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Abstract

The application of machine learning to the remote sensing field has produced many ex-
citing new advancements. One of these is in land-classification: identifying the land-cover
content present in satellite imagery. The use of deep neural networks has provided state-
of-the-art accuracies for land-cover classification. This project experiments with deep
learning architectures and novel image handling to methods to improve the classification
accuracies achievable by Global Surface Intelligence, a geospatial analytics company. By
implementing segmentation and patch-based training, we successfully show that by ex-
panding their current methodology to consider spatial content, they can achieve increased
classification accuracies.

ii



Acknowledgements

I’d like to kindly thank:

Dr Marc Roper, Mr William Wallace and Prof Ian Ruthven from the University of Strath-
clyde, for their helpful guidance and support. Alexey, Mark and Jelmer from Global
Surface Intelligence for their invaluable assistance throughout the project. Georgi and
Jerry from L3C AI Cloud for their technical assistance and cloud services.

iii



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Multispectral Imagery . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Global Surface Intelligence Ltd . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Problem Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work 12
2.1 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Classifying Remote Sensing Data . . . . . . . . . . . . . . . . . . . 15
2.1.2 Land-Cover Classification . . . . . . . . . . . . . . . . . . . . . . . 18

3 Research Methods 21
3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 What is the impact of considering local regions of pixels when per-
forming image classification activities? . . . . . . . . . . . . . . . . 21

3.2.2 What would be the feasibility of GSI adopting a patch-based ap-
proach based on the proposed methods? . . . . . . . . . . . . . . . 22

4 Implementation 23
4.1 Area of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Segmentation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Segmentation of Scene . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Constructing Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.4 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.5 Training and Validation Method . . . . . . . . . . . . . . . . . . . 35
4.2.6 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Patches Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Scene Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iv



4.3.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.4 Training and Validation . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.5 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.6 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Model Performance 46
5.1 Segmentation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Training Performance . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.2 Validation Performance . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.3 Prediction Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Patch-based Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.1 Training Performance . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2 Validation Performance . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.3 Prediction Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.4 Scene Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.1 Training and Validation Results . . . . . . . . . . . . . . . . . . . . 59
5.3.2 Prediction Performance . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Discussion 63
6.1 What is the impact of considering local regions of pixels when performing

image classification activities? . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.1 Segmentation Approach . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.2 Patch Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 What would be the feasibility of GSI adopting these methods into the cur-
rent methodology? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 69

v



List of Figures

1.1 Images from the European Space Agency satellite Sentinel-2. . . . . . . . 2
1.2 Sentinel-2 Bands 2-7, 11 and a true colour image, from top left to bottom

right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Sentinel-2 Bands 4 and 8, combined to display NDVI, from left to right. . 4
1.4 The CORINE ground-truth data for a Sentinel-2 scene. . . . . . . . . . . . 6
1.5 GSI land-classification methodology. . . . . . . . . . . . . . . . . . . . . . 7
1.6 Demonstrating of information loss by decreasing resolution, left to right. . 8
1.7 Constructing a hierarchy of segments. For the segment tagging, every pixel

in a given numbered region is assigned that number. . . . . . . . . . . . . 9
1.8 Forming overlapping tiles around individual pixels across the AOI. This is

done for every pixel in the AOI. The borders will be padded with zero values
so that all patches are the same size. . . . . . . . . . . . . . . . . . . . . . 10

2.1 The main components of a CNN architecture. . . . . . . . . . . . . . . . . 13
2.2 Image segmentation into distinct classes [20]. . . . . . . . . . . . . . . . . 14
2.3 A hyperspectral stack of images, where each thin layer represents a band.

Hyperspectral datasets are generally composed of 100-200 bands. . . . . . 16
2.4 Upsampling CNN process to produce a segmented heatmap of input dimen-

sions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Samples from commonly used aerial imagery datasets, highlighting the con-

trast in image content between aerial and satellite imaging. . . . . . . . . 17
2.6 Comparison highlighting the difference between remote sensing and general

image datasets. The first, ImageNet, has been used in the past for remote
sensing image transfer learning tasks. . . . . . . . . . . . . . . . . . . . . . 19

4.1 10m resolution Sentinel-2 Bands 2,3,4 and 8. . . . . . . . . . . . . . . . . . 24
4.2 True-colour image of the Sentinel-2 tile. . . . . . . . . . . . . . . . . . . . 24
4.3 Stacking the four individual bands to form our scene raster. . . . . . . . . 25
4.4 Final AOI created by merging bands 2,3,4 and 8, cropping and increasing

the image contrast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 CORINE ground-truth data corresponding to the cropped AOI. . . . . . . 26
4.6 CORINE Land-Classification Colour Legend . . . . . . . . . . . . . . . . . 28

vi



4.7 High scale and low minimum segment size segmentation. . . . . . . . . . . 29
4.8 Increasing segment scaling and size, from left to right. (Scale: 100, 300,

750, minimum size: 50, 100, 250. . . . . . . . . . . . . . . . . . . . . . . . 29
4.9 Final AOI segmentation (Scale: 300, minimum size: 250). . . . . . . . . . 30
4.10 Tagging segments based on mean pixel value. . . . . . . . . . . . . . . . . 31
4.11 MLP basic architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.12 Forming overlapping tiles around individual pixels across the AOI. . . . . 36
4.13 A 3x3 and 5x5 patch, with buffer sizes of 1 and 2 respectively, from left to

right. As can be seen the buffer is taken outwards from the central pixel,
outlined in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.14 Range of information offered by different patch sizes of a region of interest. 37
4.15 CNN architecture for the patch-based approach. Note: filter size was 3x3

throughout, other dimensions were as labelled. . . . . . . . . . . . . . . . 39
4.16 Padding according to the patch dimensions around the AOI. The high-

lighted pixels along the top row of the AOI indicate the path of travel for
the patch, representing the centre pixel sliding along the row with a stride
of 1, and are distinct from the external padding pixels. . . . . . . . . . . . 41

4.17 Commonly-used remote sensing image archives. [63] . . . . . . . . . . . . 42
4.18 Sentinel-2 Bands 2-7, 11 and a true colour image, from top left to bottom

right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.19 BigEarth CNN architecture. Similar to previous CNN, with the addition

of MaxPooling layers after each convolution double. Notably, the final two
convolutional blocks are of similar dimensions to the previous architecture. 44

5.1 Overfitting during Test Runs 2 and 4, from left to right. . . . . . . . . . . 47
5.2 Results from 20% drop-out regularization and training set increase to 100,000

pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Optimizer changed to Stochastic Gradient Descent with a learning rate of

0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Training performance on 3x3 and 7x7 patches, from left to right. Note:

epoch difference due to an early-stopper callback. As the validation ac-
curacy began to plateau, training was stopped. This was a useful way of
optimising the training process. . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Adjusted training performance, with a learning rate decrease to 0.001 and
batch size increase to 512. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Training on 500,000 patches for 3x3 and 7x7 patch models. . . . . . . . . 55
5.7 CNN-3x3 label predictions, corresponding to the CORINE Land-Type colour

legend shown earlier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.8 CNN-7x7 label predictions, also corresponding to CORINE colour scheme. 58
5.9 CNN-3x3 prediction probabilities, with black representing low confidence

and white representing high confidence. . . . . . . . . . . . . . . . . . . . 59

vii



5.10 CNN-7x7 prediction probabilities, similar colour-scale. . . . . . . . . . . . 59
5.11 Initial BigEarth training performance. . . . . . . . . . . . . . . . . . . . . 60
5.12 BigEarth training after drop-out regularization. . . . . . . . . . . . . . . . 60
5.13 Reduced BigEarth-CNN architecture performance. . . . . . . . . . . . . . 61
5.14 BigEarth-CNN scene-wide predictions. . . . . . . . . . . . . . . . . . . . . 62

6.1 CNN-3x3, CNN-7x7 and ground-truth over Swindon. . . . . . . . . . . . . 65
6.2 True colour image, CNN-3x3, CNN-7x7 and ground-truth over a small airport. 65
6.3 CNN-3x3, CNN-7x7 predictions and the true-colour image over a region of

roads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 CNN-BigEarth predictions for the Swindon area. . . . . . . . . . . . . . . 66

viii



List of Tables

4.1 CORINE Land-Types, Labels and AOI Representation . . . . . . . . . . . 27

5.1 Training our MLP for 100 epochs on 10,000 segment-tagged pixels. . . . . 47
5.2 Run to run performance comparison for our MLP, MLP-Pixel and Random

Forest Classifier baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Class breakdown for our best-performing MLP model, tested on our test

subset of 50,000 pixels from the segment-rank dataset. . . . . . . . . . . . 50
5.4 MLP performance on testing subset of 50,000 pixels. . . . . . . . . . . . . 50
5.5 Prediction performance for the GSI Random Forest (RF) classifier on 400,000

extracted pixels from our AOI. . . . . . . . . . . . . . . . . . . . . . . . . 51
5.6 Overall metrics for the GSI Random Forest Regressor. . . . . . . . . . . . 51
5.7 MLP prediction performance over 400,000 pixels. . . . . . . . . . . . . . . 52
5.8 Prediction metrics for the MLP. . . . . . . . . . . . . . . . . . . . . . . . . 52
5.9 Range of patches considered, with dimensions, pixel contents and label

number per patch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.10 Patch Size vs Validation Accuracy . . . . . . . . . . . . . . . . . . . . . . 53
5.11 Class breakdown for our best-performing CNN model, tested on our testing

subset of 100,000 patches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.12 Overall CNN performance on our testing set of 100,000 pixels. . . . . . . . 56
5.13 Prediction performance for the GSI Random Forest (RF) classifier on 400,000

extracted pixels from our AOI. . . . . . . . . . . . . . . . . . . . . . . . . 57
5.14 Overall metrics for the GSI Random Forest Regressor. . . . . . . . . . . . 57
5.15 CNN-7x7 performance over the prediction set of 400,000 unseen pixels. . . 57
5.16 Overall metrics for the GSI Random Forest Regressor. . . . . . . . . . . . 57

ix



Chapter 1

Introduction

Image classification is the primary product of Global Surface Intelligence Ltd (GSI),
an Edinburgh-based geospatial analytics company. Using machine learning and sta-
tistical methods, they extrapolate commercially valuable data and insights, from an
array of satellite, drone and aerial imagery. Machine learning algorithms have seen
a massive rise in popularity for remote sensing image analysis in recent years. The
powerful performance of deep learning neural networks has been widely adopted in
the field, due to their impressive capabilities at performing common remote sens-
ing tasks such as preprocessing, detection and classification [10, 41]. Deep neural
networks, whilst not currently in use by the GSI classification methodology, have
shown state of the art performance for land-classification, the primary service of-
fered by GSI. Therefore, deep learning is a natural area of interest for GSI. A key
component of the current GSI classification pipeline is image processing: how the
raw satellite imagery can be transformed and modified to greater reveal its fea-
tures. This project aims to expand this methodology, experimenting with a range
of image handling techniques which would allow the incorporation of deep learning
to the GSI work-flow. Specifically, this project investigates the use of deep neural
networks trained on both segmented and patch-based imagery, aiming to determine
the feasibility of GSI adopting a deep-learning approach to their land-classification
methodology.
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1.1 Background

1.1.1 Remote Sensing

The capabilities of remote sensing technologies today have allowed satellite imagery
to be increasingly accurate and readily available. Out of approximately 2000 active
satellites currently in Earth’s orbit, 35% of these are involved in Earth Observation
(EO) activities [67]. This has given rise to a huge increase in the volume and velocity
of satellite imagery produced, with some satellites producing terabytes of data daily
[66].

Satellite imagery can have a substantial impact on many important activities here on
Earth. It’s effective use can assist scientists, governments and agencies in monitoring
critical assets, protecting fragile ecosystems and warning against extreme weather
events [32]. Organisations and companies can check the condition of valuable assets,
farmers can remotely monitor the health of their crops and city planners can observe
city growth [48, 49, 6]. It is evident that there is an exceedingly diverse range of
applications for satellite imagery to be exploited.

Figure 1.1: Images from the European Space Agency satellite Sentinel-2.

A major application of satellite imagery is in land cover classification. Land cover
is defined as “the observed biophysical cover on the Earth’s surface" and extends to
man-made structures and population centres [52]. The use of remote sensing data for
land classification extends back to the mid-1940s [44, 1]. Inspired by the success of
aerial reconnaissance in the First and Second World War, the agricultural industry
began using aerial imagery to monitor farmland. In 1960, the first meteorological
satellite was launched, sending back the infrared images of cloud patterns. Then
in 1972, a true-colour imaging satellite was launched, the first of the US Landsat
programme. Europe followed with the European Space Agency (ESA) Copernicus
programme [45]. This marked the start of the democratisation of space-borne data,
which had previously been difficult to obtain by members of the public. Sentinel-
2, part of the Copernicus constellation, produces 5TB of freely available, high-
resolution imagery of Earth’s surface everyday [18]. By resolution, we mean the
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spatial resolution measured, that is to say the smallest linear or angular separation
between two objects that the sensor is sensitive to. [30]. Ranging from hundreds of
metres to hundreds of centimetres, depending on the application the level of detail
that can be achieved is impressive.

