
i

SECURITY DATA GOVERNANCE SYSTEM

SZABOLCS MAGYAR

The dissertation was submitted in part fulfilment of requirements for the degree of MSc Information

Management

DEPT. OF COMPUTER AND INFORMATION SCIENCES

UNIVERSITY OF STRATHCLYDE

AUGUST 2019

ii

iii

ABSTRACT

As the Internet has become increasingly ubiquitous, the number of IT incidents and data breaches

increased, consequently leading to substantial revenue losses for companies. These losses could be

limited by Information Security Management Systems (ISMS). This research examines best practices

from the literature and software solutions regarding the asset, risk and policy management, and the

way these best practices can be implemented.

The aim of this study is to design an ISMS that is based on best practices from the literature and other

ISMS software solution. The study also examines how the proposed system can be built, presents the

core functionalities that the system needs to support, proposes the best methodology that can be used

for the implementation, and explores the languages and tools that could be used to make the system

secure and ensure its usability.

It was discovered that asset, risk, and policy management are connected to each other and that current

software solutions are either too complex to use or do not provide a good graphical interface. The

system was developed using Agile. 3 tier architecture has been used where the back-end is a MySQL

database. Due to the proposed architecture of the system, SQL injections are the highest threats,

however, the system is secure against them. The system is simple, informative and has a dashboard

page where diagrams, that show the Key Performance Indicators (KPIs) of an organisation, can be seen.

iv

Contents
1. Introduction ... 1

1.1. Motivation .. 1

1.2. Research problem, questions and objectives ... 2

1.3. Outcome ... 3

1.4. Dissertation outline .. 3

2. Background and literature review ... 4

2.1. Background ... 4

2.1.1. Asset management .. 4

2.1.2. Risk management .. 4

2.1.3. Policy management ... 5

2.1.4. The connection between asset, risk and policy management .. 6

2.2. ISO 27001 and 27002 ... 6

2.3. Information Security Management Software (ISMS) solutions ... 10

2.3.1. Risk & Audit ... 10

2.3.2. StandardFusion .. 12

2.3.3. eramba .. 13

2.4. Selecting the right product ... 15

3. Requirements specification ... 17

3.1. Methodology .. 17

3.1.1. Requirements elicitation ... 17

3.1.2. MoSCoW .. 18

3.1.3. Use case diagrams ... 18

3.2. Requirements gathering ... 19

3.3. Use case diagram .. 21

4. Implementation ... 23

4.1. Methodology .. 23

4.1.1. Agile ... 23

4.1.2. Entity Relationship Diagram .. 25

4.2. High-level design .. 25

4.2.1. The architecture of the system ... 25

4.2.2. User interface design ... 25

4.2.3. Database design .. 28

4.3. Low-level design ... 32

4.3.1. Programming languages and tools used ... 32

4.3.2. Structure of the code .. 34

v

4.3.3. Security of the code ... 34

4.3.4. Login page.. 35

4.3.5. My account functionalities .. 36

4.3.6. Admin pages .. 37

4.3.7. Functionalities available for every user ... 39

5. Testing ... 44

5.1. Testing types... 44

5.1.1. Unit testing .. 44

5.1.2. Use case testing ... 44

5.1.3. Load testing ... 45

5.1.4. User interface testing .. 45

5.1.5. Vulnerability testing .. 45

5.2. Findings... 46

5.2.1. Nessus scan ... 47

6. Results and evaluation .. 48

6.1. Results .. 48

6.2. Usability testing .. 52

6.3. Requirement-based evaluations .. 54

6.4. Security evaluations ... 55

6.5. Reflective evaluation of development process .. 56

7. Conclusion ... 57

7.1. Summary of thesis contributions ... 57

7.2. Further development perspectives .. 59

7.2.1. Crucial improvements ... 59

7.2.2. Cosmetic improvements.. 59

7.2.3. Improvements for future projects ... 59

References ... 60

The Appendix ... 65

Use cases ... 65

Usability test .. 84

vi

Table of Figures

Table 1. Functional requirements ... 19

Table 2. Non-functional requirements .. 21

Table 3. Users .. 29

Table 4. Assets ... 30

Table 5. Policies ... 31

Table 6. Risks ... 31

Table 7. Event log .. 32

Figure 1. ISO 27001 framework (https://advisera.com/27001academy/what-is-iso-27001/) 7

Figure 2. Number of ISO 27001 certificates worldwide

(https://www.iso27001security.com/html/27001.html) .. 9

Figure 3. ISMS functionalities (www.capterra.com) ... 10

Figure 4. Resolver's graphical interface (www.resolver.com)... 11

Figure 5. Resolver control effectiveness (www.resolver.com) ... 11

Figure 6. StandardFusion compliance ... 12

Figure 7. StandardFusion risk impact .. 13

Figure 8. Eramba Demo ... 14

Figure 9. Eramba dashboard ... 15

Figure 10. Use case diagram .. 22

Figure 11. Asset page design ... 27

Figure 12. Create/edit new assets ... 28

Figure 13.Entity-relationship diagram ... 29

Figure 14. Example of populating a drop-down list .. 33

Figure 15. Object-oriented mysqli example .. 35

Figure 16. Password encryption .. 36

Figure 17. Admin pages in the Navigation bar .. 37

Figure 18. Editing users ... 38

Figure 19. Implementing DataTables .. 38

Figure 20. Next review date .. 39

Figure 21. Asset database constraint .. 40

Figure 22. Download script for policies ... 41

Figure 23. Google Charts with Ajax ... 42

Figure 24. Nessus scan result .. 47

Figure 25. Login page... 48

Figure 26. Dashboard .. 49

Figure 27. Asset management ... 49

Figure 28. New asset creation ... 50

Figure 29. Risk Management ... 50

Figure 30. Policy Management .. 50

Figure 31. User management .. 51

Figure 32. Event log ... 51

1

1. Introduction

1.1. Motivation

The increase in computers and their utilization brought the era of Information Society (Ohki, et al.,

2009). With the help of computers and Internet companies could reach heights they have never

imagined before. On the other hand, misuse of computers increases as well. These incidents can cause

a lot of harm to a company since businesses and the companies’ competitiveness builds upon it. Once

an IT accident happens to a company it could reduce the company’s value. The main cause is that when

people use the companies’ websites they create usernames with a password and in many cases these

websites require them to give confidential information (date of birth, place of birth, bank card number,

etc.). These people entrust the companies to manage their data carefully and if a security incident

happens trust will be lost which results in revenue loss as well, especially if the incident affects many

users. This will lead to more attention from the media and many people will know about it. As the

Internet became increasingly widespread, the amplitude of these incidents and data breaches became

bigger and bigger. The biggest data breaches in history are linked to Yahoo (Armerding, 2018). In 2013

one billion accounts have been compromised. Names, email addresses, passwords, date of births,

security questions and answers have been stolen. Later, in 2014 500 million user data has been leaked,

including real names, email addresses, telephone numbers and dates of birth. In 2017 Yahoo estimated

that all three billion user accounts had been compromised. These breaches decreased the company’s

sales price by $350 million and have been sold for $4.48 billion

Although these huge data breaches have happened mostly in the 2010s, there were security incidents

before as well. That is the reason IT security and IT security data governance have been born. According

to the Information Security Handbook (Bowen, et al., 2006, p. 2), information security governance is:

“… the process of establishing and maintaining a framework and supporting management structure

and processes to provide assurance that information security strategies are aligned with and support

business objectives, are consistent with applicable laws and regulations through adherence to policies

and internal controls, and provide assignment of responsibility, all in an effort to manage risk.”

The international standard for information security is ISO 27001, it describes the requirements for

implementing an information security management systems (ISMS) and it is supported by ISO 27002

which is a code of practice and recommends best practices (Calder, 2018). ISMS is defined as “part of

2

the overall management system, based on a business risk approach, to establish, implement, operate,

monitor, review, maintain and improve information security.” (Calder & Watkins, 2008, p. 40).

1.2. Research problem, questions and objectives

Because of the increasing importance of IT security and its management are growing there is a need

for ISMS. Most of this software is available for commercial use so the companies have to buy them if

they want to use them, however, there are some open-source software as well for example eramba

(eramba, 2019a). Not only the main goal and the target customer size of this software may differ but

the features too. When one compares some of them it is easy to see that the main difference amongst

the ISMSs is the functionality. Functionalities can be for example whether the software solution is able

to do auditing, incident management, environmental compliance, IT and operational risk management,

policy management, reporting and prepare activity dashboards. Moreover, it is important to keep in

mind that risk management, policies, and controls can mean different things for different people even

within the same profession. There is no standard about what the minimum requirements of these

software’s functionalities are and what they should necessarily contain. On the other hand, some

software contains too many functionalities, they became extremely complicated to work with and thus

they lose one of their most important goal which is to help the work of the management in governance,

risk management, and compliance. This goal helps the management to make valid and well-established

decisions fast and so preserving the companies’ competitiveness and avoiding to pay huge fines and

lose valuable customers. Although ISO 27001 is the standard there is no best practice approach for

asset, risk and policy management.

The main questions of this research are:

 What are the best practices for asset, risk and policy management?

 How a simple system should be built that manages information security governance data?

 What are the functionalities this system should support?

 What is the best methodology that should be used when developing this system?

 What are the best languages, libraries that could be used for developing the system?

 How system security can be ensured?

 How system usability can be ensured?

The main objective of this research is to design and implement an Information Security Management

System which will answer the questions above. This ISMS aims to provide the basics of asset, risk and

policy management according to the best practices from the literature.

3

1.3. Outcome

An ISMS system has been developed. It is a 3 tier architecture where the back-end is a MySQL database.

Users can register and log in to the system where they can view entities they own like assets, their

associated risks, and corresponding policies. They can see a dashboard on a separate page where three

diagrams are shown based on their own entities. Users can also change their password, delete their

account and log out. The administrators of the system can view, edit and delete not only their own

entities but the entities of everybody. They are able to see and change the ownership of other entities

as well. In the dashboard page, they see diagrams based on every entity. Moreover, they have access

to two more pages as well: they can send emails to users and edit user rights on the user management

page and in the event log page they can see the basic actions that have taken place in the website

including actions connected to entities and users. The software uses only sessions (and not cookies) to

identify users. The level of security is high, it is fully protected against SQL injections and cross-site

scripting (XSS) as well.

1.4. Dissertation outline

The rest of the chapters describe steps that were taken in the process of developing the software.

Chapter 2 contains the description of asset, risk and policy management, it is shown how these connect

to each other and to ISO27001 and 27002. Moreover, different ISMS solutions are presented and the

best practices of choosing the best product are explained. In chapter 3 the requirements gathering

process is shown with the description of the methodology, how the requirements have been collected,

what these are, how these are classified and a use case diagram shows how the system’s functionalities

work. In the first part of chapter 4, the high-level design is demonstrated with the methodology used,

the architecture of the system, database design and user interface design. In the second part of chapter

4 programming languages used are demonstrated through coding examples. The solutions are

described and decisions made are explained. In testing, techniques are described and the findings of

testing are outlined. In chapter 7 the methodology and findings of evaluation are presented. Lastly, in

the Conclusion, the research is summarized and further development perspectives are specified.

4

2. Background and literature review

In this chapter firstly the need for IT governance is described, focusing on asset, risk and policy

management. After that IT security standards are defined: ISO 27001 and ISO 27002. It is shown why

these standards are important, what kind of content they have and how organisations can comply with

these standards. In the second part of the chapter different Information Security Management

Software solutions are demonstrated: Risk & Audit, StandardFusion, and eramba. All of them are

products with an easily accessible demo version and all of them have a proper number of reviews as

well. Lastly, best practices are collected about what kind of features a software should support based

on the literature.

2.1. Background

2.1.1. Asset management
According to Biswas (Biswas, 2019), an asset is “Any item of economic value owned by an individual or

corporation.” The main concept of asset management is that the most important assets should be

identified, tracked, classified and the owner should be assigned to them to ensure they are sufficiently

protected. If a company would like to be effective, the asset management strategy should include

information assets (assets that contain information), software assets and information technology

equipment as well. In the IT asset management process these assets are tracked, verified that they are

up-do-date (reviewed) and that they are protected. Every asset has an owner and a responsible person,

a classification which shows how important the asset is for the company, a create date and protection

as well. Asset management is the coordinated and systemized practices and activities through an

organization manage its assets optimally with their associated performance, risks and expenditures.

There are a huge amount of reasons asset management is important (Dosal, 2018): improperly

managed assets can become cybersecurity vulnerabilities and negatively impact workflows and not

knowing these assets may result in not knowing the single points of failure. Moreover, IT asset

management is crucial for regulatory compliance (e.g. GDPR), the incoming assets need to be properly

tracked and the outgoing assets properly disposed of. The most important benefit is that through asset

management the risks a company may face can be mitigated.

2.1.2. Risk management
IT risk is any threat to business data, critical systems, and business processes. These risk can be

associated with the use, operation, ownership, involvement, influence, and adoption of IT. (NI Business

Info, 2019a). These risks have the potential to damage business value. There are several types of risks:

physical threats (e.g. theft or unauthorised access), electronic threats (hacker gets accessed to a

5

system, computer virus of fraudulent email), technical failures (software bugs or computer failures),

infrastructure failures (loss of internet connection) or human error (someone might delete a file) (NI

Business Info, 2019b). Risk management is to make a decision and take actions to address uncertain

outcomes, to control how risks might impact the business. According to Mark Darby (Darby, 2019),

“Information security risk management (ISRM) is the process of identifying, evaluating and treating

risks around the organisation’s valuable information”.

There are five steps of ISRMS (Rapid7, 2019). The first one is identification where assets, vulnerabilities,

threats, and controls are identified. After that, the assessment happens, where the information

gathered in the first step is combined. The most basic formula to calculate risk is likelihood*impact,

however, this can be threat*vulnerability*likelihood*impact*asset value – security controls as well.

After the assessment, the treatment is the next step where the organization should select treatment

options (remediation, mitigation, transference, risk acceptance, and risk avoidance). The decision must

be communicated within the organization as a fourth step, it is crucial that the responsibility and

accountability need to be defined and that the stakeholders understand the cost of treating risk. As

the last step, it is a continuous process, the controls need to be monitored.

There are several benefits of risk management. It will help deal with the uncertainties around assets

(Darby, 2019). Implementing a risk management system can help the formulation of realistic plans in

terms of time and cost estimate (Rahman Ahlan & Arshad, 2012). If the risk has been understood then

it can lead to the minimization of risks and by building up statistical data of historical risks may help

facilitate greater but more rational risk-taking. Risk management also helps the company avoid

additional costs and disruptions to and identify the risks that are worth pursuing.

2.1.3. Policy management
Policies are critical to the organization since they establish boundaries for individuals, relationships,

processes and transactions (Kothari, 2019). If policies are properly managed, communicated and

enforced, they provide a framework for governance, they identify and treat risks and they define

compliance. Compliance is documented by policies meaning how the organization meets requirements

and obligations from contracts, regulators and other commitments. Without policies, there are no

written standards for acceptable and unacceptable conducts and since policies attach legal duties of

care to the organization, mismanagement of policies may introduce liability and exposure, and

noncompliant policies may be used against the organization in legal and regulatory proceedings.

If an organization has many departments, each of them may have its own policies which may result in

wasted resources through redundancy and overlap, poor visibility and reporting and lack of

accountability. Policy management is “the process of creating, communicating, and maintaining

6

policies within an organization” (VComply Editorial, 2018). There are five steps in policy management.

In the first one, in Creation, a policy is written and goes through an approval process. After that in

Communication, the policy is communicated to the staff (after approval) which includes publication

and training. These policies are then enforced and the exceptions are managed (Management) and the

policies are reviewed regularly, updated and archived when needed. This is a continuous process as

well. There are best practices to policy management (McLachlan, 2011): ownership should be created,

the policies should be centralised and communicated early on, policies, processes and procedures

should be refined as needed and they should be enforced as well. There are numerous advantages of

policy management: employees understand the constraint of their job, policies enable the workforce

to clearly understand individual and team responsibilities which saves time and resources, it allows

managers to exercise control by exception and it provides legal protection as well.

2.1.4. The connection between asset, risk and policy management
The process that connects asset, risk and policy management is the following: since only those assets

are listed in the system who have risk, the risk is assigned to these assets. The control (mitigate) of

these risk is ensured through policies because these policies contain actions i.e. what needs to be done

in order to prevent risk. These policies are assigned to risks (and indirect to assets as well) to make

sure the risks are mitigated and it is on the lowest possible level.

