
3.2.4 One-label graph . 27
3.2.5 Comparing results . 27

4 Analysis 28
4.1 Single node graph . 28

4.1.1 Building the graph . 28
4.1.2 Basic weighting . 29
4.1.3 Fixed weighting . 31
4.1.4 Combining Relationships . 32
4.1.5 Clustering . 33
4.1.6 Added weights . 37

4.2 Multi-label graph . 38
4.2.1 Building the graph . 38
4.2.2 Investigating Clustering . 40

4.3 Comparing Graphs . 42

5 Conclusion 43
5.1 Building a Graph Database that contains movie information 43

5.1.1 Unused data . 43
5.1.2 Adding weights . 44

5.2 Investigating Clustering . 45
5.2.1 Triangle count and Clustering coefficient . 45
5.2.2 Connected Component and Strongly Connected Components 46
5.2.3 Label Propagation . 46
5.2.4 Lovain Modularity . 47

5.3 Comparing Graphs . 47

iv

5.4 Combining techniques with machine learning . 47
5.5 Movie Recommendation . 48

Bibliography 52

v

List of Figures

2.1 Example of a basic graph database . 11

3.1 Schematic of a multi-label graph representing movie data 20
3.2 Schematic of a single-label graph representing movie data 21

4.1 Sample of graph with intersection ratio as the weight 30
4.2 Boxplots of weights from the basic weighting . 30
4.3 Graph showing the frequency weights of shared keywords 31
4.4 Sample of the aggregated relationship graph . 32
4.5 Boxplot of the weights of the aggregated relationship graph 33
4.6 Boxplot of the Single node graph . 34
4.7 Graph showing the sizes of the different clusters, as well as the different number of

clusters in that size using the Strongly Connected Component Algorithm 34
4.8 Graph showing the sizes of the different clusters, as well as the different number of

clusters in that size using the Connected Component Algorithm 35
4.9 Bar chart showing the base ten log of the size of each cluster detected using the

Louvain clustering algorithm . 36
4.10 Bar chart showing the size of the clusters found by the label propagation algorithm

and the number of clusters of that size . 37
4.11 Box plots of the triangle count and clustering coefficients of the nodes in the Aggre-

gated One Label Graph . 38
4.12 A sample of the multi-label graph database . 39
4.13 Bar chart showing the the number of movies per cluster using Louvain modularity 40
4.14 Bar chart showing the the number of movies per cluster using label propagation . . 41

5.1 A sample of the Multi Label Graph with the path between the two MOVIE nodes
highlighted as a black line . 44

vi

List of Tables

3.1 Sample of the columns kept from the tmdb_5000_movies data 17

4.1 Number of relations added for each property. 28
4.2 Number of relations added for each property, with ration weights. 29
4.3 Table showing the number of each type of node . 39
4.4 Table showing the number each type of relationship 39

vii

Chapter 1

Introduction

This dissertation was on Developing Recommendation Systems for Movies Using Graph Database
Clustering. The objective of this dissertation was to investigate the use of graph databases as a
method of developing a movie recommendation system.

With the rise of online movie viewing, it is useful to develop a system that can provide recom-
mendations to users [Cha et al., 2009]. Here a new approach involving graph databases was used.
Graph databases are a method of connecting data using graph theory. Connecting pieces of data,
called nodes, with a relationship between them allows for a structure that can be used to store,
query and represent data [Huang et al., 2002].

This piece of work investigated the unique properties of graph databases that separate them
from different types of databases. The investigation looked into how these properties could be used
to develop a system that can recommend movies to a user, based movies that they had previously
enjoyed. A system using this kind of database has yet to be implemented into a commercial
system, and so this an area of recommendation system development that has the potential for a
lot of further research.

This paper looks specifically into the graph database property called clustering. As the data is
represented geometrically, it is possible to find pieces of data that have grouped together to form
clusters using many different algorithms. It is hypothesised that when clustering movie data will
reveal groups of similar movies.

This paper attempts to answer two questions: Can a database containing data about movies
be successfully represented as a graph database? Can graph clustering algorithms be used to find
sets of movies that can be used as a recommendation system?

The area of mathematics that graph databases fall into is called graph theory. Throughout its
history there have been many algorithms developed to cluster graphs. Although the algorithms
have been developed to detect clustering, there is currently no research into these algorithms ability
to find clusters that can be used on movie data to build a recommendation system. There has, in
fact, been no research on the effect of these algorithms on movie data at all. It is not yet known
how the clusters found with these algorithms will be structured [Schaeffer, 2007].

Although graph databases have been used for the development of recommendation systems,
there has been no published research on using clustering as a technique.

Graph databases have proven to be very useful in the commercial world. The world wide
web is a graph database. The development of the internet into this graph has been essential
for everyday use, Google’s search system is based around a graph algorithm called page rank
[Schafer et al., 2001]. The use of graph algorithms here has been revolutionary to how society
runs. It is clear that graph databases are a powerful tool in the information world, and so it is very
much worthwhile to investigate the use of graph databases, graph theory and graph algorithms
with the goal of developing a recommendation system.

There has been a lot of time and money put unto the current recommendation systems that have
been developed by large movie streaming services such as Amazon and Netflix. The systems in place
work by recommending movies based on the similarities of other users, this is called collaborative
filtering [Smith and Linden, 2017]. The main difference with the approach investigated here is
that the recommendation is based solely on the users own preferences. Another problem that
may be alleviated with the current recommendation system is that as new movies come out, the
database can be immediately updated and re clustered, allowing them to be recommended easily.

7

Collaborative filtering however, must allow time for the new movie to be seen by enough people to
make a meaningful recommendation. This is called the cold start problem. As this is a common
problem in recommendation systems, it is important that research is done to best account for that
[Lam et al., 2008]. Hence, there is a lot of merit in this research.

8

Chapter 2

Literature Review

2.1 Recommendation Systems

The Recommender System Handbook defines recommender systems as "software tools and tech-
niques providing users with suggestions for items a user may wish to utilize" [Ricci et al., 2011].
This book is considered the core piece of writing on the subject and considers recommendation
systems as a tool for commercial use. The book states that it is an incredibly important tool for
the average person in the information age.

Jussi Karlgren was the first person to bring up the idea of a recommender system. In hi2
1990 Columbia University technical report, "The Systems Development and Artificial Intelligence
Laboratory, An Algebra for Recommendations" 1990 he described the idea of a a recommender
system as "digital bookshelf". [Karlgren, 1994] In this report, Karlgren posits that, when searching
for a document in a bookshelf a researcher will come across an interesting title and pull it out,
regardless of their main objective, before carrying on with their original search. The result of
this is that documents of similar interest gather into small clusters. A a result, people using the
bookshelf easily come across documents of inters, when looking for specific document. However,
equally spaced documents in a hierarchy of computer folders has "no corners where interesting
documents could collect".

A very early description of what is now referred to as a recommendation system was developed
in Elaine Rich’s 1979 paper User Modelling via Stereotypes[Rich, 1979]. The problem being solved
her was developing computer systems that treat users as individuals. The idea of Elaine rich to
exploit the stereotypes of a user to provide a service unique to that user. An example of the
exploitation of stereotypes is a librarian interacting with a customer. If a customer where to ask
for a book on China, they must use stereotypes that have been developed in their mind to make
the correct recommendation. If the customer was a child, a learning age book on China and its
culture would be most suitable. A young adult may prefer a book on tourism etc.

The potential system that was suggested here was a "virtual librarian" named Grundy. A
conversation with Grundy would allow Grundy to build a profile of terms describing the user.
Each term would has a numerical value (-5 to 5) to a values of the stereotypes of that term. For
example, a user with the term "Feminist" in their profile would have +5 added to their "Sex
Tolerant" profile term.

While this system performed well on the small group of testers, it was never tested on a wider
group of people. It is unlikely that the system would be fully functional as there is evidence of
stereotypes being a poor method of predicting traits [Devine, 1989]. However, the building of
profiles has become a major part of many modern recommendation systems, such as collaborative
filtering [Lam et al., 2008].

The idea of computers being used as librarians has been expanded upon by many companies such
as Apple and Amazon, with their computer assistants Siri and Alexa [Assefi et al., 2015][Chung et al., 2017].

2.2 Importance of Search Recommendation Systems

Search recommendation systems have become the backbone of many major services. Amazon, for
example, has based its business model on the ability to recommend new items based on customers

9

preferences. In terms of media consumption, Netflix and YouTube similarly gained great popu-
larity using similar algorithms. This was discussed in Smith and Lindens’ paper ’Two Decades
of Recommender Systems at Amazon" [Smith and Linden, 2017]. This paper is written from the
experience working at Amazon, a major company based on recommender systems. It mentions
how recommender systems have become such an important technology that there was a prize of
1,000,000 given to the best collaborative filtering method called the Netflix Prize.

Schafer et al. in their 2001 paper E-commerce recommendation applications [Schafer et al., 2001]
showed the importance of recommender systems in E-commerce by describing the three ways in
which it improves an E-commerce system. The first is Converting Browsers into Buyers where
Schafer et al claims that a visitor to a Website will often visit the site without purchasing any-
thing. A recommender systems can help customers find the necessary products with greater ease.

Secondly, they claim that recommendation systems increase cross-sell. These systems can
recommend products that a customer would not typically be aware of, but would still be of interest.
This can result in a new purchase. Thirdly they claim a recommendation system will build customer
loyalty. As these systems rely on building relationships between the site and the user in order to
better the recommendations. The more information input from the customer, the better tailor the
recommendation. This symbiotic relationship means the more frequently used sites will provide
better recommendations. In turn increasing the number of visits in comparison to other sites.

While the E-commerce this paper refers to is focused on online retails, these same concepts can
apply to businesses that use movie recommendations. Media streaming services such as Netflix
and Amazon Prime do not sell particular products, instead are centered around subscriptions that
provide unlimited movies and television shows [Pogue, 2007][?].

With the increase of the number of streaming services, building customer loyalty is essential. In
a 2017 report, A.J. Montenary found that seventy percent of people viewing media did so through a
streaming service , with forty percent of television viewing done through a streaming service. This
is twice as many as five years prior [Montenieri, 2018]. As no single product is being sold, these
services rely entirely on customer loyalty which, as Schafer suggests, can be significantly improved
by enhancing their recommendation system.

2.2.1 Types of recommendation system

Currently the recommender systems widely used are based on collaborative systems. That is,
systems are built based on a collection of data of people’s viewing/ buying habits. Items are
recommended based on the habits of people who also purchased that item. However, this becomes
an issue when dealing with new shows products as there is no purchasing information on it. This
is called the cold start problem [Lam et al., 2008].

There are three variations of the cold start problem, New community, new item and new user
[Bobadilla et al., 2012] . The new community cold start problem refers to the problem of providing
recommendations in a start-up. Although there is a catalogue of items, there are very few users
to interact with with it. This lack of user interaction causes problems when trying to create
recommendation. This would not effect the development of a recommender system of movies
based on graph clustering, as there is a large community of movie fans.

The new item problem largely effects collaboration based systems. When a new item is added,
the system may not have enough information needed to recommend it. In terms of collaborative
filtering, the missing information is the users who enjoy it. No collaborative filtering system
can be built from an item with no collaboration. This issue is not applicable to graph cluster
recommendation systems. As long as the full information about the product is provided, the
information can be added as nodes and relationships. The clusters can then be adapted to include
the new item.

The issue that effects many recommendation systems is the new user is the new user cold start
problem. With collaborative filtering, there a new user has no information about their preferences.
And so it is difficult t recommend items based on shared preferences. While this would also effect a
graph database recommender system based on clustering, in terms of movie recommendation this
can be averted by requesting an initial list of preferred movies.

Another approach to filtering based recommendation systems is content based filtering. This is
based on the data of an item rather than data of the user. This system compares the information
about items the user has already bought/ used with the data in new items, as described in Peter
Brusilovsky’s 2007 book The Adaptive Web [Brusilovsky and Millán, 2007]. As this is based on

10

item data, it is free from the effect of the new item cold start problem as items already have data
needed to describe them. It does, however, succumb to the new user problem, as the system needs
to develop information about items that are of the users preference.

There are also multi-media recommendation systems that combine different forms of informa-
tion into a recommendation. Such as the multiple-criteria decision-analysis (MCDA) field system
developed by Kleanthi Lakiotaki et al in their 2011 paper Multicriteria User Modeling in Recom-
mender Systems [Lakiotaki et al., 2011]. This system is based on performing user-grouping before
applying collaborative filtering. This is method can be reasonably applied to current technologies,
as user data is gathered when creating an account to use these services. The initial stage used
k-means clustering as a method of grouping the data of users. This is further study of a concept
first discussed in Lyle H. Ungar et al’s 1998 paper Clustering Methods for Collaborative Filter-
ing [Ungar and Foster, 1998]. The effect was shown to be an improvement on basic collaborative
filtering methods, although further research should be done with larger groups of people.