Evidently, satellite imagery is a useful tool for the task of land-classification. How-
ever, with the level of new data produced everyday, keeping track of changes on
the Earth’s surface is no easy task. To meet this challenge, progress in the fields
of artificial intelligence and remote sensing have produced effective image classifica-
tion methods. These can be used to classify the content of satellite imagery, and
display surface characteristics that are invisible to the human eye. This is due to
the common use of multispectral image sensors, which capture images by sensing
for different wavelengths of light, including those outwith the visual region. Multi-
spectral imagery can reveal a wealth of previously unrealised information about an
area of land. We’ll discuss how this works in the next section.

1.1.2 Multispectral Imagery

A multispectral image is a collection of several monochrome images of the same
scene, each taken with a different sensor and representing a different region on the
electromagnetic spectrum. Each image is referred to as a band. EO satellites operate
sensors which are designed to capture a range of bands, allowing for a wider range
of visualisation. We can see this in Figure 4.18, which shows a selection of the bands
detected by ESA’s Sentinel-2 satellite.

Figure 1.2: Sentinel-2 Bands 2-7, 11 and a true colour image, from top left to bottom
right.

We can see in the top row, it is hard to identify regions in the image. The bottom
row shows the borders of a town in the centre of the image, and the outline of
surrounding fields. We can also see the outline of waterways more clearly. The
first three images represent bands 2, 3 and 4. These represent the visual region of
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the electromagnetic spectrum. Combining these gives a coloured image, seen in the
last image. The rest of the tiles represent different regions of the spectrum. The
contrasting differences between the tiles show the amount of information that can
be revealed by detecting multiple spectra.

Each individual band gives a different representation of the scene. However, by
combining certain bands, we can reveal even more information. By examining the
proportions of difference between certain bands, we can give a new representation
of the scene at hand. One of these is the Normalized Difference Vegetation Index
(NDVI), which is calculated with Bands 4 and 8, as seen below:

NDV I =
B08−B04

B08 +B04

B04 represents the pixel values for Band 4, subtracted from B08, the pixel values in
Band 8. We can visualise the outcome of this operation below.

Band 4 Band 8 NDVI Index

Figure 1.3: Sentinel-2 Bands 4 and 8, combined to display NDVI, from left to right.

Healthy vegetation reflects more near-infrared light, the wavelength of light picked
up by Band 8, and absorbs more red light, that picked up by Band 4. Therefore
by calculating NDVI we can monitor vegetation levels, where a high NDVI presence
indicates healthy vegetation. We can see in Figure 4.18, the NDVI was calculated
and plotted using a colour range, where black represents low NDVI and light pink
represents high. We plot it over a colour range as a greyscale monochrome image is
not very useful for visualization. It shows a large amount of fields on the left-hand
side with varying levels of NDVI. We can clearly see the boundaries of the fields and
the outline of towns, roads and waterways. Interestingly, we can also distinguish
between less and more healthy patches of vegetation, shown by the differing shades
of pink across the fields. We can see a bright patch at the lower centre of the image,
showing a very-healthy cluster of vegetation. This is not seen in the other two bands.

This shows that inclusion of multispectral imagery can reveal previously unrealised
features of a scene. Applications for this new information have been found across
many industries, with clear uses in agriculture, forestry and urban planning apparent
just from the scene discussed above. A company taking advantage of this potential
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is Global Surface Intelligence Ltd.

1.1.3 Global Surface Intelligence Ltd

Applications for remote sensing data have risen in recent years, as the popularisation
of big data has meant it’s great potential can be exploited on a larger-scale. A rising
awareness of these applications have produced an increasing demand for satellite-
derived analytics [22]. A company taking advantage of this demand is Global Surface
Intelligence Ltd (GSI), an Edinburgh-based geo-spatial analytics company.

GSI are a data services company which provides machine learning and predictive
analytics on large and complex remote sensing datasets. They use aerial, drone
and satellite imagery to derive key insights, intelligence and decision making tools,
delivering them to customers across major industries such as agriculture, forestry,
energy and more. Typical GSI services would be using satellite imagery to assist
a farmer monitoring crop growth, identifying different tree species for a forestry
commission, or detecting pipeline breaches for an oil company, for example.

The underlying activity in all of these services is classification. Effective classification
is an integral part of the GSI work-flow: achieving accurate identification is vital
in providing reliable advice to customers. In order to classify a customer’s area of
interest (AOI), GSI train machine learning models and use them to predict over the
AOI. These models are selected and designed by GSI engineers.

A brief machine learning overview: Machine learning is a branch of artificial
intelligence (AI). It addresses the fallacy in assuming humans have complete knowl-
edge of the factors determining an event’s outcome. Instead, machine learning uses
computer systems to find and “learn" these determinants. For example, a traditional
application of AI is email spam detection. Based on human observation, an AI sys-
tem would be told what features in an email to look for, and, if spotted, to flag the
email as spam. This makes the assumption that human observation captures all the
possible features that distinguish an email as spam. The machine learning approach
would be to expose the system to emails already identified as spam. This process of
“training" allows the system to establish for itself the important features, which can
then be looked for in new, unseen emails. Machine learning algorithms have proved
effective at determining underlying features and patterns within datasets, ones that
humans may miss [64, 53, 55].

Whilst the final performance of a machine learning model is weighted on the predic-
tions it makes, these are determined by the quality of training. Training a machine
learning model effectively relies on the quality of the training data. In the realm of
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image-classification, the quality of the training data depends on how much informa-
tion is contained in each image. To maximise this, an image can be manipulated
to greater reveal its features. This allows the model to more easily connect these
features to a given label, or in our case a given land-type, thus improving it’s abil-
ity to classify that land-type whenever it next sees those features. This makes the
manner in which the image is manipulated prior to training an important factor to
consider.

1.1.4 Problem Area

Our project relates to the manner in which GSI process their imagery before using
it to train machine learning models. This section will provide an overview of the
current GSI land-classification methodology, before discussing some methods which
this project proposes, forming the basis of an alternative methodology.

GSI Current Methodology

The current GSI training methodology is as follows. Satellite imagery is acquired
from Landsat-8 and Sentinel-2 satellite sources. Normally it contains multispectral
optical and radar imagery, representing both active and passive sensing data. The
resolution of the imagery is between 10m and 60m, depending on source and sensor.
The data is cleaned and filtered, with adjustments made for atmospheric corrections
(e.g. cloud coverage, haze, snow). Ground-truth data is acquired. Ground-truth
represents the actual land-cover of the area of imagery we are training on. GSI use
CORINE land-cover maps, which are an established set of 45 different land-cover
types. CORINE is used across Europe and is well-known.

Sentinel-2 scene CORINE Land-Cover Map

Figure 1.4: The CORINE ground-truth data for a Sentinel-2 scene.

Next, in order to gain a more generalised representation of both the imagery and the
land-cover maps, they are both sampled to the same resolution. This means having
to degrade the resolution of the imagery to that of CORINE, which is 400m. After
resolution matching, the imagery can then be labelled pixel to pixel with CORINE.
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Once labelled, training can begin on the 400m image pixels. The model learns the
relationship between the pixel band values and the assigned CORINE land-cover
label.

GSI use a machine learning algorithm known as a Random Forest, a collection of
tree-based algorithms where each tree makes individual classifications for what a
pixel could be. These are then aggregated, using the “wisdom of the crowd" to
establish the overall highest-confidence prediction [9]. We will talk further about
algorithm choice later in this report.

Finally, once the model has reached a certain level of training accuracy, that is to
say how well the model has learned the training set, we can test it on new imagery.
This would come in the form of a separate AOI, which could be determined by GSI
or by a customer. We can visualise this end-to-end process below.

Figure 1.5: GSI land-classification methodology.

After training on 400m resolution imagery, the model takes in the pixels which make
up the AOI. The model will then provide a prediction per pixel of the AOI.
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The distinct feature of this method is the downsampling. There are merits to down-
sampling of this nature. By reducing the pixel size resolution to 400m, you effectively
smooth the local region into one average value. Therefore the CORINE label which
is matched with the 400m pixel represents the average class representation of that
small region. However, this could be viewed as a rough approach. The pixel vari-
ability within a 400m2 area of 10m resolution imagery is high. By smoothing this to
one value, a large amount of information would be lost. Any zones of heterogeneous
pixels, which are common in satellite imagery, would be smoothed out and assigned
the same label. Information loss due to changes in resolution can be visualised below
in Figure 4.18.

Figure 1.6: Demonstrating of information loss by decreasing resolution, left to right.

Whilst aggregating pixel values to averages over a region can provide useful infor-
mation, they fail to inform on spatial content or texture within that region. These
average would miss small details, which can often be key identifiers. For example,
distinguishing between airport runways or urban green spaces. These land types are
most identified by their intricate shapes, which would be overlooked when taking
an average over the wider area.

This Project

Considering that pixels in remote sensing data are normally surrounded by pixels
of similar value, it would be logical to exploit this relationship when predicting
individual pixels [13]. Also, determining how local regions of a scene belong to the
global hierarchy of objects or patterns has long been identified as a key component
of human visual perception [69]. Under these assumptions, this project proposes
two main methods to incorporate into the GSI image classification methodology.

1) Hierarchical Graph-based Segmentation: This method uses a graph-based
approach break an image into regions of pixel-similarity, or segments. Applying this
to our AOI, we can produce a mosaic of distinct shapes. Each shape contains pixels
of similar value. Recording the pixel values and count of each shape allows us to
form a hierarchy of segments, allocating segments that contain similar groupings
of pixels to the same level. A given pixel’s segment rank represents the rank of
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the segment it is contained within. Using this hierarchy, we can form a training
set using band values and segment rank values, for every pixel in our AOI. With
this additional information on a pixel’s local region, we can achieve improved pixel
classification results. This method operates under the assumption that two distant
pixels which are of the same segment rank are likely to have similar values, and
therefore belong to the same land-cover type.

2 3 2

41

AOI Graph Segmentation Segment Tagging

Figure 1.7: Constructing a hierarchy of segments. For the segment tagging, every pixel
in a given numbered region is assigned that number.

This method uses graph-based segmentation to form similar pixels into regions. It
involves plotting each pixel as a node on a graph, with connections linking to each
of its neighbouring pixel nodes. A weight on each connection is set, depending on
the similarity between nodes. Similarity is quantified as pixel intensity, colour or a
similar attribute. These weights are then adjusted by an adaptive, greedy-algorithm,
meaning local regions of nodes are prioritised when changing weights.

Unlike singular pixels, the segments provide shape and contextual information, as
well as rich textural features. This extra knowledge can help exploit the benefit of
considering local neighbourhoods, whilst still providing a classification for individual
pixels.

2) Patch-to-Pixel Classification: The shape of the local region around a pixel
can be a key indicator of its class. For instance, a grey pixel could represent an
industrial warehouse, or be part of a road network. Without accounting for the shape
of surrounding pixels, a confident prediction would be hard to make. Accounting for
the shape of its local region would help identify distinguishable features, in this case
the thin curvature of a road or rectangular warehouse structure, making it easier
to classify. Under this assumption, this method involves partitioning our AOI into
overlapping tiles of pixels, or “patches".

By selecting a pixel and forming a surrounding patch, we can see local shapes and
texture which the central pixel is a part of. By associating the patch contents with
the pixel, we can gain more information on the locations where the central pixel
class appears. Using a predictive model, we will learn the relationships between
the content of each patch and its centre. This information is then used to provide a
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classification for that central pixel. Similar to segmentation, this method allows us to
retain the high-resolution classification of a pixel-based approach, whilst improving
overall accuracy due to the additional knowledge of spatial content. We can visualise
this below.

Figure 1.8: Forming overlapping tiles around individual pixels across the AOI. This is
done for every pixel in the AOI. The borders will be padded with zero values so that all
patches are the same size.

These methods may require selection of a new machine learning algorithm. Whilst
the GSI methodology involves the use of a Random Forest Regressor, we may ex-
plore other options. When considering clusters of pixels, as opposed to one, the
representation of the training data changes dramatically. An input no longer con-
sists of a singular value, but multiple values. Additionally, the positioning of the
values within one input relative to each other is a factor in that input’s labelling.
This increases the complexity of the relationship between an instance of the training
set and it’s label. For any model attempting to learn these relationships, the task
becomes harder.

To meet this challenge, this project utilises “deep learning", a form of machine
learning which utilises Artificial Neural Networks (ANN). ANNs are highly-suited
to inputs of a multi-dimensional nature, such as our 2-dimensional patches. ANNs
are biologically-inspired computing systems which are named after the structure of
the brain. Using a vast network of artificial neurons, they can detect underlying
features and patterns over a variety of inputs, without specifically being told what
to look for. The networks are capable of “learning" the features themselves, picking
up patterns which are hard to find manually [34, 68, 2, 50, 23, 15]. This project
makes use of various ANN architectures when implementing the proposed methods.
We’ll discuss these in detail later in this report.

To conclude, our project proposes an alternative training methodology for the land-

10



classification activities undertaken at GSI. This methodology will be produced in
a way that it is verifiable, by shared metrics, and comparable to the current GSI
methodology. This project will also involve recreating the GSI methodology to form
an imitation model to act as a baseline. This is required as we do not have access
to the complete current methodology, so to act as a temporary comparison this
project will implement a similar pixel-based classifier. This will be used during the
development of our models as a soft comparison. We do, however, possess metrics
from the full GSI methodology performance, gathered from results of a certain
testing scenario. By recreating these conditions, we’ll be able to make a direct
comparison of the final version of our methods. Using the results of this validation,
the project will be able to produce final recommendations for the proposed methods
use at GSI.
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Chapter 2

Related Work

This section contains a review of current image classification methodologies. We will
first consider methods commonly found across general computer vision projects, be-
fore concentrating on remote sensing classification, such as including aerial imagery,
and finishing with a review of satellite image land-cover classification.