2.2. ISO 27001 and 27002

Standards represent a consensus on characteristics that should remain applicable for a longer period

of time so these should be documented and published (Disterer, 2013). These standards should

support companies and individuals when procuring services and products. International Organization

for Standardization (ISO) is the leading issuing body for international standards. ISO 27001 was

adopted from BS 7799 part two (British Standards Institute) in 2005 and the current version is ISO

27001:2013 (ISO 27001 Security, 2019a).

The main goal of ISO 27001 is to protect the confidentiality, integrity, and availability of the information

in an organization (Advisera, 2019). The method for that is first, potential problems that could happen

to the company should be found out (risk assessment) and after that preventive measures should be

defined (risk mitigation). ISO 27001 is based on managing risk: the first one needs to find out where

the risks are and after that these risks can be treated systematically.

7

Figure 1. ISO 27001 framework (https://advisera.com/27001academy/what-is-iso-27001/)

The controls usually are policies, technical implementations or procedures. Since a company certainly

possesses these controls, ISO 27001 has described a way to fit all these elements into a system, an

Information Security Management System (ISMS) that can be seen in Figure 1.

Since ISO 27001 is a framework, it does not define how an ISMS solution should work and what kind

of functionalities it should consist of. That is the scope which can be found in the Statement of

Applicability (SoA) part of the standard. It depends on the person who does the implementation what

the appropriate protection is for his/her organisation, for the specific needs e.g. one company needs

a backup every 24 hours while the others do not, there are not two companies that are the same. ISO

27001 requires the companies to perform risk assessments and risk treatments and the company

needs to implement control mechanisms to have the protection from all the risks that are described

in the risk assessment part (Kosutic, 2019). These controls are described in the Annex part of ISO 27001

(described later). Moreover, ISO 27001 gives a checklist of what top managers must do (besides the

safeguards). This checklist contains the following elements: setting the business expectations for

information security, publishing a control how these expectations are met, designating main

responsibilities for information security, providing enough human resources and money and reviewing

regularly whether all the expectations are met.

In Annex A of ISO27001 reference control objectives and controls are described. These controls are

taken over from ISO 27002. It is a normative list meaning that the companies are expected to use it

but they can decide which controls they would like to use and they can even supply this list with their

own controls in order to be able to address their particular risks. This is where ISO 27001 and 27002

connect (ISO 27001 Security, 2019b): ISO 27001 defines the mandatory requirements for an ISMS and

it uses ISO 27002 to indicate information security controls within the ISMS. ISO 27002 is a code of

practice (and not a formal specification). Organisations that adopt this standard must assess their own

information risks, define their controls objectives and apply controls using the standard. 35 control

objectives are specified. These control objectives are at a high level and contain functional

requirements specification for a company’s information security management architecture. There are

114 controls and each of these control objectives is supported by at least one control. The control

https://advisera.com/27001academy/what-is-iso-27001/

8

objectives and controls are divided into 14 categories: information security policies, organization of

information security, human resource security, asset management, access control, cryptography,

physical and environmental security, operations security, communications security; system

acquisition, development and maintenance, supplier relationships, information security incident

management, information security aspects of business continuity management, compliance.

Traditionally ISO 27001 has used the Plan-Do-Check-Act (PDCA) cycle for implementing an ISMS

(Calder, 2013). It is not mandatory to use the PDCA cycle for that purpose after the introduction of the

2013 version of the standard, however, it is still worth considering. The PDCA cycle states that business

processes need to be treated as they are in a continuous feedback loop because then managers can

identify and change those parts of the process that needs improvement. In this case, when

implementing ISMS, the steps of the cycle mean the following actions: in the ‘Plan’ stage, the ISMS is

established. Information assets and their associated security requirements are identified, information

security risks are assessed and relevant controls are selected to manage unacceptable risks (Disterer,

2013). In the ‘Do’ stage the ISMS is implemented and operated by implementing controls and

managing operations. The ‘Check’ stage is about monitoring and reviewing the ISMS. Here the tasks

are monitoring and assessing performance. Lastly, in the ‘Act’ step the ISMS is maintained and

improved by corrective and preventive actions. By making sure this ISMS implementation cycle is

continuous it is certain that the system and the organization’s information security management is

maintained and improving.

If the organization wants to verify that its ISMS complies with ISO 27001 it needs to pass a certification

procedure conducted by a certification organization, Registered Certification Bodies (RCB) (Disterer,

2013). The ISO has a list of RBCs and the organization needs to choose an RCB. The certification process

might take a few months and it has a validity of three years. After that, a re-classification can be applied

which takes less time than the first certification process. By 2017, there have been 40.000 certifications

worldwide and it increases by 20% annually that can be seen in Figure 2 (ISO 27001 Security, 2019a).

There are many business benefits a company can achieve when implementing ISO 27001. First of all,

it complies with legal requirements (Advisera, 2019). There are more and more regulations and laws

regarding IT security, by implementing ISO 27001 the organization can resolve this problem and comply

with all the laws. Since the main philosophy of ISO 27001 is to prevent security incidents from

happening (which would cost money regardless of how huge they are), by preventing them the

organization saves more money than the actual investment in ISO 27001.

9

Figure 2. Number of ISO 27001 certificates worldwide (https://www.iso27001security.com/html/27001.html)

ISO 27001 encourages companies to write down their processes. The reason that it is a huge benefit is

it reduces the cost of lost time of employees since if these processes are not defined, the employees

probably do not know what, how and by whom needs to be done. Moreover, it manages information

in all its form, helps the company self-defend from threats and technology-based risks, it adapts to

changes in the environment and in the organisation (Dutton, 2017). Since it makes sure that

information security is present and established in the business, its presence improves organisational

culture and makes processes efficient. It ensures business continuity through protecting data

availability, confidentiality, and integrity (CIA) and critical business processes from a major disaster.

Due to ISMS, companies are more resilient to cyber-attacks and because of monitoring, improvement,

internal audits and corrective actions make sure that the controls work properly and they are up to

date.

On the other hand, the value of the certificate is dependent on the scope of the ISMS and on the SoA

e.g. if the scope is only a department and/or the company accepts that there are malware risks but it

does not implement controls the certification body would not refuse to certify the company since

antivirus controls are not mandatory (ISO 27001 Security, 2019a). That is why being certified does not

guarantee that the organization is secure, but that it has a compliant ISMS. Furthermore, a study of 25

firms of U.S. and Europe (Hsu, et al., 2016) found out that having an ISO 27001 certificate does not

result in advantages in terms of financial and stock market performance. The authors found two main

reasons for that. The first is that the main goal of ISO 27001 is to prevent loss through mitigating risks

10

and having the certification is seen that the organization meets the requirements and not as a

competitive advantage. The other reason is that many firms hold the certificate that covers only part

of the organization although the best is to manage risk at the organizational level.

2.3. Information Security Management Software (ISMS) solutions

Many companies do not/cannot track risk assets and policies and controls together: it may track only

the risk assets and the policies valid for these etc. There is a huge amount of software solutions in the

market that has been created in order to be able to assist the high demand from various companies all

around the world. In order to be able to compare this software and their functionality, many websites

have been created. According to capterra.com, these are the functionalities an ISMS can possess (see

Figure 3):

Figure 3. ISMS functionalities (www.capterra.com)

It is easy to understand that a small company needs a different solution than a multi-national company,

not only because of the functionalities used, but there are other factors, for example, price, which

platforms the software supports and what kind of training opportunities are, too. It is important to

state that most of this software, even the demo version as well is set-up to work with business entities

(B2B). That is why only software with free demo version is shown.

2.3.1. Risk & Audit
It identifies itself as “A solution for the entire organisation.” (Resolver, 2019). It is an audit software

mainly meant for internal audits to automate processes and to improve the ability to deliver value to

the organisation. Risk & Audit has many pros and a small number of cons. First of all, the dashboards

http://www.capterra.com/

11

are great, the graphical user interface is not only beautiful but useful too. There are tables that clearly

show the trends and thus making decisions is easier and faster (see Figure 4):

Figure 4. Resolver's graphical interface (www.resolver.com)

The reason is that once management is involved in interpreting the outcomes from a software,

especially in the case of an audit and KPIs, it is extremely important to have a clean and meaningful

interface, and that is what Resolver’s software does (see Figure 5):

Figure 5. Resolver control effectiveness (www.resolver.com)

This is a really nice example of a clean interface. Not only because the colours help perceive and

understand how good/bad (in this case) a control perform, but if one would not know what a colour

mean, he could go to the Guidance (next to Control Effectiveness) and the explanation would be there.

Another advantage is that the product can be customized easily. According to the reviews on Capterra

(Capterra, 2019), it is the software that works for the customer and for its need and not vice versa.

Moreover, because the software is simple and user-friendly, it is easy to use and training does not take

long. Lastly, the most important advantage is that Resolver handles everything that is needed for

auditing. On the other hand, there are some features that could make this product even better. One is

that there is no auto-save option which can be troublesome in case of power or internet shortage so

http://www.resolver.com/

12

hours of work could be lost easily. Lack of reminders for task management can be disturbing as well,

especially when there are requirements that should not be overlooked. Moreover, not having a policy

management module means that understanding how risks are handled could be problematic,

however, since there is no public data about the pricing it is difficult to know the value for money.

2.3.2. StandardFusion
StandardFusion is another software solution for IT GRC. Its slogan is “Say goodbye to spreadsheets”

(StandardFusion, 2019a). It is an integrated Risk Management GRC software. As its motto says the main

goal is to replace spreadsheets and MS Excel-based standard, control and risk management into a

system that can handle all of them at the same time, without making it complicated. It has four main

parts: Risk, Audit, Compliance and Vendor Assessment. The controls and their linkage with standards

and risks are in the centre. On one hand, according to the reviews (Capterra, 2019), the software is

really simple, informative and helps understand compliance as well (see in Figure 6):

Figure 6. StandardFusion compliance

In Figure 6 different actions and completion can be seen. By using a simple diagram for the status one

can decide fast which actions need to be focused on and if there is a question, who is the responsible

person people can turn to. To make it more practical, at the owner column, not the actual name but

the email address is shown so people can directly write an email to that person. There is no

unnecessary information on this page that is why it is so valuable.

13

At the risks, the risk impact can be seen which then recalculates the risk level. To make it more

understandable, the software uses a graphical interface to highlight it better (see Figure 7). Although

this table format may contain too much information, the emphasis is on risks and how the controls

mitigate these risks. This is the reason the graphical interface is useful in this case. For every control, a

task can be created which can be assigned to people all around the organisation. That is why this

software’s main targeted user group is managers who can track anything in the system. To sum up,

StandardFusion’s advantage is based on its power to link connections, its interface is simple and

informative and it is a framework tool i.e. any IT security standard can be implemented through this

product.

Figure 7. StandardFusion risk impact

On the other hand, the software lacks two functions (Capterra, 2019), the first one is more important

than the second: there is no policy management that would help to mitigate the risks and enforce the

standard while the introduction of approval stages would help following the task and audit flow more

clearly and more transparent. Regarding the pricing StandardFusion charges from 500 USD/month up

to 3000 USD/month plus on-boarding fees (StandardFusion, 2019b).

2.3.3. eramba
Eramba is an open IT GRC software. It defines itself as “eramba is the leading, open enterprise-class IT

Governance, Risk & Compliance application” (eramba, 2019a). It is public information that the software

has been downloaded 4867 times in 2018. Open means that anyone can download and use the

community version which is meant to be used on Linux. It has an enterprise version as well, which

comes in a package and has more support than the community version (eramba, 2019b): enterprise

release, install assistance, online Q&A, support and software updates. These extra services cost 2500

14

EUR/3000 USD a year. There are additional services as well: starters’ assistance (80 EUR/hour) and

onsite workshops (starting from 1800 EUR). Although StandardFusion offers more, this area is where

Eramba has an advantage above all other ISMS: it is free, you do not have to pay to use the software.

Moreover, it is accessible through Virtual Machines, so Linux is not a requirement. It has public

documentation (both video and documents) on the website that helps people make understood how

the software works. It has nine core functionalities: policy management, controls, and audit, exception

management, compliance management, risk management, data flow analysis – GDPR, incident and

project management. Figure 8 shows how the demo looks like (Eramba, 2019c):

Figure 8. Eramba Demo

The graphical interface looks simple and plain, especially the colours and the information it shows.

However, in this case, this level of information is preferable since every one of them that are shown is

needed for the daily work without having to enter other menus or submodules. Eramba’s

documentation is thorough and proves that eramba meets the requirements for a good ISMS: every

module is linked with each other, this linkage is explained in the documentation so it is understandable,

there are subsections for audits, and reports can be prepared not only for sections but for items too.

Next review date always needs to be input and if this date has passed without the review actually

happening, that risk/policy/control has a yellow text that the planned review date has passed.

Moreover, notifications can be created, the calculations of risks make sense, and so overall it has every

functionality an ISMS should possess. On the other hand, some of the advantages are disadvantages

at the same time: because the software is complex, training takes a huge amount of time: to familiarize

with the functions, to understand the relationships between them and although the videos and

documentation are detailed, there might be some questions that would make the usage clearer,

15

however, the user would need to pay money in order to get the answers. Furthermore, in spite of

reports being prepared are informative, the main dashboard is not (Eramba, 2019c):

Figure 9. Eramba dashboard

In Figure 9, there are basically just numbers without indications, colours and comparisons. Even for a

person who works in the industry for 10+ years, it would be hard to solve the meaning of these number

and what trends they show. Only by showing a trend i.e. there was an increase/decrease in the number

of e.g. risks in the last month would be more useful, however, dashboards are better if they are shown

on diagrams (possibly on a weekly/monthly basis) so that it would help the interpretation of these

plain numbers and their consequences and fast and easy decision-making process. If people use

eramba for reporting to up to senior manager level, the software is a really good choice. However,

above that, where people need to decide fast and they need to receive high-level information i.e.

rather organisational level reports than item-specific ones, the software lacks visualization and

creativity. All in all, eramba is a good choice if one wants a free and thorough IT GRC software, however,

he needs to keep in mind that the training takes a huge amount of time and some of the dashboards

are not as informative as they could be.

2.4. Selecting the right product

In the last sections, three Information Security Management Software is shown and there is an almost

infinite number other ones on the market a company could choose from. Although the strengths and

weaknesses of these three products are described, before starting to design the product, it is worth

considering what features an ISMS should possess. First of all, good ISMS supports standard and

regulatory compliance (Klassen, 2018). Since most of the companies implement ISMS to comply with

the industry-specific guidelines and standards, it is important that the software should support

16

compliance with regulations and rules that apply to that specific industry where the organisation is

present.

Another feature that the software should support is audits (Klassen, 2018). Internal audits need to be

carried if the organisation wants to comply with ISO 27001:2013 and external audits need to be

supported in case of HIPAA/PCI etc. Moreover, by using a software that supports audits not only time

and money are saved but it establishes confidence in compliance as well.

In the case of security incidents, the software should have an intuitive dashboarding system so as

executive managers have more control and oversight of security incidents (Klassen, 2018). It is

important that this system should use real-time data. For security analysts, an ISMS should offer a tool

that shows what security incidents happened in the past and are happening currently so that these

can be analysed.

One of the most important features an ISMS should offer is risk assessment (Klassen, 2018). Without

understanding risks, an organisation cannot budget its workload and information security resource. It

is also crucial that risk should be calculated (quantified) and classified. After that, the company can

have a proper understanding of the highest-vulnerability vectors of a data breach. By implementing

risk assessment, controls and policies these risks can be mitigated. Moreover, it is really important that

these risks should be connected to assets the company possesses, however, only those assets should

be listed who have information security risks.

Lastly, the software should be able to support GDPR. This part affects only those organisations that

collect personal information from residents of the EU (Klassen, 2018). Organisations only have 30 days

to answer data requests and because of the fact that anyone has ‘the right to be forgotten’ and the

right to access any information about them, if a high volume of request would be received, the system

should be able to handle these requests as well. Moreover, if a company is not compliant with GDPR

but it should be then it can receive a fine of up to four % of annual global turnover or €20 million,

whichever is greater. That means that the companies are interested in complying with GDPR not only

because of the ISMS but financially too.

17

3. Requirements specification

In the previous chapters the relevance of the thesis topic, research questions, ISMS software solutions

from the literature were described with the types of software solutions present on the market

including their pros and cons. In this chapter firstly the methodologies used are defined: requirements

elicitation, MoSCoW and use case diagrams. After that details of these methodologies’ actions are

described, some of them only in the Appendix.

