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ABSTRACT 

Debugging is a crucial component of the software development lifecycle. Most of the 

debugging done, once a system has been released, is based on bug reports. However, 

working on those bug reports could take developers a lot of time and resources and there 

are not a lot of available tools to help with that, which identifies a need to develop such 

tools and guidelines to analyze the information contained in bug reports. 

This paper introduces the usage of neural networks when performing bug report analysis. 

With the help of ensemble configurations of Multi-Layer Perceptron (MLP), Convolutional 

Neural Network (CNN) and Long Short-Term Memory (LSTM) and using sentiment and 

textual analysis, an experiment has been developed to predict the resolution time of bug 

reports and classify the priority. Additionally, the experiment analyses the importance of 

both textual and numerical factors when analysing bug reports. Based on the models 

developed, it is shown that using both textual and numerical data improves the results of 

standard text only neural networks. The obtained results show that determining the bug-

fix time based on the information supplied in bug reports is achievable and also show 

success when trying to classify the priority of a bug report. 

Further evaluation and optimization of the best models, leads to the discovery of 

inequality in the distribution of the labels of the dataset, which leads to not very well 

trained models. With the use of another experiment an attempt has been made to 

improve the results by reducing the dataset, to contain similar counts of labels, which 

proves unsuccessful. 
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Chapter 1: Introduction 

The definition of a bug report is: a software artefact used to describe software 

bugs, particularly in software systems that are open-sourced (Goyal and Sardana, 2017). 

Fixing bugs in a code is a significant part of the software development lifecycle (SDLC). 

From the beginning of a software project a great amount of the work involves fixing bugs 

in the source code. Around 45% of all expenses of a software project is used on 

maintenance activities (Zhang et al., 2015). Maintaining open bug repositories helps 

developers to collect, organize and resolve bug reports. However, for a software bug to 

be fixed in a timely manner, it is necessary that the bug report is a source of sufficient 

information to the developer. 

In order for a software bug to be resolved quickly and easily, there are many 

guidelines and tools to assist developers in debugging. Guidelines are used by reporters 

when submitting bug reports to ensure that the reporter provides sufficient information 

necessary for the developer to be able to reproduce the bug. There have also been tools 

developed that use the information in the bug report in order to try and triage and localize 

the bug as well as detect duplicates, estimate the bug-fix time and predict the priority. 

Most of those tools use machine learning in order to automate those processes and 

alleviate the workload of developers.  

This project would mainly focus on exploring bug report features supplied by 

reporters and use them to predict the fix-time and the priority of the bug. Developing a 

good model which could predict those would help developers better manage their time 

and increase their productivity as well as improve the guidelines on fixing bug reports 

giving the reporters an estimate on the quality of their reports. 

The next chapter of this report would focus on exploring the available tools and 

guidelines and provide background information on different kinds of bug report analysis, 

textual and sentiment analysis as well as machine learning and neural networks. Chapter 

3 is the research chapter, which would focus on the methodology, defining the hypotheses 

and designing the experiment, as well as the implementation details and Chapter 4 will 

present the results from the experiment and analyse those results, attempting to validate 
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the hypotheses. The final chapters will then go on to describe future work and conclude 

this paper respectively. 

Chapter 2: Background and Literature Review 

This section will provide the reader with the necessary background regarding this 

project in order to ensure full understanding of the methodology, implementation and 

analysis sections of this report. It will begin with explaining what bugs and bug reports 

are, the dataset that is being used as well as background research into types of bug report 

analysis, machine learning and neural networks. It would also inform about similar works 

in the field of bug report analysis. 

2.1 Bugs and Bug Reports 

A software bug is a problem which causes the software to crash or work 

incorrectly. A bug can be an error, mistake or defect of fault, which may cause the 

software to act in unexpected ways and may cause failure or deviation from expected 

results (Techopedia.com, 2019). 

Bug reports are used to inform developers of software bugs in a system by users 

of the software. Bug reports contain the information necessary to reproduce and fix 

problems, such as version of the software, component, steps to reproduce, stack traces, 

code, description, operating system and other relevant information.  

Over the last few years a considerable amount of research has been carried out on 

bug report analysis. A survey on bug reports conducted by Bettenburg et al. focuses on 

asking developers about the most important features of bug reports. The survey was 

responded to by 156 developers from Apache, Eclipse and Mozilla. They state that the 

most widely used bug report features are steps to reproduce, observed and expected 

behaviour, stack traces and test cases, with the most important one being steps to 

reproduce. Based on the survey conducted, the researchers have developed a tool called 

Cuezilla, which can be used to measure the quality of bug reports based on the contents. 

The tool uses linear regression and the data collected from the developers’ survey 

responses and is evaluated on a dataset of bug reports which were evaluated, by hand, 
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from developers. The highest testing accuracy achieved by the Cuezilla tool is 87% 

(Zimmermann et al, 2008). The same survey was performed with just the eclipse platform 

and using the same tool which in this case the developers evaluation differed within one 

interval for 90% of the bugs (Bettenburg et al., 2007). Another research involving 

statistical analysis on over 27,000 publicly available bug reports in the Mozilla Firefox 

project was performed by Hooimeijer et al. They try to estimate the time it takes to triage 

a bug report using a basic linear regression model and try to categorize bug reports 

depending on whether it would be cheap or expensive to triage. Their model performed 

better than random in terms of precision and recall (Hooimeijer and Weimer, 2007).  

These research papers all show the necessity for better tools to help both developers and 

bug reporters in dealing with bug reports. 

When it comes to bug reports there are different types of analysis that can be 

carried out on them. Such analysis involve bug triaging, bug localization, bug-fix time 

prediction, duplicate bug identification and priority prediction. The next few subsections 

would include information about the different types of bug report analysis as well as 

already available tools and research papers.  

2.1.1 Dataset 

The dataset that this project has been conducted with has been obtained from the 

Github repository of the LogPai Team (logpai, 2019). It consists of 85,156 bug reports. The 

reports available in the dataset come from the Eclipse bug repository. One of the reasons 

this dataset has been chosen for this experiment is because of the size of the dataset. A 

dataset of 85,156 instances with textual and numeric values is neither too small to achieve 

accurate models on it, nor too big to make the training time too long and require a lot of 

computational power. Another reason is that the bug reports are all collected in a file with 

comma separated values (extension .csv), which is a common file type for datasets and is 

suitable to work with in an anaconda environment with tensorflow, pandas and the other 

necessary packages. An example of an instance (bug report), as is in the dataset, can be 

seen in Table 1 below.   
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Issue ID: 105008 Priority: P3 Component: UI Duplicate: N/A 

Title: TVT3.1: Eclipse doesnt honor flipped icons 

Description: OS : Windows XP ; Must fix ; Build date:22/07 ; Blocking: NO ; 
Language: ARA ; Bitmap Location: Z:\defects\TPTP_Icon1 ; Tester 
Name: Mohamed Esmat ; ; Problem Description: ; The Icons in the 
figure attached is already identified to be flipped ; but ; they are not 
flipped at the build. I need them to be flipped.; - Arabic tester-; ; The 
Fragment will be sent to development in a separate note. 

Status: 
Verified 

Resolution: 
Fixed 

Version: 3.1 Created Time: 
25/07/2005 
09:45:00 

Resolved Time: 
26/09/2005 
15:30:58 

Table 1. Sample bug report from the Eclipse dataset. 

The third reason to choose this dataset is because of the features available in it. 

The created time and resolved time values can be used to calculate the bug-fix time, which 

is going to be used as a label. It also contains the resolution of the bug report, which is 

really helpful because the only bug reports of interest are the ones with resolution values 

“Fixed”. Another feature available which can be used as a label is the priority column. In 

this case it is in a format which can easily be transformed to numerical values. Title and 

description are also available for each bug report as well as the version of the software 

that the reporter is using and the component, which points to the part of the software 

that the problem occurred at. Those features will be processed using the suitable tools 

and used to train neural network models on them. 

2.1.2 Bug Triage 

Bug triage is a process of screening and prioritising bug reports and feature 

requests. Triage is the first step after a bug report has been submitted but it is possible 

for this process to be repeated in certain circumstances, such as if the assumptions about 

the bug report were wrong, the issue was resolved in a different way and others.  

The process of bug triaging involves initial screening, confirming the issue, 

following up on the issue as well as revisiting older reports. The initial screening part of 

the process involves answering a set of questions in order to determine if the report is a 

genuine report which should be further investigated or it should be closed.  The next part, 
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confirming the issue, starts by investigating the report. It needs to be verified that the bug 

reported does not present a security issue. Such issues get a higher security level in order 

for them to be resolved as soon as possible. Another step is determining the issue type, 

confirm the assigned priority and check the versions that are affected by the bug. The bug 

triage process does not end once it has been sent to the developer to resolve. Checking 

up on the progress of solving the report is also part of the process, which is necessary in 

the case that the process needs to be restarted. Another part of the bug triage is revisiting 

an old issue. If an older report is encountered that hasn’t been solved yet, it should be re-

evaluated to ensure that the report is still valid and needs to be investigated. To sum up, 

the process of bug triage is an important step in bug report analysis, which confirms the 

validity of bug reports and ensures they are assigned to the right developers. 

Automating the process of bug triage is a complicated issue. On the other hand, 

there has been much research done in optimizing and automating different parts of the 

process. For example, one problem in bug triage is that when a bug report has been 

assigned to a developer by accident or if another developers’ expertise is necessary to 

resolve the bug, the report gets reassigned. This happens in the case of between 37%-44% 

of bug reports in Mozilla and Eclipse and leads to increased resolution time (Jeong, Kim 

and Zimmermann, 2009).  A research done by Jeong et al. introduces a model based on 

graphs, which focuses on assigning the bug reports to developers with the necessary 

qualities to resolve them. Their model reduces reassignment of bug reports by up to 72% 

(Jeong, Kim and Zimmermann, 2009). 

Another research focuses on automating bug triage by using text categorization. 

The researchers identify that the amount of developer resources necessary to triage a bug 

report grows larger with the size of the open-source projects and propose the use of 

machine learning techniques to assist in the process by using text categorization to predict 

the developer that should be working on the bug from the bug’s description. Their 

prototype uses supervised Bayesian learning and achieves an accuracy of 30% (Murphy 

and Cubranic, 2004). The same problem has been tackled by Jifeng et al. who propose a 

semi-supervised approach, which would avoid the problem of not having enough labeled 

data. The approach uses naive Bayes classifier and expectation maximization and trains 

the model twice by firstly training only on labeled data in order to classify the unlabeled 
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data and then trains again on the fully labeled dataset. The accuracy of their models 

reaches up to around 48% (Jifeng et al., 2017). Other research papers also tackle the 

problem of who can fix a certain bug report. Ahsan et al. propose the use of Support 

Vector Machine (SVM) combined with feature selection and latent semantic indexing in 

order to categorize bug reports based on the developer they get assigned to and trains a 

model with 44.4% testing accuracy (Ahsan, Ferzund and Wotawa, 2009). Jifeng et al. on 

the other hand, extract attributes from historical bug data sets to determine the order of 

applying instance selection and feature selection algorithms in order to achieve data 

reduction, which they input in three algorithms (Support Vector Machine, K-Nearest 

Neighbor and Naive Bayes) in order to triage the bug reports. With that they achieve up 

to 60.4% testing accuracy on a test set of around 2100 Eclipse bug reports (Xuan et al., 

2015).  Another research focuses on training set reduction when it comes to bug triage. 