2.1 Computer Vision

Computer vision is an extensive field with many techniques used to improve accu-
racy. With a range of different activities including object detection, scene classifi-
cation, semantic segmentation or change detection, the main task is classification of
some form. With so many different applications, there have emerged a wide range
of methods and approaches one can take to image classification. We will discuss
some relevant ones here.

Many computer vision projects involve the use of segmentation [61, 25, 46, 37].
Gould et al. incorporate object geometries into decision-making when splitting an
image into regions [25]. They follow work done by Hoi et al., who imitate the way
humans use local object orientation, perspective and positioning to understand the
layout of a wider scene [28]. Using similar visual cues, Gould et al. form regions of
comparably positioned objects in their image. They evaluate pixels based on local
geometry, merging together regions of horizontal or vertical pixels (e.g. pavements
and trees). This method achieves impressive segment purity: a metric describing
the extent homogeneity within each boundary. This innovative approach relies on
the presence of large, well-defined objects in the image material. The project also
required a large amount of hand-labelling to identify key features, an expensive
process.
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The use of hand-crafted features for classification has largely been outdated by
the arrival of “deep learning” [35, 70, 31]. Deep learning refers to the use of the
ANNs mentioned earlier. An ANN is built of sequential layers, and with these
layers being stack-able and of no fixed size, ANNs are easily customised. Due to
this, there have emerged many different architectures in use today. Most computer
vision projects involve the use of a convolutional neural network (CNN). Well suited
to image classification, CNNs account for image structure by handling images as
multidimensional inputs, and explicitly consider the spatial context of pixels through
their convolutional layers. These layers contain a number of a filter matrices, where
each matrix represents a pattern. These filters are “convolved” over the input,
searching for their respective patterns, and produce “feature-maps” based on the
presence of these patterns. We can visualise the basic layout of a CNN below.

Figure 2.1: The main components of a CNN architecture.

Stacked layers of these maps allow feature vectors to be formed and learned by
the network, which can then predict the input’s class whenever it detects similar
features. These feature maps form the input to each subsequent layer, and are
normally shrunk as they move through the network, represented by the pooling
blocks in Figure 2.1. This ability to form high-level representations of an image’s
structure mean CNNs are clearly a tool worth exploring in this project.

A project by Farabet et al. uses CNNs in conjunction with a similar style of seg-
mentation as done by Gould et al, this time on an image dataset for autonomous
vehicle training [20]. They use three separate CNNs, scaling the same image to three
different degrees to form the different inputs. In parallel, they segment the original
image into regions, creating a hierarchy of segments ranked by purity. Combining
the feature-vectors from the high to low-level CNN outputs, they account for the
different class densities, indicated by the segment hierarchy, by weighting low-level
feature-vectors more in regions of low homogeneity. This method achieves impressive
results over several benchmark computer vision datasets. This shows the suitability
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of the technique to datasets containing large, distinct objects, with low mixing of
classes; a common feature of computer vision datasets. Remote sensing imagery
generally has high granularity, therefore our approach has to account for this.

Figure 2.2: Image segmentation into distinct classes [20].

Some projects use CNNs as the method of carrying out segmentation [10]. In a
traditional CNN, the feature maps are “downsampled": a pooling operation is car-
ried out to reduce the input size, aiming to determine the main features by taking
the highest or average feature within a local regions on the maps. Eventually, the
features get flattened into a final one-dimensional vector, which represents the class
prediction. Here, the Deeplab-CNN differs by instead upsampling the prediction
vector, returning its dimensionality and size until it returns to its original dimen-
sions. This goes from a single or multiple labels for the image, determined by the
one-dimensional vector, to producing a prediction for every pixel in the image, re-
sembling a segmented heat-map. The model demonstrates leading results on the
PASCAL VOC dataset, a benchmark computer vision dataset [19]. Again, these
datasets contain images with small numbers of clearly defined objects. Producing
heat-maps of larger objects is more straightforward than with fuzzy, overlapping
objects containing multiple classes.

Several other works use segmentation with neural networks [61, 37]. Socher et al.
describe the use of a recursive neural network (RNN), a deep learning architecture
traditionally used in the field of natural language processing. They breakdown the
image in a manner similar to sentence deconstruction; considering key segments and
features in a similar fashion to how adjectives and nouns provide textual context.
This approach relies on the presence of a small number of dominant features, whereas
in our AOI there is a high number of similar features.

Liu et al. implement transfer learning to segment an animal image dataset. Transfer
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learning accounts for the use of a neural network that has already been trained. It’s
network of neurons have been configured for use on a previous dataset. Using it to
train on another dataset means the network may already be familiar with colours
or certain shapes, which could be detected quicker and with more confidence in the
new data. This relies on a level of similarity between the training and new dataset.
In this case, they use a famous computer vision archive, ImageNet [14]. However,
they also address a common theme which applies to all the works considered thus
far, that a level of cross-domain similarity between the features used for training
and the data one wants to predict must be present. Remote sensing data varies
significantly when compared to computer-vision datasets. Whilst the methodologies
considered are clearly applicable for general image classification, we will discuss their
application to remote sensing data in the next section.

2.1.1 Classifying Remote Sensing Data

Image classification becomes more complex when used for the remote sensing field,
mainly due to the presence of multispectral imagery, as well as the high level of
detail and irregularity in the image [41, 7, 75]. Processing the extra image layers
requires computational power and memory. The techniques still operate under the
same principles, however must be performed on each band separately. We’ll examine
projects who implement some of the methods discussed so far for the remote sensing
domain in the following section.

Ma et al. completed a comprehensive meta-analysis of algorithms used for analysing
remote sensing data, with the focus on deep learning applications. They discuss some
activities that can increase the image resolution, such as using autoencoders, another
deep learning architecture [75]. Zeng et al. merge high-resolution panchromatic
(black and white) imagery with low-resolution multispectral imagery, to enhance
spatial resolution and retain multispectral information; an activity known as image
fusion [29]. Liu et al. propose a similar technique, fusing high-resolution optical
imagery with LiDAR data [38], to improve classification of the Vaihingen aerial
image dataset [57]. Whilst our project has a single data-stream, the concept of
fusing different spectral images together to create a hybrid of high-res multispectral
content is useful for us, as our image sources are multispectral.

Another paper working with high-resolution imagery is a project by Zhu et al., which
proposes the inclusion of “hyperspectral" imagery to provide a greater resolution of
spectral information [76]. They also experiment with a Generative Adversarial Net-
work (GAN), a deep learning architecture which aims to produce a more represen-
tative encoding of a dataset [24]. Using GANs in this manner prevented overfitting
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occurring; a common occurrence with hyperspectral data due to the high feature
count.

Figure 2.3: A hyperspectral stack of images, where each thin layer represents a band.
Hyperspectral datasets are generally composed of 100-200 bands.

Similarly, in an attempt to address the trade-off between spatial-spectral content
present in hyperspectral imagery, Hamida et al. propose a CNN architecture opti-
mised for the 3D nature of multispectral imagery [4]. By treating each pixel as an n

x n x n volume, they implement 3D convolutions when filtering over the input. This
is done based on the assumption that different bands may display different features
for the same pixel. An innovative method of addressing the “curse of dimensional-
ity" in the hyperspectral image context. Including more bands to our project would
make this a worthwhile technique to experiment with.

Another image-handling approach, this time for high-resolution aerial imagery in the
UC Merced dataset [72], uses a CNN for unsupervised learning [43]. By removing
image labels, Marmanis et al. train a model with a greater knowledge of high-
level image features, after allowing it to first explore them freely, before retraining
with specified labels. Another CNN project by Liu et al. introduce the concept of
upsampling CNN inputs to output a segmented heatmap of the image, discussed
earlier by Farabet et al. They design a CNN with this “hourglass" architecture,
aiming to detect cloud content in RGB remote sensing data [36]. We can visualise
this CNN architecture in Figure 2.4.

Yu et al. propose an alternative preprocessing technique, which involves applying
three operations to each image in their collection: flip, translation and rotation [74].
Applying these to each image and retaining the original increases the total size of
the training set, and when applied to certain classes, can achieve a more balanced
dataset. They go on to apply a CNN on the augmented data using benchmark
classification datasets, to achieve state-of-the-art results. Data augmentation is a
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Figure 2.4: Upsampling CNN process to produce a segmented heatmap of input dimen-
sions.

common activity in image classification [12, 5, 11]. Data augmentation is appropriate
for use on small, misrepresented datasets, and whilst its advantages for increasing
diversity and class-balance are powerful, it does not create new information for a
given model, it only increases visual variability for existing imagery.

With further applications of deep learning found in object detection, land-use clas-
sification and semantic segmentation, classification has emerged the main activity
within the remote sensing field [41] . This refers to both land-cover and land-use clas-
sification, with several papers employing CNNs on the land-use UC Merced dataset
[7, 40]. In fact, the use of aerial imagery is common, forming many benchmark
remote sensing archives (WHU-RS19, RSSCN7, NWPR VHR-10 and the Vaihingen
dataset [26, 77, 16, 57]).

UC Merced Vaihingen WHU-RS19

Figure 2.5: Samples from commonly used aerial imagery datasets, highlighting the con-
trast in image content between aerial and satellite imaging.

Thus far, we have discussed image manipulation techniques used in remote sensing
classification, primarily through the use of CNNs. These works propose suitable
approaches to take in our project, however differ in some regards. Many of the works
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are classifying aerial imagery. This level of resolution is not as common in satellite
imagery. Whilst the methods are similar, our project has different requirements:

• Our data is strictly multispectral and RGB satellite imagery, not aerial
or single-band images.

• Our application is strictly land-cover classification, not land-use, object
detection, image fusion or scene classification.

We will now look at projects which are more aligned with the above criteria.

2.1.2 Land-Cover Classification

For classifying land-cover, the dominance of neural networks continue. In general,
images with detailed spatial content, such as high-resolution satellite imagery, are
well suited to CNNs [41]. As mentioned, considering one pixel at a time makes
it hard to take advantage of this spatial content [62]. Song et al. state how clas-
sification of high-resolution imagery is more accurate on a patch-basis compared
to pixel. Particularly for land-cover mapping, objects perform better as identifiers
when compared to pixels [8, 17, 42]. This provides strong rationale for the tech-
niques proposed by our project. We examine works who have implemented similar
approaches here.

The concept of training models on patches is first introduced by Sharma et al. Us-
ing Landsat data at 30m resolution, they create patches by sampling individual
pixels and forming a 5x5 surrounding tile. Assigning the centre pixel’s label to
the entire patch, they create a labelled dataset of patches. They train a CNN us-
ing this patch-based approach and run a comparison pixel-classifier, which trains
on individual pixels [58]. They highlight the advantages of considering surround-
ing spatial content, shown in the superior accuracies of the patch-based approach.
However there are some discrepancies: the patch-based and pixel-based classifiers
were trained on different pixels, so a direct comparison cannot be made.

Song et al. address this shortcoming by proposing a CNN architecture designed
for land-classification of multispectral imagery. Directly comparing this with the
approach posed by Sharma et al., along with several pixel-based classifiers training
on the same imagery [62]. They also include a “heterogeneity value", which describes
the complexity and contextual property of the land-cover [59]. Specifically, it’s value
for a given pixel depends on the diversity of neighbouring pixels. A high value
would mean a pixel is surrounded by dissimilar pixels. Song et al. go on to find
that patch-based classifiers outperform pixel classifiers on pixels of low to medium
heterogeneity. This is to be expected, as pixel classifiers are not concerned with local
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regions. This explains the superior performance of pixel-wise classifiers for pixels
with high heterogeneity. However, they conclude to state that overall accuracy was
higher with the patch-based approach.

Another project recognising the advantage of patch-based training was the work
done in creating the EuroSAT dataset, assembled by Helber et al. The EuroSAT
dataset consists of 27,000 28x28 multispectral images created from Sentinel-2 data
for the purpose of land-classification [27]. Helber et al. also implement a CNN
to provide a baseline measure of the dataset potential, and achieve an impressive
98.57% testing accuracy, notably when training only on the datasets RGB bands.
Therefore it is clear CNNs can achieve impressive results when training on patches.
However, it is not mentioned how the model generalised on patches of satellite im-
agery outwith the dataset. Our project requires good generalisation, as the content
GSI has to predict depends on customer requirements. Therefore, a large enough
dataset is required to expose the model to a high variety and quantity of imagery.

ImageNet sample.
Remote sensing sample

Figure 2.6: Comparison highlighting the difference between remote sensing and general
image datasets. The first, ImageNet, has been used in the past for remote sensing image
transfer learning tasks.

Whilst EuroSAT provides a good starting point for patch-based training, in order
to generalise well, CNNs need a high number of annotated images. To make up
for the relatively small size of EuroSAT, Helber et al. employ a common tool:
transfer learning on ImageNet. As previously mentioned, ImageNet (17 million
images belonging to 22,000 classes [14]) is useful to allow the network to get an
initial feel for general colours, shapes and textures. However, there are fundamental
differences between the everyday items and scenes in ImageNet and remote sensing
data, as clearly seen above.