3.1. Methodology

3.1.1. Requirements elicitation
According to Capiro (Capiro, 2019), there are eight steps of the requirements elicitation. At first, an

approach to requirements is established. This includes setting unique identifiers and traceability

measures for requirements artefacts and deciding on how version control, change, and configuration

are managed. The second step is to establish the system context. Business problems, objectives and

opportunities need to be determined, the actuality of the project is described, the research questions

are asked. As a next step, stakeholder analysis and management need to happen. This includes

identifying, analysing and managing stakeholders, furthermore, stakeholders’ goals and perspectives

need to be understood as well. The fourth step is to determine a strategy for requirements

specification. Specification style may vary between formal and informal, sparse and comprehensive,

mainly spoken and mainly written. The choice of style depends on a number of factors e.g. project

stage, risk (the higher the risk, the more formal the approach should be), non-functional requirements,

project approach (waterfall or agile), preferred requirements style (use cases or agile user stories or

only describe user stories), use of models, prototypes, simulations, and link with testing (early

involvement of test team). After that requirements can be elicitated, analysed and modelled. Based

on the strategy defined in step four, relevant approaches to requirements elicitation can be selected

so that these requirements can be analysed for relevance, correctness, conflict, ambiguity, feasibility,

etc. Based on the analysis, requirements can be modelled (for example with prototypes). As a sixth

step, these requirements need to be validated by stakeholders which ensures that all of them agree

that these requirements lead to the solution of the problem. After that, it needs to be ensured that

requirements procedures are integrated with testing so that testers assist in the process of

requirements analysis. The last step is to assess the achievement of benefits (when these benefits will

be realized).

18

3.1.2. MoSCoW
Without ranking the requirements, the company may focus on those requirements the customer does

not consider important so in these cases the customer’s needs might be misunderstood (Haughey,

2019).

Thanks to this prioritization technique the developing order of the requirements can be easily set,

moreover, it can be easily decided what not to develop in case of pressure on resources. MoSCoW

stands for must-have, should-have, could-have and would-have. Must have requirements are non-

negotiable ones and without delivering them the project would not be a success. An example is the

security functionalities that help maintain compliance. Since these are mandatory requirements, the

easiest way if somebody is unsure about a specific requirement’s importance is to determine what

happens without that feature. If the product is not working without it or the release is useless then it

is a must-have requirement. The project team should deliver as many should-have requirements as it

can. The reason is that although they are not vital to the final product, it will still function, they add

significant value to the product if they are included (ProductPlan, 2019). Examples for should have

requirements are performance improvements, minor bug fixes or even new functionality. Could-have

requirements are nice to have although the delivery of these does not affect the success of the whole

project since they have a smaller impact on the final product. There are the first requirements that are

deprioritized i.e. left out if the first two categories turn out bigger than expected. Would-have

requirements (or “Wish” and “Would not have this time”) helps manage expectation about features

that might be included in the release but this time they are not the priority. This category helps prevent

scope creep which happens when a project grows uncontrollably. Some of these features are

prioritized later while others are not likely to happen at all. The technique not only captures a broader

perspective by including participants from various departments but it allows the team to determine

the energy amount that goes to each category too. Thanks to this, a good variety of initiatives can be

delivered.

3.1.3. Use case diagrams
Use case diagrams are the part of the UML (Unified Modelling Language) and describe a sequence of

interactions between external factors (system, person or a device) and the system and they are used

to analyse high-level requirements (Ceta, 2019). The requirements are expressed through use cases.

There are three main components of a use-case diagram: functional requirements, actors who interact

with the system and relationships between use cases and actors, represented by straight arrows. It is

essential that these diagrams represent a high-level overview of the relations between use cases,

systems and actors (Lucidchart, 2019b). These diagrams are optimal in the following scenarios: basic

flow of events are modelled in a use case, when the context and requirements of the system are

19

needed to be specified, when the main objective is to represent the goal of a system-user interaction

and when functional requirements are needed to defined and organized in a system.

3.2. Requirements gathering

The first step before gathering the requirements is to define the stakeholders. This project idea came

from a person who works at the University. This person was both the project sponsor and the key

system user as well. The potential users of the system are a small group of technical people who were

represented by the project sponsor, all of them are stakeholders. Requirements gathering took place

through a semi-formal interview with the project sponsor. The precondition of this interview was that

knowledge of literature about ISMS systems, best practices and specific software solutions needed to

be present so that the sponsor’s needs could be understood and if needed, advised as well. In this

interview, the sponsor described the functionalities the system should possess. It was agreed that the

system would be developed using Agile, use case diagrams would display the different functionalities

and that before the start of the implementation, user interface design would be shown to the project

sponsor to receive opinion and comments about it. The design would be implemented through low-

level prototyping. After the interview, the requirements catalogue was set up. This catalogue uses the

MoSCoW method, described earlier in this chapter, to prioritise these requirements of the

stakeholders and it contains not only functional but non-functional requirements as well. The

prioritization of functionalities was an input that came from the key system user. The functional

requirements specify something the system should do, it can be behaviour or function, for example,

displaying a name or adding an item (Eriksson, 2012). Two user types should be present in the system:

admin, who can view/edit/delete every entity (assets, risks, policies and users) and the user who can

view/edit/delete only those entities where he is the owner. The functional requirements can be seen

in Table 1:

Table 1. Functional requirements

Name of the requirement Description (if needed) Priority (based on MoSCoW)

1. Register Must-Have

2. Login Must-Have

3. Password reset Must-Have

4. Sign out Must-Have

5. Delete account Must-Have

6. Dashboard page Must-Have

6.1. Asset classification
diagram

A diagram that shows the
number of assets based on
their classification (high,
medium, low)

Must-Have

20

6.2. Chart indicating the
number of risks that are
compliant and non-compliant

A risk is compliant if the
residual risk is equal or lower
than the target risk and non-
compliant if it is higher than
the target risk

Must-Have

6.3. Chart indicating how
many assets are compliant and
non-compliant

An asset is compliant if there is
a risk assigned to it. If there is
no risk assigned to it then the
asset is non-compliant

Must-Have

6.4. Custom charts
Users can build their own
charts (data shown and chart
type would be selected)

Would-Have

7. Asset management page Must-Have

7.1. Viewing assets Must-Have

7.2. Creating assets Must-Have

7.3. Editing assets Must-Have

7.4. Deleting assets Must-Have

8. Risk management page Must-Have

8.1. Viewing risks Must-Have

8.2. Creating risks Must-Have

8.3. Editing risks Must-Have

8.4. Deleting risks Must-Have

9. Policy management page Must-Have

9.1. Viewing policies Must-Have

 9.1.1. Downloading the file
A file that contains the policy
could be downloaded from the
system

Could-Have

9.2. Creating policies Must-Have

 9.2.1. Attaching a file
A file that contains the policy
could be uploaded to the
system

Could-Have

9.3. Editing policies Must-Have

9.4. Deleting policies Must-Have

10. User management page Should-Have

10.1. Viewing users
Only admins can view the
users present in the system

Should-Have

10.2. Editing user types
Only admins can edit the user
types of specific users

Should-Have

10.3. Deleting users
Only admins can delete users
from the system

Should-Have

11. Event log page
Only admins can see the event
log of the system

Could-Have

The non-functional requirements describe how the system should behave. Typical non-functional

requirements are performance, scalability, security, etc. These can be seen in Table 2:

21

Table 2. Non-functional requirements

Name of the requirement
Priority (based on

MoSCoW)

6. Testing the implementation for common security vulnerabilities Must-Have

7. Using security features (e.g. HTTPS) Must-Have

The goal of these non-functional requirements is to make the system secure and prevent a data breach,

especially is that the application is an audit system meaning that the attackers may gather information

about the system vulnerabilities.

3.3. Use case diagram

Based on the requirements a use case diagram is created that can be seen in Figure 10. This use case

diagram contains every functional requirement that was requested but on a high level. There are three

types of users: non-registered person, user, and admin, the admin is a generalization of the user. That

means that he is capable of doing the user can do, and also he has access to more functions as well.

Every relation the login use case has is ‘use’ (include), meaning without logging in, these functionalities

are not available. This is the same when creating a risk since assets and policies need to be created so

that risks can be created.

All the other relationships are ‘return’ (extend). Those pages where other functionalities can be found

use this relation because they extend the number of functionalities a user is able to do on that specific

page.

22

Figure 10. Use case diagram

23

4. Implementation

So far the chapters were mostly theoretical: the literature has been reviewed, the software solutions

currently present in the market have been inspected with identifying their pros and cons, the

requirements have been listed based on the stakeholders’ needs and a use case diagram has been

created which shows how the final product should work in the end. The next step in this process is the

actual implementation. This chapter has three main parts: in the methodology Agile and entity

relationship diagram is described. In the second part, in high-level design, the architecture of the

system is described, the user interface design and database design is shown. In the last part, in low-

level design, the specific languages and tools used are defined and the structure of the code is

described, where the main focus is on the options chosen during the implementation with reasoning

why that specific option has been selected.

4.1. Methodology

4.1.1. Agile
According to a survey, at least 97% of organizations practiced agile in 2018 (QASymphony, 2019). Agile

started in 2001 when ‘Agile manifesto’ was published. It contains four important values: the focus

should be on individuals and interactions (instead of tools processes), working software is more

important than documentation, customer collaboration is more essential than contract negotiation

and the process should respond to change (rather than follow a plan) (Gonçalves, 2019). These values

and the 12 principles guide how to create and respond to change and how uncertainty should be dealt

with. In agile, every product is developed in sprints. It is a period of time which is allocated for a specific

phase of a project (Team Linchpin, 2019). These sprints are completed when the time period expires,

which is usually one week or two weeks. After a sprint, a new one starts and the focus is on a new

phase of the project.

There are a lot of advantages of using Agile (Gonçalves, 2019): since the client is actively involved in

the project through sprint meetings, there is a continuous level of collaboration between the parties.

In these meetings, the team can understand the client’s needs and thus deliver a high-quality product.

This would promote further engagement as well. Another advantage is transparency, meaning that the

client is actively involved throughout the whole project. Because of sprints, predictability is high and

new features can be delivered frequently and companies are able to plan ahead. Moreover, costs are

predictable since they are limited and based on work done in each sprint. Because of this, the decision-

making is improved and it allows prioritization which is another advantage. It is important to clarify

that during each of these sprints, shippable units of work are delivered. These are different features

24

of the final product. Agile allows for change: since the focus should be on delivering the agreed subset

of the product, there is a place for reprioritization and refinement of the product backlog which is

everything that is needed in the product. These changes might be added to the next iteration. By

working together closely with the client, their needs can be understood more easily and this can give

the most value to the business. By focusing on the user needs, each feature delivers value for the user

and better opportunities of receiving feedback are provided through early beta testing so changes

could be implemented as soon as possible. Lastly, since the product is broken down into deliverable of

units, in every sprint there is enough time to develop and test that specific unit meaning that defects

and mismatches can be found and fixed early.

There are some disadvantages of agile (Team Linchpin, 2019): it is rather developer-centric than user-

centric, instead of focusing product design it focuses on processes for getting requirements and

developing the code, and Agile methodologies may be inefficient in large organizations.

There are some practices that are used when using Agile. Here those will be listed that have been used

during the implementation of the product. The key principle of Agile is to have a running software

meaning that software is always compiled, built, tested and deployed. With automated testing, other

features of the software are protected while making changes to a part of it, moreover, this is a faster

and more efficient way to find bugs. Another crucial practice is iteration and task planning. During the

development of the software two iterations have been set, each of them lasted two weeks. In the first

iteration, the ‘Login’, ‘Assets’ and ‘User management’ parts of the application have been developed

while ‘Dashboards’, ‘Risks’, ‘Policies’ and ‘Event log’ were built up in the last two weeks. The reason

for this division is that at first a working product should have been developed that can be used by the

stakeholders and only after that the remaining functionalities could be implemented. In every

iteration, task planning is important. In this implementation, a risk-based approach has been followed:

the tasks have been tackled first were the one that it was known that either they took more time or

there was a knowledge gap so there was uncertainty about them. It was a crucial decision to use this

approach since if the knowledge of how to prepare a task was present, it meant that the planning of

the implementation of a task is easier and more efficient.

Because of these factors, the implementation has been successful. This is one of the reasons Agile was

used and not the waterfall methodology. Another reason is that by using Agile the requirements

documentation and request for changes are more continuous and it results in a better final product in

contrast to waterfall where the developers and the clients agree on a documented requirements list

and the client may realize only at the end of the implementation that the product that has been

developed is not acceptable, however, the cost of change it is high.

25

4.1.2. Entity Relationship Diagram
The Entity-Relationship (ER) Diagram is a flowchart that illustrates how entities relate to each other

within a system (Lucidchart, 2019a). They show the relationship of the entities stored in a system

(smartdraw, 2019). An entity is a component of data and these entities have attributes that define

their properties. The ER diagram shows the logical structure of the databases. They were developed in

1976 by Peter Chen. They are used for many purposes and in the next part. ER diagrams are used to

troubleshoot existing databases to find and resolve issues. These diagrams are used to design or

analyse relational databases used in business processes since these processes use entities, actions, and

interplay which can benefit from a relational database.

4.2. High-level design

4.2.1. The architecture of the system
The product uses the classical architecture 3 tier (3T) architecture of a web application. The three are

presentation, logic, and data.

The presentation tier is the top-most level of the application: it is the user interface, this is what the

user sees and interacts with (Stackify, 2019). The main task of this layer is to translate tasks and results

that a user can understand. This is where all the data manipulation and data entry happens. In this

layer, the languages used are HTML, CSS, and JavaScript.

The application logic tier is the middle layer of the 3T architecture. This layer coordinates the

application, processes commands, performs calculations, and makes logical decisions and evaluations.

This tier reads and writes data into the data tier. In this layer languages used are for example PHP.

The data tier is where all the data used are stored and retrieved. Here one is able to store data securely,

do transactions and search through values and volumes. After retrieval, the data is passed on to the

logic and after that the presentation tier.

There are many advantages of using a 3 tier architecture: every layer can be secured differently and

separately using different methods. These layers can be managed separately by adding and modifying

their content or introducing new features without affecting the other tiers. Moreover, the layers are

scalable and flexible as well. Lastly, the tiers can be reused later for other software projects.

4.2.2. User interface design
Designing the User Interface must take place before starting to code and the reason is it can be shown

to the stakeholders so that they can comment it. There may be a difference between the design and

26

the final outlook of the system, especially if only low fidelity designs were shown to the stakeholders,

however, all these changes need to be communicated with the client.

Before explaining the decision made during the design, there are two different types of prototyping

that need to be distinguished: low fidelity prototyping and high fidelity prototyping. Low fidelity

prototyping is simple and it is a low-tech concept (Esposito, 2018). Its goal is to turn ideas into testable

artifacts. High fidelity prototypes are highly functional and interactive. They are close to the final

version and used in the later stages when the usability needs to be tested and issues in the workflow

need to be identified. The advantages of low fidelity prototyping are that it focuses on design and

concept, and more energy can be spent on ideation and not on the technical parts. The benefits of the

high fidelity prototyping are that it looks like a live software meaning the users would behave more

naturally during testing and during testing, there is a possibility to dive deep into specific parts (e.g.

flow, navigation) and receive detailed feedback from the users. In many cases, the low fidelity

prototyping is done using pen and paper.

When prototyping the user interface, the first decision is about the type of prototyping. Here low

fidelity prototyping was chosen simply because of time constraints. There was a need to receive

feedback from the stakeholders to ensure delivery of an interface the user prefers and is able to use.

However, to make it more professional and transparent, the design was not prepared by pen and paper

but with using mock-ups. The mock-ups were prepared by a software called InVision Studio since it is

easy to use and has the best ratings.

The second decision point is regarding the qualities are that needed to be shown by the system.

According to section 2.3, those systems are the best that are simple, easy to use and navigate and

provide a lot of graphical representations which then help users to make fast and efficient decisions.

Another decision was that the system should be reminiscent of the University website. The logic behind

that is that the stakeholders are University employees, and by making the ISMS similar to the University

website suggests the same brand. There are two obvious ways to help this: with colours and with the

University crest. That is why the primary colour on the developed website is the same as the University

website and the crest can be found on every page of the application (although this is something that

was added to the website after the low fidelity design). Because the feedback from low fidelity

prototypes was needed before the start of the first iteration, only those parts of the application that

were planned for the first iteration (Login and Assets page) were included. Figure 11 shows the first

planned layout. The colours are those that the University website uses. On the right-hand side, the

user can manage his/her account (if the password is forgotten, it can be changed, the account can be

deleted and the users can logout here). Below the navigation bar, there is a welcome message that

27

describes what the users can do in that page, on the right-hand side there is a button with a blue

background where new assets can be created. The table is the main object of the page which shows

the current assets that belong to that user (if the user would be an admin then there would be another

column called ‘Owner’). The column names are underlined since by clicking on them that column is

ordered by in ascending order. In the ‘Update‘ column there are two links in every row: edit and delete.