2.2.2 Graph Databases

A graph database is a NoSQL database that is structured as a graph. It consists of nodes that
represent the entities of the data that are interconnected by edges that represent the relation-
ships between said entities [Angles and Gutierrez, 2008]. Graph databases are extremely useful
for heavily interconnected data and as such have generated much interest in the fields of biol-
ogy, computer science and information technologies. Yoon et al showed in the 2017 paper "Use
of Graph Database for the Integration of Heterogeneous Biological Data" [Yoon et al., 2017] the
success of graph database in complex biological problems. The use of this technology in such a
complicated task shows the power that these databases have. This is a heavily cited paper with
strong repeatable results that show a true potential for this technology.

An basic graph database is shown in Figure 2.1. This was taken from the official neo4j website;
a major company in graph database software. As this company is a major source of graph database
technology, it is a useful source of graph database information [Sasaki, 2018]

Figure 2.1: Example of a basic graph database

This graph shows how two people, A and B, are related to each other, and how the are both
related to a car.

The first proposal of a graph database as a method of describing data was in John Sowa’s 1979
paper Conceptual Graphs for a Data Base Interface [Sowa, 1976].This paper considers the concept
of a graph database as a means of describing data rather than storing it. The graph was to be an
intermediary between the human user and the computer. The concept was conceived as a method
of querying a computer system. The system was to convert a question from human language into a

11

conceptual graph. The system could search for other graphs within the data base that are relevant
to the original question.

Since then, many graph database systems have been developed commercially. The first com-
mercial graph database was Allegro graph in 2004, a graph database initially designed to store
RDF triples [Buerli and Obispo, 2012].

A very notable example of the use of a graph database is with Amazon Neptune, first discussed
in 2011 in Chris Brunch et al’s paper "Neptune: a domain specific language for deploying hpc
software on cloud platforms" [Bunch et al., 2011]. The system was released in 2018. It is an exten-
sion of Amazon web services. Amazon claim that this system is a quicker and more efficient way
to run web applications that work with incredibly large datasets[GroupLens, 2018, ?]. Although
this information comes from Amazon’s documentation with little evidence provided. Due to how
new the system is, there has been little time to create full reports on its capabilities. A lot of
information about Neptune is confidential as this product is a large investment for Amazon.

Many popular open source graph database systems have also been released. One popular
example is Neo4j, a graph database query program based on Java, .NET, JavaScript, Python,
Ruby that was released in 2007 [Kemper, 2015]. This program stores can be used to store data
into graph format.

There have also been querying languages developed to increase the utility of graph databases
as methods of storing data. A commonly used language is Cypher that has made it possible for
communities to develop graph database systems easily [Holzschuher and Peinl, 2013].

2.2.3 Graph Databases for Recommender Systems

It wasn’t until Zan Huang et al’s 2002 paper A Graph-based Recommender System for Digital
Library until graphs were applied to recommender systems [Huang et al., 2002]. This paper inves-
tigated graph representation as a potential method of recommendation for digital libraries. At this
time the technology wasn’t available for a true NoSQL graph database, instead this paper created
a graph network between two SQL databases. The first layer being book contents and the second
layer being customer demographics. As with standard graph databases, data points were treated
as nodes and relations as edges. However, the connection of nodes could only occur between two
layers. Even with this limitation, when evaluated with human subjects a recall of 18.3% and a
precision of 38.1% was obtained. Although, the subject evaluation if this research was incredibly
limited. The subjects were only two MSci students given six lists. This is not only a very limited
number of subjects but also a limited range of subjects.

It wasn’t until the mid-late 2000’s when true commercial graph databases were established
with packages such as neo4j in 2010. The effectiveness of a graph database system as opposed
to a standard relational database was shown in Chad Vicknair et al’s 2010 paper A Comparison
of a Graph Database and a Relational Database which compared neo4j to the common relation
database MySQL [Vicknair et al., 2010]. The paper investigated two types of query, structural and
data queries. Structural queries and data queries. The data queries were, count the number of
nodes whose payload data is equal to some value; Count the number of nodes whose payload data
is less than some value; count the number of nodes whose payload data contains some search string
(length ranges from 4 to 8). The result from this was that neo4j performed better than MySQL,
resolving the queries in quicker time. However, this does not relate specifically to recommender
systems.

In the early 2010’s, multiple graph database query languages were developed. In 2013, Holzschuher
et al. compared the graph database languages Cypher, Gremlin and Neo4j in their 2003 paper Per-
formance of Graph Query Languages [Holzschuher and Peinl, 2013]. This comparison was based
on a database consisting of As sources of data we used lists of common first and last names, street
names and geographical data from geonames.org7. This was supplemented with randomly gener-
ated group names, interests, job titles and organization types, activities and messages. The test
data contained 2011 people; 26,982 messages; 25,365 activities; 2000 addresses; 200 groups and
100 organizations. This is a considerable amount of data that should prove as a good test of a
graph based language. Particularly as this project will be dealing with large amounts of data. The
resulting processing of the relationships in the data showed that the database languages outper-
formed the comparative SQL language, MySQL, by an order of magnitude, and that Neo4j was
the best performing language.

With respect to recommender systems, Frano̧is Fouss et al developed a graph based collabora-

12

tive recommendation system in their 2006 paper An Experimental Investigation of Graph Kernels
on a Collaborative Recommendation Task [Fouss et al., 2006]. This paper describes the creation of
a graph database based on the MovieLens database. This database consisted of people, movie and
movie category . This graph’s nodes were defined by people in the database and the edges were
the relations in the database. Namely has_watched, between people and movie, and belongs_to,
between movie and movie_category. This should cause clustering of nodes within the graph. Peo-
ple within a cluster will be recommended films that were enjoyed by others in the cluster. Clusters
were determined by calculating the Euclidean distance between nodes. The result of this paper
showed " that three similarity measures provide good and stable performance".

Past this there still is no research in using a movie database to construct a graph with
movies/TV shows as nodes that are connected with edges that are defined by properties of the
movies themselves. A clear benefit of such a graph is that as the graph database recommender is
not based on the consumers information, it is not affected by the cold start problem.

2.3 Clustering in Graph Theory

While there is no single definition of a cluster in a graph dataset [Duda and Hart, 2001], S.E.
Schaeffer defines a cluster as "data such that the elements assigned to a particular cluster are
similar or connected in some pre-defined sense" [Schaeffer, 2007]. Bar-Ilan et al. define a set of
requirements that a collection of data must meet to be accepted as a cluster defined by paths in
the graph [Bar-Ilan and Peleg, 1991]. In graph theory a path is a sequence of edges starting a node
N0 and ending at node Nk. Bar-Ilan’s definition is as follows [Bar-Ilan and Peleg, 1991]:

• Each cluster should be intuitively connected.

• There should be at least one, preferably several, paths connecting each pair of vertices with
the cluster.

• Paths should be connected internal to the cluster.

• Two nodes in the cluster must not only by a path that passes through them, but also by a
path that only visits nodes on the cluster.

J.M. Kleinberg defines a cluster in terms of its density; the ratio of present edges to the
maximum number of possible edges. Kleinber considers a "good" cluster to be one where the
subgraph that makes up the cluster is dense but there are relatively few connections from the
nodes in the cluster to the rest of the graph. This definition of this graph, however, relies on
rather vague terminology [Kleinberg, 2002]. R Kannan et al. considser a good cluster to be a
’maximal clique’, a subgraph into which a node could be added without losing the clique property.
A clique being an undirected graph such that every two distinct vertices in the clique are adjacent
[Kannan et al., 2004]. This definition is only applicable to undirected graphs.

The issue with these theoretical definitions of clusters is that they are inapplicable to real world
problems due to being so high level. There are, however, algorithmic ways to evaluate a cluster. The
five common approaches to detecting clusters, as discussed in M. Needham and A.E. Hodler’s book
[Mark Needham, 2019], are triangle count and density coefficient; strongly connected components;
label propagation and Louvain modularity. They define the triangle count measurement how many
nodes form triangles and the degree to which nodes tend to cluster together; the strongly connected
components as an algorithm that finds groups where each node is reachable from every other node
in that same group following the direction of relationship; label propagation as an algorithm that
infers clusters by spreading labels based on neighborhood majorities, and Louvain modularity as an
algorithm that maximizes the presumed accuracy of groupings by comparing relationship weights
and densities to a defined estimate or average. The book then suggests that the strongly connected
components algorithm is ideal for recommender systems. However,the algorithm definitions are
extremely high level and there is no experimental evidence to back up this claim.

Triangle Count and Density Coefficient

T. Schankand D. Wagner performed a thorough analysis of triangle count and density coefficient
in their 2005 paper Finding, Counting and Listing all Triangles in Large Graphs, An Experimental

13

Study [Schank and Wagner, 2005]. They defined a triangle as a three node subgraph and investi-
gated several methods of counting triangles. The success of the triangle counting algorithms were
measured by the time executed and the number of triangle operations. The definition of triangle
operations varied between algorithms but in essence was the asymptotic running time.

The algorithms were run on an undirected graph network, road network Germany, and a di-
rected graph, IMDB movie database. For the bith networks, the node iteration method was the
quickest to execute, it was the most asymptotically intensive. This method relied on iterating across
each node and counting surrounding edges to count each triangle. The forward-hashed algorithm
was the worst performing. This algorithm worked by iterating along dynamic data instead.

Strongly Connected Components

The strongly connected component algorithm was one of the first cluter detection algorithms. It
was invented by Robert Tarjan in 1970[Tarjan, 1972]. The algorithm works by finding sets of nodes
where all nodes can be reached by all other nodes, in both directions but not necessarily directly
[Fleischer et al., 2000]. Esko Nuutila and Eljas Soisalon-Soininen improved on this algorithm in
1990, making it able to handle sparse graphs and trivial components[Nuutila and Soisalon-Soininen, 1994].

Louvain Modularity

Louvain Modularity is a graph clustering algorithm that was developed in 2008 by Vincent D Bondel
et al based on the development of modulatrity in a system [Blondel et al., 2008]. Modularity is a
method of quantifying the strength a cluster in a graph system. Modularity is value between -1
and 1 that measures the density of edges inside a graph cluster compared to the density of edges
outside that cluster. The mathematical definition of modularity is shown below in Equation 2.1.

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj) (2.1)

Where Aij is the weight between nodes i and j, ki and kj are the sum of the weights of the nodes
attached to i and j respectively. 2m is the sum of all of the weights of edges in the graph, ci and
cj are communities of the node and δ is a simple delta function. [Newman, 2006].

Modularity has been an important component in many areas that can be represent in a graph
network. This includes , the World Wide Web, metabolic networks, social patterns and so a clus-
tering algorithm based on modularity was an important milestone to achieve [Clauset et al., 2004].

The Louvain modularity algorithm is a two step iterative process, outlines in Equation 2.2
below.

∆Q =

[∑
in +2ki,in

2m
−
∑

tot+k2
i

2m

]
−
[∑

in

2m
−
(∑

tot

2m

)2

−
(
ki
2m

)2]
(2.2)

Where
∑

in is sum of all the weights of the links inside the community i s moving into
∑

tot is
the sum of all the weights of the links to nodes in the community i.

In terms of recommendation systems, the Louvain modularity has been used to build movie
recommender systems from social data. Deepika Lalwani et al published a paper in 2015 us-
ing Louvain modularity to find clusters within a social media graph database find recommen-
dations for movies [Lalwani et al., 2015]. In another study in 2013 by Maryam Fatemi et al
used the IMDb data to build a graph data base that described common movies between peo-
ple [Fatemi and Tokarchuk, 2013]. While both experiments resulted in accurate recommendations
from within the cluster, both are reliant on user information. There has yet to be an investigation
into using Louvain Modularity on a graph database that soley contains information about the
movies.

2.3.1 Label Propagation

Label propagation is a system that works by labelling and relabeling nodes in a graph until satisfac-
tory clusters of labels have been created. This technique has been used in the medical sector. Rolf
A.Heckemann et al used label propagation on MRI scans of brains in order to achieve greater ac-
curacy when combining results in their Automatic anatomical brain MRI segmentation combining
label propagation and decision fusion [Heckemann et al., 2006] with positive results.

