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Abstract  

This   project   focuses   on   the   application   of   Recurrent   Neural   Networks   (RNN)   to   the   field  

of   generative   symbolic   music.   The   following   paper   discusses   the   current   state   of   RNN  

music   generation   and   proposes   two   representations   for   compositions   with   a   shared  

underlying   data   structure.   Once   the   compositions   had   been   generated,   they   were  

compared   against   human-written   compositions   by   using   an   empirical   MIR   analysis  

system,   as   well   as   a   subjective   test   in   which   participants   offered   perceptual   responses  

to   the   compositions.   Overall,   while   the   system   was   able   to   produce   some   melodically  

pleasant   results,   it   failed   to   capture   the   long   term   structure   and   complexity   of   human  

compositions.   
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1.   Introduction  

Neural   networks   belong   to   a   family   of   computer   algorithms   known   as   Machine   Learning  

algorithms,   which   attempt   to   automate   a   solution   to   a   problem.   Machine   learning   tasks  

usually   concentrate   on   tasks   that   are   either   extremely   tedious   for   programmers,   or  

where   the   time   required   to   implement   the   algorithm   traditionally   is   unfeasible.   With  

neural   networks,   the   computer   is   fed   massive   quantities   of   data   to   “train”   the   network,  

which   is   to   say,   the   network   tries   to   formulate   a   pattern   from   the   data,   such   that   it   is  

able   to   predict   unseen   classes/categories,   or   generate   new   data   based   on    some    input.  

Neural   networks   specifically   have   seen   a   massive   rise   in   use   due   in   large   part   to   the  

advent   of   extremely   sophisticated   Graphics   Processing   Units   (GPUs).   Originally  

intended   for   video   games,   modern   GPUs   often   contain   thousands   of   cores,   all   of   which  

are   specifically   engineered   to   perform   vector   and   matrix   algebra   extremely   quickly:  

structures   fundamental   to   the   operation   of   neural   networks   (Paine   et   al,   2013).   From  

the   advent   of   this   newfound   power,   neural   networks   have   been   applied   to   a   variety   of  

problems,   including:   image   classification,   feature   extraction   from   audio   signals,  

time-series   analysis   of   financial   data   and   much   more.   With   this,   a   variety   of   neural  

network   architectures   have   emerged,   many   of   which   have   been   fine-tuned   for   a  

particular   area   of   application.   Convolutional   neural   networks   have   seen   widespread   use  

in   image   classification   due   to   the   similarity   in   structure   to   that   of   the   visual   cortex;  

feed-forward   neural   networks   are   some   of   the   most   simple   ANN   architectures   and   are  

generally   quite   accurate   at   most   machine   learning   tasks,   including   image   processing  

and   natural   language   processing   (Graves   et   al,   2013)   tasks   which,   until   recently,   were  

among   the   most   challenging   for   traditional   algorithms   to   approach.   

 

One   traditionally   challenging   problem,   however,   is   the   generative   composition   of   music.  

Studies   by   (Eck   &   Schmidhuber,   2002)   and   (Franklin,   2006)   have   shown   traditional  

neural   network   architectures   to   be   unfit   for   generating   music   due   to   their   inability   to  

effectively   deal   with   time-series   data,   that   is,   data   where   the   ordering   of   data-points   is  

important.   In   music   the   order   of   notes   is   fundamental   to   giving   music   a   ‘human’   feel,  
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and   in   most   music,   many   abstractions   of   ordering   take   place.   In   music   theory   and  

notation,   a   bar   (also   known   as   a   measure)   is   a   series   of   notes   which   can   be   loosely  

thought   of   as   a   complete   musical   phrase.   Bars   have   sub-divisions   of   time   known   as  

“beats”   which   vary   based   on   the   time-signature   of   the   piece.   Time   signatures   have   the  

largest   impact   on   the   rhythmic   “feel”   of   the   track   and   inform   the   order   and   spacing  

between   notes   for   at   least   the   remainder   of   that   bar   (though   in   most   non-classical  

music,   compositions   will   stick   to   one   or   a   small   number   of   time-signatures).    From   here  

further   abstractions   may   be   applied   to   the   composition’s   temporal   structure,   a  

verse-chorus   song   structure   may   be   composed   of   a   number   of   separate,   yet   closely  

related   bars   of   music,   which   are   ordered   in   such   a   way   as   to   have   an   emotional   impact  

in   the   listener.  

 

  Recurrent   Neural   Networks   (RNN)   are   neural   networks   that   are   able   to   keep   track   of  

information   from   a   previous   timestep,   and   thus   have   some   rudimentary   form   of  

memory.   This   is   useful   for   keeping   track   of   so   called   ‘long   term   dependencies’,   take   for  

example   a   motif   from   a   classical   piece,   the   composition   may   be   over   an   hour   long,  

however   specific   themes   and   phrases   from   parts   of   the   music   are   reused   for   dramatic  

and   emotional   effect   (Sutskever   et   al,   2014).  

 

Another   problem   generative   music   currently   faces   is   that   while   current   solutions   may  

be   aware   of   the    form    of   music,   e.g.   they   are   able   to   capture   the   basic   structure   of   music,  

they   are   not   however   able   to   capture   the   semantics   of   music.   (Langston,   1988)  

describes   the   semantic   meaning   of   a   composition   as   being   influenced   by   “experiential,  

cultural   and   historic   information   (the   result   of   activities   we   loosely   call   experience,  

acculturation   and   learning)   that   does   not   yet   exist   in   any   machine   manipulable   form”.   

 

Analysis   of   music   (whether   a   generative   or   bespoke   composition)   is   a  

challenging   task   for   computers.   Basic   statistics   about   the   composition,   such   as   it’s   key  

or   tempo   are   relatively   easy   to   extract   with   modern   tools   (Antti   &   Eronen,   2017),   and  
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can   even   be   extended   to   work   out   more   involved   properties   of   a   composition,   such   as  

it’s   time-signature   or   key   changes   that   occur   throughout.   Empirically   analysing   the  

emotional   impact   or   perceived   ‘quality’   of   a   piece   of   music   is   extremely   challenging   (if  

not   impossible)   due   in   no   small   part   to   research   which   suggests   that   human’s  

assessment   of   music   and   their   stylistic   preferences   are   based   almost   entirely   on  

individual   cognitive   ability   and   past   life   experiences   (Krumhansl,   2002).   Theories   such  

as   the   Generative   Theory   of   Tonal   Music   (GTTM)   (Lerdahl   and   Jackendoff,   1983)   have  

made   strides   in   making   meaningful   semantic   analysis   of   music   a   reality.   GTTM   is  

different   from   most   other   music   analyses   in   that   it   constructs   a   representation   of   the  

composition   that   is   informed   by   music   theory,   but   also   by   the   listeners   cognitive  

behaviour   when   listening   to   music   (Jackendoff,   1994).   

 

Based   on   these   factors,   a   reasonable   assumption   could   be   made   that   a   neural   network  

with   strong   time-domain   capabilities   could   prove   insightful,   if   not   useful,   in   the   field   of  

generative   music.   Though   a   rather   niche   area   of   computing,   generative   music   sees  

widespread   use   in   the   video-game   sector   and   can   lead   to   a   more   optimal   experience   for  

the   consumer,   as   they   are   able   to   make   actions   which   will   affect   the   music,   thus  

increasing   player   agency   (Collins,   2009).   Artists   such   as   Brian   Eno   (who   originally  

coined   the   phrase   “Generative   Music”)   have   also   shown   interest   in   the   possibilities   of  

this   technique   ,   and   its   application   in   musical   performances,   specifically   avant-garde  

performances   (Darko,   2009).   As   such,   this   project   will   discuss   the   experimental   design  

of   a   RNN   system   which   generates   music.  
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2.   Aims  

   2.1    The   overall   aim   of   this   project   is   to   develop   a   Recurrent   Neural   Network   that   will   be  

capable   of   producing   “human”   sounding   music.   To   achieve   this   system,   the   following  

aims   must   be   met:   

● Investigate   the   current   state   of   Recurrent   Neural   Networks   in   the   field   of   music  

generation.   This   will   involve   analysing   the   strengths   and   weaknesses   of   currently  

existing   generative   music   systems   using   RNNs,   with   particular   attention   paid   to  

the   structure   of   the   generated   songs.  