When clicking on delete there is a small confirmation message pop-up since users can accidentally

delete the wrong data which may result in unwanted data loss.

Figure 11. Asset page design

If the users click on Edit, a form which can be found in Figure 12 opens in a new page. Here the colours

used are the same as elsewhere. If one of the data input is not correct, an error message is shown after

that row. By clicking on submit, the user is taken back to the original page (in this case assets). There

is one change that was implemented after the low fidelity design had been finalized: once an

asset/risk/policy is created, it cannot be changed. That is why a new value was created which is the

‘Owner’. Originally the ‘Owner’ and the ‘Created by’ values were the same, but everything is sorted

based on the ‘Owner’ value and that can only be changed by admins, not users. The other pages except

‘Dashboard’ look the same. With these decisions on design, the goals that have been set earlier can be

reached: it should be simple, informative, and easy to use and navigate.

28

Figure 12. Create/edit new assets

4.2.3. Database design
When designing a database, the first step is to have available requirements on which the database

tables are based. The system needs to manage data about assets, risks, policies, and users. It also needs

an event log which is a derivation of actions happening in the system. There are five entities in the

database and that means an entity-relationship diagram can be created (see Figure 13).

The Database Management System that is used is a MySQL database which is available through

PHPMyAdmin. This was provided by the University. The primary key of every table is the id field.

Although the name fields are unique (username, asset name, risk name, policy name), because of the

facts that id is an integer and it auto increments once a new element is created, this makes it easier to

use and is more transparent. Every user might create/is responsible for one or more assets, risks and

policies, so there the relationship is one to many mandatory on the one. Users table (see table 3) is the

most important table amongst all the tables because it holds the login name, the hashed passwords as

a varchar variable, and the name of the person, the email address, the user type whether one is admin

or user and the user has left columns. Assets, risks, and policies have two columns from this table:

created_by and the responsible. Originally, when e.g. an asset is created, the value is of these columns

is the same except that while created_by holds the username, responsible holds the real name of the

person. The reason is that responsible column can be changed, but the other one cannot be. Because

of this, there is a cascade on update and restrict on delete constraint on every responsible column.

29

Cascade on update means that if a name is changed, the change follows in other tables as well where

that name is present (since it is a foreign key).

Figure 13.Entity-relationship diagram

Regarding restrict on delete constraint, a user cannot be deleted from the database as long as there is

at least one asset/risk/policy he is responsible for. The user who created these is important as well,

but not as important as the owner of the elements. That is why there are constraints only on the

responsible column.

Table 3. Users

30

The asset table (see Table 4) has every information about the assets the stakeholders have requested.

There is one feature that is used elsewhere, which is the tag column. That is the reason that the

relationship between risks and assets is one mandatory to many optional. The logic behind it is that

similar assets gather into bigger categories, that is why a tag is used e.g. if there are three laptops with

different names then they have a laptop tag. It is important because the main goal of the product is to

mitigate risks. The simplest way to do is to gather the assets into categories which then have a certain

risk level. By calculating risk for every asset that is present in the company would also be difficult to

ensure consistency in the risk assessment for similar assets. By simplifying the process the user is

allowed to use the system in a simpler and clearer way so that mistakes can be avoided. Because of

this process, there is a cascade on update and restrict on delete constraint on the asset tag meaning

that if an asset tag is changed in Asset Management page it is changed in Risk Management page as

well and cannot be deleted as long as it has a risk assigned to it.

Table 4. Assets

The policies table (see table 5) has been created in order to help mitigate the risks. Since one policy is

able to control only one risk, the relationship between these two tables is one to one mandatory on

both sides. The constraints are the same as earlier, but in this case for policy name, meaning that a

policy name change results in a change of that name in risk table and it cannot be deleted from the

policy table as long as it is assigned to a risk.

31

Table 5. Policies

The risks table (see table 6) consists of several columns and it is an aggregative table meaning that it

contains every information that is needed to understand how risks are mitigated in the system.

Table 6. Risks

The event log table (see table 7) does not have any independent fields, moreover, there are no

restrictions because it stores historical actions meaning that even if a value is deleted from the

database, there is no need to delete it from this table. It shows the name, the action type, the section,

the actor and the timestamp of every action that has happened in the system so far. The name is the

entity’s name, action types can either be new, delete or edit, and the place is where the entity belongs

to (risk, asset, policy or user).

32

Table 7. Event log

Lastly, when deciding on the database design another option would have been present besides

restricting on delete relationship between the tables and that is cascade on delete. The difference

between these is that while restrict on delete does not allow to delete any rows from the parent table

as long as that value is present in the child table (e.g. policy table as the parent table and risks table as

a child table), cascade on delete automatically deletes that row from the child table. The latter one is

more drastic and when designing a database it always needs to be kept in mind that care must be

taken and avoiding to delete even unnecessary data is more important than deleting data without one

more confirmation from the user.

4.3. Low-level design

In this section the coding part of the implementation is illustrated: what kind of programming

languages and tools have been used, the structure of the code is shown and what are those decisions

that are made during the implementation.

4.3.1. Programming languages and tools used
For each tier of the 3-tier architecture, the following technologies were used. For the backend, MySQL

is used which is managed by PHPMyAdmin. For the middle tier, PHP is used while for the frontend,

HTML, CSS, and JavaScript are used. There are no files whose extension is HTML, only files with PHP,

CSS or js extensions. The PHP and JavaScript used are vanilla languages meaning that there are no

frameworks that are used (for example Laravel for PHP and Node.js for JavaScript).

Before describing the structure of the code, the tools used should be defined. There are two tools that

have been used while developing the application. Here the coding solution is not described, only the

decisions made in favour of these tools. One of the tools is the Google Charts API and the other one is

DataTables. In 3.2. Requirements gathering section it was specified that dashboard should be included

in the final solution. In this dashboard three diagrams are shown. Diagrams should be informative, easy

to understand without any prior knowledge and decisions can be based on these. This is the reason

33

Google Charts have been used: the implementation is fast and easy, the charts are customizable, free

to use and secure. This was the best tool available for drawing charts so it is why it was chosen. The

other tool that has been used is DataTables. The main purpose of this tool is to show data from a

database but in an interactive way. All the columns are sortable, the user can select how many entities

should be shown, if there are more entities, they are shown in pages so pagination works and there is

a search button. After searching for data, users can sort the remaining values as well. Before using this

tool, the solution was that the table that had shown the values could have been sorted and it

highlighted those rows where the review date was before the actual date. By using DataTables, this

functionality has been lost, however, there are a lot of features that have been implemented thanks

to this tool that otherwise would have been extremely circumstantial to implement. Since the users

can sort and search for the review date, users have other tools to filter on the non-compliant entities

while being able to use the table more interactively and with more features at the same time. As there

is a dashboard available this functionality was not as useful. Other advantages of DataTables are that

it is easy to implement and it is customizable.

There were two features for which other people’s code was used. One of them is the PHP MySQL Login

System (TutorialRepublic, 2019). This is the code that was used for inspiration but it had to be adapted

when building the login page. It was a sample because changes according to the web application’s

needs have been implemented, moreover, every code was rewritten from mysqli procedural style into

mysqli object-oriented style. This decision has only one reason: with the object-oriented style the

coding is more transparent, it is easier to follow what happens. This source was used for the login page,

the registration page and for the password reset pages as well. The other source that has been used

shows how to populate a drop-down list from MySQL database (This interests me, 2019). This small

script is written using a PDO object and it loops through a database column and makes the values

available in a drop-down list in a form (an example can be seen in Figure 14). It is extremely useful

when the goal is to limit what a user can input, but by pulling the data from a database it makes sure

once that column has a new value, it could be chosen to be the users in that drop-down list. The pages

where this script is used are the ones where there is a need to edit values: edit assets, edit risks and

edit policies. Although admins can edit users, there is no need for this script.

Figure 14. Example of populating a drop-down list

34

4.3.2. Structure of the code
By making the structure easier to understand not only security oversights could be avoided but

possible future changes could be implemented more easily. Moreover, since duplication of the code

always needs to be avoided, there are three separate files (besides styling) that do not represent

functions but serve the purposes mentioned earlier. These are session.php, adminsession.php, and

database.php and are called through the ‘require’ command of PHP. Session.php is used in those files

that every user can access, adminsession.php is called on pages that only admins can retrieve and

database.php is required on every page that has a database connection. The styling is external,

however, it is inline for showing the error messages. The style.css contains all of the styling information

the web application uses. Every feature the system has is in a separate PHP file e.g. risks.php,

editrisks.php. The PHP and HTML codes are present at the same time in these files. Although this is not

very elegant, it works. There is only one exception from this structure which is the dashboard because

by doing so malfunctions can be corrected easily. This is one of the advantages of AJAX (Asynchronous

JavaScript and XML) besides that it reads data from the server, updates the server and sends data to

the server. The reason there are three files for the ‘Dashboard’ is that one is the actual webpage, there

is a JavaScript file that contains AJAX and there is another PHP file that holds the data. AJAX was needed

in this case because implementing a new tool may result in an error and by using that, these errors

could have been shown so that the implementation became faster.

4.3.3. Security of the code
HTTPS stands for HyperText Transfer Protocol Secure. This is not only important because this is one of

the must-have requirements, but HTTPS uses Secure Sockets Layers (SSL). The reason it is inevitable is

that it is the technology that keeps any internet connection secure, it safeguards any sensitive data

that is sent between systems and prevents criminals from reading and modifying any information

transferred (Symantec Corporation, 2019).

There are some coding practices which have been used in not only one PHP file but in most of the files.

The reason for starting with this is that these are not individual solutions but their intention is to make

sure the code is easily readable and understandable and it works properly. The Open Web Application

Security Project (OWASP) release their top 10 threat paper every four years. In this paper, they not

only describe these threats but they have a cheat sheet against these as well. Although it is useful, not

all the threats are handled if someone would pay attention to this paper, but most of the most common

ones. The SQL injection is the top threat in 2017 (OWASP, 2017). The reason this threat is highlighted

at the beginning of the subchapter is that the main activity the application does is to send and retrieve

data from a MySQL database which then will be shown, edited or deleted. SQL injection targets these

systems where there is a frontend with a database backend and in the forms, malicious SQL codes can

35

be injected in order to retrieve data the attackers would not have rights to or delete tables, etc. There

are some ways to prevent this attack, during the implementation the method that is used is the object-

oriented mysqli. The reason mysqli works are that it uses parameters: at first, the SQL statement is

prepared and if there is some condition in the ‘WHERE’ clause then these values are substituted with

a question mark (?). After that these variables are bidden to the SQL statement, then the statement is

executed and the results can be fetched before closing the connections. An example can be seen in

Figure 15: the statement is prepared, then the name variable is bidden to the statement where the

first variable shows the type of the bidden value (string, integer, date), then the statement is executed

and results can be shown. The reason it works is the parameters: the system handles parameters as

entities on their own meaning that even if a quote, a semicolon, etc. are inserted, they mean no harm

to the system because these are only parameters of the SQL statement. By using this method during

coding SQL injections can be and are prevented which is the biggest threat to web applications.

Figure 15. Object-oriented mysqli example

Every form that is present in the system is using the ‘Post’ method for sending the data. It is vital since

the Post requests cannot be cached, bookmarked and they do not remain in the browser’s history.

Another coding practice which has been used through every file is that once functionalities are working

then the error messages should be deleted from the code. It does not only have practical reasons

meaning that they become useless once the code is working but it has security logic as well. If some of

the functions would not work and the error messages would have been shown it would mean a piece

of information for the attackers.

4.3.4. Login page
The first page a user sees is the login page. The background image is taken from Bleuwire (Cepero,

2018), although the resolution has been changed. The reason this picture has been chosen is that it

clearly shows the system is a security audit one. If the user has not registered before, there is a link at

the bottom of the form. When registering, a unique username, a name, the email address, a password

and the confirmation of the password is needed. The name and password are validated through regular

expressions where the password must be at least eight characters long and contain at least one

lowercase, one uppercase letter, and one digit. As stated in 4.2.3. Database design, the passwords are

stored as varchar, and the hashed value is stored. Hashing is needed for encryption and it uses the

current version of it, which is now bcrypt. The code of encryption can be seen in Figure 16.

36

Figure 16. Password encryption

The email is validated through filter_var where the second attribute is FILTER_VALIDATE_EMAIL,

moreover, in HTML 5 the type of the field can be set in the form and in this case, it is set to email. This

field is important since if somebody forgets his password, the admin can email him to this address a

new one while the name field helps to identify the people in the system. Every person who creates an

account becomes automatically a ‘user’. Users are able to see only those entities in the system where

they are the owner while admins can see everything. Another field that is automatically set is the user

has left the field. This indicates whether the user has deleted his account or not. When creating an

account this is set to ‘no’.

The session starts and if the user has been logged in then it redirects him to ‘Dashboards’. If not, then

it checks if the username and password are valid and if yes, then the user is able to log in to the system.

There is a huge difference in how error messages (i.e. if the user has input a wrong text) are shown.

PHP validation is used for validation inputs and the error messages are PHP codes as well. In other

forms, the error messages are shown right below the field which has errors and the source of the error

is indicated as well. In the login page by not showing the attacker the source of the problem (username

or password), he does not know whether he has input a wrong username or password making the

system more secure.

4.3.5. My account functionalities
After a successful login, a user has four pages on the navigation bar (Dashboards, Assets, Risks, and

Policies) on the navigation bar while the admin has two more (User management, Event log). On the

right-hand side, there is a drop-down list which is presented after hovering over on ‘My account’. Here

there are three functionalities a user can access: reset the password, delete the account and log out.

When a user wants to reset his password, he not only needs to create a new one with the same

requirements at registering (minimum eight characters long password with one upper case, one lower

case letters, and one digit) but the old password must be input as well. It has security reasons: if for

example, somebody leaves the laptop open for a minute, anyone can create a new password for him

if there would not be a need to input the older one as well. This solution adds another layer of security

to the system. The passwords are stored in the hashed form and after a successful password reset the

session is destroyed, a user is redirected to the login page where he can log in again with the new

password. If a user would like to delete his account, he can click on ‘Delete account’. After that, he

sees a confirmation message where he can confirm his intention to delete the account. If he clicks on

yes, he is redirected to the login page and he is not able to log in anymore. However, his account is not

deleted. As stated earlier in 4.2.3. Database design, there is a column in the ‘users’ table which

37

indicates whether the user has left. Originally this value is set to ‘no’ for every user. Once a user deletes

his account, this value is updated to ‘yes’. Moreover, his name is updated to ‘Deleted’ as well, but not

only in this table but in all tables as well. This process has two advantages: if the user deleted his

account by mistake, the admins are able to undo it. Another advantage is that, as shown later, until a

user has at least one entity assigned to him, the account cannot be deleted because of database design

constraints. If a user deletes his account, because of the column is updated to ‘yes’ and his name is to

‘Deleted’, the admins are able to not only see this change in the ‘User management’ page but in

Asset/Risk/Policy Management pages as well. That is the reason the ‘name’ is updated in every table:

the admins are able to identify those assets/risks/policies whose owner has left the company, so

reassigning them is easier. Furthermore, when assigning entities to a new owner, this process

minimises the chance of an error if those users are not listed who are deleted from the system by

themselves. The third functionality a user can choose from the drop-down list is to log out. Here the

session is destroyed and the user is redirected to the login page.

4.3.6. Admin pages
There are two pages that can be seen by only admins. This function is tracked through $_SESSION

variables and is built in not only in the respective pages but in the Navigation bar of other pages as

well, that can be seen in Figure 17. This is an example taken from the Asset Management page:

Figure 17. Admin pages in the Navigation bar

In the User Management page, the name, email, user type, and the user has left columns are listed.