Just like the previously described research it uses feature selection and instance selection 

algorithm, which in the previous research are applied sequentially while in this one they 

are combined and again a Naive Bayes model is trained to categorize the bug reports. 

Their model reaches an accuracy of 66.95% on the testing set of an Eclipse collection of 

bug reports when it is set to provide a list of 10 recommended developers (Zou et al., 

2011).  A research done by Hu et al. leads to developing a software tool called BugFixer, 

which gathers information about developers on a team and instead of trying to classify a 

bug report to one developer, helps a triager by providing them with a list of suitable 

developers to tackle on a bug. This tool is then evaluated on three large-scale projects and 

two smaller industrial projects and it proves that even though it is as good as conventional 

methods which use SVMs on small projects, it performs a lot better than them on large-

scale projects (Hu et al., 2014). 

A significantly different approach has been proposed by Park et al. who unlike 

other experiments based on content-based recommendation it also takes into account a 

content-boosted collaborative filtering in order to reduce overloading more experienced 

developers. Doing this they reduce the cost of bug triage efficiently by 30% without taking 

a serious hit on the accuracy of the automation (Jin-woo et al., 2011). 
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2.1.3 Bug Localization 

A considerable issue when it comes to fixing software bugs is finding the location 

of the code that produces the bug. The process of doing that is called bug localization. 

When it comes to dealing with smaller software systems that is a hard and time consuming 

task and when a bug is reported in a large-scale system it is a lot harder and requires a lot 

more time and effort. Finding the location of a bug requires in-depth knowledge of the 

software system by the developer. Another reason why this process is so complicated is 

due to the fact that bug reports do not have a specific structure. Vague and unclear 

descriptions of bugs could lead the developer to look for the bug in a very different 

location. The process of finding the location of a bug is not only hard but very expensive 

as well and could sometimes lead to much longer resolution times. This identifies a need 

for the automation and development of tools to expedite this process.  

Fortunately there has been a lot of research done in that field. A statistical model-

based bug localization approach, called SOBER, is used to localize bugs without any prior 

knowledge of the program semantics. The way it works is by firstly evaluating patterns of 

predicates in correct and incorrect runs and then classify a predicate as bug-relevant if its 

pattern in incorrect runs differs from the one in correct. The proposed approach was 

evaluated by running it on the Siemens suite, SOBER managed to locate 68 out of 130 

bugs (Liu et al., 2005), which shows an accuracy of 52.3%. Another approach called 

BugLocator has been proposed by Zhou et al. The approach is based on an information 

retrieval method and attempts to locate the files relevant to the bug. It does so by ranking 

all the files in a system by the similarity they have to the bug report, with the use of revised 

Vector Space Model. BugLocator would also take into consideration information about 

bugs of similar nature that have been fixed before. The best achieved accuracy when using 

this approach is 62.6% on Eclipse 3.1 where the relevant files to locate the bug were 

ranked in the top ten from 12,863 files (Zhou, Zhang and Lo, 2012). There are many other 

tools for locating bug reports, one such tool is called BLUiR, which, just like BugLocator, is 

also based on information retrieval. This tool is based on the idea that “structured 

information retrieval based on code constructs, enables more accurate bug 

localization.”(Saha et al., 2013) BLUiR takes as an input the source code of the software 

system and bug reports and finds the locations of the bugs based on similarity data. Using 
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BLUiR on the Eclipse bug report dataset with 3075 bugs from 12,863, it managed to find 

2010 bugs in the list of top 10 probable location (Saha et al., 2013), which shows an 

accuracy of 65.4%.  

There is also an approach presented by Dallmeier et al., called iBUGS, which can 

be used to evaluate different tools for bug localization. They create a benchmark dataset, 

where 369 bugs were extracted from ASPECTJ to be used in the evaluation. 201 of the 

bugs in the dataset were local, requiring modifications to only a few methods. Also, 10% 

of bug fixes require corrections to a single line of code and 44% of all required required 

changes to 10 lines or less. The iBUGS approach was applied to the AMPLE tool. AMPLE is 

a tool which tries to capture the control flow of a program as sequences of method calls 

issued by the classes in the program (Dallmeier and Zimmermann, 2007). 

A newer method for bug localization has been developed by Malhotra et al. which 

uses a text mining approach and a multi-objective NSGA-II algorithm to recommend a list 

of classes by lexically comparing bug reports and API descriptions. The proposed method 

was validated on three applications and shows better results than traditional methods of 

locating software bugs (Malhotra et al., 2018).  

Bug localization has also been done using deep learning methods. One such 

research focuses on developing a combination of deep learning and an information 

retrieval technique, called revised Vector Space Model (rVSM) to try and determine the 

location of the bugs. The deep neural network is used to create relations between terms 

in bug report to different tokens in the code and terms in the source files, while the rVSM 

technique is used to compare the textual similarities between bug reports and source 

files. The research done by Lam et al. shows that the previously described combination 

works well in an attempt to locate the buggy files. Also when the model was combined 

with the history of previously fixed bugs it manages to predict the correct file in 50% of 

the cases on the first recommendation, 66% in the top 3 and almost 70% in the top 5 

recommendations (Lam et al., 2017).  

2.1.4 Bug-fix Time Estimation 

Estimating how long it will take to fix a bug is a complex task. Predicting the time 

it will take to fix a bug is much harder than other software development tasks, such as 
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developing new features for example. The reason for that is because developing new 

features is a construction task and fixing a bug is mainly a search task. Sometimes in order 

for bug to be found it takes a long time and requires going through a lot of code, running 

the software or just parts of it, following states and even going through previous versions 

of the software. Once the issue has been found, it is a matter of modifying the code to fix 

it which is again a construction task that can be more easily estimated. Prediction of the 

bug fixing time is another thing that helps the bug triaging process. If the triager knows 

that a particular bug with a high priority is going to take a longer time to fix, they can 

assign more developers to it. Bug resolution time can also help with scheduling future 

software events such as scheduling testing activities or estimating release times of new 

versions. That is why anticipating the time it will take to fix a bug is an important part of 

bug report analysis. 

There has been numerous papers and experiments conducted on the problem at 

hand. One research paper published by Zhang et al. presents an empirical study 

performed on predicting bug fixing time in commercial software projects. They perform 

their research on a company called CA Technology (Ca.com, 2019), which is a 

multinational company that provides IT management software and solutions. The paper 

analyses the way bugs have been handled in three of the company’s projects and based 

on the research proposes a Markov-based method to predicting how many software bugs 

will be fixed in the future. For some of the bugs a method is proposed to predict the 

amount of time it will take to fix them. Another method proposed in the same paper 

involves classifying bug reports into two categories based on the bug-fix time (fast or 

slow). The models, evaluated on the same 3 projects from CA Technology, confirmed the 

validity of the three methodologies. For the first one the best results were achieved to be 

an MRE value of 0.015%. For the second methodology the average MRE achieved was 

6.45% and for the third methodology the accuracy was in the range of 65% to 85%. Based 

on the scale of the data the MRE values achieved for the first and second methodology 

showed very promising results (Zhang, Gong and Versteeg, 2013). Another research 

paper, also performs an empirical study, but with the goal of achieving an understanding 

of delays between bug assignment and the start of bug fixing in mind. The empirical 

research involved examining factors which would affect the bug resolution time and 
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compare them with the use of descriptive logistic regression models. They found that high 

severity of bug reports leads to a reduced delay time and the size of the code to be 

examined could lead to longer delays (Zhang et al., 2012). Predicting the time and effort 

has also been attempted with the help of the Lucene framework, which was used to find 

similar, previous reports and use their mean time as a prediction. The proposed method 

was evaluated on effort data collected from JBoss and obtains predictions which differ 

from the actual effort by an hour (Weiss et al., 2007). 

Other papers that involve predicting the time to fix software bugs propose 

methodologies using a bit more complex machine learning algorithms. One such paper 

uses a decision tree algorithm to classify the resolution time in fast and slow. The 

evaluation of their method on the Eclipse Platform predicted the fast fixed bugs correctly 

in 65.4% of the cases (Giger, Pinzger and Gall, 2010). Another research focuses on 

recognizing bugs that would be very fast or very slow to fix. Using data from Mozilla, 

Eclipse and Gnome and then keeping only the bugs in the 25th percentile as very fast and 

the 100th percentile as very slow.  That data is then used to train a Naive Bayes classifier 

and achieves a precision accuracy rate of 39% for very fast bug fix times and 49% for very 

slow on the EclipseJDT project (Abdelmoez, Kholief and Elsalmy, 2012). 

Some research has also been done on using neural networks as well. A 

methodology proposed by Zeng et al. focuses on estimating the fix effort, rather than the 

fix-time of software defect using self-organizing neural networks. They propose the use 

of the Kohonen network, which is an unsupervised network with the ability to self-

organize. The model proposed was evaluated on 70 defects in a dataset called KC3 by 

NASA, and achieved a maximum mean root error ranging from 23% to 83%, which points 

to the conclusion that the proposed model is less than excellent in effort estimation (Zeng 

and Rine, 2004).  

2.1.5 Duplicate Bug Report Detection 

Duplicate bug reports are a very common occurrence in open bug repositories. 

Very often reporters tend to report bugs without checking if that software bug has already 

been reported before. Other times reporters, due to different technical knowledge report 

the same bugs in different ways. That could lead to a lot of resources from developers 
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wasted on bug reports which have already been reported, fixed or in the process of fixing. 

On the other hand, those duplicate bug reports if identified early could lead to helping the 

developers assigned to the original reports by providing additional information, if the bug 

has not been fixed yet. Due to the importance of detecting duplicate bug reports, in order 

to save costs of triage and improve resolution time, there has been a lot of research 

carried out in that field.  