14

Within mathematics, concepts were developed to solve complex problems inhomogeneous bi-
harmonic equation with dirichlet boundary conditions. This was discussed in Jingdong Wang et
al’s 2008 paper Linear neighborhood propagation and its applications[Wang et al., 2008]. However
the actual application of this algorithm to complex mathematical problems has yet to be fully
realised.

ZH Wu et al proved the use of label propagation in social networks for finding overlapping
communities in their 2012 paper "Balanced Multi-Label Propagation for Overlapping Community
Detection in Social Networks" [Wu et al., 2012]. Label propagation has also been shown to be
useful in graph crompression, as was shown in 2011 by Paolo Boldi et al in thier paper Layered
label propagation: a multiresolution coordinate-free ordering for compressing social networks.

However, in terms of recommendation systems, Hou Qiang et al proved the potential of its use
by combining it with collaborative filtering. This was discussed in their 2012 paper "A method
of personalized recommendation based on multi-label propagation for overlapping community de-
tection" [Shao et al., 2009]. This paper investigated the Movie Lens dataset and found scarcely
improved results to the baseline collaborative filtering comaprison.

Within music recommendation, Bo Shao et al used label propagation to develop recommen-
dation system based on a graph database describing the user access patterns of the NewWisdom
music network, as well as the acoustic features of the songs the user has listened to. This was
written up in their 2009 paper "Music Recommendation Based on Acoustic Features and User
Access Patterns " [Shao et al., 2009].

There is still yet to have been research done into recommender systems using clustering on a
graph movie database that contains only information about the movie.

15

Chapter 3

Methodology

The main goals of this project were to build a graph database describing movies; analyse graph
clustering methods when applied to said database and investigate the clustering techniques as a
method of recommending movies to people based on their movie preferences. As such the methodol-
ogy was split into three sections, building and investigating different graph databases; performing
clustering methods on the databases, and using the clusters found to make a recommendation
system.

Different graph databases where to be tested in order to determine the optimal graph. While it
is possible to see if the graphs are constructed with clear nodes and relationships, the functionality
of the graphs can only be investigated by analysing the clustering algorithm results. Likewise the
optimal clustering method found could only be found by comparing results of the recommendation
system.

3.1 Building the Graph Database

Two approaches to building the graph database were investigated. The first involved creating
nodes for each movie and each property. That is, there is a node labeled "MOVIE" for each movie,
and a node labeled "ACTOR", "GENRE",... for each actor, genre etc in the database. The edges
between these nodes will be directed relationships from a property node to a movie node. The
basis of this graph is that property nodes will cluster with movie nodes, the movies can then be
identified from these clusters when recommending.

The second approach was to build a graph that contained only movie nodes. The movie nodes
can then be connected bidirectionally with edges that represent shared properties. For example, if
a movie has any of the same actors there will be a bidirectional relationship labeled ’Shared_actor’.
The same was done for the other properties considered. With graphs designed in this method the
clusters were expected to form based on relationships between each movie, rather being based on
the property nodes shared between movies. As the clusters would be entirely movies, the entire
cluster could be used for recommendation

3.1.1 The data used

The data used to construct the graph database was the TMDb 5000 Movie database. TMDb (The
Movie Database) is an online, community built television and movie database. The website has
been collecting data since 2008 from a community of 1,428,725 [(tm, 2019]. The site has users
collecting information about 474,652 movies, pairing that with its public access makes this an
excellent source for analysing movie properties. While publicly contributed and moderated data is
not generally as reliable as published data, the scope of the website suggests it is usable for analysis.
the TMDb 5000 Movie Database is a sample of 4083 movies with a selection of the information
about the movies.

The data came in the form of two .csv files; tmdb_5000_movies.csv and tmdb_5000_credits.csv.
The former contains detailed information about each movie, including cast and crew members,
while the latter gives a deeper description of the cast and crew.

16

tmdb_5000_movies.csv

The tmdb_5000_movies data’ columns detailed each movie’s Budget (USD), Genres, Homepage,ID
(a number unique to each movie), Keywords, Original Language, Original Title, Overview, Popular-
ity, Production Companies, Production Countries, Release Date (dd/mm/yyyy), revenue (USD),
runtime (minutes), Spoken Languages, Status (released/ not released), Tagline, Title, Vote Aver-
age, Vote Count.

The data was taken from Kaggle [?], an online community of data scientists owned by Google.
Continuous data is inappropriate for a graph database as they cannot be used to create distinct,

usable nodes. Hence, the Budget, Vote Count, Voting Average, Runtime, Revenue, Release Date
and Popularity were discarded. Overviews, Homepage and Taglines cannot create usable nodes as
they are distinct to each movie and will not add anything of worth to the graph’s architecture.
The release status of a film would not affect anything that can relate to a person’s preference and
so that was ignored. The current title was used instead of the original so as to keep consistency
with other movie data.

This csv had a single row for each movie. Genre, Production Companies, Production Countries
and Spoken Languages have multiple attributes and so they were represented by JSON strings. A
sample of the data kept can be seen in Table 3.1

genres id original language title ...
[{"id": 28, "name": "Action" }, 19995 en Avatar ...

{"id": 12, "name": "Adventure"}...] ...

Table 3.1: Sample of the columns kept from the tmdb_5000_movies data

tmdb_5000_credits.csv

The tmdb_5000_credits csv had a similar layout though with just four columns; Movie Id, Title,
Cast, Crew. Movie Id and Title correspond to their equivalent in tmdb_5000_movies while Cast
and Crew where JSON strings describing the cast or crew member. The Cast JSON string con-
tained an cast ID identifying the cast member within the cast list; the character name; a credit ID
identifying them in the credits; their gender (numeric: 1=female, 0=male); their name and their
credit order (order of 0 suggests the main actor). An example string is shown below:

[
{ "cast id": 242,
"character": "Jake Sully",
"credit id": "5602a8a7c3a3685532001c9a",
"gender": 0,
"id": 65731,
"name": "Sam Worthington", "order": 0}...
]

The Crew string contains the credit ID, the Department the crew member worked in, the
Gender (0/1), an unique ID, their job and their name. A example string is shown below:

[
{"credit_id": "52fe48009251416c750aca23",
"department": "Editing",
"gender": 0,
"id": 1721,
"job": "Editor",
"name": "Stephen E. Rivkin"}...
]

In both of these strings the only useful information is the staff’s name and their ID to distinguish
them.

3.1.2 The programs used

Two programs were used for the graph creation; Python and Neo4j. Python was used to prepare
the TMDb 5000 data into a format that could be used to turn the wanted data into a graph

17

database. Neo4j was the software used to create the graph once the data was in a usable format.

Python and pandas

Within Python,the library pandas was used to manage the csv’s. This library can import csv’s
and store them as a dataframe object. This allows for complicated manipulation of data treated
as a standard table. The library is capable of reading in and storing JSON strings as dataframe
objects. This allowed the properties described as JSON strings to be accessed. The library can
also be used to join tables, making it useful for dealing with data that is split across multiple files
[McKinney, 2012]. As was the case here.

Neo4j

Neo4j is the world’s most widely used graph database management system. The system works of
graph theory, creating nodes that contain the data connected by edges that represent some data
connection. Neo4j allows for the free construction of graphs, including the creation of new nodes
and edges. When a node is created it must be assigned a label. This establishes a distinction
between nodes and the ability to query the graph. A node with a label,n, is defines as (n). In-
dividual nodes can be distinguished from each other by assigning properties to them when they
are created. This allows for the querying of specific nodes in the graph. The number of properties
per node is limitless. Properties may be integer, float, string, Boolean or an array of any of the
above. The syntax of creating a node labelled "MOVIE", with the properties "title: The Matrix"
and "id: 423" is show below:

CREATE (m:MOVIE {title: "The Matrix", id: 423})

In Neo4j, the edges in the graph are called relationships. These relationships can be non-directional,
mono-directional. Bi-directional relationships are formed by two mono-directional relationships in
reverse from each other. As with nodes, relationships must be assigned a label. A relationship r
between two nodes n and m is represented in Neo4j as:

(n)− [r]− > (m)

The arrow is optional and indicates the direction of the relationship. Relationships can be as-
signed weights in a similar way as node properties are assigned. This is used to build weighted
graphs that place importance on specific relationships. When weights are assigned they must be
labeled for proper querying. The creation of a relationship called "acted_in" between a node (n)
and a node (m), with a with a weight wt=0.5 us shown below:

MATCH (n), (m)
CREATE (n)− [: acted_in : {wt : 0.5}]− (m)

MATCH is an important command in Neo4 as that is how nodes are accessed.

Querying in Neo4j

A benefit of Neo4j is its ability to query databases. The program uses a querying language called
Cypher to investigate properties of the graph. It can be used to search for specific data, construct
specific sub graphs and apply operations such as the count or the mean. It also allows for the
manipulation of node properties through numeric and string operations.

Querying in Cypher is oriented around two commands; MATCH and RETURN. MATCH
whether a node or relationship in the graph required for the query, RETURN gives the final
result of the query.

Between this, specific nodes can be accessed and manipulated by one of their properties. For
example; finding a MOVIE node with the title "The Matrix" can be done as follows:

MATCH (m:MOVIEtitle: "The Matrix") RETURN m
Within this, Boolean, string and numeric operations can be performed, in the same manner as

SQL. For more advanced statistical and mathematical operation, packages in Neo4j are needed.

18

Algorithms in Neo4j

There are packages available to allow for more complicated analysis. The two packages used in
this project were APOC (Awesome Procedures on Cypher)and Graph Algorithms. APOC contains
many useful functions, and is particularly useful for performing various statistics equations. Graph
Algorithms is used to apply algorithms specific to graph theory. These include centrality, path
finding, link prediction and community detection. Within the community detection graphs are the
strongly connected clusters, connected clusters, Lovain modularity and label propagation discussed
in the literature review. It is these inbuilt algorithms that where used to investigate communities
in the TMDb 5000 movie database.

3.1.3 Multi-label graph
The first graph investigated consisted of nodes with multiple labels. Each movie was labeled with
its title and its id. Every property of that movie was also created as a node with its respective
label. For example GENRE and ACTOR nodes.

Properties Investigated

[Why the properties that were investigated were chosen] The director was the only crew investigate
as they are the main influence on the movie.

Preparing the Data

In order to constrict a graph from imported data in Neo4j, it must come in one csv. When the csv
is read in the table’s rows can be iterated through and the values used in node, relationship and
property construction. As the data was in the form of two csv’s, they needed to be combined into
one in such a way that the graph wanted can be built through the iteration.

For the multi-label graph, the table needed to have a column for each movie and property
investigated. With the data in this format, each column can be considered a node label; each
unique entry a node, and relations can be constructed from each row.

For this to be the case there had to be multiple entries for movie to match each of the properties.
In order to do this, a pandas dataframe for each of the csv’s was built. The rows of the csvs were
iterated along, allowing the reading of the JSON strings. The individual properties from each
string was built into a new dataframe, a column for the value and a column for the movie id. The
dataframes were then outer joined on the movie id.

The final columns were Movie ID, Title, Original Language, Release Date, Director Name,
Director Id, Genre, Actor Name, Actor ID.

Different tables were made containing different numbers of actors so that the impact of the
number of actors can be investigated. Seven tables were created containing one to seven actors per
movie.

Creating the Graphs

The graph was then built using Neo4j. From the previous table four types on node were to be
created; (ACTOR), (MOVIE), (DIRECTOR), (GENRE). These contained the respective name
and ID. The relationships built were:

• (:ACTOR)-[:ACTED_IN]->(:MOVIE)

• (:DIRECTOR)-[:DIRECTED]->(:MOVIE)

• (:MOVIE)-[IS_GENRE]->(:GENRE)

The process for creating the graph with this software can be broken down into several steps. Firstly,
constraints were made on the creation of nodes such that ACTOR nodes have a unique actor ID,
MOVIE nodes have a unique movie ID, DIRECTOR nodes have a unique director ID and that
genres name were unique. The constraints were made on IDs rather than names as it distinguishes
shared names.

Secondly, the table rows where run through with a new ACTOR node for each actor ID, this
node was given the name and ID information. This node was then merged into the graph. The
same thing was run for each node type.

19

To establish relationships, the the table’s rows were run again. This time the Neo4j function
MATCH was used to find the node that matched the actor ID and the node that matched the movie
ID and creates the relationship ACTED_IN between them. This was repeated for DIRECTED
and IS_GENRE.

Multiple graphs were made using this method for all the different number of actor tables and
a version with and a version without the genres. This allowed for testing on the parameters effect.

A schematic of a multi-label graph representing movie data can be seen below in Figure 3.1.