● Develop   and   train   a   RNN   with   the   aim   of   generating   harmonious   and   temporally  

structured   music.   

● Subjectively   and   empirically   assess   the   quality   of   generated   music.   

 

2.2    The   resources   required   to   undertake   this   project   are   as   follows:  

● Computer   with   access   to   Python,   Tensorflow,   jSymbolicand   Keras.   A   laptop   with  

a   capable   GPU   will   help   speed   up   the   training   of   the   neural   network   significantly.  

● Music   dataset   for   training,   in   MIDI   file   format.  

● Access   to   human   participants   for   subjective   analysis   of   generated   music.   

 

 

 

 

 

 

 

 

 

 

 

 

10  



3.   Background   /   Key   Literature  

In   order   to   properly   and   effectively   build   the   proposed   neural   network   model,   it   is   of  

vital   importance   to   review   the   existing   body   of   RNN,   generative   music   and   surrounding  

material.   The   following   subjects   were   identified   as   the   most   relevant   to   the  

development   of   the   system.  

 

3.1   Recurrent   Neural   Networks  

Neural   networks   are   a   family   of   machine-learning   algorithms   which   have   seen  

widespread   adoption   in   the   advent   of   new-found   computer   processing   speed,   with  

applications   in   the   field   of   deep   learning   and   medical   research   (Paine   et   al,   2013).   Some  

of   the   most   common   neural   network   architectures   are   Feed-forward   networks   and  

Convolutional   Neural   Networks:   the   former   is   among   the   most   primitive   neural   network  

configuration   and   is   often   used   as   a   naive   starting   point,   while   convolutional   neural  

networks   see   extensive   use   in   image   recognition   applications(Krizhevsky,   Sutskever  

and   Hinton,   2012).   One   of   the   fundamental   flaws   of   both   Feed-Forward   and  

Convolutional   neural   networks   is   that   they   are   unable   to   deal   with   time-series   data,  

which   is   any   data   in   which   the   ordering   of   data   points   is   important   (Franklin,   2006).  

Recurrent   Neural   Networks   differ   from   other   Neural   Network   architectural   styles   in   that  

the   output   of   each   neuron   at   any   given   time-step   is   fed   back   into   the   neuron   at   the   next  

timestep,   meaning   the   summed   input   of   the   neuron   is   based   on   the   current   incoming  

input,   as   well   as   the   output   of   the   neuron   at   the   last   time-step   (Bown   and   Lexer,   2006)  
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Figure   3.1.1   illustrates   the   difference   between   a   recurrent   neural   network   and   a   feed  

forward   neural   network.   In   feed   forward   networks,   the   output   from   each   layer    only  

moves   forward   to   the   next   layer   until   it   eventually   reaches   the   output   terminal.   This  

means   that   the   network   is   completely   unaware   of   the   output   from   the   last   timestep,   not  

to   mention   the   networks   state.   This   makes   feed-forward   networks   sub-optimal   for  

music   as   they   are   not   able   to   reproduce   or   capture   any   kind   of   long-term   musical  

structure.    Recurrent   neural   networks   help   to   alleviate   this   problem   by   taking   the   output  

from   each   layer   at   time    t    and   feeding   it   back   into   itself   at   time   t+1   .   This   means   that   for  

all   recurrent   neurons   in   the   layer   (more   on   this   shortly)   the   neuron   is   aware   of   the  

current   incoming   input,   as   well   as   the   output   from   this   neuron   from   the   previous   time  

step.   (Franklin,   2006).   

 

Traditionally,   Recurrent   Neural   Networks   have   proven   challenging   to   train   due   in   no  

small   part   to   the    vanishing    and    exploding    gradient   problem.    In   short,   the   exploding  

gradient   problem   describes   the   situation   where   long-term   temporal   dependencies  

cause   massive   updates   to   the   weights   of   the   network,   leading   to   unstable   training,   or  

weights   with   NaN   values.   The   vanishing   gradient   problem   describes   precisely   the  

opposite   problem,   where   many   short-term   dependencies   can   cause   the   loss   curve   to  

become   so   small   that   it   is   unable   to   make   any   effective   change   to   the   network   and  

causes   the   rate   of   learning   to   slow   to   a   crawl   (Pascanu   et   al,   2013).   The  

Backpropagation   algorithm   used   to   train   nearly   all   neural   networks   is   in   itself   unfit   for  

training   RNNs   due   to   its   inability   to   backpropagate   errors   from   multiple   time-steps.  

Backpropagation   Through   Time   (BPTT)   allows   the   fundamental   backpropagation  

algorithm   to   be   applied   to   RNNs   by   “unrolling”   the   network.   As   can   be   seen   from   Figure  

3.1.2,   unrolling   a   recurrent   network   involves   representing   each   recurrent   neuron   as   a  

series   of   neurons   (the   length   of   the   series   is   equal   to   the   number   of   timesteps),   thus  

explicitly   representing   the   weight   of   a   neuron   at   each   timestep.   This   process   is   applied  

to   the   entire   network,   with   the   result   of   this   process   being   the   original   RNN   represented  
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as   a   feedforward   neural   network,   allowing   traditional   backpropagation   to   be   performed  

on   the   networks   weights   (Saon   et   al,   2014).  

 

 

One   major   flaw   with   BPTT   however,   is   that   it   is   prone   to   becoming   stuck   in   local   optima  

during   training.   This   proves   problematic   in   its   application   to   training   recurrent   networks  

as   by   their   nature   of   repeating   input   from   previous   time-steps,   RNNs   naturally   also  

suffer   from   the   problem   of   local   optima   (Cuellar   et   al   ,   2006).   Were   this   problem   left  

unfixed   for   the   proposed   system,   at   some   point   in   the   generation   of   a   composition   the  

network   would   converge   on   a   single   note   and   repeat   indefinitely.   A   problem   that   more  

generally   plagues   RNNs   is   the   issue   of   so   called   “long   term   dependencies”.   Take,   for  

instance,   an   RNN   solving   a   NLP   problem   of   predicting   the   next   word   in   a   given  

sentence;   for   the   sentence    “I   am   from   france,   I   speak   _”   ,   the   obvious   answer   to   a  

human   is   ‘french’   as    most    humans   will   understand   that   people   who   live   in   france,   must  

by   extension   speak   french.   For   a   standard   recurrent   neural   network   however,   there   is  

no   way   for   the   network   to   intrinsically   understand   the   significance   of   the   word   “france”  

in   the   context   of   the   sentence,   and   a   poorly   trained   RNN   may   not   even   recognise   that  

the   next   word   should   be   some   kind   of   language,   or   even   a   word   relating   to   france   at   all.  

Both   of   these   problems   are   addressed   by   LSTM   units.  

 

LSTM   networks   use   a   special   kind   of   recurrent   connection   which   significantly   aids   an  

RNNs   ability   to   recognise   and   deal   with   long-term   dependencies.   The   core   principle   of  

an   LSTM   cell   is   that   each   cell   maintains   some   “state”   which   is   consistent   between  
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timesteps.   The   inner   workings   of   the   LSTM   cell   state   are   extremely   complex   and   fall  

outwith   the   scope   of   this   project,   but   an   LSTM   cell   state   can   loosely   be   thought   of   as   a  

conveyor   belt   which   flows   through   all-timesteps   of   an   LSTM   cell,   carrying   different  

configurations   at   each   point   in   time.   At   each   timestep,   the   LSTM   can   be   trained   to   either  

remember   or   forget   part   of   the   information   it   is   currently   holding   -   this   modified  

information   then   becomes   the   state   for   the   next   timestep   (Gers,   Schmidhuber   and  

Cummins,   2000).   The   other   components   of   an   LSTM   cell   are   used   purely   to   control  

what   data   is   modified   in   the   cell’s   state.   The   forget   gate   dictates   how   much   of   the  

current   state   should   be   discarded   to   allow   for   new   information   to   flow   in.   As   its   output,  

the   forget   gate   return   a   number   in   the   range   0   to   1,   with   0   representing   “forget  

nothing”   and   1   representing   “forget   everything”.   The   input   gate   provides   the   opposite  

behaviour,   dictating   how   much   of   the   new   input   data   should   be   fetched   and   stored   in  

the   cells   state   (Olah,   2015).   A   simpler   alternative   to   LSTM   networks   exist   in   GRU  