One such research developed an approach using sparse vector computation to 

detect duplicate bug reports which achieved a precision rate of 29% and recall - 50% on 

the Firefox project. Even though the precision and recall are relatively low, the approach 

has been used to increase the accuracy of duplicate detection of novice bug triagers 

(Hiew, 2006). Another research proposes a retrieval function based not only on the textual 

content in the summary and description but also using other features such as product, 

component version and so on. It then uses a similarity formula called BM25F and a 

stochastic gradient descent algorithm on a labeled training set. When applied to an Eclipse 

dataset consisting of 209,058 bug reports, the recall achieved was between 37% - 71% 

and the mean average precision was 47% (Sun et al, 2011). Alipour et al. on the other 

hand propose adding contextual information to state of the art systems for duplicate 

detection. Their proposed system shows that context should not be ignored when using 

information retrieval tools (Alipour, Hindle and Stroulia, 2013). It has also been shown 

that using discriminative models such as Support Vector Machines for information 

retrieval could increase the accuracy of duplicate bug report detection. A research using 

that model shows a highest result of up to 65% recall rate for the Eclipse dataset and 

compares it to a model proposed by Wang et al., which uses natural language and 

execution information and achieves a recall rate of 49% on the same dataset (Wang et al, 

2008, Sun et al., 2010). Another paper also focussing on information retrieval introduces 

an approach which tries to learn different descriptive terms using historical data 

consisting of duplicate reports in order to make connections. The empirical evaluation of 

the proposed approach shows improvement of other advanced approaches by up to 20% 

in accuracy (Nguyen et al., 2012). 

Based on the papers described before and the results they achieved duplicate bug 

detection remains a challenging task for simpler algorithms. However with the increasing 
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popularity of neural networks in the past few years there have been some new research 

papers published that involve using deep learning techniques to improve the automation 

of duplicate bug report detection. An experiment conducted by Budhiraja et al. proposes 

a deep word embedding network for duplicate detection, in 3 main steps. The first one is 

training a dataset of bug reports on a word embedding neural network, then transforming 

only pairs of duplicate bug reports into document vectors and then feeding it through a 

deep neural network which when trained on a Firefox project bug report dataset reaches 

up to 70% recall rate (Budhiraja et al., 2018). Another research, carried out by Deshmukh 

et al. involves a retrieval and classification models using Siamese Convolutional Neural 

Networks and Long Short-Term Memory in order to accurately detect duplicate reports. 

The proposed model is a complicated ensemble of neural network models involving a 

single layered neural network for the structured information, a bidirectional LSTM for the 

short description and CNN for the long description of each report which are then 

combined in order to detect their similarity. This proposed model performed significantly 

better than the previously described approaches by achieving an accuracy of nearly 90% 

and a recall rate close to 80% on a dataset consisting of Eclipse bug reports (Deshmukh et 

al., 2017). 

2.1.6 Priority Detection 

When it comes to the bug triage process there is another component that needs 

to be considered except determining which developer a bug report gets assigned to. This 

other component is determining the priority of a bug report. Prioritizing a bug report 

happens on 5 levels, where it starts at level 5 - the lowest priority, which indicates 

software bugs which do not affect the execution of the software and may not be fixed for 

a long time, if they are fixed at all and goes down to level 1 which is the highest priority, 

denoting software bugs that need to be fixed immediately before the release of the next 

version of the software. Determining the priority of a bug report is performed by the bug 

triager manually and may take a long time. It is done by analyzing the information in the 

bug report and comparing it to similar bug reports in order to decide the appropriate 

priority level. This identifies a need for developing a system to automate the process of 

predicting a bug report priority.  
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A number of such systems have already been developed using different machine 

learning methods. One experiment shows that the automation of this process can be done 

using Naive Bayes and Support Vector Machine classifiers. It also focuses on determining 

which features from a bug report are most suitable for this process. They use a collection 

of bug reports from the Bugzilla bug repository to evaluate different combinations of 

textual and numerical features using both Naive Bayes and Support Vector Machine. Their 

experiment shows that the highest accuracy is achieved by an SVM when both numerical 

and text features are combined for training with a precision of 55% (Kanwal and Maqbool, 

2012). Another experiment tries a similar approach using multi-factor analysis, taking into 

consideration the different features available in a bug report. The researchers extract the 

features and train a model based on linear regression with enhanced threshold, where 

instead of classifying into categorical values they use ordinal values, where they order the 

values from 1 to 5. Same as the previously described experiment, the model in this one is 

trained on a collection of bug reports from the Bugzilla bug repository and the average 

precision accuracy achieved was 29.73% (Tian, Lo and Sun, 2013). Another research using 

a similar approach has been done by Alenezi et al. In their paper an experiment is 

performed to categorize bug reports using Naive Bayes, Decision Tree and Random Forest 

algorithms. However, unlike the other 2 previously described experiments, this one tries 

to categorize the bug reports in 3 classes based on the priority (high, medium and low). 

The models are then evaluated on 4 datasets, two from the Eclipse both with different 

features and the other two from the Firefox project also with different features. The best 

results were obtained using the Random Forest algorithm, achieving an accuracy of 61.2% 

precision when classifying bug reports. The paper concludes that Random Forest and 

Decision Tree outperform Naive Bayes in all the cases (Alenezi and Banitaan, 2013).  

Another similar research paper covers the use of Support Vector Machine, Naive 

Bayes, K-Nearest Neighbors and Neural Network, but unlike the other papers discussed in 

this chapter it uses cross project validation to evaluate the performance of those 

methods. The paper tries to answer which of the machine learning techniques is more 

appropriate when it comes to predicting priority as well as if cross project validation works 

for this problem. It was concluded that Support Vector Machine and Neural Network give 

the overall highest accuracy from the previously mentioned techniques and also that 
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using cross project validation works for priority prediction with more than 72% accuracy 

(Sharma et al., 2012).  

2.2 Sentiment and Textual Analysis 

This subsection of the background will focus on exploring the different types of 

textual analysis relevant to this project. For sentiment analysis it will provide a description 

and a detailed explanation about its methods and features as well as applications. It will 

also focus on the software used to obtain the sentiments in this project and some 

examples of the results obtained will be shown. The textual processing subsection will 

explain different relevant text processing tools and will contain a description of the tools 

used in this project. 

2.2.1 Sentiment analysis 

Sentiment analysis also known as Opinion Mining is a part of Natural Language 

Processing (NLP) that builds systems which try to identify and extract opinions within text. 

In addition to that these systems extract expression attributes, such as subject, polarity 

and opinion holder (MonkeyLearn, 2019). 

Extrapolating the polarity of a text is a descendant of the General Inquirer method 

(Stone, Dunphy and Smith, 1966) which provides hints towards quantifying patterns in 

text as well as a research done to measure the psychological states through the content 

of verbal behaviour (Gottschalk, 1969). Later on a method was developed, patented by 

Volcani and Fogel, which would determine and control the impact of text (Volcani and 

Fogel, 2001). It indicates lexical impact of words in a text and provides the user with 

various statistics relating to the lexical impact of the text, in addition to providing 

suggestions for increasing the sentiment by replacing certain words within the text with 

similar words.  

Research has also been done on using sentiment in bug reports. One research 

investigates the sentiment of bug-introducing and bug-fixing commit messages on GitHub 

and finds that the commits are mostly positive rather than negative (Islam and Zibran, 

2018). However it is unclear if there is a connection between the sentiment of the bug 

report and the way it was handled by the developers. Another research paper on 
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“Sentiment Based Model for Predicting the Fixability of Non-Reproducible Bugs” finds that 

including sentiments into the analysis increases the prediction accuracy from 2 to 5% for 

various classifies (Goyal and Sardana, 2017).  

Some researches show that there are different ways to represent the polarity of 

texts. One way would be to represent the polarity with three values, one for positive, 

negative and neutral sentiment. Some experiments use a single value with a range from 

minus five for example to plus five. This would indicate that a text with severe negative 

polarity would have a value of minus five where neutral would have a value of zero and 

severely positive would have a value of plus five. However, text can have both positive 

and negative polarity, since they are not mutually exclusive. In this project there will be 

two value for sentiment. One for positive ranging from 1 to 5 where 5 is highly positive 

sentiment and one for negative ranging from -1 to -5 where -5 is highly negative 

sentiment.  

There are different software programs that can be used to extrapolate the polarity 

of a text. One such program is HubSpot’s ServiceHub. It is a tool which breaks down 

qualitative survey responses and analyses them for positive or negative sentiment. 

Another such program is Quick Search, which is a sentiment analysis tool that is a part of 

a larger platform called Talkwalker. This tool is best suited for use with social media 

channels. Other programs also exist for analysing sentiment of text such as Repustate, 

Lexalytics, Sentiment Analyzer, SentiStrength and others. Most of those software 

programs would require payment to use their services, others are not suitable for use with 

bug reports. For this project the chosen software used is SentiStrength 

(Sentistrength.wlv.ac.uk, 2019). It is fast and free, has the option to use two scores one 

for negative and one for positive sentiment and is also suitable for informal language, 

which is the case with most bug reports. In order to show how it works, a sample bug 

report description and text is taken and input to the sentiment software and detailed 

results from SentiStrength are provided in table 2 below. 
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Title: Internationalization (NSL) 

Description: "vcm is not nsl ready! need resource bundles. policy has bind() methods 
ready for use.  notes:  painfully all six vcm plugins will have to have a policy class and 
duplicate the code for generating strings from bundles. isnt core supposed to be 
providing support and a story for this?  internationalization complete. each plugin 
currently has getresourcestring(string) and getresourcestring(string object[]). core has 
no support for us. in the future we should shorten the names (e.g. bind) because theyre 
used so much. moving to inactive for future consideration."   

Title Sentiment: Internationalization[0] (NSL)[0] [sentence: 1,-1]  

Title Sentiment Result: 1, -1 

Description Sentiment: vcm[0] is[0] not[0] nsl[0] ready[0] [[Sentence=-1,1=word max, 
1-5]] need[0] resource[0] bundles[0] [[Sentence=-1,1]] policy[0] has[0] bind[0] 
methods[0] ready[0] for[0] use[0] [[Sentence=-1,1]] notes[0] painfully[-3] all[0] six[0] 
vcm[0] plugins[0] will[0] have[0] to[0] have[0] a[0] policy[0] class[0] and[0] duplicate[0] 
the[0] code[0] for[0] generating[0] strings[0] from[0] bundles[0] [[Sentence=-4,1]] 
isnt[0] core[0] supposed[0] to[0] be[0] providing[0] support[1] and[0] a[0] story[0] 
for[0] this[0] [[Sentence=-1,2]] internationalization[0] complete[0] [[Sentence=-1,1]] 
each[0] plugin[0] currently[0] has[0] getresourcestring[0] string[0] and[0] 
getresourcestring[0] string[0] object[][0] [[Sentence=-1,1]] core[0] has[0] no[0] 
support[1] for[0] us[0] [[Sentence=-1,2]] in[0] the[0] future[0] we[0] should[0] 
shorten[0] the[0] names[0] e[0] [[Sentence=-1,1]] g[0] [[Sentence=-1,1]] bind[0] 
because[0] theyre[0] used[0] so[0] much[0] [[Sentence=-1,1]] moving[0] to[0] 
inactive[0] for[0] future[0] consideration[0] [[Sentence=-1,1]][[[2,-4 max of 
sentences]]] 

Description Sentiment Result: 2, -4 
Table 2. Example of the results of sentiment extraction from SentiStrength. 