Figure 3.1: Schematic of a multi-label graph representing movie data

The image shows the graph’s different labels of node, red being GENRE; blue being ACTOR;
green being DIRECTOR and yellow being MOVIE. The green arrows represent the :DIRECTED
relationship; the blue represented the :ACTED_IN relationship and the red arrows represented
the :HAS_GENRE relationship.

3.1.4 One node Label

The second graph, also built in Neo4j, consisted only of nodes labeled (MOVIE). The details of
each movie was stored as properties to its unique node.

Properties investigated

This method allowed the inclusion of more properties without the fear of properties filling clusters
at the expense of movies. The properties included, actors, directors, genres, keywords, production
companies, original language production country and languages spoken. For the actor properties,
the first five listed actors were selected. This was done because smaller actors tend to have many
minor parts in films, regardless of style of film. It was assumed that when it comes to film
preferences, only the top listed actors are often noticed. All the directors and genres were used a this
was rather specific. Keywords highlight distinctive properties and so are more useful. Production
companies tend to have unique styles that can be preferred, such as Disney.

Preparing the Data

The one label graph was built by combining the two original csv’s into one whole csv’s. All of the
JSON data was converted into an array containing just the id values. Only the id values were used

20

as that ensures the values being dealt with are unique. The final csv contained one row per movie,
with metrics that have multiple values being represented as an array of their id’s. In Neo4j the csv
was iterated and a node was created for each movie. As the nodes were created, each was given a
property for each metric in the csv. As the properties can be stings, numeric, Boolean or arrays it
was possible to describe all the genres and actors this was.

Graph creation

When the csv was imported into Neo4j; the nodes where created by a simple CREATE command,
using the row’s values for the properties of the node.

When a csv is read into Neo4j, every entry is read in as a string. Hence, it is not possible to
simply read in an array to be a node property. To counter this, each array value in the csv was
converted into a comma separated string. When the value is being read in the Neo4j command
’split’ was used to separate the values into neo4j array. This array was then assigned as the
property.

Relationships were created between nodes by using the querying language, Cypher. Cypher was
used to match nodes that have the same property value , this was done for non-array properties
such as the original language property. For relationships between array properties, matches were
created based on the intersection of the properties being non-empty. The final graph was a node
for each movie and a relationship between those with similar properties

The query can be seen below:

MATCH (n:MOVIE), (n2:MOVIE)
WITH n, n2, apoc.coll.intersection(n.actor, n2.actor) AS common
WHERE NOT common = []
AND NOT n = n2
CREATE (n)-[:shared_actor]->(n2)

The union was found using the apoc addition to neo4j.
A schematic of the graph is shown below in Figure 3.2.

Figure 3.2: Schematic of a single-label graph representing movie data

This image shows different movie nodes and how they connect with each other. Red arrows
represent shared genre; green arrows represent shared movie and blue arrows represent shared
director.

21

Adding weights to the graph

Another property of graph databases that can impact the behaviour is weighted relationships.
Adding weighs to a graph can help to identify the importance of a relationship. Doing this can
can counter a graph’s density becoming troublesome. Another reason to investigate weights is that
establishing importance between relationships can further identify communities. Rather than all
relationships being treated equally, a focus is on nodes with stronger relationships can improve
the results of clustering algorithms. This is particularly useful for label propagation and Louvain
modularity.

The weightings for this graph where created by finding the ratio of the number of values in
the source node property with the number of values in the source and target nodes’ intersection.
This returns a value between zero and one for all relationships. This gives a way to distinguish
importance of relationships, while giving all relationship types a comparable range. It is important
to have a similar range of values for each relationship type so that no one relationship type is given
more priority.

This was specifically done in Neo4j by altering the relationship creation Cypher query in the
previous code. This is shown below:

MATCH (n:MOVIE), (n2:MOVIE)
WITH n, n2, apoc.coll.intersection(n.actor, n2.actor) AS common
WHERE NOT common = []
AND NOT n = n2
CREATE (n)-[:shared_actor{weight: length(n.actor)/length(n.common)]->(n2)}->(n2)

Although the maximum memory was allocated to the program, the task of assigning relation-
ships based on production country was too great.

Fixing the weights

One issue that can arise from weighting the relationships in this was is that the number of distinct
keywords far outnumber the number of genres per movie. this combined with many commonly
repeated keywords meant that the intersection was much greater, leaving a much smaller weight
for the keywords. It is also difficult to establish importance of individual properties within the
context of the data.

There are many values within these nodes that are very often repeated. Such as the keyword
actor occurring in X number of films. This is not useful when it comes to recommendation as it
doesn’t focus on the distinct properties of people’s preferred films. Putting more emphasis on less
frequent words that are shared is far more useful.

To counter this, the frequency of each element was found within the data. The inverse of each
element’s frequency was assigned as that elements weight. Assigning a weight to each element of
each property gives a better indication of the truly important values. In terms of the keywords,
the less commonly used the word, the higher the element’s weight.

Making the final weight of the relationship the sum of the element weights in the property
intersection gives a better indication of the effect the different property elements have on the
graph.

With the relationships being developed this way, there was no need to limit the number of
actors. As this weighting approach focused more on unique values that are shared compared to
common ones.

In order to do this practically in neo4j, the properties of the node had to contain information
both about the property and their frequency. There also had to be a way of relating the two.
Unfortunately in Neo4j, properties can only be basic objects, meaning that an array of arrays
could not be used to compare indexes. There was also no way of relating each property to a
separate table with a pottery id as a key and the frequency as the values as only information about
the graph could be stored.

This was resolved by altering the arrays in the property columns of the tables in this section.
The arrays that contained the properties were changed from ["id1", "id2", "id3" ... "idn"] to
["id1|frequency1", "id2|frequency2", "id3|frequency3" ... "idn|frequency"].

When building the relationships between nodes, after the intersection was found, the values
within the array of properties could then be split on "|" and the index [1] (containing the frequency)
for each value could be retrieved and summed. An array can have each element in an array worked

22

upon through a process called list comprehension. This process constructs a new list from a defined
function.

In this case the be list created was a list of the frequencies of the intersection array. The code
for this can be seen below:

WITH [x IN common | toFloat(split(x,’|’)[1])] AS result

Here each element in the intersection array is split, converted to a float and then the second
element (containing the frequency) is selected. This returns the result as a variable "result". This
array could then be summed using the apoc function apoc.coll.sum() and set as the weight for the
relationship.

However, in Cypher, when using list comprehension, references to the initially matched nodes
(n) and (n2) are lost. Hence, when trying to combine the functions in a query such as below:

MATCH (n:MOVIE), (n2:MOVIE)
WITH n, n2, apoc.coll.intersection(n.keywords, n2.keywords) AS common
WHERE NOT common = []
AND NOT n = n2
WITH [x IN common | toFloat(split(x,’|’)[1])] AS result
CREATE (n)-[:shared_actor{wt: apoc.coll.sum(result)}]->(n2)

The result is the creation of two new blank nodes, connected by the "shared_actor" relation-
ship for every combination of (n) and (n2).

To overcome this, the query was to produce the intersection was altered to return n.title,
n2.title, common_keyword, common_actor... A "common" for each intersection between (n) and
(n2). This results in a table with all combinations of (n) and (n2) that are allowed by the query.
This table was then saved as a csv.

A blank instance of Neo4j was then created. In this instance the csv was loaded row by row
as usual. This time the row’s values for common was run through the list comprehension and
summed.The sum was then returned and saved to a csv. This csv contained the weights for every
relationship type, for each (n), (n2) combination in the same order as the previous csv. These csv’s
were combined using pandas.

After which, in another blank instance of Neo4j, a constraint to make each nodes title unique
was placed. After this the final csv was read in row by row, merging the nodes and relationships.

Combining the relationships

Another step in confronting the density of the graph was combining all relationships between nodes
into one single relationship. Reducing the number of relationships helps with the graph density
while simplifying the relationship labels may improve the performance of the clustering algorithms.

As well as the reducing the density of the graph, combining the relationships can also make it
clearer how each node is related. One label of relationship may also improve the quality of the
community detection.

It is possible to build a query that uses aggregation functions to determine a combined weight of
all of the relationships between two nodes. Here for each node (n), (n2), the weights of the existing
relationships were aggregated, this was the used as the weight for a new relationship between the
nodes. The other relationships between the nodes were the deleted.

There are three main aggregation methods that could be used to combine the relationships in a
meaningful manner when focusing on numerical weights. They are Count, Average and Sum. Count
returns the number of relationships between the nodes. This is a good option for creating a weight
from unweighted relationships. Rather than the algorithm interpreting multiple relationships, the
count can be used to give a clear relationship that clearly highlights the strength of the relationship.

However, this is not beneficial to aggregating relationships with weights as it ignores the im-
portance of the existing relationships, giving each of them equal value. There are three ways of
averaging weights; mean, median and mode. The median was not useful for this instance as float
values are being aggregated, meaning there will be very few common weights. Using the median
would ignore the impact of the strongest relationships.

23

The mean could be a beneficial way of aggregating, however it ignores the number of relation-
ships between the two nodes. Two nodes with relationship weights [0.5, 0.3, 0.4] have the same
mean as a two nodes with relationship weights [0.5, 0.3]. While the values between the two are
similar, the extra relationship of weight 0.4 clearer suggests a stronger relationship. Hence, the
sum of the weights was chosen as the aggregation function to use.

While Neo4j has inbuilt aggregation function, these functions aggregated the weights of all the
relationships in the graph. It is not possible to use them to aggregate only relationships in specific
nodes. To do this required matching and assigning variable to all of the values. Basic matching
will not work here as this query discards null values. This results in only connecting weights for
relationships that exist between all nodes.

OPTIONAL match (n)-[s:shared_keywords]->(m)
OPTIONAL match (n)-[r:shared_production_country]->(m)
OPTIONAL match (n)-[t:shared_director]->(m)
OPTIONAL match (n)-[u:shared_actor]->(m)

This collects all of the stated relationships between n and m as a set of objects. This is saved
for each (n), (m) combination. A list containing the title for each (n) and (m) were combined into
a list containing another list with all the weights, [n.title, m.title, [r.wt ,s.wt, t.wt, u.wt]]. The
last element was summed using the apoc.coll.sum() function. However, as optional matching was
used, this list contained null values that cause an error when run. To counter this, the Neo4j filter
function was used. This function tested for each of the elements where IS NULL returns true. This
value was then replace with zero. The full function i shown below:

WITH [n.title, m.title, apoc.coll.sum(FILTER(x IN [s.wt, r.wt, u.wt, t.wt]
WHERE x IS NOT NULL))] AS combination.

The list of n.title, m.title and their collective relationship weight was assigned to a variable, com-
bination, in order for it to be accessed when creating the new relationship.

In the same query, another MATCH clause was used. The specific nodes were identified by
indexing the combination list. The new relationship was created with the weight found by indexing
combination. This part of the query is shown below:

MATCH (n:MOVIE title: combination[0])-[w]->(m:MOVIE title: combination[1])
MERGE (n)-[:combinewt: combination[2]]->(m)

Here w is just a place holder for the relationship. MERGE was used instead of create to avoid du-
plicating relationships. After this the original relationships were deleted, leaving only the combined
weight relationships.

3.2 Clustering

Investigating clustering was the second main objective of the project. The goal here was to deter-
mine if a movie database graph could perform successful clustering with the goal of recommending
movies. There were two key points of analysis; finding the optimal graph and pairing it with its
optimal algorithm. The quality of the graph and the quality of the algorithm were tested simul-
taneously as the algorithm was applied. If clusters were successfully detected then that would
accomplish proving that it is possible to construct a graph with the intention of clustering and it
is possible to use algorithms to detect communities. The clusters built here could then be taken
on to building a recommendation system

3.2.1 Cluster comparison metrics

As the numeric methods of determining connections are not applicable, the metrics on which the
algorithms where judged were the size of each cluster and the number of nodes in each cluster. This

24

is the best metric for the use of recommendation systems as each movie must be within a cluster,
and each cluster must contain a suitable number of clusters in order to build recommendations.

An ideal recommendation system would provide a method of recommending each film. This
would require minimising the number of single node cluster and clusters containing just one film
node. In contrast, if the graph is clustered in way that the majority of movies formed one large
cluster, the method would not provide a narrow enough recommendation. It would be preferable
for clusters to form into many, evenly sized clusters.

These metrics were used to compare the different algorithms and different graph structures when
trying to determine the best graph structure and the best algorithm to perform recommendation
testing.