(Gated   Recurrent   Unit)   networks.   GRU   units   have   only   two   gates:   the   forget   gate   -  

which   decides   how   much   of   the   current   state   should   be   forgotten,   and   the   update   gate  

-   which   dictates   how   much   of   the   current   incoming   activation   should   overwrite   the  

previous   timestep’s   activation.   The   most   salient   difference   between   GRUs   and   LSTMs   is  

that   GRUs   always   expose   the   full   state   during   updates,   where   LSTM   units   are   able   to  

control   the   degree   to   which   the   state   is   exposed   (Chung   et   al.,   2014).   By   allowing   the  

network   to   retain   information   over   long   periods   of   time   as   well   as   being   able   to   tune  

how   much   information   should   be   forgotten   and   retained   at   each   time-step,   both   LSTM  

and   GRU   networks   are   able   to   mitigate   the   problem   of   long-term   dependencies   as   well  

as   helping   to   deal   with   both   vanishing   and   exploding   gradients.   
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3.2   Music   Theory   and   Data   Representation  

In   approaching   a   generative   music   application,   it   is   of   crucial   importance   to   consider   at  

least   a   small   amount   of   music   theory;   this   section   will   primarily   discuss   western   music  

theory   as   the   training   data   is   exclusively   comprised   of   western   music,   however   it   should  

be   noted   that   there   are   slight   variations   in   music   theory   throughout   different   parts   of  

the   world.  

 

A   note   is   a   single   musical   excitement   which   has   only   2   salient   features:   Pitch   and  

Duration.   Pitch   describes   the   tonality   of   the   musical   excitement,   and   is   measured   (in  

western   music   theory)   using   the   chromatic   scale.   This   is   a   musical   scale   which  

represents   a   mapping   of   Note   Pitches   (often   simply   referred   to   as   notes)   to   various  

frequencies,   for   example,   take   the   note   pitch   A4,   which   lies   at   440hz.   The   chromatic  

scale   is   composed   of   12   evenly-spaced   pitch   classes   over   8   octaves,   hence   ‘A4’  

meaning   the   pitch-class   ‘A’   at   octave   4.   Increasing   the   octave   of   a   note   doubles   the  

note’s   current   frequency,   e.g.   A4   =   440Hz   and   A5   =   880Hz.   The   chromatic   scale   is   used  

as   the   basis   for   western   musical   scales   due   to   its   versatility,   stability   across   many  

octaves   and   wide-range   of   harmonious   possibilities   (Schellenberg   et   al.,   2005).  

 

The   most   fundamental   collection   of   notes   which   can   be   considered   a   complete   musical  

passage   is   a   bar.   Each   bar   may   have   an   arbitrary   number   of   notes   which   compose   a  

musical   phrase,   however   it   is   primarily   the   time   signature   (more   on   this   shortly)   which  

informs   the   rhythmic   properties   of   the   musical   expression.   Note   durations   are   relative   to  

the   tempo   (ordinarily   measured   in   beats-per-minute),   and   have   predetermined   intervals  

to   denote   various   durations   in   a   readable   format.   The   most   common   note   durations   are  

a   crotchet,   quaver   and   semi-brieve   which   represent   ¼   ,   ⅛   and   whole   note   lengths.   It   is  

impossible   to   explain   the   meaning   of   these   time   designations   without   first   explaining  

the   concept   of   a   time-signature,   which   in   western   music   theory,   is   the   primary   method  

of   expressing   the   rhythmic   properties   of   a   musical   phrase.  

15  



 

As   can   be   seen   from   Figure   3.2.1,   time   signatures   are   represented   by   two   numbers,  

which   we   will   refer   to   as   the   enumerator   and   denominator   for   the   sake   of   ease.   The  

enumerator   refers   to   the   number   of   pulses   (more   commonly   referred   to   as   beats)   per  

bar,   while   the   denominator   refers   to   the   value   -   or   duration   -   of   each   beat.   The   tempo  

and   time   signature’s   denominator   are   the   primary   methods   for   informing   the   reader   of  

the   “speed”   of   a   musical   phrase.   

 

In   order   to   achieve   the   goal   of   “human   feeling”   music,   the   system   would   ideally  

understand   the   distinction   between   sections   of   music;   these   segments   of   music   are  

usually   broken   down   into   verse,   chorus   and   bridge   components   (Sloboda,   1991).   While  

this   seems   extremely   simple,   most   popular   music   is   written   exclusively   within   the  

confines   of   this   structure   denoted   “verse-chorus   form”,   with   minor   variations   introduced  

in   each   section   to   minimise   the   repetition   and   elicit   an   emotional   response   from   the  

listener   (Doll,   2011).   With   this   being   said,   there   are   vastly   more   complicated   forms   of  

music   such   as   freeform   jazz,   which   can   almost   be   said   to   contain   no   discernable  

structure.   There   are   also   many   examples   of   popular   music   which   do   not   conform   to   the  

verse-chorus   form,   but   due   to   its   prevalence   in   music   and   its   relatively   simple   rules,   the  

verse-chorus   form   will   be   used   as   the   basis   for   all   general   structure   we   wish   the   system  

to   be   able   to   replicate.  

 

Beyond   the   basic   music   theory   involved   in   designing   a   generative   music   system,   a   huge  

consideration   in   any   neural   network   system   is   the   form   of   the   representation.   
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One   of   the   most   common   ways   to   digitally   represent   music   is   MIDI   (Musical   Instrument  

Digital   Interface).   MIDI   does   not   seek   to   recreate   the   exact   sound   of   a   piece   of   music,  

MIDI   instead   captures   musical   events   for   an   arbitrary   number   of   instruments,   which   can  

be   layered   within   a   single   file.   An   example   of   an   event   would   be   a   “note   on”   event,  

which   would   correspond   to   a   given   instrument,   and   would   be   passed   through   a   note   (or  

pitch)   to   play   at   a   given   velocity,   e.g.   how   hard   the   note   was   played.   MIDI   was   originally  

developed   in   1983   with   the   goal   of   allowing   synthesizers   from   multiple   different  

companies   to   communicate;   it   has   since   become   a   ubiquitous   way   of   storing   music.   It  

has   since   seen   use   in   MIR   (Music   Information   Retrieval)   domains   as   a   supplementary  

asset   to   a   given   musical   signal,   for   the   purposes   of   both   musical   feature   extraction   and  

classification   (Cataltepe   et   al,   2005).   

 

In   MIDI,   a   note’s   pitch   is   represented   as   a   number   in   the   range   0   to   127.   For   example,  

MIDI   note   72   represents   the   note   C   in   the   5th   octave,   which   is   approximately   equivalent  

to   524Hz.   MIDI   notes   are   modelled   to   represent   all   available   notes   on   the   chromatic  

scale,   which   means   that   certain   musical   styles   such   as   microtonal   music   cannot   be  

accurately   represented   using   MIDI.   Due   to   this   limitation,   MIDI   is   primarily   used   to  

represent   western   music   as   it   simply   lacks   the   infrastructure   to   effectively   deal   with  

non-western   pitch   representations.   Velocity   describes   how   hard   a   note   was   excited   by  

an   instrument,   and   can   be   loosely   thought   of   as   a   measure   of   loudness   and   dynamics.  