As it can be seen from Table 2, the SentiStrength software takes as an input text 

and splits it into words and sentences, where it gives a sentiment value for each word and 

then sums it up to give a positive and negative value from each sentence. Once that is 

done it takes the maximum values for positive and negative from the sentences as the 

final result. Due to the title being so short the resulting sentiment is neutral since both 

the positive and negative sentiments are the same values. As for the description the 

sentiment is mostly negative due to certain words which show negativity in the text. 

The way SentiStrength works is by taking a lexical approach. It contains “1,125 

words and 1,364 word stems” (Khan, 2019), where each word contains a score for positive 

or negative sentiment. When these match to a word in the text supplied it indicates the 

presence of sentiment and its strength. For example in table 2 above it can be seen that 

the word painfully has a negative sentiment of -3. Another useful feature in the 

SentiStrength software is negation. That is when a positive term succeeds a negating word 
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it sentiment is flipped and when negative terms have a positive word before them they 

are neutralized (Khan, 2019). 

2.2.2 Natural Language Processing 

Natural language processing (NLP) is the technology used to help computers 

understand human language. The main objective of NLP is to read, decipher, understand 

and make sense of the human languages in a manner that is valuable (Garbade, 2018). 

Natural language processing entails applying a set of algorithms to extract useful 

information from text, which could then be used to train machine learning models on it. 

Some techniques used to extract useful information from text include but are not limited 

to: lemmatization, word segmentation, parsing, sentence breaking and stemming.  

Stemming and lemmatization are both used to reduce inflectional forms and 

sometimes derivationally related forms of a word to a common base form (Manning, 

Raghavan and Schütze, 2018). However, stemming refers to a heuristic process which 

focuses on removing the endings of the words in order to reduce them  to their base 

words (stems) and lemmatization involves using a vocabulary and morphological analysis 

of words to reduce them to their base words. Due to the fact that this experiment involves 

descriptions of bugs and they contain different error messages and variable names which 

are not suitable for use with stemming or lemmatization.  

Word segmentation involves dividing a string into its component words, which in 

English and many other languages can be done by dividing the sentences using a word 

divider which in this case is the space character. That is one of the processes that is going 

to be applied to the textual features to prepare them for machine learning models.  

Parsing refers to the formal analysis by a computer of a sentence into its 

constituents, resulting in a syntax tree which represents the syntactic structure of a string. 

Parsing is preceded by lexical analysis, also known as tokenization, which is the process of 

replacing sensitive data with unique identification symbols that retain all the essential 

information about the data (Rouse, n.d.). Tokenization separates tokens using simple 

heuristics and following a few steps. Firstly, words are separated by whitespace, 

punctuation marks or line breaks. Then all characters from a continuous string (word) 

make up one token. 
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As mentioned earlier, another part of natural language processing is sentence 

breaking. Sentence breaking is a technique to separate sentences. The standard approach 

to sentence breaking involves 3 rules. Those are that a sentence ends if there is a period 

and if the next token is capitalized and it doesn’t end a sentence if the preceding token is 

in the list of abbreviations. 

2.3 Machine Learning and Neural Networks 

Machine learning is a method of data analysis that automates analytical model 

building. It is a branch of artificial intelligence based on the idea that systems can learn 

from data, identify patterns and make decisions with minimal human intervention 

(Sas.com, 2019). There are many different types of machine learning systems which split 

into different categories based on whether they are trained with human supervision, 

whether they can learn incrementally or on the fly and whether they are instance-based 

or model-based (Géron, 2017). In the case of bug report analysis based on the dataset 

obtained it can be concluded that the necessary machine learning model would have to 

use supervised learning since the labels for each instance are available, also the model 

would have to use batch learning and be model-based, because it would have to detect 

patterns in the training data and build a predictive model. There are many challenges 

which arise when training a machine learning model, such as insufficient quantity or 

unrepresentative data, poor quality, irrelevant features, overfitting and underfitting. 

Those challenges could all be overcome in the case that they occur by taking different 

measures against it. In the case of bug report analysis those measures involve changing 

the complexity of the models and increasing the quantity of data. 

There are also different types of machine learning systems depending on whether 

the goal of the model is to classify the instances into different categories based on a set 

of changing variables or try to determine the relationship between a target variable and 

a set of changing variables. Those are called classification problems and regression 

problems respectively. This project will involve both classification and regression 

problems. When training a machine learning model it is necessary to compare it to a 

baseline model. The goal of the machine learning model trained would then be to perform 

better than that baseline model. The baseline models that are going to be examined here 
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are linear regression and decision tree. Linear regression is a machine learning algorithm 

which performs a regression task based on supervised learning. Decision trees same as 

linear regression is one of the simpler machine learning systems. It splits the data 

according to certain parameters and can perform both classification and regression tasks. 

A part of machine learning is called deep learning. It is based on artificial neural networks. 

Example artificial networks are multi-layer perceptron, convolutional neural network and 

recurrent neural network which will be covered in the next subsections. 

2.3.1 Multi-Layer Perceptron 

A Multi-Layer Perceptron (MLP) consists of at least three layers, where the first 

layer is an input layer and the last layer is the output layer. The layers in between the first 

and last layers are called hidden layers. Every layer in an MLP except for the output layer 

has a bias neuron and is fully connected to the next layer. When a neural network has 

more than 2 hidden layers it is called a deep neural network (DNN). The way the MLP 

works is by taking in a set number of inputs passing it through each layer and changing 

the values based on a set of weights and an activation function. When it reaches the final 

layer the result is the prediction. It then compares the prediction to the actual value and 

calculates the error rate. Once that is done, it passes the information backwards 

calculating the error gradient across the connected weights in the network. Figure 1 below 

shows an example of a simple MLP.  

 

Figure 1. A simple Multi-Layer Perceptron. 

It has been shown that MLPs can be trained to approximate almost any smooth, 

measurable function, provided with enough hidden units are available (Hornik, 
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Stinchcombe and White, 1989). Unlike other techniques the multi-layer perceptron makes 

no prior assumptions about the distribution of the data. It can be trained to generalise 

very accurately over, future unseen data (Gardner and Dorling, 1998). 

2.3.2 Convolutional Neural Network 

Convolutional Neural Network (CNN) is a type of deep neural network. They are in 

general regularized version of MLPs. Unlike multi-layer perceptrons, not all neurons in 

CNNs are fully connected which makes less prone to overfitting data. Like the name 

suggests those networks use an operation called convolution. Those networks are simply 

neural networks with at least one convolutional layer. CNNs are particularly useful in 

image classification problems but they also perform successfully in other tasks like natural 

language processing and voice recognition. 

Using convolutional layers allows the network to concentrate on low-level 

features in the first hidden layer, which are then assembled into higher level feature. The 

way a convolutional layer works is by using receptive fields with different sizes. Each 

receptive field is considered one filter. Usually a CNN would have many filters since each 

filter can only learn one feature. Convolutional layers could also have different dimensions 

based on the input data. For natural language processing the perceptive field will only 

have 1 dimension, for images it is 2 dimensions and for video - 3 dimensions.  

Another characteristic of CNNs is that they use pooling layers as well. Once 

features have been extracted using a convolutional layer, a pooling layer is used to shrink 

the input and reduce overfitting. There are different kinds of pooling layers but the most 

common ones use a mean or a max aggregation function. Those layers do not have 

weights associated with them. Figure 2 below shows a simple CNN used for natural 

language processing.  
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Figure 2. A Convolutional Neural Network for Natural Language Processing. 

CNNs often achieve excellent results when used for NLP. A research done on deep 

convolutional neural networks for sentiment analysis of short texts achieves a sentiment 

prediction accuracy of 86.4% for the Stanford Twitter Sentiment corpus, which contains 

Twitter messages (dos Santos and Gatti, 2014). Other works done on sentiment analysis 

and question classification using NLP show that a simple CNN with little hyperparameter 

tuning and static vectors achieves excellent results. It achieves an 81.5% accuracy on a 

movie review dataset with one sentence where the goal is to detect if the review is 

positive or negative. It also achieves an accuracy of 89.6% for the opinion polarity 

detection subtask of the MPQA dataset (Kim, 2014). A research carried out by Alexis 

Conneau et al. presents a new architecture for a very deep convolutional network for the 

task of  text processing which operates directly on the character level and uses only small 

convolutions and pooling operations. The architecture presented by them contains 9 

convolutional layers with small parameters and 3 pooling layers. Their work shows that 

increasing the number of layers and not the size leads to better performance of the CNNs 

(Conneau et al., 2016). There has also been some research done on designing 

convolutional neural networks with recurrent layers. A research carried out by Siewi Lai 

et al. at the National Laboratory of Pattern Recognition show that applying a recurrent 

structure to capture contextual information as much as possible when learning word 

representations, may result in less noise compared to traditional neural networks. The 

recurrent CNN designed achieves an accuracy of 96.49% on the 20Newsgroups dataset 

with around 2% improvement over a CNN (Lai et al., 2015). 
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Another research on using CNNs for text classification suggests a semi-supervised 

method. The idea is that integrating a supervised CNN with learned embeddings of small 

text regions from unlabeled data would perform better in a text classification problem. 

The results obtained on the RCV1 (news) dataset with 55 single label classes show an error 

rate of 7.71% compared to a regular CNN which achieved an error rate of 9.17% (Johnson 

and Zhang, 2015). 

Based on the excellent results achieved by convolutional neural networks in NLP 

tasks that was one of the architectures chosen for this project. 

2.3.3 Recurrent Neural Network 

A recurrent neural network (RNN) is a feedforward neural network where the 

network also has connections backwards. RNNs can exhibit temporal dynamic behaviour. 

They can also use their internal state to process sequences of input, which makes them 

useful for many different tasks such as natural language processing for automatic 

translation, speech-to-text or sentiment analysis as well as analyze time series data such 

as stock prices, anticipate car trajectories and so on. There are different kinds of RNNs, 

such as fully recurrent, Hopfield, recursive, gated recurrent unit (GRU), long short-term 

memory (LSTM) and others. A fully recurrent neural network is a simple RNN where all 

the connections between the nodes form a directed graph along a temporal sequence. 

Hopfield is an RNN, in which all the connections between the nodes are symmetric and 

requires stationary inputs. Another kind of RNN is a recursive neural network which has 

the same weights applied to it recursively over a differentiable structure in topological 

order. Gated recurrent units are similar to LSTM networks but have a forget gate and lacks 

an output gate. The last RNN mentioned earlier is the LSTM. Long short-term memory 

neural networks were created to deal with the vanishing gradient problem, that can be 

encountered with the other RNNs. LSTMs work just like RNNs but can retain information 

for longer periods of time. They have a chain structure that consists of four neural 

networks and different memory blocks. Information in LSTMs is retained by the cells and 

memory manipulations are performed by three gates, which are the forget gate, used to 

remove information which is no longer useful, the input gate, used to add useful 

information to the cell state and output gate, used to extract useful information from the 
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current cell state and present it as an output (GeeksforGeeks, n.d.). Figure 3 below shows 

a basic architecture of an LSTM. 