3.2.2 Neo4j clustering algorithms

These clustering was done with the Neo4j package Graph Algorithms

Louvain Algorithm

The implementation of the Louvain algorithm in Neo4j is shown below:

CALL algo.louvain.stream(label:String, relationship:String,
weightProperty:’weight’, defaultValue:1.0)
YIELD nodeId, community

Within the algo.louvain.stream clause there are five arguments, label, relationship, weightProperty,
default value and concurrency. The first two arguments define which label node and relationship
that is wanted analysed. To use all labels and relationships, this is left blank. The weight property
and the default values give the opportunity to include weights in the algorithm. weightProperty
can be used to set a define a weight from a variable ’weight. If this is not used, the weight for all
relationships is "defaultValue" which is set to 1.0

Yield returns results form a Neo4j Graph Algorithm. "nodeId" is the ID number of a node.
This can be used to determine the movie and its properties. "community" is the integer community
label.

The weights in these systems varied between relationships. To include this into the information
the weight had to be specified. This was done by creating a match clause returning the relationship
variable in the algorithm’s node label argument. The relationship argument is then defined by the
another match clause. This time using SOURCE and TARGET. Using the previously matched
nodes as the source and target of the statement, the weight of the relationship can be returned as
’weight’. This can then be picked up by the algorithm. This is shown below:

CALL algo.louvain.stream((’MATCH (n) RETURN id(n) as id’,
’MATCH (n1)-[r:combine]->(n2)
RETURN id(n1) as source,id(n2) as target, r.wt as weight’,
graph:’CYPHER’, write:true))

Defining the variable "graph" makes this a Cypher projection. Meaning that the clustering is
built from projecting the subgraphs queried in the label and relationship arguments.

This alteration to the algorithm is the same method to include the weight in all Neo4j ’Graph
Algorithm’ algorithms

Label Propagation

The Neo4j label propagation algorithm that was used is shown below:

CALL algo.labelPropagation.stream(label:String, relationship:String,
iterations:1,
weightProperty:’weight’, writeProperty:’partition’,
direction:’OUTGOING’)
YIELD nodeId, label

25

The algorithm works in the same way as the Louvain algorithm. However, there are three new
arguments; "iterations", "writeProperty" and "direction". "iterations" sets the maximum amount
of iterations the algorithm will run through. To maintain a small enough runtime a value of 5
was chosen for every run. "writeProperty" is the property the algorithm is written back to. The
default ’partition’ was used.

As with Louvain, an initial matching was needed to define the weights. This was done in the
same way.

Neo4j Connected Components

The Neo4j function for performing the Connected Component is shown below:

CALL algo.unionFind.stream(label:String, relationship:String,
weightProperty:’weight’, threshold:0.42, defaultValue:1.04)
YIELD nodeId, setId

This algorithm works much the same as before. The only difference is the inclusion of "thresh-
old" which is a float defining the threshold of a relationship’s weight. Below this the relationship
is discarded. "setId" gives a float values defining the cluster, as before

Neo4j Strongly Connected Components

The stringly connected components algorithm is much simpler in comparison, as can be seen in
the syntax below:

CALL algo.scc.stream(label:String, relationship:String)
YIELD nodeId, partition

There is no method of including weights into this algorithm. The only arguments that can be
altered are the node labels and relationships investigated. Here all the labels and relationships
were used. The "partition" yield is the integer corresponding to the cluster, as with the other
algorithms.

3.2.3 Multi-label graph
Choosing the algorithm

Each graph contained a different combination of movie features and so the algorithms would
perform differently. However, the one commonality with these graphs is their lack of triangles.
The only relationships that can form from this data is mono directional from a non-movie node to
a movie node. Hence, there is no possibility of three edges within three nodes. The triangle count
and density function rely on the forming of triangles in the database [Schank and Wagner, 2005]
making these methods unusable in this context.

In the same way both Strongly Connected Components and Connected Components are unus-
able as the definition of a cluster in these methods is an area where nodes can be reached from
each other. The different types of node will never be directly reachable from each other making
those also unsuitable.

Hence, the methods that that were investigated were Label Propagation and Louvain Modu-
larity.

Applying the algorithms

The algorithms where run using the inbuilt Neo4j functions. This allowed it to be directly applied
to the graphs that where built. The first graphs investigated consisted of :MOVIE nodes and
:ACTOR nodes with the :ACTED_IN relationship. Graphs were investigated between one actor
per movie and seven actors per movie. The number of actors was limited due to the computation
intensity of creating more relationships and nodes.

26

Once the results were taken for these, the :GENRE nodes and :HAS_GENRE relationships
were added. All twenty genres were added and the full list of genres was given for each film. This
was followed by adding the original language.

As both of the algorithms investigated are non-deterministic, each algorithm was five times and
the results were averaged.

3.2.4 One-label graph
As the One-label graph contains only bi-directional relationships it was possible to investigate all
four of the discussed algorithms, strongly connected components, triangle count, Louvain modu-
larity and Label propagation. However, the Neo4j strongly connected components algorithm ha
no weight argument, making it unsuitable when investigating weighted graphs.

As the Louvain modularity and Label propagation are non-deterministic, they had to be run
multiple times to account for the different results. These algorithms where run run five times
each per graph. Running the algorithms resulted in a table consisting of each movie and its
corresponding cluster, represented by an integer. To account for the non-determinism, the the
mode of each movies cluster.

The other methods were deterministic, meaning that the result will be the same every time it
is run. Hence, there was no need to run the graph multiple times.

3.2.5 Comparing results
The results for both approaches to the problem where compared with each other against the
metrics established in Section 3.2.1. The combination of graph and algorithm that produced the
best results were run again, this time the tables defining the clusters were produced and collected.
If the optimal results were achieved using a deterministic-approach then only one set of results
need to be taken. If the optimal method was non-deterministic then five sets of results were taken.
This was to ensure reliability moving forward.

27

Chapter 4

Analysis

This investigation seeks to solve three main goals: building a graph database from movie data;
investigating clustering in movie databases and investigating how well these clusters can be used to
recommend movies. The analysis was broken into three aspects; investigating how well the graphs
were built, investigating how well the clustering algorithms worked, investigating how the clusters
worked as a method of recommendation.

As there were two structures of graph investigated, the two were analysed separately. The single
labeled graph was looked into how well all the different clustering methods works, and the multi
labeled graph investigated how the change in nodes included affected the results of the applicable
algorithms.

4.1 Single node graph

4.1.1 Building the graph

The first part of the analysis was investigating how the graph was built. This involved the looking
at the number of nodes and relationships. An initial indication of a successful graph is if there is a
node created for each movie, containing the required properties. Another thing to initially consider
is if the relations are successfully connecting, and if there are a sensible amount of connections.
For example, it would not make sense for a node to connect to every other node for any of the
properties. It is also important to see if there are sensible number of relationships per node.

The single node graph was built by initially establishing all the nodes in one query, then
querying the creation of each relationship. Each relationship was based on the intersection of the
node’s properties. These where added one query at a time. Table 4.1 below shows the results of
the queries as they were input.

Relationship Number Number per node Time taken (ms)
Shared actors 165,496 34.4567 471,996

Shared directors 15,902 3.3108 159,199
Shared keywords 847,246 207.505756 811,661
Shared genres 8,831,308 2162.94587 369139

Shared company 536,698 111.742244 98354

Table 4.1: Number of relations added for each property.

When trying to compare countries it ran out of RAM, even though it was max for the computer
at 7GB. This is because almost all where produced in the US. When trying to build recommendation
systems, losing information about the movie can cause negative effect. However, in this instance,
including the country of origin does not offer much for a recommendation system as such a common
result cannot offer distinction between movies. Also building a common relationship between each
node can cause confusion in graph algorithms.

On average, an actor will have five top credited roles in a movies ,according to research done by
the movie data and education website Stephen Follows[Follows, 2013]. As only the top five listed
actors were kept in the array 25 relations per node should be expected.

28

The number of actor relationships built is 34.4567, 1.37 times expected. This difference is
reasonable based on the the assumptions made. A higher value also makes sense because more
popular films have smaller selection of actors.

It can be usually expected that there is between one and three directors per movie. A second
research piece by Stephen Follows suggests that the average director will make only two movies.
Hence, the expected number of shared director relationships per node would be between two and
six. The value reached here of 3.3108 fits well into this prediction.

The definition of genres depend on TMDb itself, so it is difficult to compare these numbers to
movie statistics. However, TMDb offer a selection of just twenty genre labels. These results imply
that 45% of movies share a genres. When comparing the number of movies in the data, 4803, with
the number of genres it is clear that ther would be a large cross-over of genres.

TMDb keywords cover a range of properties of the film. This includes general descriptions such
as "Action" or more specific terms such as "Jason Vorhees", referring to a character in the Friday
the 13th series. As such there should have a large number of shared keywords per node.

80% of the movie market share is owned by five production, according to Box Office Mojo,
a website owned by IMDb that tracks box office revenue [Mojo, 2019]. In this graph there are
111.74 shared production company relation ships per node. This is 2.3% of the total number of
node. Based of the statistics this may be a rather low number. However, it must be considered
that many production companies publish movies under asset company names. For example Disney
publishes Star Wars through LucasFilm [Businessweek, 2013]. When considering this, it account
for the lower than expected result.

When considering the above, it can be assumed that this method of building a graph database
to store movie information works well both for storing the TMDb5000 movie database, as well as
representing the general movie industry. Although a more powerful computer could be used to
include the country of origin.

4.1.2 Basic weighting

When build the system with the weights each relationship was added separately. The same issue of
processing power came about when considering the production country. However, in this instance,
the number of genres was also affected. This extra loss of information is not ideal when trying to
represent the movie data. However, this came with the added benefit of graph weights. The loss
of specific details about the movie results in a better representation of the how strongly the nodes
are connected.

The actors directors and keywords were all able to form relationships. The number of relation-
ships is shown in below in Table 4.2.

Relationship Number Number per node Time taken (ms)
Shared actors 165,496 34.4567 10,362,35 0

Shared directors 15,902 3.3108 4,262,39
Shared keywords 847,246 207.505756 17,524,651
Shared company 536,698 111.742244 194,304

Mean 387,399.755 80.657 7126886

Table 4.2: Number of relations added for each property, with ration weights.

The resulting number of relationships was the same as the previous graph. This is expected as
the only change desired was the added weights. This shows that the added process didn’t affect
the alter structure of the graph. However, the running time of this took, on average,11.6n times
longer to run. Making it a lot more computationally demanding.

A sample of the graph can be seen below in Figure 4.1

29

Figure 4.1: Sample of graph with intersection ratio as the weight

This method was successful in building a graph database connecting movie nodes with weighted
relationships defined by shared movie properties.

Figure 4.2 below is boxplot comparison of the weights of the different relationships.

Figure 4.2: Boxplots of weights from the basic weighting

30

The mean shared actor weighting was 0.2048, meaning that on average there was only one actor
in in the intersection, as the number of actors for each movie was set to five. The distribution
around this result is very small, as can be seen from Figure 4.2. Although there are movies that
share much more. The few stronger results help create a stronger relationship that can distinguish
from the basic number of actors.

Looking at Figure 4.2, it can be seen that the mean weight of the shared director relationship
is 0.972, with very little range. This is due to there only being around one director per movie,
meaning that any intersection will most likely be the same as the union of the properties, giving a
ratio of one.

Shared keywords have a very small mean of 0.165, although there are some very strong outliers
and more of a distribution than the others. The company shows a much more even distribution
with a mean of 0.416.

The issue with the contrast in weights shown is that almost all director relationships will
outweigh keyword relationships, potentially rendering the keyword data as redundant. However,
as the number of shared director relationship per node is so much lower than the number of shared
keyword relationships per node, implying that the shared director relationships are a more useful
identifier of relationships when clustering.

4.1.3 Fixed weighting

When creating the graph based on the document frequency of the properties, the frequencies were
successfully created into the desired form as described. To create the graph , the nodes with the
properties were read in fine. However, issues occurred when trying to create the relationships. As
the process is based on producing a table that contains the nodes to connect and their intersec-
tion. Due to the number of possible nodes and connections, the production of this table was too
demanding computationally. Although this was attempted with all of the properties investigated,
none of them were able to produce a table without crashing.

To investigate proof of concept, the technique was tried with a graph of twenty movies. The
process was the same but a copy of the csv containing only the first twenty entries was read in to
Neo4j. A small version of the desired graph was created. A visualisation of this graph displaying
the weights for shared_keywords relationships and their weights can be seen in Figure 4.3

Figure 4.3: Graph showing the frequency weights of shared keywords

While it is unfortunate that the graph could not be investigated further, the proof of concept
shows its ability to use the document frequency as weights for relationships. It would be worth
investigating this further.