The   velocity   value   is   also   ranged   0-127,   with   0   representing   no   excitement   at   all,   and  

127   representing   the   maximum   volume   for   a   note.   For   this   project,   the   velocity   will  

primarily   be   thought   of   as   a   loudness   metric   (as   this   project   only   seeks   to   generate  

music   for   a   piano),   however   for   other   instruments,   velocity   impacts   not   only   the   volume  

of   the   sound,   but   the   way   the   excitement   sounds   tonally.   Take,   for   example,   a   drum   kit;  

while   increasing   velocity   will   make   the   drum   hits   louder,   this   will   also   cause   the   drum  

hits   to   sustain   longer,   and   potentially   even   change   the   tone   depending   on   how   hard   the  

drum   was   hit   (Dannenberg,   2006).    
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In   terms   of   representation,   MIDI   is   often   used   as   a   starting   point   for   data   preparation,   as  

all   of   the   information   required   for   the   network   can   either   be   directly   sampled   from   the  

MIDI   file,   or   extrapolated   from   the   existing   data.   Common   to   all   representations   is   the  

inclusion   of   Pitch   and   Velocity   as   features.   Time   features   such   as   note   duration   and  

start   are   usually   less   consistently   defined,   but   can   generally   be   split   into   one   of   two  

approaches:   relative   timing   and   absolute   timing.   In   relative   timing,   the   note’s   start   time  

(not   duration)   is   relative   to   the   start   time   of   the   last   note,   in   absolute   timing   ,   the   note’s  

start   time   is   the   absolute   time   it   should   start,   in   seconds   (Eck   and   Schmidhuber,   2002b)  

 

Tokenization   is   a   process   ordinarily   used   in   Natural   Language   Processing   (NLP)  

applications,   in   which   a   dataset   is   encoded   into   a   symbolic   representation   where   each  

symbol   represents   some    facet    of   a   dataset,   for   instance,   words   in   a   NLP   neural  

network.   Tokenization   makes   use   of   a   concept   known   as   a   ‘dictionary’   which   holds   all   of  

the   tokens   and   the   original   data   they   represent.   Dictionaries   are   almost   always   a   fixed  

length,   meaning   some   of   the   original   data   may   no   longer   be   representable;   this   is   a  

necessary   sacrifice   as   large   dictionaries   can   lead   to   exponential   increases   in   training  

time,   or   the   possibility   of   divergence   if   the   given   dictionary   is   sufficiently   large   (Luong   et  

al.,   2015).     In   NLP   applications,   data   usually   takes   the   form   of   a   list   of   n-length   vectors  

of   integers   (with   each   integer   representing   a   word   from   the   dictionary,   and   thus   the  

vector   representing   a   sentence).   Tokenization   has   seen   application   to   sentiment  

analysis   of   user   reviews   (Maas   et   al.,   2011),   real-time   machine   translation   (Devlin   et   al.,  

2014)   as   well   as   password   security   analysis   (Melicher   et   al.,   2016).   The   application   of  

this   approach   to   generative   music   is   not   a   novel   concept:   a   study   which   used   a  

Transformer   decoder   to   generate   music   also   used   a   tokenized   symbolic   representation  

with   extremely   promising   results   (Cheng-Zhi   et   al.,   2018).   Another   study   proposes  

fundamental   similarities   between   language   and   music,   specifically   with   regard   to  

metrical   structure   and   phrasing   (Jackendoff,   2009).   
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3.3   Current   State   of   Generative   Music  

There   have   been   many   successes   of   the   application   of   RNNs   to   a   particular   subset   of   a  

musical   piece,   such   as   melody   composition   (Chen   &   Miikkulainen,   2001),   drum   grooves  

(Hutchings,   2017)   and   even   small   segments   of   music   using   a   multi-layer   system   which  

trains   one   network   on   chord   structures,   and   another   to   compose   melody   within   the  

confines   of   the   generated   chord   structure   (Eck   and   Schmidhuber,   2001).   

 

One   potential   problem   highlighted   by   (Eck   and   Schmidhuber,   2002a)   is   that   many  

neural   networks   use   multiple   time-steps   to   one   note,   which   needlessly   complicates  

both   the   network   as   a   whole   and   the   training   process.   The   same   study   also   suggests  

for   the   sake   of   simplicity   and   efficiency:   a   predetermined   note   distribution   should   be  

established   for   the   entire   dataset,   e.g.   notes   in   a   song   will   have   a   minimum   distribution  

of   pitch   ( jumps   in   3   semitones,   rather   than   1   semitone   for   the   chromatic   scale).   This  

was   seconded   by   (Franklin,   2006)   who   also   suggested   that   a   traditional   mapping   of  

pitch,   e.g.   12   notes   per   scale   and   8   octaves   of   notes,   may   be   a   poor   representation   for  

pitch,   with   respect   to   training   accuracy.   This   was,   however,   disproven   by   (Liu   and  

Ramakrishnan,   2014)   who   successfully   trained   a   model   using   data   which   took   the   form  

of   a   2D   vector   of   pitch   activations   over   many   timesteps.   

 

Another   approach   highlighted   by   (Skuli,   2017)   takes   a   simultaneously   simpler   and   more  

sophisticated   approach   to   representation.   This   approach   removes   all   timing   features  

with   a   predetermined   interval   between   every   note,   drastically   limiting   the   expressive  

capabilities   of   the   network.   The   network   does   however   distinguish   between   a   single  

note   as   a   musical   excitement   and   a   chord,  

 

One   significant   challenge   still   facing   generative   music   solutions   is   capturing   the  

so-called   “long-term   structure”   of   music,   which   can   be   thought   of   as   the   culmination   of  

long-term   dependencies   which   govern   the   style   of   a   particular   composition   (Eck   and  

Schmidhuber,   2002b).   One   recent   approach   looks   at   tackling   the   problem   of   ‘long-term  
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structure’   through   the   use   of   a   Transformer   Decoder   network,   which   significantly  

improved   the   quality   of   prediction   compared   to   other   state-of-the-art   models,  

specifically   with   regard   to   note   duration   and   timing.   This   representation   for   this  

approach   utilised   a   symbolic   approach   for   pitch   and   velocity,   where   note   duration   and  

activation   were   dictated   by   a   piano-roll   like   time-series   structure   (Cheng-Zhi   et   al.,  

2018).  

 

3.4   Computational   Music   Analysis  

A   significant   challenge   in   computationally   analysing   music,   and   its   perceived   quality,   is  

that   a   human’s   appreciation   for   music   is   hugely   dependent   on   their   life   and   the   context  

in   which   they   listen   to   the   piece   (Ariza,   2009).   As   such,   music’s   perceived   quality   can   be  

thought   of   as   a   culmination   of   the   listener’s   emotional   response   and   their   cognitive  

ability   /   experiences   (Krumhansl,   2002).   Some   formative   work   by   (Lerdahl   and  

Jackendoff,   1983)   attempts   to   disambiguate   a   musical   piece   into   the   way   humans  

purportedly   perceive   music.   Labelled   GTTM   (Generative   Theory   for   Tonal   Music),   this  

technique   is   intended   as   a   rule-set   that   governs   the   generation   of   music   (Dodd,   2015)  

but   has   also   been   applied   to   perceptual   music   analysis   systems,   and   works   by   splitting  

the   music   into   4   discrete   components:   the   prolongonal   tree,   time-span   tree,   metrical  

structure   and   grouping   structure   (Eck   and   Schmidhuber,   2002a).    Grouping   structure  

describes   the   relationship   between   a   grouping   of   notes   (or   a   phrase),   the    metrical  

structure    describes   the   rhythmic   feel   of   a   phrase,   the    time-span   tree    is   a   hierarchical  

tree   which   allocates   an   importance   to   a   given   note   in   a   phrase,   and   finally,   the  

prolongonal   tree    expresses   the   notion   of   tension   and   release   within   a   given   section.   As  

both   a   method   of   analysis   and   generation,   GTTM   has   amazing   potential   to   generate  

music   which   mimics   human   emotion.   One   major   caveat   is   that   no   standard  

implementation   of   GTTM   exists   and   as   such,   must   be   implemented   by   the   programmer.  

 

An   approach   by   (Hamanaka   et   al,   2015)     highlighted   many   potential   issues   with   GTTM,  

not   least   of   which   was   the   lack   of   a   formal   implementation   for   computers,   as   well   as  
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many   of   the   proposed   rules   (specifically   how   the   music   generation   is   started)   being  

ambiguously   described.   The   approach   Hamanaka   et   al   took   was   to   take   a   sheet   music  

representation   (similar   to   that   provided   by   Sibelius   or   other   music   authoring   software),  

and   apply   a   subset   of   GTTM   recursively   over   increasing   sizes   of   musical   phrase.   This  

technique   denoted   ATTA,   or   Automatic   Timespan   Tree   Analyzer   (Hamanaka   et   al,  

2015),   looks   at   a   small   phrase   of   music   and   recursively   looks   at   its   position,   relative   to   a  

larger   and   larger   subsection   of   music.   This   allows   the   analysis   system   to   be   more  

perceptually   aware   of   the   intended   tone   of   a   given   phrase;   for   example,   many   happy  

songs   will   have   minor   chords,   or   even   minor   sections   which   provide   a   different    feel    to  

the   music,   without   necessarily   making   the   song   sound   inherently   ‘ sad’.  