 

Figure 3. A Long Short-Term Memory Network (GeeksforGeeks, n.d.). 

LSTMs have a wide range of usage when it comes to working with sequences and 

there are many research papers published using LSTM models. One such paper presents 

an improved semantic representation from tree-structure LSTMs. Kai Sheng Tai et al. 

introduces a generalization of LSTM to tree-structured network topologies, which 

outperforms existing systems and basic LSTMs on predicting semantic relatedness of two 

sentences and sentiment classification. One of the models they propose achieves an 

accuracy of 88% over a binary sentiment classification on the Stanford Sentiment 

Treebank dataset. That is 3.1% improvement over a regular LSTM and 0.5% higher than a 

Bidirectional LSTM (Tai, Socher and Manning, 2015). Another NLP related research paper 

involves using and LSTM to perform word segmentation on texts in Chinese. The paper 

proposes 4 LSTM network models which achieve a 97.5% test accuracy on the MSRA 

dataset, which consists of images with texts in chines on them (Chen et al., 2015). 

Other uses of LSTM involve training them for relation classification. Relation 

classification as the name suggests involves making relations between entities of 

sentences, which could help natural language processing in tasks such as sentence 

interpretations, knowledge graph construction and so on (Ren et al., 2018). A research 

done on using LSTM for relation classification suggests that a bidirectional long short-term 

memory network can achieve an F1 value of 84.3 compared to other research papers 

using CNNs for the same task achieving values of 84.1 (Zhang et al., 2015). The F1 value is 
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a measure of a test’s accuracy represented by multiplying the precision and the recall of 

a neural network and then dividing it by the sum of it.  

Another research shows that cached LSTMs can be used for sentiment 

classification on long texts such as documents. The research done by Xu et al. proposes 

an LSTM with a caching mechanism, which divides memory into several groups, which 

enables it to keep sentiment information better. The proposed network seems to 

outperform other state of the art models, including models based on CNNs (Xu et al., 

2016). Similarly, an experiment to predict the polarities of twitter messages has been 

performed by Wang et al. They use an LSTM recurrent network with constant error 

carousels in the memory block structure and perform their experiment on noisy data 

achieving sentiment prediction accuracies better than other feature-engineering 

approaches. An evaluation on a negation phrase test set, shows that the architecture 

developed by them using LSTMs doubles the performance of non-neural models (Wang 

et al., 2015). 

According to all these research papers based on using LSTMs for NLP it suggests 

that those kinds of neural networks can perform very well when training on textual data. 

Chapter 3: Research 

The previous chapter of this report focused on providing the relevant background 

to this experimental project. Based on the literature review and background information 

it was determined that the focus of this project is to conduct an experiment which focuses 

on bug-fix time and priority. This chapter will go into more specifics about the exact goals 

of this experiment, defining the hypotheses and provide details about the design of the 

experiment. 

The background section included information about the different kinds of bug 

reports analysis as well as the available tools to perform these analyses, while this section 

would provide more specifically defined and innovative aims of this experiment. The 

information on sentiment and textual analysis and the available information in the bug 

reports would be used to describe how the dataset of bug reports will be used to design 
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the experiments which would determine the success of this experiment and the 

experiment design subsection of this chapter will show how exactly with the use of the 

machine learning models described those hypotheses will be answered. 

3.1 Methodology 

After determining the specific focus of this project, which is the analysis of bug 

report fix-time and priority, it was necessary to define a set of hypotheses in the next 

subsection, which validity will be then supported or refuted by the conduction of the 

experiment designed in the subsection afterwards. 

3.1.1 Hypotheses 

One of the fundamental parts of conducting an experimental research project is 

to build a set of hypotheses in order to design the experiment in a way to prove or 

disprove their statement. Hypothesis is a statement in which the result of an experiment 

is speculated upon (Shuttleworth and Wilson, n.d.). The hypotheses in this case have been 

generated based on the research questions and the background research conducted in 

the previous section. Observations upon the analysis on bug reports and textual and 

sentiment analysis has led to the conclusion that it may be possible to predict the 

resolution time of a software bug based on the information provided in the bug report. 

This has led to formulating the following two hypotheses: 

Hypothesis 1: The title and description of a bug report can be used to determine the time 

it would take to fix a bug. 

Hypothesis 2: Adding the numerical features of a bug report (including sentiment of the 

description) to the title and description can improve the results of determining the 

resolution time of a bug report. 

Also by researching into classification and regression problems it is thought that 

the bug-fix time prediction might give better results if the resolution time is split into time 

frames which would turn the problem into a classification problem. This lead to the 

formulation of the 3rd hypothesis which is: 
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Hypothesis 3: The results produced from predicting the resolution time would be more 

accurate if they were transformed into categories for classification. 

Taking another look at the data available and necessary to predict the resolution 

time of a bug report it was determined that the same information could also be used to 

determine the priority of the bug report by adjusting the experiments slightly. This lead 

to the belief that the following two hypotheses could also be supported by the 

experiment: 

Hypothesis 4: The title and description of a bug report can be used to determine the 

priority of a bug report. 

Hypothesis 5: Adding the numerical features of a bug report (including sentiment of the 

description) can be used to improve the accuracy of the priority prediction. 

3.1.2 Experiment design 

In order to validate the defined hypotheses it was necessary to design an 

experiment. This experiment involves creating a set of ensemble neural networks which 

would take as an input a bug report dataset and depending on the hypothesis output 

either the resolution time or the category. The first step is to ensure the data is prepared 

for a neural network to be fitted to it. The initial dataset consists of 85,156 bug reports 

which were described earlier in the background section. 

Data Preparation 

In order to prepare the dataset for fitting onto a neural network it is necessary to 

do pre-processing of the dataset. Starting with the initial dataset, the first step would be 

to filter the noise from the data and deal with null values. Then the remaining data would 

be converted to numerical values except for the title and description. Where necessary 

one hot encoding will be performed. Once that is done, it is important to extract some 

additional information from the title and description, such as length of texts and 

sentiments. Once all the numerical data is prepared the next step would be to pre-process 

the textual data by performing some natural language processing methods on it. The first 

thing would be to remove all punctuation and digits, as well as stopwords. Once that is 

done the labels would need to be prepared in different ways depending on the goal of the 
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neural network model. For the bug-fix time prediction it is essential to calculate the labels 

and if necessary transform them to categorical data or scale them. Once all that is done a 

train-test split will need to be performed. The data will be split into 80% training data and 

20% testing data and the textual features will need to be separated from the numerical 

as they will be fed to different neural network models. 

Experiments 

To prove hypotheses 1 and 3, 2 neural networks will be trained on the training 

data. The first one will take as input the title and description combined and feed them to 

a Convolutional Neural Network (CNN) and the second one will do the same with a Long 

Short-Term Memory Network (LSTM). Depending on the evaluation of those models on 

the testing set it will be determined if the information contained in the title and the 

description of the bug reports is enough to calculate the bug-fix time.  

For hypothesis 2 there will be 4 additional models trained. They would be different 

ensemble neural networks which would take as an input both textual and numerical data. 

The results from evaluating the models on the test set will then be compared to the 2 

neural networks built to prove hypotheses 1 and 3 and if the results are better it would 

determine the validity of hypothesis 2. Performing those 4 model trainings as both 

classification and regression problems which would further determine the validity of 

hypothesis 3.  

The experiment conducted to prove hypotheses 4 and 5 would be very similar to 

the one performed to prove the first three hypotheses. The main difference being that in 

this case the goal of the neural networks would be to determine the priority of the bug 

reports. This can be done by performing very little modifications to the previously 

explained neural network models or the dataset. The main change in the experiment 

would be to set the goal of the neural network to classify the priority of the bug report. 

Again training a model solely on the title and description of the bug report would prove 

hypothesis 4 and training the other four models and comparing the results to the first two 

would prove hypothesis 5.  



28 
 

3.2 Implementation 

The next stage after defining the hypotheses and the design for this experiment is 

the implementation stage. The implementation stage involved creating an anaconda 

environment in an amazon web services ES2 instance. The instance uses a GPU processor 

and was used to increase the computation power and speed up the training of the models.  

3.2.1 Data Preparation 

After determining the methodology of the project, this part of the report will focus 

on the implementation details of the project. The initial dataset contains 85,156 bug 

reports with each report having 11 features, both textual and numerical, which need to 

be prepared for fitting to a machine learning model. The initial features and their types 

can be seen in Table 3 below. 

Data Column # of non-null values Data type 
Issue_id 85156 non-null int64 
Priority 85156 non-null object 

Component 85156 non-null object 
Duplicated_issue 14404 non-null float64 

Title 85156 non-null object 
Description 85027 non-null object 

Status 85156 non-null object 
Resolution 85156 non-null object 

Version 85156 non-null object 
Created_time 85156 non-null object 

Resolved_time 85156 non-null object 
Table 3. Columns and data types of the initial dataset. 

The first step is to remove the unnecessary columns. Those were determined to 

be the Issue_id which was used for indexing and has no connection to determining the 

resolution time or the priority of a bug report and the second one was Duplicated_issue 

which contains indexes to point towards duplicate reports. The next step is to remove the 

instances with null values. The only one column containing null values left was the 

Description one. It contains 129 empty values which were identified and removed from 

the dataset leaving 85,027 bug reports. Since the main focus of this project is to calculate 

the resolution time of a bug report it is necessary to filter out the bugs which have not 
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been resolved. In order to do that the Resolution column was inspected next which 

contained the following values shown in Table 4 below. 

FIXED 42327 
DUPLICATE 14398 

WONTFIX 9666 
WORKSFORME 8414 

INVALID 7090 
NDUPLICATE 2330 

NOT_ECLIPSE 801 
MOVED 1 

Table 4. Value counts for the Resolution feature. 

After keeping only the values marked as fix there are 42327 bug reports left in the 

dataset for further inspection. Once that has been done the Resolution column was 

dropped from the dataset as it contains only FIXED values and would not contribute to 

the neural network model. The next column inspected was the Status column which 

contained 3 unique values: “RESOLVED”, “VERIFIED”, “CLOSED”, which all indicate that 

the bug has been fixed and the column is unnecessary so it was removed from the dataset. 

After removing the unnecessary columns it was time to work on the remaining columns 

and add new ones. 

The first part of that was to change the priority from an object to an integer. The 

priority column was written in the format P#, which required removing the letter P from 

before the number and converting the column. From there the additional columns added 

were Title and Description Length and Positive and Negative Sentiments. The first two 

were obtained by counting the number of words for each of them but the second one 

required the use of the external software SentiStrength described in the background 

section of this report. The way this was done by saving each description into a separate 

line of a text file which was then uploaded into the SentiStrength software, which output 

another text file with each description as well as two values. The first one for positive and 

the second one for negative. The positive sentiment ranged from 1 to 5 and the negative 

from -1 to -5. After that the text file with the sentiment values was loaded back into 

Spyder and the two numbers were saved as additional columns to the dataset. The same 

process was repeated for the Title column as well but the results had very little variance 
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due to the shortness of the titles. The values for the positive and negative sentiment for 

the description column are shown in Table 5 below: 

+ Sentiment Value Counts - Sentiment Value Counts 

1 24986 -1 15605 
2 14358 -2 21645 
3 2876 -3 4551 
4 107 -4 496 
5 0 -5 30 

Table 5. Value counts for positive and negative sentiment. 