The reason email is required in the registration is that if a user forgets his password and cannot log in,

the admin can email him a new password which can be set in the database and after the successful

login the user changes it. To make it more user-friendly, there is a mailto link () in the email column meaning that once an admin clicks on it, his

default mailing software is opened with the recipient being that email address. The reason the subject

of this email is not automatically set to password reset is that there might be other reasons an admin

would like to write to users. In the last column there are two links for each row: edit and delete. When

clicking on ‘Edit’, a new page opens. An example can be seen in Figure 18. The name of the user is

highlighted on the top and the two fields that can be changed are the user type and the user has left

38

values. By highlighting the name and not making it a read-only form field makes the usage of the form

obvious and not has the impression that the name of the user can be edited. This solution i.e. that the

name is highlighted on the top and is not present as a form field is the same for the remaining pages

where editing entities is available. After clicking on ‘Update’, the user is directed back to User

Management page and if there was a change, the result can be seen. When clicking on ‘Delete’, a

confirmation message appears that asks for confirmation of the deletion. It is implemented because

admins may click on the deletion of a specific user by accident which would result in unwanted data

loss.

Figure 18. Editing users

As defined in 4.3.1. Programming languages and tools used, DataTables are used to show every table

coming from the MySQL database. If there would be no other users only the admin who is currently

logged in then a short message would be shown which indicates that there are no users to be shown.

To implement DataTables, four lines of code is needed to be placed in the head tag of the page, three

of them are scripts and one of them is a stylesheet and there is another code snippet that needs to be

listed. This can be seen in Figure 19:

Figure 19. Implementing DataTables

The only variable that is changed is the #table which is the id of the table shown on the page. Before

this tool the solution consisted only the sorting of the table, however, it highlighted those rows in red

where the user has left. That helped decision making. By implementing DataTables this functionality

has been lost, on the other hand, admins can search for ‘yes’ in the search field which would result in

39

the same result as highlighting the rows with more functionalities that can be used to make the user

interface more advanced.

The other page that can be only seen by admins is the Event log. Once somebody creates/edits/deletes

a new entity or a user, it will be shown in the Event log table that can only be seen by admins. Although

logins are not tracked and after editing the field the admin is not able to know which features have

been edited, the name of the entity/user, the action type (new, edit, delete), the place of the action

(assets, risks, policies, users) and the person who did that indicated with his name and the timestamp

of the action is logged in to the system.

4.3.7. Functionalities available for every user
In Asset Management page a user can see those assets where he is the owner (an admin is able to see

every asset with their owner listed as a new column). On the right-hand side, new assets can be

created. By clicking on this button, a new page is opened. The asset name should be unique. Asset

name and tag can contain only number and letters. This is tested through ctype_alnum () command

and if this requirement is not satisfied then after clicking on the submit button, an error message in

red is shown and indicates the source of the error. The classification of the asset is either high, medium

or low and can be chosen from a list. Since one of the requirement has been to include not only the

departments from the University but other departments as well e.g. HR, finance, etc., these can be

found in a list. Next review date helps the auditing procedure meaning that every entity needs to be

reviewed frequently which is regulated by the company. This is why this field can be set only later than

today (Figure 20):

Figure 20. Next review date

When the user clicks on ‘submit’ he is redirected to the original page if there are no errors after filling

out the form, where the new asset can be seen. Every row can be edited but not deleted unless there

is an asset tag that is present in the Risk Management page (restrict on delete constraint). When

editing the assets, the name is present on the top and cannot be edited. The users need to be careful

when editing tags since the tag is used to group assets and once one of the tags are changed then there

might be a situation where that asset has no control meaning that it is not compliant anymore. The

department of that asset that has been selected originally is the first element that is shown in the list.

That means if the user does not change that field then the original and the edited asset has the same

department. However, since the next review date always needs to be later than today and the system

40

does not show the date that was selected earlier when editing assets, users need to be cautious since

changing the review date but not actually reviewing that asset might result in serious consequences in

an audit. If an admin edits risks, the owner can be changed as well. The value of ‘Owner’ is set to

unchanged meaning that if the admin does not change that field the owner is the same.

Those fields that are common in entities are using the same solution meaning that for example the

name, tag, next review date and owner behave the same way in risks and policies as well. However,

deletion of entities is only common in assets and policies and not in risks. The explanation is simple:

database constraints. Before implementing this functionality, if there was an asset tag that was present

in Risk Management and there was only one asset where this tag was assigned to, if the user wanted

to delete the asset, by clicking on delete nothing happened, that asset stayed in the table without

describing the reason for the user. Now, when a user clicks on delete and the former situation happens,

he is directed to a new page where it is explained that there is a risk that uses this asset tag. Since the

message contains two links, the user has two options: he can either return to the Asset Management

page or to Risk Management page where he could edit those risks. The database constraints are

adapted to the application so that there are no differences between them. This is the process when

deleting the policies as well. Figure 21 shows how it is solved in PHP:

Figure 21. Asset database constraint

By using this query, the sub-query inspects whether that asset tag is present in risk table. If yes, then

the number of results is higher than zero meaning that a user receives the message. If the query does

not return any rows than the delete statement can be executed. The reason WHERE IN condition works

and not WHERE EXISTS is that since Tag is a foreign key for Asset tag meaning that every Tag value

exists in the Asset tag field even though they are not present currently. That is the reason WHERE IN

needs to be used.

The next page is Policy Management. Here all the controls are shown and stored. When creating a

policy, a file needs to be uploaded in the system (that has a name) and the policy has a name as well

and these two can be different. The policy name and the uploaded file’s name are unique. The policies

are uploaded to the DEVWEB/2018/policies folder. At first, the target directory, file name, and file type

are set. The file size cannot be higher than 5.000.000 bytes which is a bit less than five MB. There are

41

only three files types that are permitted to upload into the system: PDF, MS Word, and Docx since

policies are mostly stored in these file formats. If one uploads a policy where the extension is different

than these, the policy is not created. The policy is then uploaded to the folder through the

move_uploaded_files () command. Clicking on the Edit button, the policy name and the uploaded file

cannot be changed, only the net review date and the owner (if the user is admin). The deletion is of

the policy works the same way as the asset deletion, the only difference here is that the uploaded file

needs to be unlinked from the system. This can be prepared by unlink () command. In Policy

Management if the user clicks on the name of the policy, a download starts. However, it is not only a

link that points to the DEVWEB/2018/policies folder because the attackers could then receive valuable

information about where the files are saved making the system significantly less secure. This is the

reason these links are using a download script that can be seen in Figure 22. The content-type variable

is needed because there are three file formats (mime content types) that are permitted and there is

only one content type that is allowed in the header. Content-Disposition shows that it is an attachment,

the file is not cached and Content-Length shows the file size. Ob_clean empties the buffer while flush

prints out what is in the buffer. After that, a file is read and the download starts. This script is used in

Risks as well.

Figure 22. Download script for policies

The last page where entities can be added is Risk Management. When adding a new risk, there are

numerous fields that are needed to be filled out: the name is unique, the description, risk scenario,

and tag are text fields where only letters, numbers and white space is allowed to be input. The policy

and asset tag are fields from Policy Management and Risk Management, the same script is used for

them that allows selecting owners for entities. In Risk Management there are four input fields that use

numbers: impact, likelihood, residual risk, target risk. Impact and likelihood follow the risk rating matrix

the University uses (University of Strathclyde, 2019). According to this paper, both impact and

likelihood are present in a scale of 1-5: regarding impact, the scale is between minor (1) and critical (5)

while 1 means rare and 5 means almost certain for likelihood. Based on this the risk category is set: if

the score of the multiplication is below 5 then this risk is low, if it is between 5 and 14 then the risk is

42

medium and above 14 is high. When creating and editing the risks the minimum and maximum values

of these fields are set accordingly to the risk rating matrix. Since the maximum score of risks is 25, the

residual and target risks follow this methodology as well. When editing the risks, the only difference

between this entity and other entities that policy and asset tag need to be selected again (this is the

same as the next review date field). Because there are no database constraints, risks can be easily

deleted once the user has confirmed his intention.

The remaining page is Dashboard. This page is set up by the Google Charts API. As described in 4.3.1.

Programming languages and tools used AJAX and JQuery are used for this page because of error

handling. This page uses dashboard.js which is set in the <script> tag in dashboards.php file along with

a script which is needed for JQuery. This JavaScript file contains the Google Charts API that draws the

charts. At first, the API is loaded with ‘corechart’ packages, a callback is set to run once the API is loaded

and the ‘drawcharts’ function is created. This function uses Ajax and an example can be seen in Figure

23. The ‘URL’ shows where the data is coming from, while the data specifies the id that is set in the

body of dashboard.php file. Ajax uses JSON and Ajax exchanges data with the server with parseJSON

command. Then the column names of the charts, the title, width, and height are set. After that, the

chart variable is created where the chart type is specified. At last, the chart is drawn. In

dashboarddata.php there are three cases that are the same as the ids set earlier. In every case, two

SQL commands are created (one for admins and one for users) and the results of the queries are

converted into number with the intval () command. At the end of the file, the data is converted into

JSON with the json_encode () command.

Figure 23. Google Charts with Ajax

43

The first chart, which is a column chart, shows the number of assets in each asset categories (high,

medium, low). The other two charts are pie charts: the second chart shows the percentage of risks

where the residual risk is equal or smaller than the target risk and the third chart shows the percentage

of those assets whose tag has been assigned to one of the risks meaning that they are compliant. Every

asset has a risk and a policy (control) is assigned to the risks to mitigate them. If the asset has no control

assigned to them (indirectly) then that means that they are not compliant.

44

5. Testing

As shown in 4.1.1. Agile, two sprints have been used to develop the application, and at the end of each

testing was completed. The reason is that after every iteration the goal is to have working modules

and that is why testing is included there. There are five main types of software testing: unit testing,

use case testing, load testing, user interface testing and vulnerability testing. These types of testing

are described in this chapter. After the testing types are described, the testing strategy is shown with

information about how various methods have been applied.

5.1. Testing types

5.1.1. Unit testing
In unit testing, individual units of software are tested (Software Testing Fundamentals, 2019). The

purpose is to confirm that each unit performs as designed, where the unit is the smallest testable part

of any software. The smallest unit can be a function, procedure (procedural programming) or a method

(object-oriented programming). It is a white box testing method. That means that the tester can see

the internal structure of the code that is tested and it is like a white/transparent box.

Unit testing has a lot of benefits: it increases confidence in maintaining the code since every time it is

changed unit testing needs to be performed in order to make sure the code works. Code needs to be

modular if unit testing is used meaning that code is easier to reuse. The development is also faster

thanks to the modularity of the code. Because of this, the cost to find errors at this low level is lower

than if the errors are detected at higher levels. Since unit testing is a continuous process debugging is

easier since only the latest version of the code needs to be tested.

5.1.2. Use case testing
Use case diagrams have been described in 3.1.3. Use case diagrams and in 3.3. Use case diagram

sections. Although there is only one use case diagram (Figure 10. in chapter 3.3.), all the different use

cases (30 in total) can be found in the Use cases part of the Appendix. Use case testing helps identify

test cases that cover entire systems on a transaction by transaction basis from start to finish (ToolsQA,

2019). It ensures that user journeys are working in the system. Regarding the coverage, it not only

covers end to end flow (positive test cases) but alternate test cases as well (negative test cases) based

on user interactions and the system’s responses. Use case testing is based on use cases. It also a black

box testing method meaning that the tester cannot see what is inside the software, he only provides

inputs verifies results against expected outcomes.

45

Since process flow is described in use cases describing how the system should work and how it is used,

use case testing can uncover integration defects that are caused by incorrect interactions. The reason

it is beneficial is that these users would come across these errors when using the system first.

5.1.3. Load testing
The main purpose of load testing is to understand the behaviour of the application under a specific

expected load (TRY QA, 2019). It is used to determine a system’s behaviour under normal and peak

conditions, whether the infrastructure used for hosting is sufficient or not. Load testing shows how

many simultaneous users the system can handle. It helps identify the maximum operating capacity

with its bottlenecks and which elements cause degradation. The primary goal of load testing is to

define the maximum amount of work the software can handle without signification performance loss.

It is also non-functional testing meaning that it is mainly used for testing the performance of

applications that are web-based and client/web servers. Although some organizations do not perform

this testing at all, performance issues can be filtered out with this testing that may prevent the

organization from revenue loss.

5.1.4. User interface testing
The user interface is where one interacts with a computer using anything but text (Guru 99, 2019).

User interface testing tests the graphical user interface. It involves checking the screen with controls

like menus, icons and all types of bars e.g. toolbar, dialog boxes, etc. The focus is on the design

structure since this is what the user sees and interacts with. The reason user interface testing is

important is that if the user does not understand the user interface that may result in him/her not

being comfortable to use the application so proper testing should be carried out. The following

elements should be checked: size, position, length and width of elements; error messages (if they are

displayed correctly), font used in application, alignment of text, colour of font and error messages (if

they are aesthetically enjoyable, images are properly aligned or not) and lastly, positioning of user

interface elements for different screen resolution.

5.1.5. Vulnerability testing
Vulnerability assessment is the process where vulnerabilities are defined, identified, classified and

prioritized in computer applications, systems and network infrastructures (Rouse, 2019). The main goal

is to identify threats and the risks they pose so that security weaknesses can be uncovered and it

provides direction on risk assessment associated with those weaknesses and threats. There are five

types of vulnerability scans: network-based scans that are used to identify network security attacks.

Wireless network scans Wi-Fi networks and it focuses on points of attack in the wireless network

infrastructure. Host-based scans are used to locate weaknesses in workstations and servers.

Application scans are used to test websites so that software vulnerabilities and erroneous

46

configurations in the network can be detected. Lastly, database scans are used to identify weak points

in a database. Since every organisation faces the risk of cyberattacks, they can benefit from

vulnerability testing. Since these vulnerabilities enable hackers to access IT systems, it is crucial to

identify and remediate weaknesses before they can be exploited.

5.2. Findings

In 5.1. different testing techniques have been described that are the tests normally a project needs to

go through before the evaluation starts. However, in this case, where there is a really strict deadline,

only unit and use case testing have been applied. After a code implementation that represents a small

function, a unit testing made sure that it works the way it supposed to be. At the end of every sprint

when the implementation phase has been finished, all of the uses cases have been looked at. Testing

happened based on these use cases and so that errors in the system could have been uncovered. The

reason load and user interface testing have not been carried out is the following. As shown in 5.1.3.

Load testing is a testing type that is used in most of the cases, but not every time. The reason this

testing has not been used is that there are only a few people in the University who might work in this

system. That means even in peak conditions the system would work safely since the number of people

using the system would be limited. Regarding user interface testing, if there is a time constraint, it

might be enough to test is through user evaluation. This is not a best practice since user interface

testing needs to happen every time, because of the circumstances, this type of testing has been left

for the user evaluation where participants could have commented the user interface if they have

uncovered any issues.

Every time new functionality has been implemented, unit testing has been used and if errors were

uncovered, the code has been changed and that use case has been tested again. This is called

regression testing. Since unit testing has been used continuously, all of the test results cannot be

shown, only an example. In 4.3.7. it is shown that the system checks whether the name and tag of an

entity contain only numbers and letters with the ctype_alnum() command. After this the unit has been

tested, the finding has been that although the error message shows that white space cannot be used.

Not using whitespace for a name or description field does not make sense. This is the reason this

function has been substituted with a regular expression, where the input is validated based on a

pattern that can be found in that specific regular expression. Moreover, by implementing it not only

English characters, but Chinese, Arabic, etc. letters could be used in names and tags, which might be

useful for a user.

47

5.2.1. Nessus scan
Nessus is a security scanning tool and it identifies the vulnerabilities a network or web application has.

It is open-source i.e. free and easy to use that is why it has been chosen to run the vulnerability scan.

In 3.2. Requirements gathering one of the non-functional requirements has been to test the

implementation for common security vulnerabilities.

Here a basic scan has been run where the following settings have been used: the scan crawled from

login.php (not from devweb2018.cis.strath.ac.uk), all HTTP methods have been tried, HTTP parameter

pollution have been attempted, all combination of parameters (per each form) have been tested and

it looked for all flaws. Moreover, the maximum run has been set to 25 minutes. This indicates the

maximum amount spent on each individual generic web attack type. The reason it has been set to 25

minutes because the first time, when the test run, it had been set to five minutes and the report

indicated that this number should be increased since there had not been enough time for some of the

attack types. The results of the test can be found in Figure 24. In the list below there is only one

vulnerability that could have been avoided: the web application is potentially vulnerable to

clickjacking, this vulnerability refers to a missing Content-Security-Policy (CSP) on the reset password

and dashboards pages, all the other vulnerabilities are server-side vulnerabilities meaning that these

could not have been changed. Because of the ‘High’ severity vulnerabilities, the developed application

could not have been used in a professional environment until these would not have been fixed.

Figure 24. Nessus scan result

48

6. Results and evaluation

The next and last step in software development is the evaluation. After the implementation and testing

have taken place, users need to evaluate the software before (in normal case) it goes live. In the

chapter, first development results are shown. After that, usability testing is described with its

outcomes. Later, requirement-based evaluation follows. After that the systems’ security is evaluated

with future improvements. Lastly, the reflective evaluation of the development process is discussed.