 

Unfortunately,   no   solid   computational   implementation   for   GTTM   analysis   yet   exists.   As  

noted   by   (Hamanaka,   Hirata   and   Tojo,   2007),   GTTM   has   proven   difficult   to   interpret   as   a  

computational   algorithm   due   to   vague   rules   in   the   original   specification,   and   as   such,  

very   few   applications   have   made   attempts   to   use   GTTM   for   analysis.   For   this   system,  

analysing   the   emotional   response   of   a   listener   to   the   generated   compositions   is   out   of  

scope,   but   some   method   of   analysing   the   musicality   of   a   generated   piece   is   essential   to  

ascertain   if   the   system   has   been   able   to   produce   a   pleasant   musical   composition.   

 

Computational   Musicology   (CM)   is   a   multidisciplinary   subject   which   aims   to   combine  

computer   science   and   music   theory;   it   covers   a   broad   range   of   well-documented  

research   areas,   such   as   mathematical   music   theory,   music   information   retrieval   (MIR)  

and   computer   generated   music   (Volk,   Wiering   and   van   Kranenburg,   2011).   For   this  

project,   we   are   primarily   interested   in   the   analytical   aspects   of   CM   and   will   be   focussing  

on   MIR,   as   it   has   seen   the   most   widespread   adoption   (and   therefore,   development)  

following   the   mass   digitisation   of   popular   music   in   the   late   1990s   and   early   2000s .   MIR  

has   a   wide   variety   of   applications,   from   forming   music   recommendations   based   on   a  

corpus   of   existing   music,   to   automatic   music   transcription    (Klapuri   and   Davy,   2011) .  

Two   main   approaches   exist   for   MIR:   Signal-based   MIR,   which   operates   on   the   raw  
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audio   signal   (or   signal   files   such   as   .wav,   .mp3),   and   symbolic   MIR   which   operates   on  

binary   formats   such   as   MIDI    (Li   et   al.,   2017) .     This   project   will   focus   on   symbolic   MIR,   as  

our   output   representation   will   be   a   binary   MIDI   file.   A   small   handful   of   MIR   toolkits   exist  

for   a   variety   of   languages   including   music21   for   python    (Cuthbert   and   Ariza,   2010) ,  

Essentia   for   C++   and   Python    (Bogdanov   et   al.,   2013),   and   the   framework   this   project  

will   utilise,   jSymbolic.   

 

jSymbolic   is   part   of   a   collection   of   MIR   tools   known   as   jMIR;   it   is   a   symbolic   MIR   tool  

which   operates   on   MIDI   and   MusicXML   data,   providing   a   massive   collection   (see   Figure  

3.4.1)   of   musical   descriptors   such   as:   pitch   and   harmony,   melodic   intervals,   rhythmic  

intervals,   musical   texture   and   has   seen   use   in   a   variety   of   MIR   studies    (Raffel,   2016)  

(Odekerken,   2018)   (Wickland,   Calvert   and   Harley,   2018).   The   framework   was   originally  

intended   with   the   goal   of   automating   user   suggestions   and   classification   of   music;   more  

recently,   however,   the   framework   has   seen   use   in   the   field   of   Machine   Learning     (Mckay,  

Cumming   and   Fujinaga,   2018)   as   well   as   Musicology,   where   researchers   used  

jSymbolic   analysis   data   to   predict   the   emotion   of   a   composition   (Lu   et   al,   2010)  
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Figure   3.4.1    Complete   list   of   jSymbolic   2.2   MIR   Descriptors  
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3.5   Subjective   Music   Analysis  

As   humans   are   the   intended   target   for   the   output   of   the   system,   subjective   analysis   of  

the   compositions   will   be   performed   (as   a   supplement   to   computational   analysis)   to  

assess   the   human   reaction   to   the   pieces.   In   setting   out   to   design   our   subjective   music  

assessment,   our   most   salient   goal   is   to   identify,   to   what   extent,   test   subjects   are   able   to  

discern   between   the   generated   music   and   bespoke   compositions.    As   previously  

discussed,   perception   and   enjoyment   of   music   is   highly   subjective   and   is   informed  

hugely   by   an   individual's   life   experiences   (Krumhansl,   2002).   Another   study   expanded  

up   on   this   by   proposing   that   one’s   age   and   cultural   background   may   have   an   even   more  

significant   perceptual   impact   on   music   than   life   experiences.   The   same   study   also  

showed   that   music’s   perceived   ‘complexity’   varies   with   age,   but   common   to   both   young  

and   old,   cultural   differences   can   create   perceptual   complexity   (Morrison   et   al,   2008);   for  

example,   an   Indian   pop   song   perceived   as   simple   by   Indian   listeners   may   be   perceived  

as   complex   by   a   naive   western   listener   who   has   no   frame   of   reference   for   what   “simple”  

Indian   pop   music   should   sound   like.   

 

Upon   designing   the   listening   test   for   participants   to   assess   the   perceived   quality   of   a  

given   composition,   the   primary   focus   was   to   ensure   that   data   analysis   would   yield  

meaningful   results   that   could   be   interpreted   to   gauge   overall   enjoyment   of   a  

composition.   As   a   full   listening   test   with   trained   musicians   was   out   of   the   scope   (and  

budget)   of   this   project,   it   was   decided   an   informal   questionnaire   would   be   used   to  

subjectively   analyse   a   human’s   reaction   to   the   generative   composition.   One   commonly  

used   method   for   collecting   perceptual   data   is   the   use   of   the   Likert   Scale,   a   psychometric  

scale   which   ordinarily   poses   a   statement   to   the   participant   and   offers   5   categorised  

responses:   Strong   Disagree,   Disagree,   Neutral,   Agree,   Strong   Agree   (Nemoto   and  

Belgar,   2013).   Likert-style   questionnaires   can   be   split   in   to   two   varieties:   one   in   which  

the   questions   use   the   likert   scale   categories   as   a   response   but   are   disparate   from   other  

questions,   and   the   other   in   which   multiple   questions   are   related   to   one   subject   or   trait  

which   we   are   trying   to   measure   (Boone   and   Boone,   2012).   This   study   will   use   the   latter  
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approach   as   we   are   trying   to   gauge   an   overall   enjoyment   of   the   composition,   rather  

than   answer   distinct   questions   about   the   properties   of   the   music.   The   counterpart   to  

the   questionnaire   will   be   the   accompanying   compositions,   and   although   the   format   is  

not   that   of   a   listening   test,   some   insight   can   be   gained   into   the   ideal   listening   conditions  

for   participants.   One   study   evaluated   the   performance   of   6   different   listening   test  

methodologies   and   their   effectiveness   in   evaluating   the   perceived   “pleasantness”   of   10  

different   engine   sounds.   The   study   asserts   that   a   likert-type   scale   is   a   good   choice   for  

listening   tests   in   which   the   goal   is   to   assess   the   pleasantness   of   a   single   sound   for   each  

question   (Parizet,   Hamzaoui   and   Sabatié,   2005).   The   proposed   method   has   some  

additional   stipulations;   in   order   to   minimise   the   chance   of   bias,   subjects   must   be  

allowed   to   hear   all   sounds   before   making   a   decision   and   must   have   the   ability   to   repeat  

a   sound.  
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4.   Methodology   

This   section   will   discuss   the   methodology   used   to   undertake   this   project   and  

implementation   of   the   system.   When   approaching   the   implementation   of   any   project,   it  

is   important   to   keep   in   mind   the   original   aims   of   the   project,   whilst   simultaneously  

allowing   crucial   insight   gained   from   the   literature   review   to   be   utilised   effectively.   

 

4.1   Dataset   Selection   and   Preparation  

Due   to   the   fact   that   2   representations   will   be   discussed   and   compared,   the   preparation  

of   data   will   be   discussed   in   detail   before   tackling   any   other   stage   of   the   implementation.  