To address the lack of publicly-available annotated high-resolution satellite imagery,
BigEarthNet was created [63]. BigEarthNet consists of over 500,000 multi-labelled
high-resolution Sentinel-2 images, and forms the largest archive of Sentinel patches
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to date (2019). To demonstrate the advantage of training “from-scratch" on this
dataset, i.e. without transfer learning, Sumbul et al. train a CNN on BigEarthNet
patches, and compare the results with a state-of-the-art CNN, partially trained on
ImageNet and then fine-tuned on BigEarthNet [63]. They achieve a 20% higher F1
score when training from-scratch. Whilst not being able to compare this approach
to a pixel-classifier, it still gives us strong rationale to experiment with patches.

A project that has made good use of transfer learning, however, is an analysis of
city slums by Wurm et al. Using a network trained on QuickBird [33], Wurm et al.
perform semantic segmentation on Sentinel-2 data. By creating a hierarchy of patch
sizes to train on, they find that transfer learning can be beneficial for Sentinel-2
imagery, if trained on data of similar resolution and content [71]. Similar to Farabet
et al.’s multi-scale three-way CNN discussed in Section 3.1, Wurm et al. experiment
with different patch-sizes. They find a larger patch size gives better predictions,
however this is only shown for the prediction of inter-city slums. This also could
explain the impressive results after transfer-learning on QuickBird, which is a very-
high-resolution (VHF) 0.65m imaging satellite, suitable for detecting complex urban
landscapes [39]. However, patch-size experimentation would be an appropriate com-
parision to make during our work, as it could yield a range of results.

Another study with patch-size was undertaken by Tong et al., classifying high-
resolution imagery from the Chinese Gaofen-2. They proposes a novel hybrid pixel-
patch approach. They perform hierarchical segmentation on an image, then after
sorting and classifying the imagery by patch, they integrate the patch classification
with the segmentation boundaries through a major-voting strategy [65]. They con-
sider the most frequently appearing class within each segmented region, and use this
to inform the patch classification for that corresponding region. If multiple patches
are present in a segment, then only the region pixels contained by that patch are
used. They also experiment with different patch and segmentation scales. They
concluded that segmentation scale depends on the resolution and scale of objects in
the training image. Contrary to Wurm et al., they state a smaller patch size yielded
optimum results, due to each patch having a single label meaning more information
was lost as you increased the patch size.

Evidently, there is a lot of potential to experiment with the concepts of patches and
segmentation in the GSI land-classification methodology. In both general computer
vision projects, aerial imagery and satellite multispectral imagery, these techniques
have been applied to considerable success, in a range of applications. We have seen
different forms of both approaches, including variable patch sizes, different spectral
bands, innovative metrics and a hybridisation of the two techniques. Therefore there
is a clear rationale for GSI to experiment with these methods.
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Chapter 3

Research Methods

3.1 Research Questions

• What is the impact of considering local regions of pixels when performing
image classification activities?

• What would be the feasibility of GSI adopting a patch-based approach based
on the proposed methods?

3.2 Research Methodology

3.2.1 What is the impact of considering local regions of pixels when
performing image classification activities?

This question will be answered in two parts. First, we must understand the perfor-
mance of image classification when only considering individual pixels. This involves
examining the current GSI methodology in detail, and understanding its perfor-
mance across the range of different features in our AOI. There may be some land-
types a pixel-based approach excels at, compared to our methods. There may also
be indicators of how to improve on it. Using standard machine learning evalua-
tors, such as classification reports, we will be able to understand the performance of
the current methodology. Additionally, we’ll implement a similar baseline classifier,
that resembles the current GSI methodology. This is because this project did not
have access to the full working GSI methodology, so in order to inform our model
development, a similar model was recreated.

We’ll also be able to communicate with GSI engineers on the key design choices
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that went into the legacy method’s design, as well as any other comments on its
performance. By maintaining a good communication link and making the most of
the wealth of relevant knowledge that exists at GSI, we will be able to determine
how to improve on the current approach.

After understanding the impact of pixel-only classification, we can properly assess
the effects of implementing our proposed methods. Using satellite imagery provided
by GSI, we will experiment with the segmentation and patch-based techniques by
experimenting with models trained on this data. Then, we’ll train our model on
this augmented data. This will require ground-truth data for all of our imagery,
so that the model can learn the relationship between the image content and its
land-types. By evaluating the training and prediction performance of our machine
learning model, using similar metrics to the evaluation of the current methodology,
we can then fully understand the impact of the proposed methods..

3.2.2 What would be the feasibility of GSI adopting a patch-based
approach based on the proposed methods?

A key factor in evaluating this project’s methods will be estimating the feasibility of
efforts to integrate the proposed methodology to the actual GSI work-flow. To check
the viability of the method, it’s performance will have to be evaluated using shared
metrics, to compare to the results of the current method. We can easily achieve this
by using our answers from the previous questions. These will provide a quantifiable
basis, as well as overall comments, on which GSI can base their decision on.

If the proposed method passes the validation procedures, then GSI will likely exam-
ine the method further, making adjustments and changes to allow it to be stream-
lined into the GSI work-flow. GSI would be using the method as part of a back-end
system designed to classify land-cover in satellite imagery. It would not be used
as a customer interface, user experience, or application. The method is strictly a
method of training machine learning models for a specific application.

If GSI choose not the use the proposed method, they may still examine the work
done, and extrapolate any useful information and research. This could be used
to inform changes they themselves go on to make to the current methodology, or
any work done developing similar software. Or, it may be the work done by this
project simply indicates to GSI that this problem area is not worth exploring, or
that resources are better allocated in a different manner, or a different area. It could
validate their existing methodology, highlighting its advantages and areas that are
hard to improve.
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Chapter 4

Implementation

This section describes how our project approached the research questions posed in
the previous section. Our main goal was to determine the viability of our proposed
training methods. To do this, it was logical to use imagery provided by GSI. This
would allow for a more direct comparison afterwards.

4.1 Area of Interest

The scene provided by GSI can be seen below. It represents a tile captured by
the Sentinel-2 satellite. We had access to the three different resolutions captured
by Sentinel-2: 60m, 20m and 10m. Across these, Sentinel captures multispectral
imagery spanning 13 different bands.

We decided to use the 10m resolution imagery, or bands 2, 3, 4 and 8. For exper-
imenting with different pixel-handling methods, it was logical to use bands which
were all of the same resolution. This would make processing and handling easier.
Additionally, the 10m resolution imagery provided the greatest level of detail, and
would ideally be the most informative to use. This level of resolution was deemed
an appropriate level to extract information on both the region and biome-level [30].
Therefore this design choice was both practical and would access the greatest level
of information per pixel.
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Figure 4.1: 10m resolution Sentinel-2 Bands 2,3,4 and 8.

Figure 4.2: True-colour image of the Sentinel-2 tile.

We can see the 10m resolution bands of our scene in Figure 4.1, and a true-colour
image, compiled from bands in 2,3 and 4, in Figure 4.3. Due to adjustments made for
the inclination of the Sentinel-2 orbit, we can see the effects of the image cropping,
shown by the black section on the left-hand side. Spanning an area of approximately
10000km2, Figure 4.3 displays South-West England, with Bristol and Swindon as
the main urban centres in the centre and lower-right of the scene, respectively. The
rest of the image is predominantly fields, vegetation and water.

The true-colour image only incorporated three of the four bands we had. In order to
consider all bands, we had to merge the four bands into a single object. A commonly
used datatype for geographical information sciences is a raster. A raster is a matrix
of cells, where each cell position corresponds to a position in an image, map, or
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other spatial representation. The cell value represents some real-world phenomena,
such as colour, elevation or temperature. Whilst each individual band represented a
raster, rasters can be combined into multi-dimensional objects, and in our case the
scene would be combined into the following dimensions:

SceneRaster = height ∗ width ∗ band-count

Here, height and width represent the dimensions of the individual band rasters.
Each band was stacked, in the order of 2,3,4 then 8. We can visualise this process
below.

Figure 4.3: Stacking the four individual bands to form our scene raster.

Once the bands were merged, we wanted to reduce the overall size of the scene. At
10980 by 10980 pixels, it was a large, memory intensive object. In their readable
TIFF format, the four bands required 1.6GB of storage space. To reduce this to a
more manageable size, we decided to crop the scene. Using coordinates provided
by GSI, the scene was reduced to an AOI of approximately 440km2, or 40km by
11km. The AOI was also brightened to improve scene visibility. We can visualise
this process below.
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Figure 4.4: Final AOI created by merging bands 2,3,4 and 8, cropping and increasing the
image contrast.

We required ground-truth for the new AOI. This would also be provided by GSI. It
was practical to use the same ground-truth classification system, CORINE Land-
Cover, as the current methodology, to allow for a direct comparison to be made.

Figure 4.5: CORINE ground-truth data corresponding to the cropped AOI.

We now had our finalised AOI in the form of a three-dimensional, 4400x1100x4
raster, representing the AOI width, height and band count. Every pixel in the AOI
represented a vector of length four, with one value for each band.
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The CORINE ground-truth data was a two-dimensional raster, where each pixel
value, or colour, represented a land-type classification, and corresponded to an actual
geographical coordinate. In order to make pixel to pixel comparisons, both the AOI
and the ground-truth had to be on the same coordinate reference system (CRS). A
CRS is a standardised coordinate-based global system used to identify and locate
spatial entities. Establishing a uniform CRS was essential if we wanted to compare
a location in the AOI with it’s position in the ground-truth. Our project used the
World Geodetic System (WGS), which was established in 1984, and is the global
standard for cartography and satellite navigation [54]. We’ll refer to it as WGS84
from here on.

The AOI contained 17 of the 45 CORINE Land-Cover classifications. We can observe
the class content and their representation in the scene below.

CORINE Land-Cover Classification Label % AOI
No data 0 1

Continuous urban fabric 1 4
Discontinuous urban fabric 2 12.5

Industrial or commercial units 3 4
Road and rail networks and associated land 4 2.5

Airports 6 0.5
Dump sites 8 3

Construction sites 9 4
Green urban areas 10 1.5

Sport and leisure facilities 11 4
Non-irrigated arable land 12 22

Pastures 18 27
Land occupied by agriculture and vegetation 21 3

Broad-leaved forest 23 6
Mixed forest 25 2

Transitional woodland-shrub 29 1
Water bodies 41 2

Table 4.1: CORINE Land-Types, Labels and AOI Representation

At first glance, it is clear there is an imbalanced class representation. Some land-
types cover over 20% of the scene, and many represent less than 5%. This is more
clearly visible below in Figure 4.6. Class imbalance could skew our model’s under-
standing of the overall dataset, making it more biased when predicting the classes it
has seen more of. We’ll discuss the effects of class imbalance later on in this report.

Once we had both our AOI and ground-truth prepared, we could begin implementing
our methods. We’ll discuss this process in the next section.
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Figure 4.6: CORINE Land-Classification Colour Legend

4.2 Segmentation Approach

After cropping, acquiring ground-truth and establishing the correct coordinate sys-
tem, we could first begin by segmenting the AOI. Using the graph-based similarity
measure, discussed in Chapter 1, we could apply this to our merged AOI, breaking
it into segmented objects. We can see the result of this below.

4.2.1 Segmentation of Scene

We can see the first segmentation of our AOI below in 4.7. The pixel band values
were aggregated to a single value per pixel. This value represented a pixel intensity,
or colour. Graph-based segmentation plots each of these values as a node on a graph,
and assigns connections between each node, with the strength of the connection
correlating with how similar the pixel colours are. Based on this similarity measure,
pixels joined by strong connections are merged into an object, or segment. Certain
parameters dictated the threshold for the minimum strength required for two pixels
to be merged, as well as the minimum pixel count for a segment. These parameters
were the minimum segment size, and segment scale. Let’s see how initial settings
for these parameters affected the AOI.
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Figure 4.7: High scale and low minimum segment size segmentation.

Figure 4.7 shows a lot of activity. Our minimum segment size was set too low. We
increased this, and reduced the level of scaling; increasing the number of segments
relative to their size. We can see the effects of this below over the Swindon region
of the AOI.

Figure 4.8: Increasing segment scaling and size, from left to right. (Scale: 100, 300, 750,
minimum size: 50, 100, 250.

We can see in Figure 4.8 the effect of increasing segment scale. As our overall
goal was to create a hierarchy of segments, ideally we would have a broad range of
segment across the hierarchy. It would be optimal to have enough segment types to
clearly differentiate between, but not so many as to saturate the hierarchy with too
many overly-similar levels. Additionally, we wanted to capture large groups of the
same class in one segment. Areas such as clusters of forests, or urban blocks, would
ideally be contained within the same segment. We can see the final settings for the
AOI segmentation below.
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Figure 4.9: Final AOI segmentation (Scale: 300, minimum size: 250).

We can see how the final settings break up the scene in a more visibily appealing
manner. Areas of forest and field are segmented from one another, however similarly
coloured fields are grouped together. The outline of Swindon is captured, with the
main residential neighbourhoods north and west of the centre grouped into their
own segments. This seemed an adequate level to fix our parameters for. After
segmenting the scene, the next step was to build our segment hierarchy. To do this,
we had to quantify individual segments based on their local pixel content, and create
a global scaling system.