31

4.1.4 Combining Relationships

The code outlined in Section 3.1.4 ran successfully. This set 847,246 properties, created 847,246
relationships and was completed after 5,439,016 ms. The code successfully set one property per new
relationship, as required. This is 176.4 relationships per node. 2.18 times the average relationships
per node from the basic weighting result. Considering that averages are skewed by extreme values,
this suggests that all the relationships were successfully merged.

Below in Figure 4.4 is a sample of the combined relationship graph database

Figure 4.4: Sample of the aggregated relationship graph

From this sample it can be seen that there are many relationships per node, however there are
only two relationships between any two nodes, as desired.

A boxplot of the weights of the aggregated relationships can be seen below in Figure 4.5.

32

Figure 4.5: Boxplot of the weights of the aggregated relationship graph

It can be seen that the mean and inter-quatile range are both very low. However there are some
very large anomalous values. This may suggest effective clustering potential as the few incredibly
strong weights will make clear connections over the many weak relationships.

4.1.5 Clustering

Pure graph

The first graph analysed was the pure single node graph, with no weightings added. The first
measure was the triangle count and clustering coefficient. A boxplot was made to show the different
results, as can be seen in Figure 4.6

33

Figure 4.6: Boxplot of the Single node graph

Looking at the triangle count, it can be seen that there is a huge range from zero to almost
5000000. This is not a good sign as it would be preferable for all of the nodes to contain many
triangle. Similarly, although clustering coefficient the average of 0.786 is rather height, the spread of
the results implies that many of the nodes are not within a suitable cluster. For a recommendation
system, it is important that all of the movies are into well defined clusters so that thorough
recommendations can be made.

The second algorithm run on this graph was the Strongly Connected Component algorithm.
Figure 4.7 below shows the size of the clusters found by the algorithm.

Figure 4.7: Graph showing the sizes of the different clusters, as well as the different number of
clusters in that size using the Strongly Connected Component Algorithm

This figure shows that the clustering is very poorly distributed. There is one cluster that

34

contains 4681 of the 4803 movies, the rest fitting into clusters of size 1 or 2. This is very much in
contrast to the comparison metrics set out in Section 3.2.1.

This is likely due to the density if the graph. As there are relationships for each aspect of a
movie, there are 10,396,650 total relationship. This is what creates such high number of triangles.
Since there are so many triangles formed, all of the nodes are too connected for the algorithm to
differentiate.

Running the connected component algorithm resulted in the same values as the Strongly Con-
nected Components. As can be seen below in Figure 4.8.

Figure 4.8: Graph showing the sizes of the different clusters, as well as the different number of
clusters in that size using the Connected Component Algorithm

This is due to the only difference in the algorithm being that strongly connected components
finds groups of nodes that are reachable by following the direction of the relationship. The con-
nected components algorithm, however, ignores the direction. This difference has no effect on
graphs of this structure because every directional node between each relationship has another re-
lationship in the opposite direction. So nodes will be reachable regardless of the direction of the
relationships.

After running the Louvain algorithm on this graph, the results were plotted in a bar chart as
shown below in Figure 4.9

35

Figure 4.9: Bar chart showing the base ten log of the size of each cluster detected using the Louvain
clustering algorithm

[]

In this graph each bar represents a cluster and the y axis is the base ten log of the size. This
was done to better compare the size of each cluster, considering the large differences.

In comparison with the strongly connected component and connected component results, there
are far more clusters. 129 clusters were detected. Most of the movies cluster into three large
clusters, averaging at 1535. 4605 movies were contained into these three clusters. 116 the clusters
contained only one movie. Seven clusters contained two movies and three clusters contained three
movies. Finally there were three clusters containing 4, 8 and 56 movies. Although more clusters
were detected, 89% of the contained only one node. This means that 89% of the clusters can not
possibly be used to recommend movies. Although there were more clusters with higher amounts
of movies, it is still not enough to be considered for a recommendation system.

The reason for this most likely lies in the number of relationships creating a graph that is too
dense. Another aspect is that the Louvain algorithm is largely based around relationship weights.
The all the weight here were set to the default of 1.0 reducing the effect of the algorithm.

Lastly, the label propagation algorithm was run. To avoid making the process too computa-
tionally demanding, the iterations were set to 10. Another bar chart was made showing the size
of the clusters, as can be seen in Figure 4.10

36

Figure 4.10: Bar chart showing the size of the clusters found by the label propagation algorithm
and the number of clusters of that size

Interestingly, the label propagation function found clusters of the same size as the connected
component and strongly connected component algorithms. This is likely due to the density of
the graph, as well as the lack of weights. This likely resulted in the label propagation algorithm
spreading labels in such a concentrated manner. Only the movies that contained very distinct
properties could be separate from the main cluster.

4.1.6 Added weights

The clustering algorithms were run on the weighted version of the one label graph. When investi-
gating the weighted version of this graph, there was no need to look into the strongly connected
component algorithm. This is because the Neo4j algorithm does not take into account weights. As
such, the result would be the same.

The results of the triangle count and the correlation coefficient would also be the same as there
was no change to the structure of the graph.

For each of the algorithms run, 4803 clusters were formed. That is every movie formed into its
own cluster. The addition of weights into this structure of graph vastly changed how each of the
algorithms ran. When there was no weight applied, the density of the graph caused the algorithms
to group the movies into few, very large clusters.

The introduction of the weights provided the needed distinction. However, the density of the

37

graph still prevented true patterns from showing. The number of weights between the graph could
also have an issue when running the algorithm. When looking at Figure 4.2 previously, the range
of weightings between relationships was very large. This most likely resulted in more division.

With regards to the Louvain modularity, the algorithm maximises its presumed accuracy by
comparing the density with the weights of relationships. The density of the relationships was very
high and the most common relationship, shared keywords, had very low weightings. The algorithm
could not build clusters when comparing these two.

Aggregated graph

Due to the restructuring of the graph, the number of relationships were decreased. Hence this
reduced the number of triangles formed, and therefore effected the clustering coefficient. Box plots
of the new triangle counts and clustering coefficients can be seen below in Figure 4.11

Figure 4.11: Box plots of the triangle count and clustering coefficients of the nodes in the Aggre-
gated One Label Graph

As expected, the number of triangles was greatly reduced, the mean triangle count now being
13472.84. As a result of this, the mean of the clustering coefficient was 0.51 times that of the
pre-aggregated graph. This is a notable reduction many movies’ ability to cluster.

The first algorithm run here was the connected component graph. The different structure of
the reduced the number of connection and should result in more divisions. The new weights of the
graph were also taken into account.

Using this algorithm, 678 clusters were detected, however 4126 of these were within one cluster,
the rest of the movies were contained in individually in one node clusters. This is far from a
positive result

4.2 Multi-label graph

The analysis of the multi-label graphs developed was divided into two parts to correspond with
the first two main objectives. The first part was to investigate the building of the graphs, then the
application of community based algorithms.

4.2.1 Building the graph

The Cypher queries successfully built a graph containing ACTOR nodes, DIRECTOR nodes,
MOVIE nodes and GENRE nodes, as well as the corresponding relationships. A sample of the
graph can be seen below in Figure 4.12

38

Figure 4.12: A sample of the multi-label graph database

Here brown represents actors, pink represents genres, red represents movies and green represents
directors. It cab be seen looking at this figure that the nodes that were wanted were successfully
created. It can also be seen that the correct relationships connect the node.

The number of each type of node can be seen below in Table 4.3

Node Type Number
ACTOR 13,025

DIRECTOR 2417
MOVIE 4803
GENRE 20

Table 4.3: Table showing the number of each type of node

It can be seen here that all of the 4803 movies in the database where added to the graph, as
well as all 20 genres. There were 13,025 actors added. This is 3.20 actors per node. This is a
reasonable value as seven actors from each movie where collected, but the nodes are distinct for
each actor. Hence, the value of actors should be less than 7 to account for crossover in cast. The
result here shows that, on average, movies will share 45.7% of their top listed actors.

The number of each type of relationship can be seen below in Table 4.4

Relationship Type Type Number
ACTED_IN 32791
DIRECTED 4775

HAS_GENRE 12160

Table 4.4: Table showing the number each type of relationship

There are 4803 MOVIE nodes and ACTED_IN relationships were based on the top seven listed
actors in that movie. This would imply that there should be 33621 shared actor relationships.
However, there are only 32791 ACTED_IN relationships per MOVIE. This is an average of 6.827
actors per movie. Although this is very close to the predicted, the slight discrepancy shows that
something had occurred that was unexpected. There were 650 instances of less than seven actors
being assigned to a movie. This is likely not due to the process of importing, rather that some
movies in the TMdB5000 movie database had fewer than seven actors listed.

39

Similarly, there were 4775 DIRECTED_BY relationship, meaning there was 0.994 directors
per movie. It would be expected that there would be slightly more than 1 director per movie, as
all but a few films only have one in the data. The difference in relationships is again very slight
and most likely due to a lack of director data in some movies in the TMDB 5000 movie database.

With the HAS_GENRE relationships there were 2.532 relationships per movie node. This sort
of value is expected as the trend of movies suggested between 2 and 3 directors per movie.

Comparing the number of relationships with the number of nodes there are 2.48 ACTED_IN
relationships per ACTOR node. This means that the average actor is top credited in 2.48 movies.
This is half of the amount of the number of movies an average actor is in that was found through
research. This implies that half of the roles of the TMDb 5000 movie database actors were top
seven credited. This also reveals that each director directs, on average, 2.00 movies. This agrees
with the research.

The results from analysing this graph imply that the TMDb 5000 movie database was success-
fully adapted into a graph database format, confirming the first objective of this investigation.

4.2.2 Investigating Clustering

As the structure of this graph prevented triangles from forming the triangle based algorithms,
triangle count, connectivity coefficient, connected component and strongly connected component,
were unusable. Hence, clustering analysis was done with Label propagation and Lovain modularity.
This graph also had no weights in its relationships and so that aspect of clustering algorithms could
also not be investigated.

Louvain Propagation

The number of movies in each cluster, after the mode was taken, can be seen below in Figure 4.13

Figure 4.13: Bar chart showing the the number of movies per cluster using Louvain modularity

40

This algorithm produced 678 clusters with an average of 40.36. As can be seen in this image
the nodes are dominated mostly by a few columns, as was much the same with the results form
the single label clustering. Although there is a lot more range in the values than seen previously.
The largest cluster contained 1106 movies. This means that 0.23 movies exist in one cluster.
There were 58 clusters that contained only one movie. When comparing these results with the
clustering metrics outlined. The Louvain method does not work well with this structure of graph
as a recommendation system. The clusters do not form an even distribution of clusters containing
all movies.

There are too many movies that cannot be recommended due to the fact they exist in their
own cluster. It is also difficult to make meaningful recommendations when a quarter of all movies
fit into the same cluster.

Label Propagation

The same method was applied to the graph gut with label propagation. The results can be seen
below in Figure ??

Figure 4.14: Bar chart showing the the number of movies per cluster using label propagation

The most remarkable thing when looking at this bar chart is that the size of the clusters add
up to be far more that the number of movies. This is expected as there were many more clusters
than the movie labelled ones. It would be worth further investigation to determine if the movies
become distributed evenly. The goal of this experiment was to investigated separately clustered
movies. Although it may be worth further investigating this form of clustering as a method of
movie recommendation.

Even with this in mind, the distribution of the size of the clusters is too great to build a
successful recommendation system, as outlined previously.

41

4.3 Comparing Graphs
When comparing the clustering of the two graph it is clear that non of the approaches used were
successfully in producing distinct clusters. However, it was the Lovain modulation on the Multi-
Label graph that proved to be the closest to effective. Although it was not possible to fully
investigate how the document frequency weighted would have fared against the clustering metrics
as there was not enough computation power to fully investigate.

42

Chapter 5

Conclusion

The two main objectives of this investigation were developing a graph database to represent movie
data, and to apply clustering algorithms to it to find clusters that could then be used for a recom-
mendation system. The first objective was successful as there were many varieties of graphs that
were constructed. The second objective was not so successful. Although many there were many
different approaches, a method of clustering a graph database such that it could be used for a rec-
ommendation system was found. After applying multiple clustering algorithms, no result managed
to satisfy the metrics that were established to consider the method suitable for a recommendation
system.

5.1 Building a Graph Database that contains movie informa-
tion

Neo4j has proved to be an effective tool for building graphs and applying clustering algorithms.
The was used to successfully develop a graph database describing movies. Most of the information
on the TMDb 5000 movie database was successfully transferred into a graph database. However
much of the data that was described was not suitable for a graph database. There was no method
found that could include a movie’s budget, any information about the tag-line, overview, budget,
revenue or run-time. Any of this information could prove to be useful when using it to develop a
recommendation system.