The   network   architecture   will   be   discussed   along   with   the   python   implementation   using  

keras,   and   finally,   the   testing   methodology   will   be   outlined.     As   with   any   machine  

learning   task,   having   access   to   a   high   quality   and   quantity   data-set   is   fundamental   to  

the   success   of   the   overall   system.   The   identified   ideal   format   for   the   data   would   be  

MIDI,   due   to   the   fact   that   each   note   of   a   midi   file   can   be   seen   as   a   time-step.   In  

comparison,   time-series   analysis   of   an   audio   file   is   extremely   complicated,   due   to   the  

fuzzy   timestep   size   as   well   as   the   extreme   complexity   of   extracting   specific   musical  

instruments,   such   as   drums,   lead   vocals,   keyboards   etc   from   the   original   signal.   Other  

symbolic   formats   such   as   MusicXML   may   also   have   been   considered   if   not   for   the   lack  

of   widespread   support,   thus   availability   to   a   sufficiently   large   quantity   of   MusicXML  

was   not   available.   The   ideal   data-set   was   to   belong   to   one   genre   of   music,   and   while  

including   music   from   multiple   genres   may   be   possible,   it   complicates   the   process  

needlessly   and   vastly   increases   the   search   space   for   the   network,   leading   to   longer  

training   times   and   poorer   overall   results.   The   final   dataset   was   taken   from  

www.piano-midi.de    and   consists   purely   of   classical   music   from   composers   such   as  

Tchaikovsky   and   Mozart,   with   a   total   of   approximately   300   unique   compositions   in   the  

entire   set.   This   may   seem   like   a   fairly   small   dataset,   but   considering   that   the   network   is  

only   attempting   to   emulate   one   style,   and   given   that   each   song   may   contain   thousands  

of   notes,   we   end   up   with   a   small   but   well   suited   and   clean   dataset.  
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Two   methods   of   representation   are   proposed   (henceforth   referred   to   as    Method   A   &  

Method   B ):   Method   A   proposes   that   each   note   of   the   song   be   considered   its   own  

timestep,   with   pitch,   velocity   and   timing   information   stored   as   the   timestep’s   features;  

Method   B   proposes   a   piano-roll   like   representation,   where   each   timestep   represents   a  

designation   of   time   containing   a   list   of   notes   that   are   active   at   this   point   in   time.   Both   of  

these   approaches   have   seen   prior   use   as   highlighted   by   the   literature,   and   both   have  

their   own   set   of   advantages   and   disadvantages.   As   previously   mentioned,   mapping   a  

single   note   to   multiple   timesteps   can   lead   to   a   lack   of   comprehension,   while   Method   A’s  

approach   of   treating   each   new   note   as   a   new   timestep   can   fail   to   capture   the   rhythmic  

structure   of   a   composition.   This   project   will   look   at   evaluating   the   effectiveness   of   both  

approaches,   and   conclude   with   a   recommendation.   Before   discussing   these   methods  

further,   the   following   tools   were   used   to   aid   the   implementation   for   this   part   of   the  

system.  

 

Pretty_midi  

Pretty_midi   is   a   python   library   which   provides   a   wide   variety   of   helper   functionality   for  

interacting   with   and   altering   MIDI   data.   Pretty_midi   is   used   for   loading   in   the   raw   midi  

data   and   converting   it   to   a   format   appropriate   for   the   neural   network,   as   well   as   for  

converting   neural   network   predictions   back   into   midi   data.   The   framework   splits   MIDI  

data   up   into   an   extremely   simple   structure,   with   a   midi   file   containing   N   number   of  

instruments,   which   themselves   contain   N   number   of   notes.   A   note   contains   the   pitch  

and   velocity,   as   well   as   the   start   and   end   time,   making   conversion   to   the   network  

representation   a   much   more   streamlined   process.   

 

Numpy  

A   ubiquitous   mathematics   and   scientific   computation   library   which   provides   a   massive  

collection   of   functionality   as   well   as   memory-efficient   and   performant   data   containers.  

Numpy’s   data   containers   (array,   ndarray,   matrix)   also   work   extremely   well   with  

tensorflow   (discussed   further   shortly)   and   have   the   added   benefit   that   they   can   be  
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saved   to   and   loaded   from   a   text   file,   meaning   computation   and   conversion   to   the  

network   format   need   only   be   performed   once,   after   which   the   data-set   can   simply   be  

reloaded   with   a   few   simple   lines   of   python.   

 

Before   converting   the   input   MIDI   data   to   the   representation   proposed   for   Method   A   and  

B,   a   common   format   is   introduced   to   make   conversion   to   both   representations   easier  

and   the   system   more   modular   overall.   The   first   stage   in   this   process   is   to   load   in   the   raw  

midi   data   using   pretty_midi.   

 

 

Figure   4.1.1   Function   to   load   in   MIDI   data  
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Figure   4.1.1   shows   the   method   which   loads   in   the   raw   pretty_midi   data   and   stores   each  

object   in   a   dictionary   for   further   processing.   It   is   passed   a   list   of   paths   and   attempts   to  

load   these   paths   as   pretty_midi   objects.   Furthermore,   the   function   takes   a   minOctave  

and   maxOctave   parameter   which   allows   us   to   limit   the   range   of   available   pitches   in   our  

dataset,   which   has   two   distinct   advantages.   The   first   advantage   is   that   there   are   more  

tokens   available   for   the   time-features   of   the   note,   allowing   for   greater   rhythmic  

diversity.   Secondly,   as   fewer   pitches   exist   across   the   dataset,   the   search   space   is  

narrowed   significantly   which   (in   theory)   should   allow   the   network   to   better   understand  

the   relation   between   pitches.   After   the   initial   raw   data   has   been   loaded   in,   the   next   step  

in   the   system   is   to   convert   this   data   into   a   general   format   used   in   both   Methods   A   &   B.  

 

 

Figure   4.1.2   :   Function   to   retrieve   common   data-format   used   in   methods   A   &   B.  
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From   Figure   4.1.2,   we   can   see   that   the   common   format   is   retrieved   by   passing   through  

a   dictionary   containing   all   the   pretty-midi   objects   as   well   as   a   key_distributions   object,  

which   was   originally   planned   for   use   in   a   post-processing   pass,   however   this  

post-processing   technique   was   later   abandoned   and   as   such   the   key   distribution   vector  

goes   unused   (The   decision   was   made   to   leave   the   key-distributions   in   the   code-base,  

as   although   they   are   currently   unused,   continued   development   of   the   system   could  

likely   make   use   of   these   vectors   for   refinements   relating   to   melody   and   chordal  

structures.).   For   each   note   in   each   composition,   we   record   its   pitch   and   velocity   (which  

are   attributes   of   the   pretty_midi.Note   class)   we   then   record   the   duration   of   the   note  

(calculated   as   the   note’s   end   time   -   the   note’s   start   time)   and   finally,   an   ‘offset’,   which   is  

the   amount   of   time   (in   seconds)   that   has   elapsed   since   the   last   note   was   activated.   The  

shape   of   the   data   returned   from   getKerasData()   is   (Total   Number   of   Songs,   Number   of  

Notes   in   Song,   4).   The   next   sections   will   discuss   the   method-specific   data-preparation  

process.  

 

Method   A  

As   previously   discussed,   Method   A   treats   each   timestep   as   a   new   note   in   the  

composition.   Each   note   contains   4   features:   pitch,   velocity,   duration   and   offset   -   which  

indicates   the   amount   of   time   that   has   passed   between   this   note   and   the   last   activated  

note.   The   labels   for   this   approach   then   are   a   list   of   all   notes   from   every   midi   file,   with  

the   data   being   a   list   of    N    notes   which   corresponds   (and   leads   to)   the   current   label   note.  

The   sequence   size   for   the   training   data   was   experimented   with,   and   as   such,   warrants  

further   discussion   in   the   analysis   section.  

 

Each   feature   of   the   note   was   tokenized   and   stored   in   a   shared   dictionary,   which   had   a  

maximum   size   of   500   tokens.   While   limiting   the   musical   possibilities   the   system   would  

be   able   to   reproduce,   limiting   the   dictionary   size   is   a   common   practice   for   increasing   the  

performance,   accuracy   and   training   time   of   a   neural   network.   