The next step in the dataset preparation is to prepare the text columns. There are 

4 text columns which need to be transformed: Title, Description, Version and Component. 

In order to fit them to a neural network the Title and Description columns were combined 

into one column, the punctuation and numbers were removed from the text as well as 

stop words and words shorter than 4 characters which could potentially lead to the model 

not generalizing well over the dataset.  The Version and Component column were then 

prepared for one hot encoding by checking the value counts and removing the instances 

which contained values less than 30 for Version and a 100 for Component. The initial 

number of unique values was 43 for Version leaving 40 after removing the values with low 

value count and for component there were 21 unique values initially leaving 16 after. 

Once that was done they were one hot encoded and added to the dataset which produced 

a dataset of 42204 rows and 64 columns for each feature. 

Once the text features were prepared the next preparation was to prepare the 

labels for fitting to a neural network. In order to determine how long it took to resolve a 

bug report the time of creation was subtracted by the time of resolution for each instance 

and then converted to a float number of days. Once that was done the Created_time and 

Resolved_time columns were dropped from the dataset as they were no longer necessary. 

After the number of days were calculated the next step was to inspect them and look at 

the distribution of the labels. The values of the labels ranged from less than a day to 

4345.94 days with a mean value of 170.65 days. Due to the maximum value being so far 

from the mean value it was necessary to clean up the labels in order for the trained models 

to generalise well over the whole dataset. For that purpose the bug reports which had 

higher resolution time than 365 days were removed and the histogram for the remaining 
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bug reports can be seen below. At this point there were 36,622 bur reports left in the 

dataset. Once that was done the labels were scaled between 0 and 1 to further increase 

the chances of good generalisation of the models.  

 

Figure 4. Histogram of the data in the Resolution Time column. 

In the case of regression for a resolution time that was the preparation of the 

labels done. In the case of classification the resolution time was split into 52 equal 

categories, which equated the number of weeks it has taken to fix a bug report, and then 

changed to categorical data, in order to use them for softmax, which was explained in the 

Background section of this report. Additionally when the goal of the neural network was 

to predict the priority of the bug report, that column was the one converted to categorical 

instead.  

The final steps of the data preparation was to split the dataset and tokenize the 

textual attributes. For the regression model the data was split randomly into 80% training 

set and 20% testing set. In the case of classification the data was again split into 80% 

training and 20% testing set, but this time using Stratified Shuffle Split, which was 

explained in the Background section, in order to preserve the distribution of the labels. 

Once the data was split into training and testing set it was necessary to separate textual 

features, numerical features and labels into 3 different objects for both sets. Once that 

was done the final step before fitting a model was to tokenize the combined 

Title/Description of the bug reports to a set length of 512. 

This concludes the data preparation and the next process was to find the proper 

models to answer the hypothesis described earlier in the report. 
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3.2.2 Models 

In order to determine the validity of the hypotheses there were 12 ensembles of 

neural network configurations in total developed which used the prepared dataset, 

described in the previous section. 6 of the ensemble models were used to answer the first 

3 hypotheses regarding the resolution time of a bug report and the other 6 to answer the 

remaining 2 hypotheses regarding the priority of the bug reports. The first 6 

configurations were both trained as a classification and regression problem in order to 

answer hypothesis 2. The difference between them is that the regression problem had a 

final fully connected layer of 1 neuron for the output.  All of the ensemble configurations 

were designed as different combinations between multi-layered perceptron, 

convolutional neural network and long short-term memory neural network. Those 

combinations were made using predefined models. In the next part of this report they will 

be described and then the combinations made between them would be explained.  

One of the models is a multi-layered perceptron (MLP), which was explained 

previously in the background section. The CNN consists of 3 fully connected layers (Dense) 

with a dropout layer. The first layer has 128 neurons and takes as an input the numerical 

features from the dataset. It then fully connects to a second layer with 64 neurons, 

connected to a dropout layer with a rate of 0.4 which is finally fully connect to another 

layer with 32 neurons. A graph of the model can be seen in Figure 5 below. 

 

Figure 5. Diagram of the Multi-Layer Perceptron developed for this experiment. 
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Another model is a convolutional neural network (CNN), which was also briefly 

described in the background section. The CNN starts with an embedding layer which takes 

as an input the tokenized textual feature from the prepared dataset and connects to a 

dropout layer with a rate of 0.2, which is then connected to the first 1-dimension 

convolutional layer with 128 filters and a kernel size of 6, which then goes through a batch 

normalization layer and a 1-dimension average pooling layer with a pool size of 5. This is 

then repeated by going into another dropout layer with a rate of 0.3 and another 1-

dimension convolutional layer with 64 filters and a kernel size of 12, as well as an l2 kernel 

regularizer, in order to reduce possible overfitting. The convolutional layer is connected 

to another batch normalization layer which goes into a 1-dimensional max pooling layer 

with a pool size of 3 before the output of it is flattened and goes into a 3rd dropout layer 

with rate 0.4 which then goes on to connect to two fully connected layers with 64 and 32 

neurons respectively. A graph representation of the CNN described can be seen in Figure 

6 below 

 

Figure 6. Diagram of the Convolutional Neural Network developed for this experiment. 

The final model created was a long short-term memory network (LSTM). This 

model just like the CNN starts with an embedding layer taking in the textual feature as an 

input but this time it connects to an LSTM layer with 128 neurons which has a dropout 

rate of 0.2 and a recurrent dropout rate of 0.2. The output of this layer is connected to 3 

fully connected layers with 128, 64 and 32 neurons respectively with a dropout layer with 

a rate of 0.4 between the first and the second dense layers. A graph of the LSTM model 

can be seen in Figure 7 below. 
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Figure 7. Diagram of the Long Short-Term Memory Network developed for this experiment. 

The main 12 ensemble configurations made were a combination of the 3 models 

explained above and were used to determine the validity of the 5 hypotheses, also 

explained before. The first configuration was a combination of a CNN and an MLP which 

would take as an input the text feature and all the numerical features including the one-

hot encoded version and component features. After combining the CNN and MLP there 

were 2 other fully connected layers added with 64 and 16 neurons respectively and finally 

an output fully connected layer which had, in the case of classification, the same number 

of neurons as categories and for regression one neuron for the output. The second 

configuration created was very similar to the first one with the only difference that it did 

not consider the version and component features thus reducing the number of numerical 

inputs from 61 to 5. The third configuration was used to answer hypothesis 2 and only 

involved a CNN, as the one described above, with an additional fully-connected layer of 

16 neurons and a final output layer of either 1 neuron, for regression, or the number of 

categories, for classification.  

The next 3 configurations all involved using an LSTM model, where the first one 

was a combination of LSTM and MLP with an additional dense layer of 16 neurons and a 

final layer with either 1 neuron or the number of neurons the same as the number of 

categories. This configuration would take in as an input to the LSTM the text feature and 

for the MLP the numerical features including the version and component features. The 

next configuration was the same as the previously described one but without having the 

version and component features as an input. And the final of the 3 configurations was a 
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simple LSTM model which would take as an input only the text feature representing a 

tokenized combination of the title and description of a bug report. Those were the 6 

configuration with regards to the resolution time and used to confirm the first 3 

hypotheses.  

The other 6 configurations were developed to attempt to classify the priority of a 

bug report. They were created in the same way as the previously described 6 

configurations with the only difference that the goal of the neural networks was to classify 

the priority. Unlike the first 6 configurations those did not have the option to be used as 

a regression model and the number of categories for classification was 5. 

Figure 8 below shows an example of configuration 1 which takes as an input 61 

numerical features and 1 textual feature with a size of 512. It also depicts both regression 

and classification. This Figure is just an example of what a configuration looks like. This 

concludes explaining the models created to confirm the hypotheses and now this report 

is going to proceed to presenting the results in the next section and then analyse and 

discuss them in the following one. 

 

Figure 8. Diagram of a sample Ensemble Neural Network - a combination of an MLP and a CNN.  

All of the previously described models have been compared to a baseline metric 

to assess their performance. In the case of regression problem a linear regression model 

was used to compare to the neural networks developed, as for classification the 
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comparison was done to a decision tree classifier. In all of the cases the neural networks 

performed better than the baseline models.  

Chapter 4: Analysis 

This chapter would focus on determining the validity of the hypotheses. After 

carrying out the designed experiments and implementing them in the previous section, 

the next step would be to run the implementation and collect results. As described in the 

background section of this report the neural networks have multiple hyperparameters to 

tune to ensure that the highest accuracy rate is obtained. After running the different 

configurations described in the implementation section there was a large set of results 

obtained. 

4.1 Results 

Due to the large number of models designed, Table 6 was created to describe each 

model, their target and index them for future reference. 

Model 
Number 

Description Target 

1 A combination of CNN and MLP which take as an input both the 
textual and numerical features (including the One-hot encoded 
version and component features) 

Resolution 
time 

2 A combination of CNN and MLP which take as an input both the 
textual and numerical features (excluding the version and 
component features) 

Resolution 
time 

3 A CNN which takes as an input the tokenized combination of the 
title and description features 

Resolution 
time 

4 A combination of LSTM and MLP which take as an input both the 
textual and numerical features (including the version and 
component features) 

Resolution 
time 

5 A combination of LSTM and MLP which take as an input both the 
textual and numerical features (excluding the version and 
component features) 

Resolution 
time 

6 An LSTM which takes as an input the tokenized combination of 
the title and description features 

Resolution 
time 

7 A combination of CNN and MLP which take as an input both the 
textual and numerical features (including the One-hot encoded 
version and component features) 

Priority 

8 A combination of CNN and MLP which take as an input both the Priority 
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textual and numerical features (excluding the version and 
component features) 

9 A CNN which takes as an input the tokenized combination of the 
title and description features 

Priority 

10 A combination of LSTM and MLP which take as an input both the 
textual and numerical features (including the version and 
component features) 

Priority 

11 A combination of LSTM and MLP which take as an input both the 
textual and numerical features (excluding the version and 
component features) 

Priority 

12 An LSTM which takes as an input the tokenized combination of 
the title and description features 

Priority 

Table 6. Indexed short description of the different models created and evaluated. 

Having described the models and assigning them a model number these numbers 

will be used throughout the rest of this section to refer to the corresponding models. All 

of the configurations described above were trained multiple times in order to try and 

obtain the best results possible. However, due to the complexity of the ensemble neural 

networks, it would take a long time and resources unavailable for this project to run all of 

them more than twice. Table 7 below contains a list of all the model configurations trained 

with different hyperparameters. The table also includes the learning rate of the neural 

networks, number of times the model has iterated through the whole training set, size of 

batches, which represents the number of instances that were supplied to the model at 

every turn, whether the configuration was a classification or regression as well as testing 

and training accuracy.  