4.2.2 Constructing Hierarchy

Our first step to constructing this segment hierarchy was by calculating the mean
pixel value in each segment. We constructed a dataframe of our segments, with each
row a “polygon" shape object. As polygons are made up of straight lines, we could
define a segment as a collection of coordinates based on where these lines connected.
Using a statistical Python package, we extracted the mean pixel value, as well as
the pixel count, for every polygon. Next, we calculated the 10th, 25th, 50th, 75th

and 90th percentile mean values across all polygons. Finally, by performing interval
comparison, we could group our polygons by mean pixel value, establishing which
percentile each polygon was closest to.

Based on which percentile a polygon was nearest to, a segment variable, or segment-
rank was assigned. All polygons which had a mean pixel value below 194, the 10th

percentile, were assigned a 1. Those between 194 and 239, the 25th percentile, were
assigned a 2. This was done until every segment had a segment rank value between
1 and 6. We can visualize this process below.
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Figure 4.10: Tagging segments based on mean pixel value.

Notice in Figure 4.10 how the far left and right segments are assigned the same
value. This is meant to represent how segments of similar colour are given the same
segment rank.

Using our segmented scene, we would now begin constructing a dataset of pixels.
To remind the reader of the overall goal, we were aiming to improve classification
accuracy of these pixels, based on knowledge of surrounding pixels. In addition
to existing knowledge of the pixel band values, we could now add a segment rank
value, for every pixel in the scene. This represented the segment rank of the segment
that the pixel was contained by. The segmentation allowed us to account for local
regions of similarly coloured pixels, and apply this information to the pixel-level.
This approach operated under the assumption that pixels of similar colour were
likely to have similar segment rank, and therefore were likely to belong to the same
land-type class. A model learning the relationship between the pixel band values
and land-type would ideally be more confident to predict if it had another variable
connecting the two.

For additional information, we also calculated the NDVI index, discussed in Chapter
1. This would be a tertiary indicator of a pixel’s class. As a reminder, areas of high
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NDVI indicated the presence of high vegetation content, which is a distinguishing
feature of land-types such as cropland or forests.

4.2.3 Data Representation

After segmenting our image, producing a segment hierarchy and calculating NDVI,
we could now construct our dataset. We had our AOI in the form of a three-
dimensional raster, with ground-truth data for the same positioning and located
along the same CRS. This meant we could access the same pixel position from both
rasters with a single set of longitude and latitude coordinates. Randomly selecting
n coordinates meant we could extract that coordinates band values from the AOI,
and using the same position, extract that pixel’s land-type from the ground-truth.
Then, once we had a pixel’s band values, we could calculate the NDVI value, based
on the values for band 4 and 8, as discussed earlier.

Using this method, we constructed a dataframe of pixels, where a single row rep-
resented one pixel, and the features were band 2,3,4 and 8 values, segment-rank,
and NDVI Index. Each row also had a label, representing the CORINE Land-Cover
classification.

Once our dataset was created, we wanted to train a machine learning model on
the relationship between a pixel’s band, segment-rank and NDVI values, and it’s
CORINE label. Our approach would be validated if the use of the segment-rank
variable, an indicator of the local pixel neighbourhood, had a positive affect on
classifying the pixel’s label.

4.2.4 Model Selection

Due to the nature of our data representation, the CNN models discussed earlier
would not be appropriate, due to the lack of any dimensionality within our dataset.

We also wanted to create our soft-baseline, as mentioned at the end of Chapter 1.
This would provide a pixel-based baseline classifier to weight our developing models
against. The set-up of our dataset meant that inclusion of the segment-rank dictated
whether or not we wanted to incorporate spatial information to the scene or not.
This meant that by not including segment-rank, there was zero spatial element. We
decided to clone our dataset, but removing the segment-rank, as the dataset for our
baseline measure. This would provide an indication of the effect of including local
image information against solely relying on the pixel band values.
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Baseline We first selected our baseline algorithm, the model which would not ac-
count for segment-rank. We decided to use a Random Forest Classifier, the same
algorithm as used by GSI. However, the variant GSI used was for regression, where
a continuous output is predicted. For our task, we wanted the classifier to output a
categorical value, representing a distinct CORINE land-classification. Random For-
est Classifiers are commonly used in remote-sensing classification [3, 47, 21]. They
have been found to be powerful classifiers of remote sensing data, due to their ability
to handle high data dimensionality and multicolinearity. They use decision trees on
random subsets of a dataset, and by aggregating each tree classification, produce a
final prediction. By increasing the number of trees and thus voting power, accuracy
can be increased.

Segmentation Model Due to it’s high suitability to image classification, we still
wanted to explore deep-learning, however could not use a CNN. We selected a basic
neural network for this task, a multi-layer perceptron (MLP). These were similar to
CNNs, except did not contain any convolutional layers. They consisted of sequential
layers of “fully-connected nodes", where each node represents a neuron, as discussed
earlier. Each node in a layer is connected to every node in the following layer,
a “dense" network of connections. We can visualise the architecture of our MLP
below.
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Figure 4.11: MLP basic architecture.

Our input feature vector was an array of length 6, representing our four band val-
ues, pixel NDVI and segment-rank value. These values would be passed through
the four dense layers, with each node in the every layer representing a number be-
tween 0 and 1. The node count for the three dense layers was 400, 300 and 200,
respectively. These layers would transform the array of values as it passed through
the network. The nodes will determine which value has an effect on the final label
through backpropagation. This refers to the process of updating the node values,
and their individual biases, by accounting for the difference between the prediction
and actual value. The final layer outputs an array of length 17, representing the
class count of the AOI. The array is made up of 17 probabilities between 0 and 1,
each representing the confidence of prediction for that class. As there is only one
classification per feature vector, these probabilities will sum to 1. This makes our
problem a multi-class classification task, as each input belongs to one class from a
set of different classes. Therefore, a confident prediction for one class would affect
the prediction probabilities for the remaining classes.

Model Evolution There exists a wide search space of parameters for neural net-
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works, with many factors influencing the quality of their outputs. This project ex-
perimented with a selection of different parameters, and the evolution of the model
performance is discussed in detail in the next chapter.

4.2.5 Training and Validation Method

The next step was to begin training the above models on our pixel dataset. Machine
learning models require both training and validation data. This is so that learning
can take place iteratively; training on one subset of the data, making predictions on
another, and repeating the process. One pass of this process is known as an epoch.
A separate subset of the data is held back before this split, in order to test the final
model after a certain number of epochs have passed.

We used a 60/20/20 training, validation and testing split, meaning that for a given
dataset of 100,000 pixels, the model would train on 60,000, predict 20,000, calcuate
the error through backpropagation, and repeat the process, for however many epochs
were set. At the end of training, it would predict 20,000 new, unseen samples. The
model could then be evaluated based on the result of the final predictions.

As well as model configurations, we wanted to explore the effect of pixel-count,
feature-importance, and different degrees of segmentation. These will be discussed
in the performance section in the next chapter.

4.2.6 Prediction

To make a direct comparison, we wanted to use our model to predict in a similar
manner to the GSI methodology. We would do this be recreating the same testing
conditions for which the GSI-supplied metrics were achieved. We can examine the
results of this in the next chapter.

4.3 Patches Approach

Our patch-based approach was the second method include local and spatial infor-
mation to the classification process. This method involved partitioning our AOI
into overlapping square tiles, or patches. We can see a quick reminder of the process
below.
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Figure 4.12: Forming overlapping tiles around individual pixels across the AOI.

Our aim with this approach was to train on a patch surrounding a centre pixel,
learn the relationships within the patch that determines it’s label, and to be able to
provide a prediction for an unseen centre pixel after scanning it’s patch. We’ll first
discuss how we extracted the above patches, before moving on to model choice and
configuration, and then our training and validation methodology.

4.3.1 Scene Preparation

Patch Construction

In order to construct our patches across the AOI, we first had to extract centre pixels.
In an identical manner as the segmentation approach, we gathered our pixels and
labels by coordinate. However, instead of only extracting the pixel, we applied a
buffer zone. This was applied by adding and subtracting the buffer value along the
height and width of the AOI, starting from the position of the centre pixel. This
formed a square of pixels. We can visualise this below.
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Figure 4.13: A 3x3 and 5x5 patch, with buffer sizes of 1 and 2 respectively, from left to
right. As can be seen the buffer is taken outwards from the central pixel, outlined in bold.

The buffer size dictated the amount of information contained by a patch. This
method used the information learned from patches to make a prediction for a pixel.
Therefore, the amount of information in each patch could be a critical for prediction
accuracy. We can get some context for how patch-size could affect predictions in
our AOI by examining some sample patches below.

Figure 4.14: Range of information offered by different patch sizes of a region of interest.
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The above patch selection was extracted from the highlighted zone in Figure 4.14,
from a close-up of a neighbourhood in Swindon, taken from our AOI. It shows a
small park nested within a residential area. The ground-truth for the area would
be classed as a green urban space. When forming patches around the pixels in this
area, we can see the potential range of information that a model would be trying to
connect with this label. The 3x3 patch shows only the green area. The 7x7 patch
shows the beginnings of its boundaries, and the 21x21 fully highlights the shape of
the park, indicated by the surrounding urban fabric. Therefore, one would think a
model trained on this 21x21 patch would provide the most confident prediction, as
it clearly shows the parks position within the block. This would imply that the 3x3
patch would cause the model to incorrectly classify the park, possibly as a field or
vegetation. However, there is also the possibility of overloading the model with too
much information. The 21x21 patch may be classified as urban fabric, due to the
inclusion of the surrounding homes. The 7x7 patch may be classified as a field, with
its faint boundary assumed to be hedging. The 3x3 patch may represent the correct
clustering of green pixels which are commonly found in parks, leading to a correct
classification.

Evidently the patch-size would be a factor to consider when experimenting with this
method. We’ll explain the remainder of the patch approach next.

4.3.2 Data Representation

We extracted our patches as discussed. An individual patch was stored as a multi-
dimensional array, with the dimensions height by width by band-count. These were
kept in a dataframe. Along with the patch arrays, the CORINE labels for every
pixel in each patch were also stored. Although we were predicting the centre label
only, it was useful to keep the whole patch label content. This informed us on the
homogeneity of each patch, shown by the label diversity along one row. Using the
dataframe format meant we could easily eliminate poorly represented classes and
outliers within the data.

4.3.3 Model Selection

For this approach, the model used was a CNN. Our inputs were three-dimensional
patches, with a high spatial content. Our CNN used three repeating convolutional
blocks, where each contained two convolutional layers, with 3x3 sized filters. The
number of filters doubled at each layer. After six repeating convolutional layers,
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the input was fed to a fully-connected dense layer of 1000 nodes, and finally to an
output layer of size 17. We can visualize our final architecture below.

Figure 4.15: CNN architecture for the patch-based approach. Note: filter size was 3x3
throughout, other dimensions were as labelled.

Figure 4.16 helps illustrate the depth of the network. By the final convolutional
block, we have two sequential stacks of 128 feature maps. Each feature map in each
block represents a different pattern in the patch. We can also see how the size of
the pattern is kept constant throughout.

This architectural style of having repeating convolutional blocks was first established
in VGG-16 [73, 56], a renowned image classification CNN. The creators coined the
double-convolutional and pooling block pattern, with a 3x3 filter size and doubling
the feature-map count at each block. Largely inspired by this approach, our model
has some unique features. Our image inputs were much smaller compared to the
VGG-16 inputs, at 120x120 pixels. The patch inputs to our model were too small to
be shrunk further, meaning our network removed any pooling operations. As shown
by Sharma et al., who implemented a similar network for an approach training with
5x5 patches, this architecture is still feasible without pooling layers.

Similar to the previous method, there was also a range of parameters we wished to
explore. As well as the patch-sizes previously mentioned, we would be interested in
the effect of patch-count. Additionally, as is a recurring theme with neural networks,
there was a wide range of parameters to configure the network by. These were the
learning rate, which controls the degree to which the neurons are updated after
backpropagation, the batch-size, the amount of patches considered at each network
pass, and the fully-connected node count.

4.3.4 Training and Validation

Our training approach was similar to the segmentation method. We had constructed
a dataframe of patch arrays and their corresponding labels. Using similar train/-
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validation/test divisions, we divided our dataset into proportions of 60/20/20. To
reiterate, throughout training, the model would be detecting the patterns and fea-
tures within the patch arrays, and how they relate to it’s centre pixel. This is one
of the key features of the methodology, and it allows us to predict at a level of 10m
resolution.

Throughout training we experimented with a range of patch-counts. As before,
we’ll examine the effect of this, and also a range of model parameters, over the next
chapter.

4.3.5 Prediction

For prediction, we were aiming to both predict over the entire AOI, and also to
provide a direct comparison to the available GSI metrics. Predicting every pixel in
our AOI would involve partitioning the scene into patches. These patches would
have to match the input size, i.e. the patches, which our final model architecture
trained on. The model would predict along each row of the AOI, one patch at a
time, and moving along the row pixel by pixel. To predict every pixel, including
the border pixels, the AOI would need to be padded with empty pixels along the
boundary of the scene. This was due to neural networks requiring a fixed size input.
Without padding, we would not be able to form a complete patch around the border
pixels. We can visualise this procedure below.
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Figure 4.16: Padding according to the patch dimensions around the AOI. The highlighted
pixels along the top row of the AOI indicate the path of travel for the patch, representing
the centre pixel sliding along the row with a stride of 1, and are distinct from the external
padding pixels.