6.1. Results

In this section, a walkthrough of the system is provided that is supported by screenshots. At first, a

user needs to log in that can be seen in Figure 25.

Figure 25. Login page

After the login page, the user is directed to the Dashboard (Figure 26). Since the account that was used

in the login is an admin account, all of the functionalities can be seen as well. On the left-hand side,

the University logo can be seen. Next to it, the name of the system is present while on the right-hand

side a user can reset his password, log out and delete his account. Below that there is a navigation bar

where all the other pages can be reached. In this picture, one of the diagrams can be seen.

49

Figure 26. Dashboard

The next page is the Asset management page that can be seen in Figure 27:

Figure 27. Asset management

As shown in 4.3.1. DataTables is used for making the table more interactive. Thanks to this tool, the

columns can be sorted, the values can be searched on and the user can select how many entries he

would like to see. On the right-side, new assets can be created and that form is shown in Figure 28.

The reason it is the only form that is shown in the walkthrough is the layout is the same only form

fields are different.

50

Figure 28. New asset creation

Risk Management page can be seen in Figure 29:

Figure 29. Risk Management

Policy Management is shown in Figure 30:

Figure 30. Policy Management

51

The reason these two pages are shown at the same time is that it can be seen that policy names are

links meaning once a user clicks on those, that policy is being downloaded.

In the User management page (Figure 31) besides editing user rights and deleting users, admins can

write direct emails to users. In the example, an example can be seen where the user has deleted

himself since the name changed to ‘Deleted’ and not only in this table but in every asset where he was

the Owner.

Figure 31. User management

Lastly, the event log can be seen in Figure 32. The Timestamp column is in descending order. Since

there are 121 entries, these entries are paginated into 13 pages (see bottom right corner):

Figure 32. Event log

52

6.2. Usability testing

The main goal of usability testing is to evaluate the software by their future users and learning from

their feedback. It is crucial since this enables to reach the best possible user experience (Chi, 2019).

During the test, participants are asked to complete a set of tasks whilst the organizer watches them

navigate the product, listens to their praises and concerns so it will be clearer when participants can

clearly and successfully complete the tasks and where they enjoy the user experience and encounter

problems. The objectives of usability testing are (Foggia, 2018): gaining insights from users, seeing if

the users’ expectations have been met, checking if users can perform the tasks and if the design is

matching the real-world usage and get user reactions and feedback. It has many advantages over for

example a questionnaire (Chi, 2019): it provides an unbiased, accurate and direct examination of the

product or website, it is convenient since only a room and notes are needed. Usability testing can tell

what users do on the product or website and the reason they take these actions. It also addresses the

product’s issues in order to prevent developing it in the wrong way. It finds problems where they are

easy and cheap to fix. However, usability testing is a continuous process meaning that it needs to be

repeated until the design is not confusing.

There are two types of usability testing: qualitative and quantitative. In the study, six participants took

part, all of them has worked with similar systems in the past. Since the number of participants should

have been a lot higher than six in a quantitative study (because the collected data may have been

biased otherwise), qualitative usability test had been chosen. Although the results of the test are not

completely objective and reproducible (Mortensen, 2019), it can give an in-depth understanding of

products in ways that impossible to reduce to numbers. Since the main goal of the study has been to

evaluate the system and their functionalities based on the users' comments, this is something that

could not have been expressed with numbers.

The study, which can be seen in the Appendix with the consent form, data management plan, and the

actual questions, had two parts: in the first 15 minutes, participants have been asked to perform eight

different tasks in the system and notes have been made if these people had any issues using the system

or if there were some particular tasks that took more time than expected. In the second part of the

study, six questions have been asked from the participants and they have answered these questions.

Although the questions that have been asked gathered qualitative data, to make them formal, SUS

questions have been used as a basis. SUS stands for System Usability Scale, this is usually a

questionnaire at the end of a quantitative usability test. There are 10 questions in total and the

participants need to rate every question in a 1-5 scale and after that, the survey is evaluated based on

a methodology. These questions have been transformed so that they can be open rather than closed

53

questions and they have been the basic questions of this study. The participants have been asked to

complete the tasks one by one and they started it after their consent has been received although they

could have been revoked it during any point of the study. Since the study has been anonymous other

details about the participants are not described.

In this paragraph, the outcomes of the study are described except for the fifth question (additional

functions that could have been implemented). During the first part of the study, the participants have

easily found the functions that they needed to do except for one task. In the sixth task, the participants

have been asked to click on the policy name and describe what happens. They clicked on it in every

case, however, they did not know what to do after that. The original intent was to show them that

after they click on the policy, they can save it and if they open it, it is the same policy that has been

uploaded to the Policy Management page. After this had been described to the participants they have

understood it and they completed it, so there was an issue with the description and not with the

system itself. The completion of every other task has gone as planned, some of them has been slower,

but everybody could complete all the tasks. There has been only one time when a participant needed

help: when inputting the name of the asset one tried to delete the placeholder value, but since it is a

placeholder once one starts typing it vanishes. After explaining it, the completion of the task continued.

In the second part of the study, everybody said that the application is fairly/quite easy to use and

straightforward. According to the participants the system is not complex to use, the layout is good,

plain and extremely consistent, moreover, the modules look the same, however, the layout that is

used for new and edit pages of the entities looks like a layout that has been designed for phone usage

so that could have been changed. When uploading the policy, the uploaded file’s name is present in

the form, however, since the text is black (instead of white) it is really hard to read. Moreover, the logo

on the web page is squashed. There has been a comment on the font as well: since the system has

been designed for the University, not only the colours but fonts could have been the same so as to

guarantee that it is the same brand (the University’s brand). The last comment concerning the layout

has been that since ‘Dashboard’ is different from the other functions, it could have been shown above

or below the other parts in the navigation bar so that the users can understand the difference. Every

participant responded that the system would be very useful for them.

Before starting to go through the pages, one participant said that since the sign out button is in a drop-

down list that is shown only when the user hovers over the ‘My account’ button, it is difficult to find

so it could be a separate button that is independent of ‘My account’. Regarding the ‘Dashboard’ page

more people commented that there could be not only an explanation field beside each diagram that

explains the meaning of that chart but a drill-down in the charts as well so when users click on for

example on the ‘Asset classification’ chart ‘Medium’ column, those assets would be shown who are

54

classified as medium. Other ideas have been that if a user clicks on that column, he should be

redirected to that page with that filter present. Another comment was that when somebody clicks on

the Non-compliant risks or assets, there should be a form where the action plan can be tracked where

further actions could be listed with dates that describe the way that risk/asset is going to be compliant.

Before describing the specific improvements that could be implemented in the other pages, there are

some general changes that would be beneficial if they would happen: more participants replied that

the review date field is not obvious, because in the USA the date format is different and it is not clear

which date format this field uses. One idea has been that instead of showing the months as a number,

it should be written so that users do not have the chance to input the wrong review date. The other

solution that has been suggested is that instead of manually inputting the date, only the calendar

should be shown because it was not obvious for most of the participants that this is an option as well

and by choosing this as the only option, the date format will not matter at all. Another improvement

has been that if the next review date is near e.g. in five days, the owner of that entity should receive a

reminder email automatically generated by the system so that reviews would not be forgotten. A

participant has mentioned that when clicking on the policy, the file may be opened in a new tab instead

of downloading it. One participant commented that bulk uploading assets (from a CSV file) could be a

good addition. Moreover, since the name of the assets might not be unique, a serial ID should indicate

the assets. In the Risk Management page, when creating a risk, there should be other controls field

than policies meaning technical and physical control as well since they mitigate the risk as well. The

residual risk calculation might happen automatically by the system itself and this is something that

might be implemented through machine learning. The last improvement that has been advised by the

participants is that more clarity should be on how the assets and risks are connected to each other.

6.3. Requirement-based evaluations

Although the software is not only working, but the participants are satisfied with it too, there is a place

for improvements. As listed in 3.2. Requirements gathering, one of the requirements was that the

users would create custom charts. This functionality would be valuable because different users may

have different KPIs that they need to concentrate on and by being able to build custom charts they

could utilize the system more. Furthermore, if the software would be used later by other universities

or by different firms, this would be one of the first functionalities that need to be implemented at first

since their focus on risk management would probably be different. One possible solution could be that

the user could choose the diagram type, which columns with what kind of cumulation (sum, count or

nothing) he wants and after that the chart is drawn. Another are of improvements concerns the tag

column in the asset table. The reason is that this connect assets and risks and if two people write the

55

same tag but with e.g. different capitalization, these would be two different words for the system

although they supposed to be the same. By implementing a system where once a user starts typing,

values that are already present could be shown so that duplicates can be avoided. Typeahead is a

JavaScript library through that this improvement could be implemented. Another JavaScript related

upgrade would be that validation could happen through JavaScript as well. The reason is that users

would not have to type in the values in the form twice if they have not used the form as they should

have since once a mistake happens the user could see it at the same time and correct it. The last

possible improvement concerns forgotten passwords. As shown in 4.3.6. Admin pages, if a user has

forgotten his password, an admin can email him a new one so that he can use the system again. A

button could be implemented, and if he would click on it, a new page would be shown where only the

email address would be needed to input. If this email address could be found in the database, the

system would send a user a new password, however, after the first login, he would need to change it

because of security reasons. The reason this functionality would be useful is that users would not need

to wait for admins to change their passwords, moreover, the workload of admins would be reduced as

well.

6.4. Security evaluations

Although the system is secure against SQL injection and there is only one vulnerability that is present

because of the coding, there is a huge space for improvements. Against cross-site scripting

htmlspecialchars() is used in the forms, but using HTML purifier and PHP filter functions would make

this more efficient and better. One of the most crucial vulnerabilities of the system is that it has no

protection against brute force attacks. Brute force attacks happen when the attackers input many

username password combination in order to get access to the system. The first step to prevent them

is that there should be a table in the database which tracks login attempts. This table can indicate that

the attempt has been successful or not. Based on this, progressive delays might be used i.e. after few

unsuccessful logins attempt the system locks the user out for a certain period of time which then

increases with each subsequent failed attempt. Another solution that might be useful is the 2-Step

verification where the user would need to input a code that he received to his phone number to make

sure it is not a bot who tries to log in. As shown in 5.2.1. Nessus scan the system is vulnerable against

clickjacking so Content-Security-Policies need to be implemented wherever it is possible. Lastly, when

the cookies would be implemented, CSRF and XSFR attacks could be prevented as well although there

are a lot of possible solutions for that and they do not work in every situation.

56

6.5. Reflective evaluation of development process

As the last step, there is a reflective evaluation of the development process. Although there are some

aspects of the work done that could have been improved, as shown earlier, if everything would start

from the beginning, nothing would be done differently. The reason is simple: every goal has been

achieved and the participants were satisfied with the product. In the beginning, there was a huge gap

between the coding knowledge and the knowledge required for implementing the requirements,

everything that has been included in the final version of the system is knowledge gained throughout

the project. Learning by doing it is the best way to learn new things since one gains not only theoretical

but practical knowledge at the same time so that he can remember it easily. Moreover, participating

in an end-to-end project i.e. from the requirements gathering until the evaluation is something that

adds another practical experience that has been gained during the studies.

If there must be two factors highlighted that would require more emphasis during the project are the

planning and being able to say no. The first is obvious, especially during an implementation, deadlines

cannot be strict enough. There is always a new function that would have been implemented if there

would be more time, however, sometimes it is difficult to decide on this since one always wants to do

his best. By accepting that everything has been achieved that could have been accomplished during

this project and everything worked out perfectly is something that needs to be done and is done.

57

7. Conclusion

Information Security Management Systems are the topic of the thesis. This chapter has two sections:

in the first section research questions are answered and outcomes are shown. In the second section,

possible improvements to the developed system derived from sections 6.2, 6.3 and 6.4., are described.

7.1. Summary of thesis contributions

The main objective of this thesis was to develop an Information Security Management System that was

based on best practices of asset, risk and policy management from the literature and other ISMS

system. All of the best practices of asset, risk, and policy management concern the ownership and

transparency of these entities. Moreover, they need to be connected to each other so that the risk

that is present in the system through assets could be mitigated. Since there are a lot of standards, the

system should support as many standards as possible and have a dashboard that shows graphically the

state of the IT audit system. Although every ISMS solution follows the best practices from the

literature, its solutions are completely different from each other especially in case of the features that

this software contains. The main problem is that in many cases these systems are either too difficult

to use or they do not have a good graphical interface that would support the decision-making process.

These are the main issues the developed system aims to improve. That means that the developed

system should be simple, informative and provide a good graphical interface.

The functionalities a simple ISMS system should support are mostly based on the requirements coming

from the stakeholders since every ISMS system is based on the literature, however, the requirements

might be different. A system should have a registration and a login page where users can log in to the

system. Users should be able to change their password, log out and delete their account as well. If

there are admins (and not only users) in the system then these admins should have more rights than

users. Admin should be able to manage users (edit their right and delete them) and see what events

happened in the system. The proposed system should also have a graphical interface where charts that

show the Key Performance Indicators (KPIs) are provided. Moreover, assets, risk, and policies should

be able to be created, viewed, edited and deleted and the system should clearly indicate how these

are connected to each other. Users should have the opportunity to upload and download policies.

Furthermore, since the main goal of the system is to mitigate risk, risk calculation should be

transparent for the users.

The best methodology that should be used for developing such a system is Agile. It is an effective

choice since the communication happens continuously with the stakeholder, which means that once

58

an issue/a question arises, it can be solved/answered immediately. Working in iterations according to

a risk-based approach ensures that these functionalities are developed first that need more time and

deadlines are followed because in most of the cases time is the most important constraint. Every

software can be improved and that is why there might a lot of functionalities that could be

implemented, however, due to the lack of time, they are not or they are developed in other iterations

at a later stage.

A simple system should be built by using the 3 tier architecture: (1) the presentation tier should use

HTML, CSS, and JavaScript, (2) the logic tier should be based on PHP and (3) for the back-end, a

database should be used for example MySQL. In the database the tables need to be logical, most

importantly IDs should be used for identification purposes, the passwords need to be stored in a

varchar variable and in a hashed form. If there are columns that are present in more than one table,

using foreign keys with constraint is efficient. A good practice is that if a value from the parent field is

updated, it is updated in the child table as well, however, a value from the parent table cannot be

deleted as long as it is present in the child table.

As a presentation and logic tier, besides using the coding languages shown earlier, there are best

practices here as well. Firstly, code that is present in more than one file should be used as a separate

file which then can be called. It is useful because these code snippets can be edited easily and make

the overall code structure transparent. Using Ajax is another best practice since it facilitates the

debugging procedure and again, makes the code more transparent. Regarding charting, Google Charts

API is free to use, easy to implement and it is customizable. Another tool is DataTables that adds a

huge amount of functionalities to a table that consists of data. It is free to use and customizable as

well.

Since an Information Security Management System contains data about system risks, it is crucial that

the system should be secure. When the back-end is a MySQL database, it can be secured against SQL

injection by using object-oriented mysqli that uses parameters. Since cross-site scripting is a common

threat, escaping characters through htmlspecialchars () makes the system more secure. By not showing

error messages or not specifying where the error is (e.g. wrong username/password) the attackers

cannot use this vulnerability. Forms that send sensitive data back to the server should always use the

‘Post’ method and passwords need to be stored in a hashed form and as a varchar variable (not as a

string). Moreover, the system should be secure against brute force attacks and clickjacking as well.

The system’s usability can be ensured by making it simple, straightforward and informative one. The

more graphical solutions are used (while keeping in mind the simplicity), the better since improved

decisions could be made. A system should be modular so that users could find functions on different

59

pages easily, colours should be made visible and wherever there is a possibility of misunderstanding,

comments should be present that help the users. Lastly, there should be no errors in the system and

that can be achieved by unit, use case, load and user interface testing.

7.2. Further development perspectives

There are three categories of improvements: crucial ones, the cosmetic improvements and those that

could provide a basis for future projects. This list is based on 6.2, 6.3 and 6.4, they are prioritized.

7.2.1. Crucial improvements
These are improvements that concern mostly security: the system should be secure against brute force

attacks (by implementing progressive delays), clickjacking (by implementing Content-Security-Policies)

and CSRF and XSFR attacks. Another crucial improvement should be to implement the ability to create

custom charts since this has been one of the requirements mentioned in 3.2. and it would add huge

value to the product. So would do the ability to add more controls i.e. not only policies but physical

and technical controls as well so that risk calculation would be more precise.