Model 
Number 

Learn 
Rate 

Iterations Batch 
size 

Classification/ 
Regression 

Training 
Result 

Testing 
Result 

1 0.0005 20 200 Regression 0.0996 RMSE 0.2569 RMSE 

1 0.0001 25 500 Regression 0.2471 RMSE 0.2528 RMSE 

1 0.0001 15 300 Classification 34.5% 29.47% 

1 0.0005 40 400 Classification 87.3% 13.52% 

2 0.0002 30 100 Regression 0.0964 RMSE 0.2504 RMSE 

2 0.001 35 300 Regression 0.0888 RMSE 0.2559 RMSE 

2 0.0005 50 500 Classification 88.5% 13.09% 

2 0.002 10 150 Classification 57.63% 17.26% 

3 0.0005 20 300 Regression 0.1220 RMSE 0.2547 RMSE 

3 0.002 15 200 Regression 0.1002 RMSE 0.2530 RMSE 

3 0.0001 25 400 Classification 40.35% 18.78% 

3 0.0002 35 100 Classification 86.02% 13.67% 

4 0.0003 10 100 Regression 0.2226 RMSE 0.2233 RMSE 

4 0.0005 25 400 Regression 0.223 RMSE 0.2237 RMSE 
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4 0.0002 15 300 Classification 33.42% 33.42% 

5 0.0002 30 200 Regression 0.2231 RMSE 0.2234 RMSE 

5 0.0001 40 200 Classification 33.45% 33.46% 

5 0.0003 10 500 Classification 33.46% 33.46% 

6 0.001 12 200 Regression 0.2226 RMSE 0.2235 RMSE 

6 0.0005 25 400 Regression 0.2227 RMSE 0.2236 RMSE 

6 0.002 12 100 Classification 33.45% 33.46% 

7 0.0002 15 150 Classification 95.84% 74.62% 

7 0.003 10 50 Classification 94.62% 78.48% 

8 0.0005 20 300 Classification 97.15% 72.11% 

8 0.0001 12 200 Classification 83.63% 80.13% 

9 0.003 20 300 Classification 97.54% 76.4% 

9 0.001 30 200 Classification 97.17% 72.63% 

10 0.0005 15 300 Classification 85.44% 85.43% 

10 0.0008 25 400 Classification 85.49% 85.39% 

11 0.0002 18 100 Classification 85.46% 85.46% 

11 0.001 10 300 Classification 85.46% 85.46% 

12 0.0001 50 200 Classification 85.46% 85.46% 

12 0.0001 25 100 Classification 85.49% 85.48% 
Table 7. Results for each model configuration. 

In the next subsection those results will be explained in detail and the subsection 

after will focus on further evaluation. 

4.2 Discussion 

This section will not only contain detailed explanations of the results presented 

above but also focus on determining the validity of the hypotheses and suggestions for 

improvement on the results. Even though Table 7 above, contains the results from all the 

models trained with all the different hyperparameters, this section would only refer to 

the best results from each model configuration (i.e. the ones in bold).  As can be seen in 

the table above the results for the classification problems is presented in percentages and 

the results of regression problem is evaluated using RMSE. 

For classification it is used a percentage value which represents the percentage of 

correctly classified instances, thus the accuracy. As for regression - the root mean squared 

error evaluation (RMSE) represents the root mean squared error difference between the 

actual values and the predicted values. As such, the closer that value is to 0 the better the 

predictions are. The results obtained are based on labels ranging from 0 to 1. Another 
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thing worth mentioning is the difference between the results from the training set and 

the testing set. That occurs when the model that has been trained is overfitting.  

Hypothesis 1 

As explained in the hypotheses and experiments sections the results from 2 of the 

models will be used to determine the validity of hypothesis 1. That is models 3 and 6 which 

only take as an input the textual features to determine if the resolution time can be 

predicted based on them alone. From the results for models 3 and 6, as it can be seen 

from the table 2 above, model 3 achieves better results for the training set compared to 

the testing set which means that the model is overfitting and would not work well on 

future unseen data, and for model 6, the training and testing results are quite similar, 

which would point to the model generalizing well over the full dataset, but the predictions 

are not very accurate thus refuting hypothesis 1. 

Hypothesis 2 

As for hypothesis 2 it was necessary to compare the results from the models which 

have both textual and numerical inputs to the ones that only have textual inputs. The 

models developed representing both textual and numerical inputs are models: 1, 2, 4 and 

5 and as mentioned earlier the ones with textual only inputs are 3 and 6. In this case to 

support or refute this hypothesis, the results from models 1 and 2 were compared to 

model 3 and the results from 4 and 5 - to 6. This was done as such because models 1, 2 

and 3 involve a CNN and the other models involve an LSTM. The results for the six models 

described, are available from the results table in section 4.1. Based on the results in the 

table it can be seen that, for models 1 and 2, the training and testing results have a 

significant difference between them which shows overfitting just like model 3 and models 

4 and 5, having similar results on both the training and testing data, seem to generalize 

well over the whole data set same as model 6. By comparing the values it can be seen that 

the models which include numerical data perform slightly better than the textual only 

ones. Even though the difference between the compared models is not significant it 

supports the validity of hypothesis 2 but would require further research to prove it with 

certainty. 
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Hypothesis 3 

Hypothesis 3 tries to show that transforming the prediction of the bug-fix time 

problem into a classification one, rather than regression, would yield better results. This 

can be proved by comparing the classification models to the regression models from 1 to 

6. This time, it is not necessary to compare all models, but the best model from regression 

can be compared to the best model from classification. The best classification model in 

this case is model 5 with average accuracy of 33.45% over the training and testing set and 

the best regression model is model 4, which gives an average RMSE value of 0.22 for the 

training and testing set. Even though it is not possible to compare accuracy values with 

RMSE values, in this case the regression results can be multiplied by 100, which would 

give the percentage that the predictions will be off and that is on average around 22%. In 

the case of bug reports fix-time prediction regression that is off by 22% seems preferable 

to classification which is accurate in only 33.46% of the time. The regression model would 

be better suited to be used in a guideline for writing bug reports or a tool which supplies 

the developer with information about the bug reports. Thus refuting hypothesis 3. 

Hypothesis 4 

Hypotheses 4 and 5 focus on predicting the priority of bug reports and the models 

trained to prove their validity is models 6 to 12. For hypothesis 4 in order to prove its 

validity it is necessary to train models which only involve textual features and that is 

models 9 and 12. As it can be seen from the results table model 9 achieves a significantly 

higher accuracy for the training set than the testing set and model 12 achieves very similar 

results over both sets. The results from model 9 show overfitting of the model which 

means that the model would not perform well on future unseen data, however the results 

from model 12 generalize almost identically over the whole data set and is able to classify 

the priority of bug reports correctly in approximately 85.5% of the cases. This means that 

the trained models perform well in the attempt to classify priority and thus support the 

validity of hypothesis 4. 

Hypothesis 5 

Just like hypothesis 2 in order to prove hypothesis 5 it was necessary to compare 

the 4 trained models on both textual and numerical data with the 2 trained models on 
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textual data input only. The models trained on the mixed data of text and numeric 

features are: 7, 8, 10 and 11 and the ones only on text data are models 9 and 12 which 

were mentioned in the previous hypothesis already. Same as hypothesis 2, the 

comparison will be performed on models 7 and 8 to model 9 and 10 and 11 to 12 since 

they use the same deep learning neural networks. The results for models 7, 8, 10 and 11, 

as can be seen from the table in section 4.1, show that the accuracy of model 7 over the 

training data is higher than the testing data accuracy, model 8, even though there is still 

a difference between training and testing accuracy, it is not significant, and models 10 and 

11 show similar results for the training and testing data. From the comparison of models 

7 and 8 to model 9 it can be seen that both models 7 and 9 are overfitting since the testing 

accuracy is significantly below the training accuracy, but model 8 generalizes well which 

supports the hypothesis, and as for models 10, 11 and 12 they all generalize well over the 

whole dataset, however model 12 which takes only textual data as input performs slightly 

better than the other 2 LSTM models. From the CNN models one of them, with both 

numerical and textual features, performs significantly better than the other 2 and for the 

LSTM models the only text input one performs slightly better than the other 2. Thus it can 

be concluded that even though it would require further research hypothesis 5 is 

supported. 

This finalises the discussion chapter which shows that hypotheses 2, 4 and 5 are 

supported by the experiment conducted and hypotheses 1 and 3 are refuted. 

4.3 Further Evaluation and Optimization 

 Even though all the hypotheses were answered using the already trained models, 

in this subsection some further evaluation will be performed on optimizing the best 

models for resolution time regression and priority classification. 

Further Evaluation Methodology 

 For the resolution time, the data will be split into the 4 main percentiles and based 

on their values a decision will be made to establish a boundary between slow, medium 

and fast resolution times. Once that is done predictions will be made using the best model 

for resolution time regression to determine the RMSE for the predictions of each category. 



42 
 

The reason that is done is that, for example the best resolution time regression model is 

model 4 with an RMSE value of 0.2233 RMSE on the testing data with a scaled range of 0 

to 1. This means that the results on average will be off by 22.33%. Based on the unscaled 

data used the resolution time ranges from 0 (less than a day) to 365 (1 year). The idea is 

that a 22.33% deviation is a lot more significant on bug reports which have been fixed for 

a day than ones fixed for 11 months, for example. Based on that if the results are 

unsatisfying, the model will be further optimized by training it on only a sample of the 

previously trained data, which would contain a certain percentage of instances from each 

quadrant.  

 For the priority classification, a deeper look will be taken on the number of 

instances for each category for both the training and test set. First a comparison will be 

made between the predicted values and the actual values for each category and then a 

detailed confusion matrix will be created and the precision and recall for the model will 

be calculated. Based on the research done before (See section 2.1.6), it is known that bug 

reports with priority category 1 are crucial to be identified, since they need to be fixed as 

soon as possible, while the bugs with priority 5 may not be fixed at all. In this case if a bug 

of priority 1 is incorrectly classified as a bug of priority 3 could lead to some serious 

problems, while if a bug of priority 5 is classified as 3, may only lead to a bug of low 

importance to be fixed sooner than necessary. Thus, based on the results from the 

confusion matrix, the best model, which is model 12 with testing accuracy of 85.48%, will 

be retrained on a sample of the previously trained data, which would contain a certain 

percentage of instances from each category in order to guide the model towards the more 

important ones if necessary. 