We can clearly visualise the sliding patch mechanism above. When it slides along the
border pixels, the patch hovers over the empty padding pixels. These allow the input
to remain constant, however predicting these pixels could be more difficult, due to
the null pixel values not adding any information on the centre pixel. However, this
could also be viewed as a clear indicator of a border pixel, if there were a correlation
between border pixels and a certain land-type.

After training our model on the extracted patches, discussed previously, we could use
the above method to predict a CORINE label for every pixel in the AOI. By storing
these predictions in raster format, we would be able to visualise the predictions
spatially, with the true-colour scene or ground-truth below. This would be the final
stage of our patch prediction approach. However, an issue with this approach was
that we were extracting our training patches from the same AOI that we would be
predicting over. Although the training patch count was small versus the number of
AOI patches we’d be predicting, around 4 million, this could still be viewed as an
unreliable approach. A key indicator of a machine learning model’s performance is
its ability to generalize onto completely unseen data. Therefore, this gave us clear
rationale to explore external training sets. We’ll discuss this approach in the next
section.
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4.3.6 Transfer Learning

As discussed in the literature review, transfer learning can be a powerful tool in
machine learning. As a general rule of thumb, the more data a model is exposed to,
the better the training performance. Using a model that has been pre-trained on a
separate dataset means we can utilise the knowledge gained from that dataset and
apply it to our own.

In this context, we aimed to train a model using an external patch-based dataset,
and use that model to predict over our AOI. The results of this would give a good
indication of the feasibility of a patch-based approach, especially as these patches
came from new and unseen imagery. It would provide a different angle on the
approach, and potentially alert GSI to new data archive to train future models on.

BigEarthNet

We implemented our transfer-learning patch approach by exploring the recently
compiled BigEarthNet dataset [63]. BigEarthNet, referred to as BigEarth from
now on, was a solution to the previous lack of any large-scale annotated remote
sensing archives. Previous transfer learning projects in the remote sensing realm
have generally used ImageNet, or aerial and drone image sets. Compared to high-
resolution satellite imagery, there are vast differences in the content, detail and
spectral variety of these datasets and satellite imagery. We can see some common
remote sensing datasets below in Figure 4.17.

Figure 4.17: Commonly-used remote sensing image archives. [63]

As we can see above, the majority of the archives are RGB, with the exception
of EuroSat. However, as with the rest, EuroSat has a relatively small number of
images. For effective classification with deep learning, large training sets are usually
required.

42



BigEarth consists of 590,326 Sentinel-2 image patches, taken between June 2017
and May 2018. These patches were taken from 125 Sentinel-2 tiles. Sentinel-2
tiles represents an individual image captured, which are 10,000 km2 in area, and
projected in WGS84 projection. These patches cover 10 different countries across
Europe, showing a diverse range of terrain and seasons. We can see a selection of
BigEarth patches below.

Figure 4.18: Sentinel-2 Bands 2-7, 11 and a true colour image, from top left to bottom
right.

A notable feature, and one which makes it very attractive to this project, is that
BigEarth is labelled using the CORINE Land-Classification system. This means its
images are annotated with the same labelling system as used for the ground-truth
of our AOI. However, a single BigEarth patch is associated with multiple labels.
According to Sumbul et al., the BigEarth creators, the number of labels per patch
ranges from between 1 and 12. A machine learning model training on BigEarth
would be required to predict multiple labels per patch, making this a multi-label
classification problem. Multi-label classification has distinct requirements on model
configuration and parameter settings. Our project was concerned with multi-class
classification, where each pixel only had one label. Additionally, the range of labels
present in BigEarth represented the entire 45 CORINE Land-Classsification list,
whereas our AOI only contained 17. Therefore if we were to attempt to utilise
BigEarth for use with our project, the archive had to be augmented.

Dataset Pruning

After downloading BigEarth, the dataset had to be altered. The data arrived with
two separate files, listing images which had poor visibility due to cloud and snow
coverage. These were removed from the archive. Next, we wanted to eliminate those
patches with labels belonging to any of the 45 CORINE labels that were not included
in the AOI class representations. This would significantly reduce the dataset but was
necessary for our project. Additionally, we wanted to limit the labelling per patch
to one label. This would also drastically reduce the amount of information available
from BigEarth. However, it was deemed necessary to allow experimentation with
transfer learning to occur.
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Data Representation

After pruning the dataset, we were left with 294684 patches, each belonging to
1 of the 17 classes in our AOI. Finally, we wanted to standardise the number of
bands for all of our approaches, so only bands 2,3,4 and 8 were used for each patch.
After merging these bands for each patch, and storing the merged image as a three-
dimensional array, we could construct our training set. This was made up of 294684
120 by 120 by 4 patches, associated with a single label. The patches were also scaled
to values between 1 and 255.

Model Selection

For our model selection, it seemed logical to use a similar model for our previous
patch-based approach. However, the BigEarth patches were 120 pixels by 120 pixels.
Comparing these to the patch sizes extracted from our AOI, these were much larger.
Therefore this gave the opportunity to experiment with the pooling layers mentioned
previously. Our model architecture can be seen below.

Figure 4.19: BigEarth CNN architecture. Similar to previous CNN, with the addition
of MaxPooling layers after each convolution double. Notably, the final two convolutional
blocks are of similar dimensions to the previous architecture.

Training and Validation

We could now begin training our second CNN on the modified BigEarth dataset.
Using similar train, testing and validation subsets as before (60/20/20 split), we
partitioned our dataset.

Prediction

Prediction was also carried out in the same manner: we implemented the sliding
window mechanism to feed our AOI into the BigEarth CNN as rows of patches.
Predicting on each patch attributed that prediction the centre pixel of the given
patch. This time it would be more computationally expensive. More padding was
required, and the prediction run time increased. Having to consider so much more
information, 120x120 pixels worth, compared to the smaller patches of the first
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CNN, meant the model took longer making each prediction. We’ll have a look at
the results of these predictions and the other methods next, in Chapter 5.
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Chapter 5

Model Performance

To recount, we’ve introduced and explained both of our approaches, patch-based
and segment-based, with details given on the workings of each, the model used, and
training, validation and prediction methods. This method will display the results
of each approach, aiming to illuminate the performance variance between the two
approaches, our baseline and GSI-supplied metrics.

5.1 Segmentation Approach

5.1.1 Training Performance

After segmenting our scene, constructing the segment hierarchy and defining our
MLP model, we could begin training. We wanted to determine the optimum scene
segmentation. First, we had to determine our controlled parameters, on which to
compare the segmentation parameters to. We fixed the pixel count at 10,000 pixels,
and kept our MLP architecture constant.

We can examine the effect segmentation scale had on the training and validation
accuracy of our MLP model below. These were the accuracies after training for 100
epochs, with a batch-size of 64 pixels and a validation split of 20%, as mentioned
before.
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Table 5.1: Training our MLP for 100 epochs on 10,000 segment-tagged pixels.
Test Run Scale MinSize Valid Acc (%) Test Acc (%)

1 50 50 45 43
2 150 100 48 46
3 300 100 54 52
4 750 100 47 42
5 1000 100 40 39

We can see that Test Run 3 had the best accuracies. We could now fix our segmen-
tation parameters to these settings. Next, aiming to improve the overall accuracy,
we could increase the number of pixels. Before this, we’ll visualise some of the above
runs to gain a wider picture of the training process.

Figure 5.1: Overfitting during Test Runs 2 and 4, from left to right.

As we can see, there is a severe degree of overfitting taking place. This is shown by
the extreme noise in the curves, as well as the deviation between the training and
testing curves in Test Run 4. This tells us that the model may benefit from some
structural changes before training on more pixels. This led us to implement drop-
out regularization between layers, which cancels out a given ratio of inputs moving
between layers. This is a computationally cheap tool, which forces the network to
determine weight changes which are directly improving the model accuracy. We can
see the effect of this in conjunction with an increase in pixel count next.

Using our final segmentation parameters of 300 and 100 scaling and size, we updated
our MLP to include 20% drop-out between each of the dense layers. Let’s see the
performance of the new network when training on 100,000 pixels.

We can see the immediate affect of regularization in negating overfitting. This is
shown by the proximity of the training and testing curves. We can see by the sharp
descent of the loss, and the plateau of the accuracy, that the model is struggling to
fully understand our dataset. Furthermore, the testing accuracy actually remains
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Figure 5.2: Results from 20% drop-out regularization and training set increase to 100,000
pixels.

above the training accuracy for a large portion of the run. It is clear the model
is struggling to properly understand the data. The choice of optimizer, Adam,
may be confusing learning, as it alters the learning rate between batches. Let’s try
using Stochastic Gradient Descent, which keeps the rate of learning constant, yet
still encourages dynamic learning through exposing the model to randomly selected
samples.

Figure 5.3: Optimizer changed to Stochastic Gradient Descent with a learning rate of
0.01.

We can see the constant learning rate smoothing out the curves. Also, the testing
accuracy is no longer above the training. However our accuracy is not higher overall.
This could be due to our training set size. However, after a dataset increase to
250,000, we only reported only a 1% increase, to 59.3%. This tells us the model
may not benefit from further increases.
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5.1.2 Validation Performance

We can evaluate our MLP model performance based on it’s predictions made over
the unseen testing subset. This was 20% of our total training size. The final model
trained on 250,000 pixels, meaning we had 50,000 pixels to test on. We can compare
this with our baseline model, the Random Forest Regressor, which classified the
same training set for each run, minus the segment-rank variable. We also trained
our MLP model on the same dataset, to prevent the model choice outweighing the
segment-rank variable influence. We can compare validation performance for all
three models below, where the testing accuracy represents the performance over the
unseen 20% subset of their training data.

Table 5.2: Run to run performance comparison for our MLP, MLP-Pixel and Random
Forest Classifier baseline.

Classifier Training Set Valid Acc (%) Test Acc (%)
10000 54.53 51.84

MLP 100000 58.5 56.19
250000 59.21 58.3
10000 55.64 51.75

MLP-Pixel 100000 56.32 55.53
250000 57.23 56.87
10000 24.25 21.52

Random Forest 100000 47.85 44.56
250000 51.36 47.52

Our model clearly outperforms the baseline measure. MLP-Pixel also outperforms
the baseline, but is still lower than the MLP trained on segment information. We
can take a closer look at our highest-performing model with a classification report
below.
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Table 5.3: Class breakdown for our best-performing MLP model, tested on our test subset
of 50,000 pixels from the segment-rank dataset.

Land-Type Precision Recall F1-Score Support
Discontinuous urban 0.54 0.53 0.51 5202

Non-irrigated arable land 0.62 0.46 0.53 16691
Pastures 0.60 0.80 0.68 22931

Industrial/commercial 0.56 0.47 0.51 1365
Transitional woodland-shrub 0 0 0 34
Sport and leisure facilities 0 0 0 1246

Mixed forest 0.35 0.28 0.31 338
Broad-leaved forest 0.44 0.29 0.35 1203
Green urban areas 0 0 0 368

Agriculture and vegetation 0 0 0 49
Dump sites 0 0 0 48
Airports 0 0 0 258

Continuous urban 0 0 0 86
Water bodies 0.68 0.27 0.38 49

Construction sites 0 0 0 56
Road and rail networks 0 0 0 25

Table 5.4: MLP performance on testing subset of 50,000 pixels.
Correct Pred. Incorrect Pred. Overall Accuracy

MLP 29950 20050 59.10%

We can see the moderate performance of the model when classifying the commonly
found classes such as pastures, discontinuous urban and arable land, with moderately
high precision levels. Precision represents the ratio of true positives to false positives.
Out all of positive predictions made for water bodies, for example, 68% were correct.
The precision rate here is contrasted by the low recall. Recall represents the ratio
of true positives to false negatives, or how many negative predictions were made for
that land-type. Although precision was 68%, out of all water body pixels existing
in the AOI, only 27% were classified correctly. F1-score represents an aggregate of
precision and recall. Support represents the count of each land-type. For the land-
types with low support, our model did not perform well, missing almost every land-
type below a support of 1000. We’ll examine performance of our MLP predictions
over a larger dataset next, where class representations may not be as skewed.

5.1.3 Prediction Results

Thus far, our MLP had been trained and validated over 250,000 pixels extracted
from our AOI. Our knowledge of it’s performance was known in comparison only
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to our own MLP variant and Random Forest baseline. The overall goal of the
project was to develop an alternative approach to the actual GSI method. To make
a reliable estimate of the quality of our devised methods, they had to be directly
compared to GSI’s. This meant testing both under the same conditions. GSI had
previously supplied us with performance metrics for their actual Random Forest
Regressor, based on predictions made on 400,000 pixels from the same AOI our
project is using. We can see these below.

Table 5.5: Prediction performance for the GSI Random Forest (RF) classifier on 400,000
extracted pixels from our AOI.