 

30  



Figure   4.1.3   shows   us   the   function   which   takes   in   our   raw   keras_data   object   and  

converts   this   into   the   training   labels   and   data.   This   process   starts   by   collecting   every  

pitch,   velocity,   offset   and   duration   that   occurs   throughout   the   entire   dataset   and  

counting   the   occurences   of   this   feature.   Using   the   occurrence   dictionaries,   we   are   able  

to   establish   which   durations   and   offsets   occur   most   often   and   use   these   as   our   tokens.  

The   getTokensA   function   uses   these   occurrences   to   produce   the   final   vocabulary,   which  

is   a   mapping   of   int   indices   to   MIDI   messages   e.g.   (1   =   81,   2   =   0.0013   etc.)   Having  

collected   the   final   set   of   tokens,   we   then   iterate   through   keras   data   object,   converting  

each   MIDI   message   to   a   token   using   the   getNoteTokenA   method,   forming   the   label  

data.   This   method   takes   a   MIDI   message   and   token   dictionary   and   returns   the   nearest  

possible   value   to   the   original   MIDI   message   as   a   token.   

 

Figure   4.1.3   :   Method   A   Data   Processing   Method  
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Having   collected   the   current   label,   that   is   the   note   at   the   current   timestep,   we   next   wish  

to   collect   a   list   of   N   previous   notes,   to   form   the   associated   data   with   our   label.   As  

previously   mentioned,   the   data   for   this   system   will   take   the   form   of   a   list   of   N   notes   (N  

denoted   in   code   as   sequenceSize).   This   is   achieved   by   creating   a   loop   which   iterates  

over   the   previous   N   notes   from   the   position   of   the   current   label   note,   tokenizing   each  

previous   note   in   the   same   method   as   used   for   the   label,    before   and   adding   it   to   a   list.  

Once   the   list   has   been   filled,   it   is   added   to   the   data   array.   The   final   shape   of   the   labels   is  

then   =   Total   number   of   Notes   x   4   (pitch,   velocity,   offset,   duration),   with   the   final   shape  

of   the   data   being   =   Total   number   of   notes   x   Sequence   Length   x   4.  

 

Method   B  

For   this   approach,   each   time-step   denotes   a   segment   of   time,   which   contains   N   active  

notes   (the   number   of   concurrently   active   notes   was   also   experimented   with   and   will   be  

discussed   further   in   the   analysis   portion   of   this   project).   The   number   of   time-steps   per  

second   was   also   parameterised   to   aid   in   the   experimental   part   of   this   project.   The   label  

representation   for   this   approach   would   be   an   individual   timestep,   with   the   training-data  

being   a   list   of    N    timesteps   which   corresponds   (and   leads   to)   the   current   label   timestep.  

Duration   and   start-time   are   baked   into   the   representation   for   this   approach:   if   a   note  

was   not   in   the   previous   timestep   but   appears   in   the   current   timestep,   this   is   considered  

a   new   note   starting;   conversely,   if   a   note   was   in   the   previous   timestep   but   does   not  

appear   in   the   current   timestep,   this   is   considered   the   end   of   a   note.   The   number   of  

timesteps   per   second   (referred   to   as   timestep   resolution)   was   determined   through  

experimentation   (and   will   be   discussed   further   in   the   analysis   section)   however   a   rough  

guideline   kept   this   number   between   10   and   30.   Limiting   the   timestep   resolution   too  

heavily   would   result   in   little   to   no   rhythmic   diversity   or   complexity,   however   a   resolution  

too   large   could   lead   to   the   neural   network   failing   to   comprehend   the   sequence   at   all.   

 

Due   to   the   removal   of   time   as   a   note   feature,   this   method   benefits   from   a   significantly  

reduced   dictionary   size,   only   representing   the   available   pitches   for   a   small   number   of  
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velocities.   As   such,   a   note   is   composed   of   a   single   token,   where   the   token   represents   a  

pitch   at   a   specific   velocity.  

 

 

Figure   4.1.4   :    Method   B   Data   Processing   Method  

 

Figure   4.1.4   shows   the   implementation   of   the   data   processing   for   Method   B’s  

representation,   which   takes   in   a   few   extra   parameters   which   alter   the   properties   of   the  
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final   Method   B   data.   Parameterisation   of   the   data   preparation   stage   made   it   much  

easier   to   test   new   configurations   and   sped   up   development   of   the   system   by   a  

significant   margin.   The   new   parameters   introduced   are:   num   timesteps,   timestep  

resolution   and   num   simultaneous   notes.   The   number   of   timesteps   is   simply   the   total  

number   of   timesteps   that   we   wish   to   compose   our   training   instance   from,   meaning   how  

many   seconds   of   the   training   instance   will   be   used.   This   parameter   was   added   due   to  

the   fact   that   the   researcher’s   computer   did   not   have   enough   RAM   or   GPU   VRAM   to  

store   the   entire   Method   B   dataset   when   the   entire   songs   were   sampled.   The   timestep  

resolution   denotes   the   number   of   samples   that   will   be   taken   per   second,   e.g.   a  

resolution   of   10   means   that   for   every   second   of   symbolic   music,   10   seconds   will   be  

taken.   The   number   of   simultaneous   notes   describes   how   many   different   notes   can   be  

active   at   any   given   timestep.   We   start   the   process   in   a   similar   way   to   that   of   the   first  

method,   collecting   all   of   the   occurrences   for   pitch,   velocity   and   timing   features   (though  

offset   and   duration   occurrences   were   not   used   for   this   method).   We   next   generate   the  

tokens   which,   in   this   method,   encapsulate   both   a   pitch   and   velocity.   As   mentioned   in  

the   introduction,   the   compositions   have   been   limited   to   a   range   of   3   octaves,   meaning  

that   a   total   of   only   36   pitches   exist   throughout   the   dataset.   Furthermore,   to   reduce   the  

search-space   and   reduce   the   complexity   of   the   network,   only   4   velocity   values   are  

sampled   per   note,   meaning   the   total   number   of   tokens   available   is   just   144.   The  

function   specifies   a   max   tokens   parameter   which   is   unnecessary   for   the   current  

approach,   however,   should   more   pitches   /   velocities   be   required   during   further  

development   of   the   system,   this   functionality   may   prove   useful.   

 

Having   retrieved   the   token,   we   are   now   able   to   begin   creating   our   data   and   labels   for  

Method   B.   We   start   by   iterating   through   the   songs   in   the   raw   keras   data   format,  

creating   an   empty   2D   numpy   array   and   filling   this   with   0s,   indicating   no   active   note   (0  

is   used   as   the   null   token   for   both   approaches).   The   final   shape   of   this   array   is   The   total  

number   of   timesteps   x   the   number   of   simultaneous   notes.   We   also   create   a  
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lastStartTime   variable,   which   is   used   to   calculate   where   the   current   note   should   be  

placed,   with   respect   to   the   placement   of   the   last   note  

 

The   next   step   is   to   calculate   the   note’s   position   and   duration   in   the   numpy   array:   the  

start   position   of   the   note   is   added   to   the   lastNoteCounter,   which   in   turn   is   multiplied   by  

the   timestep   resolution   and   cast   to   an   int   to   find   the   concrete   starting   index   of   this   note.  

The   duration   is   calculated   in   a   similar   manner,   multiplying   the   timestep   resolution   by   the  

length   of   the   note   and   casting   the   result   to   an   int.   Having   found   the   indices   where   our  

note   should   start   and   the   amount   of   timesteps   the   note   should   occupy,   we   must   next  

check   that   we   are   able   to   add   this   new   note   to   the   song’s   numpy   array:   this   is   achieved  

by   iterating   through   each   identified   timestep   and   checking   for   any   null   tokens   (0).   If   a  

null   token   is   found,   the   new   note   replaces   the   null   token   and   the   loop   breaks   to   continue  

onto   the   next   timestep   to   be   checked,   otherwise   the   note   is   not   added   to   the   dataset.   