One issue that occurred was the lack of processing power that prevented more complicated
weights from being developed. Further investigation into the different methods of term frequency
weighting would be a worthwhile endeavour if there is access to higher performance computers.

5.1.1 Unused data

There is also the fact that the TMDb 5000 Movie Database data that was used did not contain
all possible pieces of information about the movies. An important example of extra data is the
age rating of a movie. For a movie recommendation system to be truly effective it must take
into account the age rating of the movie in order to avoid recommending movies with violent or
sexual moments to a young user. As movie ratings are discrete labels; Uc, U, PG, 12a, 12, 15,
18, it would be simple to create a node labelled "RATING" and combining it with the multi label
graph, connecting it with a "HAS_RATING" relationship to the movie. In terms of the single
label graph, a relationship of "shared_rating" could be linked between movies.

Some of the continuous data surrounding movies could be developed into a set of discrete data.
For example, the release date in the TMDb database was continuous, however this could have been
broken into several discrete values. One method of incorporating this data would be to establish
the decade in which the movie was released. Another method of using release date date would
be to make nodes or relationships defined by the month in which it was released. There may be
unseen patterns in the difference between summer-released movies and winter-released movies.

Also further information about the crew was ignored. It could be possible that recurring editors
could make an impact on a movies appeal. One possible reason could be that certain editors edit
in an idiosyncratic manner that is notable and preferable for much of an audience. The types of

43

movies that members of the crew affiliate themselves with could also be notably distinct. All of
this could have increased made the clusters formed more distinct.

Although, when deciding whether to put more information into the graph, care must be taken
to be aware of cluttering the graph, making it too dense to fully analyse. This is why aggregation
techniques were included in the single label graph.

5.1.2 Adding weights
For the single label graph, the were many ways in which weights were successfully implemented.
Unfortunately it was not possible to full developed the graph based on the frequency of the data.
Putting emphasis on the less commonly occurring data could have helped with the clustering, as
there would be fewer high weighted relationships throughout the graph, reducing the density. In
terms of recommending, emphasis on specific details would also have been useful.

There were no weights included in the multi-label graph. One method off adding weights could
be defining the weight by the order in which that value was given in the TMDb 5000 Movie
Database. As the data that contained multiple values for each move came in the form of JSON
string, it would be possible to use the order of this string as the weight relationship between the
information node, for example ACTOR, and the MOVIE node. This is under the assumption that
there was priority listing in all JSON strings in the TMDb 5000 Movie Database.

Another way of adding weight to the multi label graph would be to find the shortest path
distance between two movie nodes. Although the MOVIE nodes are not directly connected with a
relationship, they are connected through other nodes and relationships. This form of connection
is called a path [Gubichev et al., 2010].

The path between two movies from the multi label graph can be seen below in Figure 5.1

Figure 5.1: A sample of the Multi Label Graph with the path between the two MOVIE nodes
highlighted as a black line

The thick black line shows that there the two relationships that connect the Avatar (2009)
MOVIE node and the Pirates of the Caribbean, Cruse of the Black Pearl (2003) MOVIE nodes.
This is a path distance of 2. If the shortest path between two MOVIE nodes can be found,
then a single relationship, weighted by the shortest path length can be used in place of the many
unweighted relationships.

44

The shortest path algorithm is included in Neo4j Graph Algorithm package and so can be used
on the systems that have already been developed for this project. The code for this is outlined
below:

MATCH (source:Place id: "Avatar (2009)"),
(destination:Place id: "Pirates of the Caribbean, Curse of the Black Pearl (2003)")
CALL algo.shortestPath.stream(source, destination)
YIELD nodeIds, cost

This code matches the source node, "source" and the destination node "destination" and returns
the ids of the nodes, "nodeIds" and the length of the path, "cost".

The algorithm is based around the idea of "tentative distance", giving a connection between
two nodes an estimated length and slowly improving it [Dial, 1969]. The algorithm works in six
steps [Fredman and Tarjan, 1987]:

1. Define every node in the graph as "unvisited", form a set from these called the "unvisited
set"

2. Choose a current node, define it current and assign a tentative value of 0 to it and a tentative
value of infinity to all other nodes.

3. Consider all of the current nodes unvisited neighbours and calculate their tentative distances
through the current node. Compare the newly calculated tentative distance to the current
assigned value and assign the smaller one.

4. Define the current node "visited" and remove from the "unvisited set"

5. If the destination node has been defined as "visited then stop the algorithm.

6. Otherwise select the unvisited node with the smallest tentative distance

Performing this would remove fears of creating an overly dense graph. There was also the fear
that clustering with this many different labelled nodes would result in clusters that do not contain
MOVIE nodes. Condensing the information in this graph to one label of nodes and a relationship
based on path differences could help resolve that.

One issue with applying weights that are calculated from different pieces of information is the
range of the weights are different for each type of relationship. This also affects the aggregation of
weights. Further work done investigated these structures of graphs should look into the effect of
normalising the weights, or fond some other way of making the different types of weight comparable

5.2 Investigating Clustering

Clustering metrics were established to define whether the algorithm successfully divided the data
into clusters that were suitable for recommending movies. Overall none of the algorithms performed
well enough on any of the variations of the graph databases.

5.2.1 Triangle count and Clustering coefficient

The triangle count and clustering coefficient were used initially on the single node graph to inves-
tigate each nodes ability to form into a cluster. The result of the indicated that the single node
graph with multiple relationships produced a very high triangle count and clustering coefficient.
Although further investigation showed that this was a poor indication of the graphs clustering
ability. This was due to the high density of the graph. The algorithm worked by counting the
number of triangles formed by connecting three nodes with relationships. As there were so many
relationships between nodes there where a very high number of triangles. This did not reflect the
actual clustering potential between nodes, as there were too many relationships between them to
find a sensible result.

For the aggregated graph, the triangle count was much lower with some very high anomalous
values. While this may appear to be deterioration of result, fewer triangles is an indication of the
reduction in tensity. Fewer triangles were wanted as the previous had far too many. The very

45

high outliers could still imply that very large clusters will form. Further investigation into triangle
based clustering algorithms could reveal a more positive result with this structure.

The multi label graph could not use triangle count or the clustering coefficient due to the
structure of the graph not allowing triangles to form. Combining the information in the multi
label node into a single label graph, as mentioned previously, would result in triangles. However,
this would not reveal much about the original structure. It would be useful to be able to link nodes
with the same label. This can be done with graph algorithms called link prediction.

Link prediction

Link prediction is used to determine the closeness between two nodes. Closeness is a numeric value
where the range is unique to each algorithm [Liben-Nowell and Kleinberg, 2007]. This closeness
can be used as the bases for a relationship between two same-labeled nodes. After calculating the
closeness, a relationship can be made between two nodes with the result being used as the weight
for the relationship. An issue that could arise is blindly applying this technique would result in
a link between all nodes, rendering all community detection algorithms useless. To combat this,
a cut-off point would have to made on the weights, only the nodes whose link prediction is above
this value should have the relationship added.

This would be simply done in Neo4j based on the graph that were already constructed. There
are seven link prediction algorithms already contained in the Neo4j Graph Adamic Adar, Common
Neighbors, Preferential Attachment, Resource Allocation, Same Community and Total Neighbors.

With regards to movie recommendation, K. Yu et al found successful results using stochastic
relational models (STM’s) in movie recommendation in their 2003 paper Stochastic Relational
Models for Discriminative Link Prediction [Yu et al., 2007]. This approach could be used in com-
bination with the graph to develop the new relationships. However, there are no packages in Neo4j
that apply STM’s. Investigating this further would require developing an algorithm with Cypher,
most likely in combination with programming language such as Python.

5.2.2 Connected Component and Strongly Connected Components

The only graph structures that could implement these were the single node graphs. The previously
mentioned link prediction would make it possible to apply this to the multi label graph in further
work. The effect of the weight of the predicted link would be useful investigation in connected
component

Both the weighted and unweighted single label graphs produced the same result.for the weighted
connected component algorithm. And so it most likely is not worth further investigation into this
structure with the connected component algorithm.

The Strongly connected component provided the same poor results. However, the inclusion of
weight in some manner could potentially improve the system. This is not possible with the built
in Neo4j and so it would have to be developed with a combination of Cypher and Python.

5.2.3 Label Propagation

Both the weighted and un-weightd single label graphs had a Label Propagation result that merges
all but a few movies into one very large node making it clearly unacceptable for recommendation
system.

The weighted graph only produced 4803 individual clusters. This is not usable for recommen-
dation in any form. Although only the non aggregated relationship graph was investigated. It is
worth a further look into all variants of the graph to see if the results are more positive. It is also
worth further investigation into normalising the weights when applying this as that may cause an
issue. Differences in the number of iterations was also not investigated and so that is also worth
further investigation.

The multi label graph had much more varied results, indicating that this structure of graph is
more suitable for Label Propagation. Although there were still far too many single node clusters
that could contain MOVIE nodes. This prevents any form of recommendation for those movies.

Because all of the nodes where clustered, it was not possible to tell how well distributed the
MOVIE nodes where. It is possible that by removing the non-MOVIE nodes from the set, the
resulting clusters would be more evenly distributed . All the non-MOVIE nodes were centered
around MOVIE nodes, meaning that the MOVIE nodes had the most relationships. This could

46

potentially mean that its these nodes that responded best to clustering, and hence are less likely
to be in the single-node clusters.

5.2.4 Lovain Modularity

Louvain modularity provided very poor results for all graph structures. When looking at the single
node graph, the weighted result produced a greater number of clusters than the non-weighted. It
also produced better results than any of the label propagation algorithms run on it. Therefore, when
investigating a single node graph database representing movies, Louvain Modularity is the best
choice for further investigation. It was not possible to investigate its effect on the term frequency
graph due to limited processing power, and there was no time to apply this to the aggregated
graph. Therefore there is a lot of room for further investigation focusing on this combination.

Louvain modularity on the multi label graph gave a similar distribution to the label propagation
clustering algorithm. There was again a large distribution of cluster sizes. There were more single
node clusters in this result however. Indicating that the Label propagation is the preferred method
for this structure when clustering with the intent to develop clusters that can be used to recommend
movies.

There is the repeated issue of the clusters containing both MOVIE and non MOVIE nodes. A
proper comparison of the result of label propagation and Louvain modularity when applied to the
multi label graph can only be done once the clusters have been removed of the no MOVIE nodes.

5.3 Comparing Graphs

When looking at the construction of the graphs, both the basic, weightless single node graph and
the multi label graphs were successfully constructed with Neo4j. Both of these graphs where able
to be queried using Neo4j’s querying language Cypher. Although the single node graph displayed
more information about each movie in its nodes and relationships.

The single node graph was able to be adapted to add weights to the relationships. This was not
able to be done with the multi label graph. However, potential developments were suggested to
further study this. Because of this, there where no further developments of the multi label graph.
However, for the single nodes graph, there where three graphs that were built that successfully in
Neo4j that contained all of the TMBd 5000 Movie Database information, and one that successfully
built a sample. From these results, the single label graph was better for developing graph databases.

The single label graph was able to have all of the discussed algorithms performed on it, unlike
the multi label graph, for all but the term frequency graph due to its size. Although the potential
alterations suggested would allow for this to be done. However, it was the result of both the label
propagation and the Louvain modularity that performed better than any result form the single
label graph when using equal distribution as a metric. Although, this cannot yet be truly confirmed
as the clusters do not just contain nodes that represent the movies. It is only the clustering of
these nodes that can be used to investigate movie recommendation.

5.4 Combining techniques with machine learning

Another possible route of further study is to combine these clustering algorithms with other tech-
niques such as machine learning. One example of this is to initially run a convolutional neural
network on the graph to predict missing links. This process can be used to build new, computa-
tionally, relationships between nodes that may prove useful when clustering. Al Hasan et al showed
the strength link prediction using this technique in their 2006 paper [Al Hasan et al., 2006] where
they proved the technique able to find missing links in social media.

Using this on the multi label graph could also add relationships between same labelled nodes,
allowing for the use of triangle based clustering algorithms. It would also be worth using this
technique before the shortest path algorithm to see if the inter-movie relationship weights discussed
are altered by this in a way that improves clustering results for movie recommendation.