Land-Type Precision Recall F1-Score Support
continuous urban 0.05 0.92 0.09 4042

discontinuous urban 0.42 0.52 0.46 39915
industrial/commercial 0.64 0.94 0.76 75389
road and rail networks 0.00 0.00 0.00 6459

airports 0.21 1.00 0.35 51498
GSI-RF green urban areas 0.00 0.00 0.00 0

sport/leisure facilities 0.00 0.00 0.00 1540
non-irrigated arable land 0.22 0.24 0.23 51650

pastures 0.98 0.14 0.25 28582
broad-leaved forest 0.39 0.45 0.42 51063

mixed forest 0.08 0.85 0.15 78961

Table 5.6: Overall metrics for the GSI Random Forest Regressor.
Correct Pred. Incorrect Pred. Overall Accuracy

GSI-RF 145479 254521 37.00%

We can see relatively low performance across all land-types in Table 5.13. However,
there is considerably high recall across a number of classes, such as continuous urban,
mixed forest and industrial/commercial. The GSI-RF fails to predict any road and
rail, green urban areas or sport/leisure facilities. With an overall accuracy of 37%,
it is a fairly low performing approach. Let’s compare our MLP model’s performance
over a set of 400,000 pixels. Due to us not having access to the actual GSI-RF
model, we could not arrange the exact same pixel dataset. Therefore there may
be some class representation discrepancies between our prediction set and GSI’s.
However, due to the nature of the random pixel extraction used in both methods,
we can assume enough similarity to make a fair comparison.

After extracting 400,000 pixels, we calculated their segment-rank variable and formed
our prediction set. Instead of subsetting, as done in training and validation, we’d
be predicting the classification of the entire dataset. We can see the results of this
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below.

Table 5.7: MLP prediction performance over 400,000 pixels.
Land-Type Precision Recall F1-Score Support

continuous urban fabric 0.04 0.05 0.04 97
discontinuous urban fabric 0.63 0.40 0.49 567

industrial or commercial units 0.59 0.32 0.41 42588
road and rail networks land 0.01 0.00 0.00 10741

airports 0.28 0.02 0.04 2000
dump sites 0.00 0.00 0.00 429

construction sites 0.00 0.00 0.00 422
green urban areas 0.10 0.00 0.00 2968

sport and leisure facilities 0.02 0.00 0.00 9025
non-irrigated arable land 0.63 0.07 0.12 134621

pastures 0.73 0.75 0.74 181995
agriculture/vegetation 0.00 0.00 0.00 514
broad-leaved forest 0.47 0.27 0.34 51063

mixed forest 0.57 0.29 0.38 9102
transitional woodland-shrub 0.00 0.00 0.00 183

water bodies 0.61 0.16 0.26 454

Table 5.8: Prediction metrics for the MLP.
Correct Pred. Incorrect Pred. Overall Accuracy

MLP 116999 283001 29.25%

We can see that the MLP approach fails to improve on the GSI methodology for this
prediction set. Largely following its performance on the validation set, it is hindered
by the class representation difference between the 50,000 pixel validation set and
the 400,000 prediction set. It does predict well for the classes it has since the most
of during training, however the prediction set also contained classes it had not seen
before. This made the model unable to predict these classes correctly, having never
trained on their features before. Therefore this performance could be expected.

We will discuss the implications of the results shown in this section in the following
chapter. First, we exmaine the results of the patch-based implementation.

5.2 Patch-based Performance

We’ll describe the performance of our patch-based approach in this section.
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5.2.1 Training Performance

Our model would be training on a variety of patch sizes. As illustrated in the pre-
vious chapter, the patch-size could be a key influencer in the quality of predictions,
due to the level of pixel information contained within. We can visualize this below
in Table ??

Table 5.9: Range of patches considered, with dimensions, pixel contents and label number
per patch.

Patch Dimensions Pixel Count Label Count
3x3x4 36 9
5x5x4 100 25
7x7x4 196 49
11x11x4 484 121
21x21x4 1764 441
61x61x4 14884 3721

As we can see, the pixel count increases quickly as we expand our patch sizes. We
can examine the effect this had on our training process. By fixing patch count to
10,000 patches, we could explore the effect of patch-size on training accuracy.

Using the same train/test splits used as before, we began training on 10,000 patches
for each size in Table 5.9. We trained for 20 epochs on each patch, validating our
training after each epoch by predicting the centre pixel label of 2,000 new pixels.
We were using Adam adaptive learning rate, with a starting value of 0.01. We can
see the variation in validation accuracies for each patch size below.

Table 5.10: Patch Size vs Validation Accuracy
Patch Size Validation Acc (%)

3x3 58.32
5x5 59.66
7x7 60.27
11x11 49.06
21x21 35.78
61x61 41.32

As we can see, the smaller patches generally performed better, although the worse
performing was the second largest at 21x21. As before, we wanted to take a closer
look at the training performance before making any model changes. Moving forward,
we took the top two performing patches, 3x3 and 7x7, abandoning the other sizes.
We can see the training history for these patches below in Figure 5.4

53



Figure 5.4: Training performance on 3x3 and 7x7 patches, from left to right. Note: epoch
difference due to an early-stopper callback. As the validation accuracy began to plateau,
training was stopped. This was a useful way of optimising the training process.

We can observe clear overfitting occurring. Let’s try and implement some similar
regularization techniques as for our segmentation approach. Experimenting with
drop-out paralysed training, causing no learning to take place, with accuracy and
loss not changing between epochs. Therefore instead, we decreased our learning
rate, removing early stoppping callbacks to give the model more time to learn. A
less common practice to improve learning is to increase the batch-size. Traditionally,
one would decay the learning rate first, however a paper by Smith et al. suggest
that increasing the batch-size may have more of an effect [60]. We decided to do
both, doubling batch-size from 256 to 512, and can observe the effect of this below
in Figure 5.14.

Figure 5.5: Adjusted training performance, with a learning rate decrease to 0.001 and
batch size increase to 512.

We can see these measures had the intended affect, as both train and test curves are
much more aligned. The 7x7 patch also achieves a new highest validation accuracy,
of 64%. We can still see the early signs of overfitting, however, as the training curve
begins to tail upwards. The curves also look slightly erratic, leading us to experiment
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with Stochastic Gradient Descent. This resulted in a similar effect to implementing
drop-out: paralysing the learning process. Therefore, our model maintained an
Adam adaptive rate, with a new setting of 0.001.

In Figure 5.14, both the validation and testing accuracy seem to be plateauing after
30 epochs, indicating that they could benefit from training set increases. After expe-
riencing some small gains by increasing to 50,000, we can show the final training set
performance below, for 500,000 patches. Due to the long training times experienced
with a training set this size, it was logical to reactivate our early-stopping callback.
We can see the performance of our models training on 500,000 patches below.

Figure 5.6: Training on 500,000 patches for 3x3 and 7x7 patch models.

We managed to achieve a slight increasing in final validation accuracy after the
size increase. However, such a marginal increase indicates the model has reached
its learning capacity. We also failed to prevent overfitting, which begins occurring
around 10 epochs in for the 3x3 patch, and as early as 4 epochs for the 7x7 patch
model. With the 7x7 trained CNN reaching the highest validation accuracy, we’ll
choose this model to examine further in the next section.

5.2.2 Validation Performance

We can evaluate our best CNN model by examining its performance on the unseen
testing subset of 100,000 patches. We can the classification breakdown below.

55



Table 5.11: Class breakdown for our best-performing CNN model, tested on our testing
subset of 100,000 patches.

Land-Type Precision Recall F1-Score Support
Discontinuous urban 0.69 0.74 0.72 10523

Non-irrigated arable land 0.65 0.81 0.72 45438
Pastures 0.71 0.54 0.61 33675

Industrial/commercial 0.62 0.34 0.44 685
Transitional woodland-shrub 0.36 0.14 0.20 2462
Sport and leisure facilities 0.49 0.41 0.45 2244

Mixed forest 0.56 0.53 0.54 2694
Broad-leaved forest 0.50 0.01 0.02 119
Green urban areas 1.00 0.05 0.09 107

Agriculture and vegetation 0.71 0.42 0.53 511
Dump sites 0.28 0.06 0.11 790
Airports 0.36 0.09 0.15 106

Continuous urban 0.37 0.18 0.24 146
Water bodies 0.42 0.15 0.22 33

Construction sites 0.50 0.15 0.25 41
Road and rail networks 0.61 0.37 0.46 105

Table 5.12: Overall CNN performance on our testing set of 100,000 pixels.
Correct Pred. Incorrect Pred. Overall Accuracy

CNN-7x7 66140 33860 66.14%

Our CNN model has trained relatively well, based on the the overall accuracy in
Table 5.12. In Table 5.11, we can the strong performance for classes of both a high
and mid-level of support. We see some divergences in precision and recall, notably
for broad-leaved forest and green urban areas. Overall the model has provided a
good set of predictions. We’ll examine the model performance over a larger test set
in the next section.

5.2.3 Prediction Results

Using the metrics supplied by GSI, we could make directly compare the predictive
performance of our model against the current GSI-RF methodology. By sampling
400,000 patches from our AOI, and making pixel-wise predictions, we’d be able to
compare our approach to theirs. We chose our highest-performing model, the 7x7-
patch trained CNN, to make the predictions. We can visualise these, along with the
original GSI metrics below.
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Table 5.13: Prediction performance for the GSI Random Forest (RF) classifier on 400,000
extracted pixels from our AOI.

Land-Type Precision Recall F1-Score Support
continuous urban 0.05 0.92 0.09 4042

discontinuous urban 0.42 0.52 0.46 39915
industrial/commercial 0.64 0.94 0.76 75389
road and rail networks 0.00 0.00 0.00 6459

airports 0.21 1.00 0.35 51498
GSI-RF green urban areas 0.00 0.00 0.00 0

sport/leisure facilities 0.00 0.00 0.00 1540
non-irrigated arable land 0.22 0.24 0.23 51650

pastures 0.98 0.14 0.25 28582
broad-leaved forest 0.39 0.45 0.42 51063

mixed forest 0.08 0.85 0.15 78961

Table 5.14: Overall metrics for the GSI Random Forest Regressor.
Correct Pred. Incorrect Pred. Overall Accuracy

GSI-RF 145479 254521 37.00%

Table 5.15: CNN-7x7 performance over the prediction set of 400,000 unseen pixels.
Land-Type Precision Recall F1-Score Support

continuous urban fabric 0.33 0.05 0.09 97
discontinuous urban fabric 0.53 0.70 0.66 567

industrial or commercial units 0.58 0.32 0.41 42588
road and rail networks land 0.55 0.38 0.00 10741

airports 0.30 0.10 0.15 2000
dump sites 0.22 0.04 0.00 429

construction sites 0.44 0.11 0.00 422
green urban areas 0.58 0.10 0.00 2968

sport and leisure facilities 0.47 0.39 0.00 9025
non-irrigated arable land 0.55 0.70 0.62 134621

pastures 0.75 0.55 0.63 181995
agriculture/vegetation 0.42 0.00 0.00 514
broad-leaved forest 0.44 0.27 0.33 51063

mixed forest 0.57 0.29 0.38 9102
transitional woodland-shrub 0.33 0.00 0.00 183

water bodies 0.41 0.15 0.22 454

Table 5.16: Overall metrics for the GSI Random Forest Regressor.
Correct Pred. Incorrect Pred. Overall Accuracy

CNN-7x7 187520 212480 43.94%

57



We manage to slightly increase the current GSI methodology. Similar to the MLP,
our model predicts well those classes that it has trained on. Unlike the MLP, the
CNN-7x7 had been exposed to all 17 classes prior to predicting. This is likely due to
the increased pixel content contained in the patches dataset, versus the individual
pixels in the MLP training set. We’ll examine the implications of these results in
the next chapter.

5.2.4 Scene Prediction

Using the sliding window mechanism, illustrated in the previous chapter, we could
use our patch-trained CNN models to make predictions onto our AOI. To provide
an accurate measure of our approach, this was done with two models, each trained
on one of the two optimal patch size and count configurations, examined in the
previous section. We can see the predictions each model made over our entire AOI
below.

Figure 5.7: CNN-3x3 label predictions, corresponding to the CORINE Land-Type colour
legend shown earlier.

Figure 5.8: CNN-7x7 label predictions, also corresponding to CORINE colour scheme.

We can see the scene-wide predictions made by both CNN models above. Notably,
the models have different classifications for the Swindon urban area, to the right of
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the image. However, both models capture the shape of the town and surrounding
outskirts well. We’ll examine these plots in detail in the next section.

Figure 5.9: CNN-3x3 prediction probabilities, with black representing low confidence and
white representing high confidence.

Figure 5.10: CNN-7x7 prediction probabilities, similar colour-scale.

We can see above how confident both of the models were in making their label
predictions. Interestingly, the 7x7 model was highly confident predicting Swindon,
shown by the white colouring across the area, compared to the grey shading present
in the 3x3 predictions. The 3x3 patch was more confident predicting fields and
arable land, present more to the left-hand side of the scene. We’ll investigate the
implications of these results in the next chapter.

5.3 Transfer Learning

5.3.1 Training and Validation Results

Training on BigEarth was a challenge due to it’s large size. When loaded into
memory, the entire dataset required 4.4GB of RAM. This produced limitations on
the practicality of training. After splitting our dataset of 294684 images into the
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60/20/20 split, we could begin training. Using our CNN discussed earlier, we can
visualise the performance below.

Figure 5.11: Initial BigEarth training performance.

The model overfit BigEarth quite severely. We attempted to slow down training by
implementing the regularization techniques discussed earlier, allowing for them to
take effect by increasing the epoch count. However, due to excessive training times,
we were limited by how far we could increase this. Nonetheless, we can visualise the
effect of implementing drop-out between our convolutional blocks below.