7.2.2. Cosmetic improvements
These improvements are connected to the user interface and the explanations of the diagrams. The

font should be changed to the University one, the ‘Log out’ functionality should be shown separately

from ‘My account’, there could be a distinction between Dashboard and other pages. The date field in

the forms could use a calendar form and there should be explanations beside each diagram and risk

calculations. Moreover, when clicking on an asset, the file might not be downloaded but opened in a

new page.

7.2.3. Improvements for future projects
Some of the improvements concern the diagrams: there could be a drill-down opportunity that would

filter on data that is clicked on. Moreover, if a risk/asset is non-compliant a table could show the next

steps so that these entities are compliant again. Since tag connects assets and risks, by implementing

Typeahead, users could see tags already present in the system that would save a lot of time. By having

the ability of password reminders users who forgot their password could log back to the system faster.

Lastly, the system could send a reminder message to owners whose entities’ review date is in the next

five days.

60

References
Advisera, 2019. What is ISO 27001?. [Online]

Available at: https://advisera.com/27001academy/what-is-iso-27001/

[Accessed 07 06 2019].

Agile Business Consortium, 2019. MoSCoW Prioritisation. [Online]

Available at: https://www.agilebusiness.org/content/moscow-prioritisation

[Accessed 24 06 2019].

Armerding, T., 2018. CSO. [Online]

Available at: https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-

century.html

Biswas, P., 2019. ISMS: Asset Management. [Online]

Available at: http://isoconsultantpune.com/isms-asset-management/

[Accessed 06 07 2019].

Bowen, P., Hash, J. & Wilson, M., 2006. Information Security Handbook: A Guide for Managers.

Gaithersburg: NIST .

Calder, A., 2013. ISO 27001/ ISO 27002. 2nd ed. Ely: IT Governance Publishing.

Calder, A., 2018. Information Security & ISO 27001. s.l.:IT Governance Ltd.

Calder, A. & Watkins, S., 2008. IT Governance: A Manager's Guide to Data Security and ISO 27001 /

ISO 27002. 4th ed. London and Philadelphia: Kogan Page.

Capiro, 2019. Requirements elicitation – 8 Steps to requirements success. [Online]

Available at: https://capiro.co.uk/requirements-elicitation-8-steps-to-success/

[Accessed 09 08 2019].

Capterra, 2019. Risk & Audit. [Online]

Available at: https://www.capterra.com/p/147599/Investigations-Incident-Software/#reviews

[Accessed 05 06 2019].

Capterra, 2019. StandardFusion. [Online]

Available at: https://www.capterra.com/p/151388/StandardFusion/#reviews

[Accessed 05 06 2019].

Cepero, R., 2018. Best Log Management Tools for Security Auditing. [Online]

Available at: https://bleuwire.com/best-log-management-tools-for-security-auditing/

[Accessed 13 08 2019].

Ceta, N., 2019. All You Need to Know About UML Diagrams: Types and 5+ Examples. [Online]

Available at: https://tallyfy.com/uml-diagram/

[Accessed 22 07 2019].

Chi, C., 2019. The Beginner’s Guide to Usability Testing. [Online]

Available at: https://blog.hubspot.com/marketing/usability-testing

[Accessed 06 08 2019].

Darby, M., 2019. Information Security Risk Management Explained - ISO 27001. [Online]

Available at: https://www.isms.online/iso-27001/information-security-risk-management-explained/

[Accessed 10 07 2019].

61

Disterer, G., 2013. ISO/IEC 27000, 27001 and 27002 for Information Security Management. Journal of

Information Security, Issue 4, pp. 92-100.

Dosal, E., 2018. Importance of IT asset management. [Online]

Available at: https://www.compuquip.com/blog/importance-of-it-asset-management

[Accessed 06 07 2019].

Dutton, J., 2017. What is an ISMS and 9 reasons why you should implement one. [Online]

Available at: https://www.itgovernance.co.uk/blog/what-is-an-isms-and-9-reasons-why-you-should-

implement-one

[Accessed 04 06 2019].

eramba, 2019a. eramba. [Online]

Available at: https://www.eramba.org/

[Accessed 05 06 2019].

eramba, 2019b. Enterpirse Subscription. [Online]

Available at: https://www.eramba.org/enterprise-subscription/

[Accessed 05 06 2019].

Eramba, 2019c. Demo. [Online]

Available at: https://demo.eramba.org

[Accessed 05 06 2019].

Eriksson, U., 2012. Functional vs Non Functional Requirements. [Online]

Available at: https://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/

[Accessed 22 07 2019].

Esposito, E., 2018. Low-fidelity vs. high-fidelity prototyping. [Online]

Available at: https://www.invisionapp.com/inside-design/low-fi-vs-hi-fi-prototyping/

[Accessed 26 07 2019].

Foggia, L., 2018. Usability testing: what is it and how to do it?. [Online]

Available at: https://uxdesign.cc/usability-testing-what-is-it-how-to-do-it-51356e5de5d

[Accessed 06 08 2019].

Gonçalves, L., 2019. WHAT IS AGILE METHODOLOGY. [Online]

Available at: https://luis-goncalves.com/what-is-agile-methodology/

[Accessed 23 07 2019].

Guru 99, 2019. GUI Testing Tutorial: User Interface (UI) TestCases with Examples. [Online]

Available at: https://www.guru99.com/gui-testing.html

[Accessed 03 08 2019].

Haughey, D., 2019. MOSCOW METHOD. [Online]

Available at: https://www.projectsmart.co.uk/moscow-method.php

[Accessed 24 06 2019].

Hsu, C., Wang, T. & Lu, A., 2016. The Impact of ISO 27001 Certification on Firm Performance. Koloa,

IEEE.

ins2outs, 2019. How to Implement an Information Security Management System. [Online]

Available at: https://ins2outs.com/implement-information-security-management-system/

[Accessed 06 03 2019].

62

ISO 27001 Security, 2019a. ISO/IEC 27001:2013 - Information Technology - Security techniques -

Information security management systems - Requirements (second edition). [Online]

Available at: https://www.iso27001security.com/html/27001.html

[Accessed 07 06 2019].

ISO 27001 Security, 2019b. ISO/IEC 27002:2013 - Information technology - Security techniques - Code

of practice for information security controls (second edition). [Online]

Available at: https://www.iso27001security.com/html/27002.html

[Accessed 07 06 2019].

Klassen, M., 2018. How to Select the Right ISMS Software for Your Organisation?. [Online]

Available at: https://www.cherwell.com/library/blog/how-to-select-the-right-isms-software-for-

your-organization/

[Accessed 05 06 2019].

Kosutic, D., 2019. The basic logic of ISO 27001: How does information security work?. [Online]

Available at: https://advisera.com/27001academy/knowledgebase/the-basic-logic-of-iso-27001-how-

does-information-security-work/?icn=free-knowledgebase-27001&ici=top-the-basic-logic-of-iso-

27001-how-does-information-security-work-txt

[Accessed 06 07 2019].

Kothari, A., 2019. Policy Management: What Is It and Why Is It Important?. [Online]

Available at: https://tallyfy.com/policy-management/

[Accessed 10 07 2019].

Lomas, E., 2010. Information governance: information security and access within a UK context.

Records Management Journal, 20(2), pp. 182-198.

Lucidchart, 2019a. What is an Entity Relationship Diagram?. [Online]

Available at: https://www.lucidchart.com/pages/er-diagrams

[Accessed 24 06 2019].

Lucidchart, 2019b. UML Use Case Diagram Tutorial. [Online]

Available at: https://www.lucidchart.com/pages/uml-use-case-diagram

[Accessed 22 07 2019].

McLachlan, P. E., 2011. Five Steps for Effective IT Policy Management. [Online]

Available at: http://www.baselinemag.com/c/a/IT-Management/Five-Steps-for-Effective-IT-Policy-

Management-236349

[Accessed 10 07 2019].

Mortensen, D., 2019. Best Practices for Qualitative User Research. [Online]

Available at: https://www.interaction-design.org/literature/article/best-practices-for-qualitative-

user-research

[Accessed 06 08 2019].

NI Business Info, 2019a. IT risk management. [Online]

Available at: https://www.nibusinessinfo.co.uk/content/what-it-risk

[Accessed 10 07 2019].

NI Business Info, 2019b. Different types of IT risk. [Online]

Available at: https://www.nibusinessinfo.co.uk/content/different-types-it-risk

[Accessed 10 07 2019].

63

Ohki, E. et al., 2009. Information Security Governance Framework. WISG.

OWASP, 2017. OWASP TOP 10 - 2017. [Online]

Available at: https://www.owasp.org/images/7/72/OWASP_Top_10-

2017_%28en%29.pdf.pdf?utm_referrer=https://www.google.com/

[Accessed 29 07 2019].

ProductPlan, 2019. Product Management: MoSCoW Prioritization. [Online]

Available at: https://www.productplan.com/glossary/moscow-prioritization/

[Accessed 24 06 2019].

QASymphony, 2019. Agile Methodology: The Complete Guide to Understanding Agile Tesing. [Online]

Available at: https://www.qasymphony.com/blog/agile-methodology-guide-agile-testing/

[Accessed 23 07 2019].

Rahman Ahlan, A. & Arshad, Y., 2012. Understanding Components of IT Risks and Enterprise Risk

Management . In: J. Dr. Emblemsvag, ed. Risk Management for the Future - Theory and Cases.

s.l.:InTech, pp. 297-318.

Rapid7, 2019. Information Security Risk Management. [Online]

Available at: https://www.rapid7.com/fundamentals/information-security-risk-management/

[Accessed 10 07 2019].

Resolver, 2019. Resolver. [Online]

Available at: https://www.resolver.com/

[Accessed 04 06 2019].

Rouse, M., 2019. vulnerability assessment (vulnerability analysis). [Online]

Available at: https://searchsecurity.techtarget.com/definition/vulnerability-assessment-vulnerability-

analysis

[Accessed 13 08 2019].

smartdraw, 2019. Entity Relationship Diagram. [Online]

Available at: https://www.smartdraw.com/entity-relationship-diagram/

[Accessed 24 06 2019].

Software Testing Fundamentals, 2019. Unit Testing. [Online]

Available at: http://softwaretestingfundamentals.com/unit-testing/

[Accessed 03 08 2019].

Stackify, 2019. What is N-Tier Architecture? How It Works, Examples, Tutorials, and More. [Online]

Available at: https://stackify.com/n-tier-architecture/

[Accessed 24 07 2019].

StandardFusion, 2019a. StandardFusion. [Online]

Available at: https://www.standardfusion.com/?gclid=Cj0KCQjwrdjnBRDXARIsAEcE5YkjTUfVf-

jHexwIBmDCvkDICil9-aAyf8rVqaTRzYGUPIdDuza_CvcaAiLdEALw_wcB

[Accessed 04 06 2019].

StandardFusion, 2019b. Pricing. [Online]

Available at: https://www.standardfusion.com/pricing/

[Accessed 05 06 2019].

64

Symantec Corporation, 2019. What is SSL, TLS and HTTPS?. [Online]

Available at: https://www.websecurity.symantec.com/security-topics/what-is-ssl-tls-https

[Accessed 07 08 2019].

Team Linchpin, 2019. A Beginners Guide To The Agile Method & Scrums. [Online]

Available at: https://linchpinseo.com/the-agile-method/

[Accessed 23 07 2019].

This interests me, 2019. PHP: Populating a drop down list from MySQL.. [Online]

Available at: https://thisinterestsme.com/populate-dropdown-list-mysql/

[Accessed 27 06 2019].

ToolsQA, 2019. Use Case And Use Case Testing in Software Testing. [Online]

Available at: https://www.toolsqa.com/software-testing/use-case-and-use-case-testing-in-software-

testing/

[Accessed 03 08 2019].

TRY QA, 2019. What is Load testing in software testing? Examples,How To Do,Importance,

Differences. [Online]

Available at: http://tryqa.com/what-is-load-testing-in-software/

[Accessed 03 08 2019].

TutorialRepublic, 2019. PHP MySQL Login System. [Online]

Available at: https://www.tutorialrepublic.com/php-tutorial/php-mysql-login-system.php

[Accessed 28 06 2019].

University of Strathclyde, 2019. Appendix 4: Risk Rating Matrix, Glasgow: s.n.

VComply Editorial, 2018. Why policy management needs to be a crucial part of your organization.

[Online]

Available at: https://blog.v-comply.com/policy-management/

[Accessed 10 07 2019].

65

The Appendix

Use cases

ID: 1

Title: Registration

Description: The user can register an account

Primary Actor: User/Admin

Preconditions: The user has not created an account before

Postconditions: The user is able to use the login page.

Main

Success Scenario:

The user inputs a username, his name, email address, a

password, and password confirmation. After clicking on submit,

the user is redirected to the login page.

Extensions: Error messages which indicate the following:

 Either that there is a field a user has input nothing OR:

 The username is not unique (= it is in the system already)

 The name is invalid

 The email address is invalid

 That password must be at least 8 characters and must
contain at least one lower case letter, one upper case
letter, and one digit.

 Passwords do not match

Frequency of Use: Every time a new user account is created.

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 2

Title: Log in

Description: The user can log in to the system.

Primary Actor: User/Admin

Preconditions: The user has created an account before.

66

Postconditions: The user is able to use the system.

Main

Success Scenario:

The user inputs his username and password. After clicking on

Login, the user can see the functionalities of the system.

Extensions: Error messages can indicate the following:

 Either that there is a field a user has input nothing OR:

 The account has been deleted. In this case, the user
needs to create a new account

 The username or password is invalid

Frequency of Use: Every time a user wants to use the system

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 3

Title: Reset password

Description: The user would like to change his password

Primary Actor: User/Admin

Preconditions: The user is logged in

Postconditions: The password has changed and the user is redirected the login

page

Main

Success Scenario:

The user inputs his current password, his new password and the

confirmation of it. After clicking on submit, the user is redirected

to the login page where he needs to use this new password

Extensions: Error messages can indicate the following:

 Either that there is a field a user has input nothing OR:

 That password must be at least 8 characters and must
contain at least one lower case letter, one upper case
letter, and one digit.

 Passwords do not match.

 The current password does not match with the one that
has been input

Frequency of Use: Every time a user wants to change his password

Status: Developed

67

Owner: Szabolcs Magyar

Priority: Must-have

ID: 4

Title: Log out

Description: The user would like to sign out of the system

Primary Actor: User/Admin

Preconditions: -

Postconditions: The user is redirected the login page

Main

Success Scenario:

The user clicks on the log-out and he is redirected to the login

page (with his session being destroyed)

Extensions:

Frequency of Use: Every time a user wants to sign out

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 5

Title: Delete account

Description: The user would like to delete his account

Primary Actor: User/Admin

Preconditions: The user is logged in

Postconditions: The user is redirected to the login page and he is not able to sign

in with those credentials anymore.

Main

Success Scenario:

The user clicks on Delete account. A confirmation box is shown

where he can confirm the deletion. After that, he is redirected to

the login page where he is not able to use his previous

credentials to log in anymore.

Extensions:

68

Frequency of Use: Every time a user wants to delete his account

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 6

Title: Viewing dashboard page

Description: The user would like to view the ‘Dashboard’ page where the

charts can be found

Primary Actor: User/Admin

Preconditions: The user is logged in

Postconditions: The user is able to make decisions based on the numbers he

sees on the diagrams

Main

Success Scenario:

The user clicks on the Dashboard. Here he sees 3 charts: asset

classification, risk compliance, and asset compliance. He sees

the numbers as well and he can make decisions (if needed)

based on this data)

Extensions:

Frequency of Use: Every time a user wants to see the diagrams

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 7

Title: Viewing the asset page

Description: The user would like to view the assets present in the system

Primary Actor: User

Preconditions: The user is logged in

Postconditions: The user is able to identify the assets present in the system.

69

Main

Success Scenario:

The user clicks on Asset management. Here he can see that he

owns: all the assets with its name, classification, tag, the

department they belong to, the next review date. If there are no

assets currently in the system, a message is shown that

describes that state.

Extensions:

Frequency of Use: Every time a user wants to see the assets present in the system

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 8

Title: Viewing the asset page

Description: The admin would like to view the assets present in the system

Primary Actor: Admin

Preconditions: The user is logged in

Postconditions: The user is able to identify the assets present in the system.

Main

Success Scenario:

The user clicks on Asset management. Here he can see every

asset with its name, classification, tag, the department they

belong to, the next review date and the owner as well. If there

are no assets currently in the system, a message is shown that

describes that state.