Evaluation and Optimization 

 The first step in the implementation of the resolution time regression problem 

evaluation is to inspect the label values in order to make an informed decision. Based on 

the test set the data distribution is that in the 25th percentile the values are below 3.96 

days, in the 50th percentile it is under 19.83 days and the 75th percentile is below 71.87 

days. Another value to take note of when making the split decision is the mean of the 

labels which is 56.73 days. Based on those values it was decided that the fast resolved bug 

reports will be considered the ones below 19.83 days, the medium resolution time will be 
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between 19.83 and 71.87 days and the slow will be above 71.87 days to resolve. Once the 

test data was split it resulted into 3663 fast resolved, 1832 medium resolved and 1830 

slow resolved bug reports. After that each of those splits of data was evaluated on model 

4 and the results can be seen in Table 8 below. 

Data # of Instances Result 

Test Set 7325 0.2233 RMSE 

Fast Resolved 3663 0.1343 RMSE 

Medium Resolved 1830 0.0594 RMSE 

Slow Resolved 1832 0.3999 RMSE 
Table 8. Results from the evaluation of the best resolution time model on the test set split. 

As the table above shows the predictions closest to the actual value come from 

the bug reports with medium resolution time and the worst results was achieved by the 

slowly resolved bugs. In order to try and train a better model, using this information the 

next step was to look at the training data labels. Using the same values as separators as 

before the training data showed that from 29,297 training instances, 14,493 belonged to 

the group with fast resolution time, 7,362 were part of the medium and 7442 the slow 

resolution time.  The fact that the bug reports with fast resolution time were almost twice 

as much as the slow or the medium, shows that they have the most influence when 

training the model. For that reason in order to even out the numbers there were 2 options. 

One is to add more data and the other one is to reduce the data. Adding more data would 

increase the cost and training time of the models, so the option to reduce the data was 

chosen. Doing that, the fast resolution time instances were reduced to 7402. After the 

data was evened out, the model was retrained with the same hyperparameters and the 

results obtained were recorded in Table 9 below.  

Data # of Instances Result 

Test Set 7325 0.2322 RMSE 

Fast Resolved 3663 0.206 RMSE 

Medium Resolved 1830 0.1219 RMSE 

Slow Resolved 1832 0.3405 RMSE 
Table 9. Results from the evaluation of the optimized resolution time model on the test set split. 

Comparing the results from the model being trained with both datasets, shows 

that even though the model with equal distribution of data, performs slightly worse than 

the original on the full testing set, the results from the separated test set demonstrate 
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that the prediction of bugs with slow resolution is more accurate at the expense of the 

prediction error for both fast and medium resolution times. Even though reducing the 

data did not lead to a better model in general, it still goes to show that modifying the 

distribution of labels in the dataset can guide the neural network to focus on particular 

group of instances. Figure 9 below can be used to compare the training loss of both 

models.   

 

Figure 9. Training loss of both models. 

 The next part was to perform the evaluation of the best priority classification 

model. It started with examining the number of values for each category for both the 

training and testing set, which is shown in Table 10 below. 

Priority Train Set Test Set 

1 1208 302 

2 2673 668 

3 25113 6279 

4 238 60 

5 153 38 
Table 10. Value counts for the Priority column. 

Based on the values in the table, the bug reports with priority 3 are significantly 

more than the rest of them. More specifically for the test set based on 7,347 instance 

there are 6,279 with priority 3, which when calculated as percentage they represent 

85.46% of the test set, which as it happens is very similar to the accuracy achieved for the 

best model trained to classify priorities. The testing accuracy is 85.48% for that model. 

After that it was time to look at the actual predictions, which are presented in Table 11 in 

the form of a confusion matrix.  
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Actual Predicted Precision 

 1 2 3 4 5  

1 0 0 302 0 0 0% 

2 0 1 667 0 0 0.15% 

3 0 0 6279 0 0 100% 

4 0 0 60 0 0 0% 

5 0 0 38 0 0 0% 

Recall 0% 100% 85.5% 0% 0%  
Table 11. Confusion matrix for the predictions from the test set. 

 From the confusion matrix it can be seen that the model trained, due to the very 

large number of instances with priority value 3, predicts every instance as that same class. 

Based on the values in Table 11, the calculated F1 score is 0.185. This would mean that 

the model is unreliable and would need some optimization. In order to optimize the 

classifier, just like for the resolution time regression problem, there are again 2 options 

for improvement, which is to add more data or to reduce the data in order to even it out. 

Again the chosen option was to reduce the data, due to the lack of time and resources 

and to avoid very high training times. Based on the distribution of the data, it was decided 

that only 10% of the instances classified as priority 3, would be included in training the 

optimized model. That would mean that the dataset will be reduced to 6,783 instance, 

with only 2,511 priority class 3 bug reports.  Even though that is a big reduction and the 

model would not perform as well as before, the number of correctly classified instances 

with priority 1 and 2 should increase. Again the same model was retrained with the 

reduced data, although due to the reduced size of the dataset model 11 was also retrained 

on the reduced training set and the number of iterations was increased to 100. However 

a callback method called EarlyStopping was added to both models to stop the training if 

the validation accuracy does not increase over 10 iterations. The original accuracy results 

from models 11 and 12 as well as the accuracy results from training on the reduced 

dataset for both models can be seen in Table 12 below.  

Model 
Number 

Learn 
Rate 

Iterations Batch 
size 

Classification/ 
Regression 

Training 
Result 

Testing 
Result 

11 0.001 10 300 Classification 85.46% 85.46% 

12 0.0001 25 100 Classification 85.49% 85.48% 

11 0.0001 100 (23) 100 Classification 26.6% 26.94% 

12 0.0001 100 (11) 100 Classification 4.17% 4.14% 
Table 12. Results from the evaluation of the models on the original and reduced datasets. 
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 Based on the accuracy results from training the models on the dataset, it can be 

concluded that the models did not have enough data to converge to a decent model. 

Another reason to believe that is that the new models were both set to a 100 iterations 

and stopped on 23 for model 11 and 11 for model 12, which would show that there was 

no improvement in the validation accuracy.  In Tables 13 and 14 and Figures 10 and 11 are 

also shown the confusion matrices and the training data plots for models 11 and 12 

respectively. 

Actual Predicted Precision 

 1 2 3 4 5  

1 0 256 46 0 0 0% 

2 0 554 114 0 0 9.63% 

3 0 4854 1425 0 0 89.29% 

4 0 52 8 0 0 0% 

5 0 32 3 0 0 0% 

Recall 0% 82.9% 22.7% 0% 0%  
Table 13. Confusion matrix for the predictions from model 11 on the test set. 

Actual Predicted Precision 

 1 2 3 4 5  

1 301 0 1 0 0 4.1% 

2 665 0 1 1 1 0% 

3 6265 2 3 8 1 60% 

4 60 0 0 0 0 0% 

5 38 0 0 0 0 0% 

Recall 99.7% 0% 0.04% 0% 0%  
Table 14. Confusion matrix for the predictions from model 12 on the test set. 

Based on the 2 tables above, the models trained on reduced data have indeed 

performed worse. However the fact that most of the predictions for model 11 are for 

category priority 2 and 3 further confirms the theory that the data is not enough to train 

a good model on it. Which is also supported by the predictions from model 12, which have 

all predicted priority 1. 
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Figure 10. Model 11 training accuracy and loss. 

 

Figure 11. Model 12 training accuracy and loss. 

Figure 10 shows model 11’s accuracy for both the train and test data fluctuating 

through iterations, while the accuracy for model 12 on the test set does not improve nor 

decline, which could mean that the model is not complex enough to find the patterns in 

the text data. Another metric computed to further evaluate the newly trained models is 

the F1 metric, which for model 11 shows a value of 0.1069 and for model 12 shows a value 

of 0.0159. Compared to the F1 value of 0.1849 for the original model 12, only further 

solidifies the conclusion that the results from training on a reduced dataset are not 

satisfactory. 

Chapter 5: Future Work and Usage 

This section will focus on providing suggestions for future work which can be done 

to provide better results as well as describe some usages for the models built. 
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5.1 Future Work 

There are 3 main ways that could possibly improve the results. One would be to 

add more data, the other one to add more features and the third one is to explore other 

types of neural networks. In order to reduce the RMSE for regression or increase the 

accuracy percentage for classification a bigger dataset could be used. The current one has 

85,156 instances which after cleaning and splitting the data leaves 29,297 instances to 

train the 12 original models on. Increasing the number of instances could possibly improve 

the models and provide better results. Another way to improve the results would be to 

add extra features. For example developing a method to recognize different kinds of text 

in the description, such as stack traces and code. Additionally, some information could be 

added to each bug report regarding the developer that has resolved the problem. Since 

the main goal of this project is to predict the bug-fix time, and developers have a lot of 

influence regarding the time it is going to take to resolve a bug. Increasing the complexity 

of the neural networks (for example, adding more convolutional layers to a CNN, or more 

LSTM layers to an LSTM neural network) or implementing a different model (such as Gated 

Recurrent Unit or Hopfield Network), could possibly improve the results. 

Unfortunately working with a bigger dataset or a more complex network would 

require much greater resources, such as more time and computational power, which are 

unavailable for this project. 

5.2 Usage 

Using the best model trained for prediction the resolution time of a bug report can 

be helpful for both developers and reporters. The best model in this case would be the 

model which is a combination of an LSTM and an MLP and takes as an input both text and 

numerical features including version and component. That model achieved a result of 

0.2233 RMSE on the testing set. This means that the predictions would be off by 22.33% 

on average. Developing a system that would predict the resolution time of a bug report 

together with the priority could really help developers manage their time better and 

resolve more bug reports. On the contrary if a reporter knows on average how long it 
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would take to fix the bug they are reporting, could lead them to providing more 

information in order to improve the resolution time.  

With regards to priority classification, as it can be seen from the results section the 

highest accuracy is 85.48% accuracy on the testing set, which means that the prediction 

is correct in nearly 85.5% of the cases. With accuracy that high, this model could be used 

to develop tools which automatically assign the priority of new bug reports, which would 

make the job of the developers working on those bug reports easier. 

Chapter 6: Conclusion 

The goal of this project was to examine the behaviour of neural networks when 

applied to bug report analysis. In particular to try and predict the resolution time and the 

priority of bug reports, as this has not yet been done using deep neural networks. This 

dissertation was also done to analyze the significance of adding numerical features to 

textual features by combining different kinds of neural networks.  

After conducting multiple experiments, using different kinds of neural networks 

and number of features it was concluded that adding numerical features to textual 

features can increase the accuracy of the predictions for both the resolution time 

prediction and the priority classification. It was also verified that using the text features 

from a bug report alone is enough to classify the priority in about 85% of the cases. 

Even though the assumptions that the prediction of the bug-fix time can be 

accurately obtained using only the textual features were refuted, there are some 

suggestions that those hypotheses could also be supported given that additional data was 

obtained and trained on more complex models, which are inaccessible, given the available 

resources.  

The overall experience from this experiment would also suggest that neural 

networks are very useful when working with textual data and to combine different types 

of features. Running the experiments also suggests that adding the positive and negative 

sentiment of a bug report as a feature may make a difference even if it is a small one. 
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Other observations from this dissertation are that in the case of textual processing, RNNs 

like the LSTM used generalize better than CNNs. 
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