Figure 5.12: BigEarth training after drop-out regularization.
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We can see slowing down the training rate of learning has allowed the testing accu-
racy to track the training for the first 10 epochs. However, it subsequently plateaus
at around 40%, as the model begins to overfit. Next, we can see the effect of alter-
ing our model architecture, to try and reduce the number of parameters that are
updated after each epoch. We reduced our six convolution blocks to just one, made
up of two convolutional layers and a pooling layer. Let’s visualize the effect of this.

Figure 5.13: Reduced BigEarth-CNN architecture performance.

The model has flatlined. Without the repeating convolutional blocks, it can’t de-
tect any pattern whatsoever within the 120x120 patches. Therefore, we restored
our original model architecture. Whilst not achieving significant validation accura-
cies, with the highest at 40%, it was clear the model was making some informed
predictions. Therefore, we decided to test our CNN-BigEarth model over our entire
scene. This was deemed more likely to produce interesting results, as opposed to
comparing it directly to the GSI approach, as in the previous two methods.

5.3.2 Prediction Performance

Whilst failing to achieve significant validation accuracies, it seemed logical to still
make predictions with our trained model. Results of this would be a useful indicator
for any future training on BigEarth, as well as establish the use of transfer learning
as a possible approach for GSI to consider.

By imitating the same sliding patch-window approach as used in our original patch
method, we could feed our AOI into the BigEarth-CNN. The model would then
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make predictions row by row and produce scene-wide pixel predictions. We can
visualise these predictions below.

Figure 5.14: BigEarth-CNN scene-wide predictions.

As we can see, the BigEarth-CNN essentially makes the same two predictions across
the entire AOI, with the exception of a cluster of classes centred within Swindon.
After the level of overfitting observed during training, this was largely expected.
We’ll discuss the implications this has on the wider patch-based approach in the
following chapter.
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Chapter 6

Discussion

6.1 What is the impact of considering local regions of
pixels when performing image classification activi-
ties?

6.1.1 Segmentation Approach

Our segmentation approach highlighted the effect of considering local image regions
for classification. By analysing the results of our MLP model, versus the results of
both a pixel-only variant and the GSI current methodology, we can see that there
is a clear potential for segmentation to have an impact on classification accuracies.

In Section 5.1.2 we can see the performance of the MLP classifier, demonstrating
superior results when compared to a pixel-only MLP and Random Forest classifier.
However, when compared with the actual GSI methodology, we fail to surpass the
current accuracy measure. Although performing well on a subset of 50,000 pix-
els, when generalising over 400,000, we fail to sustain an accuracy level above the
comparison. However, on some classes we do outperform the GSI approach. For
discontinuous urban fabric, arable land and mixed-forest we achieve high precision
levels. We could attribute this to the prevalence of these classes in our AOI, as well
as the characteristics of these land-types. These land-types are frequently found
in concentrations of high density over large swathes of the AOI, therefore would
be more easily segmented, as opposed to green urban areas or water bodies, for
example. Therefore this could be an indication of the success of the segmentation
approach, if only for certain land-types. However considering overall accuracy only,
compared to the GSI metrics, we did not improve performance.
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However, after analysing the differences between the MLP and GSI prediction sets,
it’s clear that the varying levels of support between them may have had an impact.
The GSI prediction set had a significantly more even distribution of classes. Whereas
the data our MLP was predicting had support levels ranging from 181,000 to just
97, for single classes. Therefore, assessing the quality of the MLP performance
solely based on this comparison would not be a fair measure to take. We would
require identical training and prediction sets for this, which was not possible in the
practicalities of this project. Therefore we can answer this question more fully by
comparing our MLP to our own methods. The increase in accuracy over MLP-Pixel
and our baseline Random Forest tell us that use of local region knowledge, in this
case the inclusion of our segment-rank, has had a clear positive impact on image
classification.

6.1.2 Patch Approach

The patch approach can be used to answer this question using a range of points.

Firstly, our results show that patch-size, or size of local region size, can determine
prediction accuracies for image classification. We highlighted in Section 5.2 the
effect of altering our patch size on validation accuracy. We showed that altering
the extent of the local region considered can have a positive effect on validation
accuracy. But let’s examine the effect of this when compared to a non-local region
methodology.

This is shown in Section 5.2.3, where we compare against the current GSI methodol-
ogy. Although similarly contrasting levels of support existed between the prediction
sets, our method still managed to outperform the GSI method. With a 7x7 sized
patch, we achieved almost a 7% increase in accuracy. Pastures, green-urban areas
and industrial/commercial units were all classed with high precision. The patch-
based training seems to have helped the model detect the key shapes and features
which distinguish these land-types, i.e. the tiled shaping of pastures, the irregular
shaping of green urban areas, and the block-like shapes present in industrial areas.
This argument could be countered by mentioning the poor performance of the patch-
trained model when classifying water bodies, airports and dump sites, all land-types
with highly unique shapes. However, these classes had very low support in both the
CNN’s training and predicting sets. The model had rarely been exposed to patches
containing pixels belonging to these classes, therefore low prediction performance
would be expected.

In Section 5.2.4, we produce scene-wide predictions for the AOI. This will help us
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further illuminate the effect of local image regions, in a more visual context.

Figure 6.1: CNN-3x3, CNN-7x7 and ground-truth over Swindon.

We can see the effect of altering our local patch size above. The larger patch
area correctly classifies Swindon as continuous urban (red), whereas the 3x3 patch
classifies as industrial (purple). This is likely due to the fact that the 3x3 would
be more sensitive to the distinct colour of industrial warehouses, mistaking urban
fabric as industrial due to the colour similarities between urban and industrial areas.
Whereas the 7x7 patch would be able to detect the defining features of urban areas,
such as the grid-like layout of street blocks, leading to an accurate classification of
the whole Swindon area. It does misclassify the industrial areas as sports and leisure
(light-purple), however. Let’s take a look at another region of the predicted AOI.

Figure 6.2: True colour image, CNN-3x3, CNN-7x7 and ground-truth over a small airport.

Figure 6.2 demonstrates the proficient shape detection of our patches. In contrast
to the Swindon scene, the 3x3 patch almost exactly detects the shape of the runway,
compared to the 7x7 patch. This is referenced by the actual true-colour image,
as the resolution of the ground-truth fails to display the airport runway. We can
see here that local image region consideration, if variable, can provide even greater
classification results. We can see this above, where the thin runways have been
detected by our 3x3 patch, and thus producing fine predictions, due to the small
patch size. This is reinforced by the more blurry predictions by the 7x7 patch. We
can take another perspective on this by analysing road detection next.
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Figure 6.3: CNN-3x3, CNN-7x7 predictions and the true-colour image over a region of
roads.

Again, the 3x3 shows optimal performance classifying this small network of roads.
The CNN-7x7 completely misses them altogether, and classifies the entire area
around the roads as fields. It is likely the surrounding fields confused the 7x7 model,
as it would have detected a greater proportion of fields than roads in each patch.
This reinforces our suggestion that small patches are best detecting small features,
whereas larger patches are best at detect larger features. Therefore, this adds valu-
able evidence to our answer that local image regions can have a positive effect on
accuracy. To demonstrate some counter evidence, we can examine a cropping of the
BigEarth AOI prediction below.

Figure 6.4: CNN-BigEarth predictions for the Swindon area.

Evidently, BigEarth was unable to provide any meaningful predictions. At first
glance, this would negate our argument suggesting the positive impact of local region
consideration. However, the BigEarth patch sizes were 120x120 in dimension. A
120x120 region of 10m resolution imagery covers over 1km2, which in the context of
our AOI, would be hard to consider as a local region. In fact, we can see this in Figure
6.4 by the continuous urban predictions, coloured red, in the centre of Swindon town
centre. The only correct classifications in the entire scene, the surrounding patch
would have been entirely made up of urban fabric. Therefore, the BigEarth model
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evidently needs more than a local region to be able to effectively classify. Therefore,
the poor performance of BigEarth highlights the superior performance of our local-
region classifiers, the two CNN models.

These results clearly show that considering local regions of an image can positively
impact image classification activities. Although it was difficult to fully compare
to the GSI current methodology, we were able to cross-examine both approaches
to GSI performance metrics. Whilst only one of the two methods outperformed
the GSI approach, both had unique performance aspects, such as accurate shape
detection and effective classification for highly homogeneous land-types, that could
be of interest to GSI. We’ll discuss the feasibility of GSI adopting these methods
below.

6.2 What would be the feasibility of GSI adopting these
methods into the current methodology?

In order to assess the feasibility of these methods, further training and experimenta-
tion would be required. This was due to the similarities between the content of our
training and testing data. Although we mentioned class representation differences,
the actual pixel values were both taken from the same image. Therefore, the level
of content, such as terrain type and seasonality, exposed to the model are constant.
To attain a more realistic evaluation, GSI would have to experiment by exposing
the models to a greater variety of training data.

Considering the data the models have been trained on, however, has shown that
expanding classification training to consider local region variability, as opposed to
aggregating to single pixel averages, greatly increases the complexity of the problem.
Satellite imagery is already inherently non-linear, and when expanding the training
region of an image from pixel to patches, there are clear design considerations which
GSI should consider to assess the method feasibilities. The three-dimensional nature
of multispectral imagery also increases the complexity of local region consideration,
as the pixel count quickly skyrockets with a larger patch size, as shown. Additionally,
greater thought must be taken for algorithm choice, due to the wide array of possible
CNN architectures, of which we have only discussed a small fraction of in this paper.

However, these extra considerations also come with the huge potential increase in
performance that comes with local region classification. Although not fully explored
in this project, there is clear indication that, if tested further on a wide variety of
data, these methods could achieve greater increases in accuracy.
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Therefore, with some more development and work on the training of these methods,
it could be said that it is fairly feasible that GSI would benefit from adopting these
methods into their methodology.

6.3 Future Work

There are clear extensions of the work this project has produced. We’ll give some
recommendations on how these could be carried out below.

Increasing Spectral Content

Our project only utilised four bands out of the potential 13 on offer from Sentinel-
2 data. Determining a method to merge the differing resolutions into a 13 band
raster could greatly improve training accuracies. The CNNs our project trained and
tuned were optimised for use on 4-band deep imagery. Increasing image depth would
allow experimentation with interesting methodologies, such as the three-dimensional
convolutions discussed by Hamida et al. [4].

Semantic Segmentation

The patch-based approach can definitely outperform a pixel-only classifier. How-
ever, as shown, it still does not produces significant accuracies. Exploring semantic
segmentation, where an entire image is convolved over and predicted at once, to
produce a classification heat-map, could be worthwhile. Incorporating the hour-
glass architecture discussed by Liu et al. could be combined with our sliding patch
approach [36]. Instead of classifying the central pixel, the entire patch would be
segmented as a heat-map. This could then be aggregated with all other patches to
gain a deeper scene understanding.

Transfer Learning

We only partially managed to explore BigEarthNet, having to conform it’s class
and multispectral content to fit the constraints of this project. A very recently
compiled dataset, the potential of achieving a low-loss trained model could be high
for predicting Sentinel-2 imagery. Exploring it further could therefore be worthwhile.
Additionally, the SEN12MS dataset, another large-scale Sentinel-2 dataset compiled
in June of this year, would also be worth exploring [51]. Numbering in the 100,000s,
it could also be a valuable training tool. Training the bulk of a model on BigEarth
and finetuning the upper layers on SEN12MS could produce a powerful predictive
model.

Conditional Random Fields for Postprocessing
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Conditional random fields could be an interesting tool to explore. They are a method
of modelling spatial-contextual information in an image, directly examining a pixel’s
colour, spectral content and spatial relations. More information for their use in
remote sensing and CNN classification can be found in work done by Liu et al. [38].

Ensemble Learning

As shown by Farabet et al., using multiple CNN models in parallel can be beneficial
for image classification [20]. They implement a CNN ensemble which predicts an
image at three different scalings. It could be interesting to experiment with this
for our image patches. We’ve clearly demonstrated the variable performance for
different patch sizes, with a range of performance characteristics. For instance,
the larger patch sizes explored in this project, whilst generally performing worse,
informed on some spatial content which was missed by the smaller patches. By
sliding three different patch sizes over our AOI and feeding each into a CNN, we
could achieve a greater accuracy by aggregating each of the outputs, versus using a
single patch size.

6.4 Conclusion

Our project has produced two classification methodologies, involving patch forma-
tion and segmentation, as the basis of an alternative solution to the current GSI
classification methodology. Both solutions incorporate different spatial and textural
elements of an area of interest, and use this wider range of information to make
pixel-wise predictions. Whilst only one solution, the patch-based approach, outper-
formed the GSI methodology, both patches and segments had different performance
aspects which could be of interest to GSI. Our highest performing solution, the
patch based approach, achieved 66.14% validation accuracy, and 43.94% testing
accuracy, an 8% increase on the GSI method. Whilst our segmentation approach
under-performed by 7%, it demonstrated some useful performance characteristics,
such as effective classification of land-types of larger, more homogeneous features.
Both methods demonstrated the potential of deep neural networks when compared
with the project baseline, and the GSI Random Forest. Therefore, this project has
successfully demonstrated the potential of deep learning methodologies for use in
GSI’s land-classification methodology.
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