47

5.5 Movie Recommendation
This paper investigated the clustering of movie graphs with the ultimate goal of developing a sys-
tem that can be used as a recommendation system. However, due to the clustering techniques used
not producing results that satisfy the established metrics, there was no opportunity to experimen-
tally determine if this recommending movies within the same cluster would work as a functional
recommendation system.

This could be done by analysing a second set of data that contains user ratings for movies. This
was done her using data collected of peoples movie reviews, using movies rated positively by a per-
son and determining their ideal cluster, an ideal dataset is the MovieLens data [GroupLens, 2018].
The data contains a user id, a movie title, a score 1-5 in increments of 0.5 that describes that
users enjoyment of the movie. A rating of 5 suggests maximum enjoyment, while a rating of 1
suggests minimum enjoyment. Positive movies defined as a rating of 3+ could be the indicator for
an enjoyed movie. The cluster with the highest amount of users positive ratings would be used
as the recommendation cluster. A test-train split should be used to investigate this experimentally.

While the results of investigating clustering for movie recommendation was inconclusive, there
is still a lot of potential work that could be done in this area.

48

Bibliography

[(tm, 2019] (2019). The movie database.

[Al Hasan et al., 2006] Al Hasan, M., Chaoji, V., Salem, S., and Zaki, M. (2006). Link prediction
using supervised learning. In SDM06: workshop on link analysis, counter-terrorism and security.

[Angles and Gutierrez, 2008] Angles, R. and Gutierrez, C. (2008). Survey of graph database mod-
els. ACM Computing Surveys, 40(1):1–39.

[Assefi et al., 2015] Assefi, M., Liu, G., Wittie, M. P., and Izurieta, C. (2015). An experimental
evaluation of apple siri and google speech recognition. Proccedings of the 2015 ISCA SEDE,
pages 1–6.

[Bar-Ilan and Peleg, 1991] Bar-Ilan, J. and Peleg, D. (1991). Approximation algorithms for select-
ing network centers. In Workshop on Algorithms and Data Structures, pages 343–354. Springer.

[Blondel et al., 2008] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008).
Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and
experiment, 2008(10):P10008.

[Bobadilla et al., 2012] Bobadilla, J., Ortega, F., Hernando, A., and Bernal, J. (2012). A collabo-
rative filtering approach to mitigate the new user cold start problem. Knowledge-Based Systems,
26:225–238.

[Brusilovsky and Millán, 2007] Brusilovsky, P. and Millán, E. (2007). User models for adaptive
hypermedia and adaptive educational systems. In The adaptive web, page 352. Springer.

[Buerli and Obispo, 2012] Buerli, M. and Obispo, C. (2012). The current state of graph databases.
Department of Computer Science, Cal Poly San Luis Obispo, mbuerli@ calpoly. edu, 32(3):67–83.

[Bunch et al., 2011] Bunch, C., Chohan, N., Krintz, C., and Shams, K. (2011). Neptune: a domain
specific language for deploying hpc software on cloud platforms. In Proceedings of the 2nd
international workshop on Scientific cloud computing, pages 59–68. ACM.

[Businessweek, 2013] Businessweek, B. (2013). How disney bought lucasfilm—and its plans for
’star wars’.

[Cha et al., 2009] Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., and Moon, S. (2009). Analyzing
the video popularity characteristics of large-scale user generated content systems. IEEE/ACM
Transactions on networking, 17(5):1357–1370.

[Chung et al., 2017] Chung, H., Park, J., and Lee, S. (2017). Digital forensic approaches for
amazon alexa ecosystem. Digital Investigation, 22:S15–S25.

[Clauset et al., 2004] Clauset, A., Newman, M. E., and Moore, C. (2004). Finding community
structure in very large networks. Physical review E, 70(6):066111.

[Devine, 1989] Devine, P. G. (1989). Stereotypes and prejudice: Their automatic and controlled
components. Journal of personality and social psychology, 56(1):5.

[Dial, 1969] Dial, R. B. (1969). Algorithm 360: Shortest-path forest with topological ordering [h].
Communications of the ACM, 12(11):632–633.

49

[Duda and Hart, 2001] Duda, R. O. and Hart, P. E. (2001). Dg stork pattern classification. John
Wiely and Sons.

[Fatemi and Tokarchuk, 2013] Fatemi, M. and Tokarchuk, L. (2013). A community based social
recommender system for individuals & groups. In 2013 International Conference on Social
Computing, pages 351–356. IEEE.

[Fleischer et al., 2000] Fleischer, L. K., Hendrickson, B., and Pınar, A. (2000). On identifying
strongly connected components in parallel. In International Parallel and Distributed Processing
Symposium, pages 505–511. Springer.

[Follows, 2013] Follows, S. (2013). How many films in an average film career.

[Fouss et al., 2006] Fouss, F., Yen, L., Pirotte, A., and Saerens, M. (2006). An experimental
investigation of graph kernels on a collaborative recommendation task. In Sixth International
Conference on Data Mining (ICDM’06), pages 863–868. IEEE.

[Fredman and Tarjan, 1987] Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615.

[GroupLens, 2018] GroupLens (2018). Movielens 20m dataset.

[Gubichev et al., 2010] Gubichev, A., Bedathur, S., Seufert, S., and Weikum, G. (2010). Fast
and accurate estimation of shortest paths in large graphs. In Proceedings of the 19th ACM
international conference on Information and knowledge management, pages 499–508. ACM.

[Heckemann et al., 2006] Heckemann, R. A., Hajnal, J. V., Aljabar, P., Rueckert, D., and Ham-
mers, A. (2006). Automatic anatomical brain mri segmentation combining label propagation
and decision fusion. NeuroImage, 33(1):115–126.

[Holzschuher and Peinl, 2013] Holzschuher, F. and Peinl, R. (2013). Performance of graph query
languages: comparison of cypher, gremlin and native access in neo4j. In Proceedings of the Joint
EDBT/ICDT 2013 Workshops, pages 195–204. ACM.

[Huang et al., 2002] Huang, Z., Chung, W., Ong, T.-H., and Chen, H. (2002). A graph-based rec-
ommender system for digital library. In Proceedings of the 2nd ACM/IEEE-CS joint conference
on Digital libraries, pages 65–73. ACM.

[Kannan et al., 2004] Kannan, R., Vempala, S., and Vetta, A. (2004). On clusterings: Good, bad
and spectral. Journal of the ACM (JACM), 51(3):497–515.

[Karlgren, 1994] Karlgren, J. (1994). Newsgroup clustering based on user behavior-a recommen-
dation algebra. SICS Research Report.

[Kemper, 2015] Kemper, C. (2015). Beginning Neo4j. Springer.

[Kleinberg, 2002] Kleinberg, J. M. (2002). Small-world phenomena and the dynamics of informa-
tion. In Advances in neural information processing systems, pages 431–438.

[Lakiotaki et al., 2011] Lakiotaki, K., Matsatsinis, N. F., and Tsoukias, A. (2011). Multicriteria
user modeling in recommender systems. IEEE Intelligent Systems, 26(2):64–76.

[Lalwani et al., 2015] Lalwani, D., Somayajulu, D. V., and Krishna, P. R. (2015). A community
driven social recommendation system. In 2015 IEEE International Conference on Big Data (Big
Data), pages 821–826. IEEE.

[Lam et al., 2008] Lam, X. N., Vu, T., Le, T. D., and Duong, A. D. (2008). Addressing cold-start
problem in recommendation systems. In Proceedings of the 2nd international conference on
Ubiquitous information management and communication, pages 208–211. ACM.

[Liben-Nowell and Kleinberg, 2007] Liben-Nowell, D. and Kleinberg, J. (2007). The link-prediction
problem for social networks. Journal of the American society for information science and tech-
nology, 58(7):1019–1031.

50

[Mark Needham, 2019] Mark Needham, A. E. H. (2019). Graph Algorithms: Practical Examples
in Apache Spark Neo4, volume 1 of 1. O’Reilly, 1 edition.

[McKinney, 2012] McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas,
NumPy, and IPython. " O’Reilly Media, Inc.".

[Mojo, 2019] Mojo, B. O. (2019). 2019 studio market share.

[Montenieri, 2018] Montenieri, A. J. (2018). Digital streaming: Technology advancing access and
engagement in performing arts organizations.

[Newman, 2006] Newman, M. E. (2006). Modularity and community structure in networks. Pro-
ceedings of the national academy of sciences, 103(23):8577–8582.

[Nuutila and Soisalon-Soininen, 1994] Nuutila, E. and Soisalon-Soininen, E. (1994). On finding the
strongly connected components in a directed graph. Information Processing Letters, 49(1):9–14.

[Pogue, 2007] Pogue, D. (2007). A stream of movies, sort of free. The New York Times. Available
at: https://www. nytimes. com/2007/01/25/technology/25pogue. html [Accessed 31st December
2017].

[Ricci et al., 2011] Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to recommender
systems handbook. In Recommender systems handbook, pages 1–35. Springer.

[Rich, 1979] Rich, E. (1979). User modeling via stereotypes. Cognitive science, 3(4):329–354.

[Sasaki, 2018] Sasaki, B. M. (2018). ’why graph databases are the future’.

[Schaeffer, 2007] Schaeffer, S. E. (2007). Graph clustering. Computer science review, 1(1):27–64.

[Schafer et al., 2001] Schafer, J. B., Konstan, J. A., and Riedl, J. (2001). E-commerce recommen-
dation applications. Data mining and knowledge discovery, 5(1-2):115–153.

[Schank and Wagner, 2005] Schank, T. and Wagner, D. (2005). Finding, counting and listing all
triangles in large graphs, an experimental study. In International workshop on experimental and
efficient algorithms, pages 606–609. Springer.

[Shao et al., 2009] Shao, B., Wang, D., Li, T., and Ogihara, M. (2009). Music recommendation
based on acoustic features and user access patterns. IEEE Transactions on Audio, Speech, and
Language Processing, 17(8):1602–1611.

[Smith and Linden, 2017] Smith, B. and Linden, G. (2017). Two decades of recommender systems
at amazon. com. Ieee internet computing, 21(3):12–18.

[Sowa, 1976] Sowa, J. F. (1976). Conceptual graphs for a data base interface. IBM Journal of
Research and Development, 20(4):336–357.

[Tarjan, 1972] Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM journal
on computing, 1(2):146–160.

[Ungar and Foster, 1998] Ungar, L. H. and Foster, D. P. (1998). Clustering methods for collabo-
rative filtering. In AAAI workshop on recommendation systems, volume 1, pages 114–129.

[Vicknair et al., 2010] Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., and Wilkins, D.
(2010). A comparison of a graph database and a relational database: a data provenance per-
spective. In Proceedings of the 48th annual Southeast regional conference, page 42. ACM.

[Wang et al., 2008] Wang, J., Wang, F., Zhang, C., Shen, H. C., and Quan, L. (2008). Linear
neighborhood propagation and its applications. IEEE transactions on pattern analysis and
machine intelligence, 31(9):1600–1615.

[Wu et al., 2012] Wu, Z.-H., Lin, Y.-F., Gregory, S., Wan, H.-Y., and Tian, S.-F. (2012). Balanced
multi-label propagation for overlapping community detection in social networks. Journal of
Computer Science and Technology, 27(3):468–479.

51

[Yoon et al., 2017] Yoon, B.-H., Kim, S.-K., and Kim, S.-Y. (2017). Use of graph database for the
integration of heterogeneous biological data. Genomics & informatics, 15(1):19.

[Yu et al., 2007] Yu, K., Chu, W., Yu, S., Tresp, V., and Xu, Z. (2007). Stochastic relational
models for discriminative link prediction. In Advances in neural information processing systems,
pages 1553–1560.

52

	Introduction
	Literature Review
	Recommendation Systems
	Importance of Search Recommendation Systems
	Types of recommendation system
	Graph Databases
	Graph Databases for Recommender Systems

	Clustering in Graph Theory
	Label Propagation

	Methodology
	Building the Graph Database
	The data used
	The programs used
	Multi-label graph
	One node Label

	Clustering
	Cluster comparison metrics
	Neo4j clustering algorithms
	Multi-label graph
	One-label graph
	Comparing results

	Analysis
	Single node graph
	Building the graph
	Basic weighting
	Fixed weighting
	Combining Relationships
	Clustering
	Added weights

	Multi-label graph
	Building the graph
	Investigating Clustering

	Comparing Graphs

	Conclusion
	Building a Graph Database that contains movie information
	Unused data
	Adding weights

	Investigating Clustering
	Triangle count and Clustering coefficient
	Connected Component and Strongly Connected Components
	Label Propagation
	Lovain Modularity

	Comparing Graphs
	Combining techniques with machine learning
	Movie Recommendation

	Bibliography