Extensions:

Frequency of Use: Every time a user wants to see the assets present in the system

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 9

Title: Create new assets

Description: The user would like to create new assets

70

Primary Actor: User/Admin

Preconditions: The user is logged in.

Postconditions: The new asset is created which can be seen in the Asset

Management page

Main

Success Scenario:

The user clicks on Create new asset. He inputs a unique name

and a tag, he chooses a classification, the department, and the

next review date. After clicking on submit, he is directed to the

Asset Management page where he can see this new asset

Extensions: Error messages can indicate the following:

 Either that there is a field a user has input nothing OR:

 Asset name can only contain letters, number and white
space

 The tag name can only contain letters, number and white
space

 The asset name is already taken.

Frequency of Use: Every time a user wants to create a new asset

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 10

Title: Edit assets

Description: The user would like to edit one of the assets

Primary Actor: User

Preconditions: The user is logged in.

Postconditions: The asset has been changed which can be seen in the Asset

Management page

Main

Success Scenario:

The user clicks on Edit. He might change the tag, he might

choose a classification, the department and the next review date.

After clicking on submit, he is directed to the Asset Management

page where he can see the changes made

71

Extensions: Error messages can indicate the following:

 Either that there is a field a user has input nothing OR:

 The tag name can only contain letters, number and white
space

 The review date he chooses has already passed

Frequency of Use: Every time a user wants to edit an asset

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 11

Title: Edit assets

Description: The admin would like to edit one of the assets

Primary Actor: Admin

Preconditions: The admin is logged in.

Postconditions: The asset has been changed which can be seen in the Asset

Management page

Main

Success Scenario:

The user clicks on Edit. He might change the tag, he might

choose a classification, the department, the next review date,

and the owner as well. After clicking on submit, he is directed to

the Asset Management page where he can see the changes

made

Extensions: Error messages can indicate the following:

 Either that there is a field a user has input nothing OR:

 The tag name can only contain letters, number and white
space

 The review date he chooses has already passed

Frequency of Use: Every time an admin wants to edit an asset

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

72

ID: 12

Title: Delete assets

Description: The user would like to delete one of the assets

Primary Actor: User/Admin

Preconditions: The user is logged in.

Postconditions: The asset has been deleted which then cannot be seen in the

Asset Management page or if there was its asset tag present in

the Risk Management page, he can change whether he wants to

be directed to the Asset Management or Risk Management page

Main

Success Scenario:

The user clicks on Delete. There is a confirmation message

where the user needs to confirm the deletion. If the asset tag of

that specific asset is not present in Risk management page, then

the asset is deleted and cannot be seen in the system anymore.

It the asset tag is present then the user is directed to a page

which shows the reason and he can choose to be redirected to

either Asset Management page or Risk Management page

Extensions:

Frequency of Use: Every time a user wants to delete an asset

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 13

Title: Viewing risk page

Description: The user would like to view the risks present in the system

Primary Actor: User

Preconditions: The user is logged in

73

Postconditions: The user is able to identify the risks present in the system.

Main

Success Scenario:

The user clicks on Risk management. Here he can see all the

risk he owns with its name, description, risk scenario, tag,

impact, likelihood, category, the policy that controls the risk and

by clicking on it, it can be downloaded, residual risk, target-risk,

the asset tag belongs to that risk, the next review date. If there

are no risks currently in the system, a message is shown that

describes that state.

Extensions:

Frequency of Use: Every time a user wants to see the risks present in the system

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 14

Title: Viewing risk page

Description: The user would like to view the risks present in the system

Primary Actor: Admin

Preconditions: The user is logged in

Postconditions: The user is able to identify the risks present in the system.

Main

Success Scenario:

The user clicks on Risk management. Here he can see every risk

with its name, description, risk scenario, tag, impact, likelihood,

category, the policy that controls the risk and by clicking on it, it

can be downloaded, residual risk, target-risk, the asset tag

belongs to that risk, the next review date, and the owner. If there

are no risks currently in the system, a message is shown that

describes that state.

Extensions:

Frequency of Use: Every time a user wants to see the risks present in the system

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

74

ID: 15

Title: Create a new risk

Description: The user would like to create new risk

Primary Actor: User/Admin

Preconditions: The user is logged in

Postconditions: The new risk is created which can be seen in the Risk

Management page

Main

Success Scenario:

The user clicks on Create new risk. He inputs a unique name, a

description, risk scenario, a tag, an impact, a likelihood, a

residual risk, a target risk, he chooses a policy, an asset tag and

the next review date. After clicking on submit, he is directed to

the Risk Management page where he can see this new risk

Extensions: Error messages can indicate the following:

 Either that there is a field a user has input nothing OR:

 Risk name/Description/Risk scenario/Tag can only
contain letters, number, and white space

 The risk name is already taken.

Frequency of Use: Every time a user wants to create a new risk

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 16

Title: Edit risks

Description: The user would like to edit one of the risks

Primary Actor: User

Preconditions: The is logged in and there is at least one risk present in the

system

Postconditions: The risk has been changed which can be seen in the Risk

Management page

75

Main

Success Scenario:

The user clicks on Edit. He might change the description, risk

scenario, tag, impact, likelihood, residual risk, target-risk, he

might choose a different policy, asset tag and next review date.

After clicking on submit, he is directed to the Risk Management

page where he can see the changes made

Extensions: Error messages can indicate the following:

 Either that there is a field a user has input nothing OR:

 Description/Risk scenario/Tag can only contain letters,
number, and white space

 The review date he chooses has already passed

Frequency of Use: Every time a user wants to edit a risk

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 17

Title: Edit risks

Description: The admin would like to edit one of the risks

Primary Actor: Admin

Preconditions: The admin is logged in and there is at least one risk present in

the system

Postconditions: The risk has been changed which can be seen in the Risk

Management page

Main

Success Scenario:

The user clicks on Edit. He might change the description, risk

scenario, tag, impact, likelihood, residual risk, target-risk, he

might choose a different policy, asset tag, next review date, and

the owner as well. After clicking on submit, he is directed to the

Risk Management page where he can see the changes made

Extensions: Error messages can indicate the following:

 Either that there is a field a user has input nothing OR:

 Description/Risk scenario/Tag can only contain letters,
number, and white space

 The review date he chooses has already passed

Frequency of Use: Every time a user wants to edit a risk

76

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 18

Title: Delete risks

Description: The user would like to delete one of the risks

Primary Actor: User/Admin

Preconditions: The user is logged in.

Postconditions: The risk has been deleted which then cannot be seen in the Risk

Management page.

Main

Success Scenario:

The user clicks on Delete. There is a confirmation message

where the user needs to confirm the deletion. If the user clicks on

yes, the risk is deleted and cannot be seen in the system

anymore.

Extensions:

Frequency of Use: Every time a user wants to delete a risk

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 19

Title: Viewing policy page

Description: The user would like to view the policies present in the system

Primary Actor: User

Preconditions: The user is logged in.

Postconditions: The user is able to identify the policies present in the system.

77

Main

Success Scenario:

The user clicks on Policy management. Here he can see all the

policies he owns with its name and next review date. If there are

no policies currently in the system, a message is shown that

describes that state.

Extensions:

Frequency of Use: Every time a user wants to see the policies present in the system

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 20

Title: Viewing policy page

Description: The admin would like to view the policies present in the system

Primary Actor: Admin

Preconditions: The admin is logged in

Postconditions: The user is able to identify the policies present in the system.

Main

Success Scenario:

The admin clicks on Policy management. Here he can see every

policy with its name, next review date, and the owner. If there are

no policies currently in the system, a message is shown that

describes that state.

Extensions:

Frequency of Use: Every time a user wants to see the policies present in the system

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 21

Title: Download a new policy

Description: The user would like to view the policy file uploaded in the system

78

Primary Actor: User/Admin

Preconditions: The admin is logged in

Postconditions: The user is able to identify the policies present in the system.

Main

Success Scenario:

The user clicks on a policy name. A download starts and the user

is able to see the policy file that has been uploaded to the

system.

Extensions:

Frequency of Use: Every time a user wants to download the policies present in the

system

Status: Developed

Owner: Szabolcs Magyar

Priority: Could-have

ID: 22

Title: Create a new policy

Description: The user would like to create a new policy

Primary Actor: User/Admin

Preconditions: The user is logged in.

Postconditions: The new policy is created which can be seen in the Policy

Management page and by clicking on the policy name, the

download starts

Main

Success Scenario:

The user clicks on Create new policy. He uploads a file, inputs a

unique name, he chooses the next review date. After clicking on

submit, he is directed to the Policy Management page where he

can see this new policy

Extensions: Error messages can indicate the following:

 Either that there is a field a user has input nothing OR:

 Policy name can only contain letters, number and white
space

 The policy name is already taken.

 The uploaded file already exists.

 The uploaded file is too large.

 That only PDF, Word and Docx files are allowed to
upload

79

Frequency of Use: Every time a user wants to create a new policy

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 23

Title: Upload a new policy

Description: The user would like to create a new policy and a file upload is

needed

Primary Actor: User/Admin

Preconditions: The user is logged in and a new policy is being added

Postconditions: The new policy is created which can be seen in the Policy

Management page and by clicking on the policy name, the

download starts

Main

Success Scenario:

The user clicks on add file. He uploads it so that the creation of

the policy could be continued.

Extensions: Error messages can indicate the following:

 The uploaded file already exists.

 The uploaded file is too large.

 That only PDF, Word and Docx files are allowed to
upload

Frequency of Use: Every time a user wants to create a new policy

Status: Developed

Owner: Szabolcs Magyar

Priority: Could-have

ID: 24

Title: Edit policies

Description: The user would like to edit one of the policies

Primary Actor: User

80

Preconditions: The user is logged in

Postconditions: The policy has been changed which can be seen in the Policy

Management page

Main

Success Scenario:

The user clicks on Edit. He might choose a different next review

date. After clicking on submit, he is directed to the Policy

Management page where he can see the changes made

Extensions:

Frequency of Use: Every time a user wants to edit a policy

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 25

Title: Edit policies

Description: The admin would like to edit one of the policies

Primary Actor: Admin

Preconditions: The admin is logged in.

Postconditions: The policy has been changed which can be seen in the Policy

Management page

Main

Success Scenario:

The admin clicks on Edit. He might choose a different next

review date and an owner as well. After clicking on submit, he is

directed to the Policy Management page where he can see the

changes made

Extensions:

Frequency of Use: Every time an admin wants to edit a policy

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

81

ID: 26

Title: Delete policies

Description: The user would like to delete one of the policies

Primary Actor: User/Admin

Preconditions: The user is logged in

Postconditions: The policy has been deleted which then cannot be seen in the

Policy Management page or if this policy is present in the Risk

Management page, he can change whether he wants to be

directed to the Policy Management or Risk Management page

Main

Success Scenario:

The user clicks on Delete. There is a confirmation message

where the user needs to confirm the deletion. If the policy is not

present in Risk management page, then the policy is deleted and

cannot be seen in the system anymore. It the policy is present

then the user is directed to a page which shows the reason and

he can choose to be redirected to either Policy Management

page or Risk Management page

Extensions:

Frequency of Use: Every time a user wants to delete a policy

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 27

Title: Viewing user management page

Description: The admin would like to view the users present in the system

Primary Actor: Admin

Preconditions: The admin is logged in

Postconditions: The admin is able to identify the users present in the system.

Main

Success Scenario:

The admin clicks on User management. Here he can see all the

users with their name, email address, user type and whether they

have left or not. If there are no other users currently in the

system, a message is shown that describes that state.

82

Extensions:

Frequency of Use: Every time an admin wants to see the users present in the

system

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 28

Title: Edit users

Description: The admin would like to edit one of the users

Primary Actor: Admin

Preconditions: The admin is logged in

Postconditions: The user has been changed which can be seen in the User

Management page (if the user has left column has been changed

to ‘yes’ the name of the user is changed to ‘Deleted’ as well).

Main

Success Scenario:

The admin clicks on Edit. He might change the user type or

whether the user has left. After clicking on submit, he is directed

to the User Management page where he can see the changes

made

Extensions:

Frequency of Use: Every time an admin wants to edit a user

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 29

Title: Delete users

Description: The admin would like to delete one of the users

Primary Actor: Admin

Preconditions: The admin is logged in and there is at least one other user

present in the system whose ‘user has left’ column value is ‘yes’

83

Postconditions: The user has been deleted which then cannot be seen in the

User Management page

Main

Success Scenario:

The admin clicks on Delete. There is a confirmation message

where the admin needs to confirm the deletion. After that, the

user is deleted and cannot be seen in the system anymore

Extensions:

Frequency of Use: Every time an admin wants to delete a user

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

ID: 30

Title: Viewing event log page

Description: The admin would like to view the event log

Primary Actor: Admin

Preconditions: The admin is logged in

Postconditions: The admin is able to identify the changes made in the system

Main

Success Scenario:

The admin clicks on the Event log. Here he can see all the

changes made in the system with the name of that entity, where

it belongs, what the action was and a timestamp

Extensions:

Frequency of Use: Every time an admin wants to see the changes made in the

system

Status: Developed

Owner: Szabolcs Magyar

Priority: Must-have

84

Usability test

Welcome! My name is Szabolcs Magyar and I’m an Information Management MSc student. My thesis

topic is Security Data Governance System and I have developed a system for this.

I was informed that you have already worked with similar systems that is why I asked you to participate

in the study. In this study, you will be asked to perform a number of tasks. These tasks will be presented

on a paper once you start using the system. The evaluation will be anonymous and no personal data

will be collected. While carrying out the tasks feel free to ask for clarification if needed, but I will be

neutral throughout the test. Keep in mind we are evaluating the software/feature/product, not you,

so there are no wrong answers. Try to complete the tasks as if you were doing this for real. Spend as

little or as much time as you normally would doing these tasks. It is OK if you cannot complete each

task, and we may not get to every task.

In the second part of the study, there is 6 question about your opinion on the system. You will find the

questions on the paper once you start the study.

If you have any questions or concerns about this study then please free to speak to my supervisor,

Sotirios Terzis (sotirios.terzis@strath.ac.uk, tel.: +44 141 548 3839) or the Departmental Ethics

Committee (ethics@cis.strath.ac.uk).

Data Management Plan

On 19.10, two months after the research is to be submitted in physical and electronic copies for the

Department, the MS Word that contains all the participants’ answers will be deleted.

In this usability evaluation:

● You will be asked to perform certain tasks on a computer.

● You will be asked to answer some questions and freely comment on the system.

Participation in this usability study is voluntary. All information will remain strictly confidential. The

descriptions and findings may be used to help improve the application. However, at no time will your

name or any other identification is used. You can withdraw your consent to the experiment and stop

participation at any time. If you have any questions after today, please contact Szabolcs Magyar

(szabolcs.magyar@uni.strath.ac.uk) or Sotirios Terzis (sotirios.terzis@strath.ac.uk, tel.: +44 141 548

3839).

Before the study starts please confirm that you have read and understood the information on this form

and had all of my questions answered.

Thank you for your participation in the study.

mailto:ethics@cis.strath.ac.uk

85

In the first part of the study I would like you to do the following tasks:

1. Log in to the system with these credentials:

 Username: pxtrva

 Password: N1ckn@me

2. Go to the asset page. Here you can find some default assets. Create this asset:

 Asset name: Lenovo z5

 Classification: Medium

 Tag: Laptop

 Department: Accounting and Finance

 Review date: 20/08/2019

3. Change asset classification to ‘Low’.

4. Go to the policy page. Here you can find some default policies. Create this policy:

 Please select and upload “Laptop usage policy” from Desktop

 Name: Laptop Usage Policy

 Review date: 12/08/2019

5. Go to the risks page. Here you can find some default risks. Create this risk:

 Name: Laptop theft

 Description: Laptops are stolen

 Risk scenario: Incident

 Tag: Theft

 Impact: 5

 Likelihood: 2

 Policy: Laptop Usage Policy

 Residual risk: 5

 Target risk: 4

 Review date: 25/08/2019

6. Please click on the policy. What did you find after clicking on it?

7. Please go to ‘Dashboard’. Can you find the value of ‘Medium’ category risks? How many

percentages of risks are compliant? How many assets are not compliant?

8. Log out

In the second part, please answer these questions:

1. Which parts of the system did you find easy and which complex to use?

2. What do you think of the UI of the system in terms of consistency and appeal?

3. Are there any parts of the system you found cumbersome or unclear?

4. How useful/not useful you think the system will be to you?

86

5. What do you think, are there any additional functions that could have been implemented? If yes,

what are these?

6. Do you have any further comments about the system?