 

We   then   iterate   through   every   note   in   the   unprocessed   data   format   and   extract   the  

pitch,   velocity,   offset   and   duration,   taking   the   pitch   and   offset   and   feeding   this   into   the  

vocabulary   to   find   the   closest   available   token.   The   resulting   dataset   form   the   labels   for  

this   system.   As   previously   stated,   the   data   for   this   system   is   a   series   of   N   timesteps  

which   correspond   to   the   current   label   timestep.   This   is   achieved   by   iterating   through  

the   label   data,   sampling   the   previous   N   timesteps   from   the   current   label   timestep   and  

storing   this   in   an   array.   Having   completed   the   training   data,   the   function   finally   returns  

the   data,   labels   and   tokens,   for   later   use   converting   the   predictions   back   to   MIDI   format.  

The   final   shape   of   the   labels   is    =   Total   Number   of   Timesteps   x   Num   Simultaneous  

Notes,   and   the   final   shape   of   the   data   is   =   Total   Number   of   Timesteps   x   Sequence  

Length   x   Num   Simultaneous   Notes.   

 

Random   Comparison  

A   common   approach   when   evaluating   a   ML   application   is   to   perform   a   comparison  

against   random   data.   This   is   extremely   beneficial   when   performing   analysis   of   the  
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generated   music   as   we   are   better   able   to   evaluate   the   extent   to   which   the   neural  

network   is   able   to   reproduce   “human-sounding”   music.  

 

Figure   4.1.5   :   Random   comparison   Data   Generation   Method  

 

From   figure   4.1.5   the   function   to   generate   random   MIDI   data   can   be   seen.   The   function  

takes   in   the   number   of   random   MIDI   files   to   generate   as   it’s   only   parameter.   For   each  

random   composition,   we   start   by   randomly   selecting   a   number   of   notes   to   generate   as  

well   as   creating   a   PrettyMIDI   and   Instrument   object   to   contain   our   generated   notes.   For  

each   note   in   each   composition,   we   randomly   generate   an   Int   in   the   range   0-127   for   the  

Pitch   and   velocity,.   For   offset   and   duration,   we   reuse   the   occurrences   dictionary  

previously   used   in   the   tokenisation   process,   and   sample   the   minimum   and   maximum   for  

each   feature,   using   these   values   as   the   bounds   for   our   random   data.   Having   generated  

the   required   data   for   a   note,   we   create   a   new   pretty_midi   Note   object   and   append   this  

to   the   instrument’s   note   array.   Finally,   we   add   the   instrument   to   our   PrettyMIDI   object  

and   write   this   file   out   to   the   random   MIDI   directory.   
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4.2   Designing   Structure   of   Neural   Network(s)   

This   section   will   discuss   the   design   and   implementation   of   the   final   network  

architectures.   The   design   of   the   network   draws   inspiration   from   various   sources,  

however   the   primary   influence   for   the   design   of   this   network   came   from   a   GitHub  

repository   (available   at    https://github.com/Skuldur/Classical-Piano-Composer )   (Sigurður  

Skúli,   2017)   which   proposes   a   similar   (yet   more   simple)   representation   of   a   note,   with   a  

similar   sequence   like   approach   used   to   predict   new   music.   Programming   was  

performed   in   python   using   a   variety   of   frameworks,   which   will   be   briefly   outlined.  

 

Tensorflow  

Tensorflow   is   an   open   source   symbolic   mathematics   library   developed   by   Google.   It  

allows   for   extreme   performance   across   a   range   of   programming   tasks,   it   is   however  

most   commonly   used   for   machine   learning   tasks   -   specifically   neural   networks.   The  

primary   reason   Tensorflow   was   used   for   this   project   is   due   to   the   researchers   familiarity  

with   Tensorflow,   the   possibility   of   offloading   large   tasks   to   the   GPU   as   well   as   it’s  

integration   to   the   keras   framework.  

 

Keras  

Keras   is   an   open-source   machine-learning   framework   originally   created   by   a   single  

developer,   Francois   Chollet.   Keras   has   a   strong   focus   on   Neural   Network   programming,  

allowing   for   standard   feed-forward   neural   networks,   convolutional   neural   networks   and  

recurrent   neural   networks   to   be   developed.   A   strong   effort   has   been   made   to   make  

Keras   a   user-friendly   experience,   with   minimal   code   required   to   setup   and   train   a   neural  

network,   and   even   contains   functionality   intended   to   make   data   pre-processing   easier  

(such   as   train-test   splits   and   word-embedding   functionality).   The   most   important  

aspects   of   Keras   to   discuss   are   the   Model,   Layers   and   Optimisers.   

 

The   model   class   can   be   thought   of   as   a   container   of   arbitrary   length   for   neural   network  

layers.   A   few   variants   of   the   model   class   exist,   but   by   far   the   most   common   is   the  
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Sequential   model,   in   which   the   model   is   entirely   self   contained   and   in   which   all   layers  

feed   forward.   Models   also   contain   the   functionality   to   begin   training,   as   well   as   make  

predictions,   provided   data   has   been   fed   and   the   network   contains   no   errors.  

 

The   layers   API   provides   a   wide   selection   of   neural   network   layers,   which   allows   the  

programmer   to   rapidly   prototype   and   develop   new   network   architectures.   Specifically,  

keras   implements   the   LSTM   and   GRU   cell   making   development   of   a   recurrent   network  

solution   significantly   easier.   Keras   also   implements   other   types   of   layers   such   as   Dense  

fully   connected   layers,   as   well   as   convolutional   layers   and   dropout   layers   (for  

regularization).   One   consideration   is   that   the   beginning   layer   in   any   model   must   specify  

the   input   shape   of   the   data,   while   the   final   layer   must   present   the   same   shape   as   the  

input   label.   

 

An   optimiser   encapsulates   the   algorithm   that   will   perform   backpropagation   on   the  

network,   as   well   as   various   other   functionality   (such   as   network   unwrapping   for  

recurrent   layers).   Keras   offers   a   range   of   optimisers   such   as   SGD,   Adadelta,   RMSprop,  

and   the   optimiser   used   by   both   configurations   in   this   network,   Adam.  

 

The   final   end   to   end   process   for   developing   a   neural   network   in   Keras   as   such   entails  

designing   your   architecture,   rapid   implementation   thanks   to   the   extremely   simple  

syntax,   and   evaluating   the   results   from   the   network.  

 

Keras   is   able   to   run   atop   a   variety   of   low-level   machine   learning   frameworks,   including  

Theano,   Microsoft’s   Cognitive   Toolkit   as   well   as   Tensorflow.   Keras   is   also   able   to  

leverage   the   power   of   Tensorflow’s   GPU   compute   capabilities,   vastly   increasing   the  

speed   of   training.   Enabling   GPU   support   for   Tensorflow   can   be   a   cumbersome   task,  

requiring   specific   driver   versions,   an   outdated   version   of   CUDA   compute,   CuDNN   as  

well   as   a   range   of   other   Nvidia   software;   however,   the   benefit   is   immediately   felt   in  

terms   of   speed.   One   consideration   for   GPU   acceleration   on   large   datasets   is   that   when  
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using   GPU   acceleration,   the   data   is   stored   on   the   graphics   memory   rather   than   RAM   as  

GPU   memory   is   often   magnitudes   faster   than   desktop   DDR3/4.   As   a   result,   for   very  

large   data-sets,   GPU   accelerated   training   may   need   to   be   performed   in   batches,   as  

most   modern   graphics   cards   are   limited   to   approximately   8GB.  

 

Helpful   Tools  

As   well   as   the   core   programming   frameworks   previously   discussed,   the   following   tools  

were   employed   for   a   variety   of   tasks   which   significantly   aided   the   development   of   this  

project.   The   primary   IDE   for   this   project   was   Spyder,   due   to   its   ability   to   run   small  

snippets   of   code   as   well   as   the   extremely   useful   Variable   Explorer   feature.   Variable  

Explorer   made   visualising   and   debugging   data   significantly   less   frustrating   than   it   could  

have   been,   especially   considering   native   support   for   most   Numpy   containers.   

 

Tensorboard   is   a   sub-module   of   Tensorflow   which   allows   for   easy   visualisation   of   the  

training   process   for   a   neural   network.   Furthermore,   it   allows   for   deep   statistical   analysis  

of   the   network   training   period,   as   well   as   other   metrics   to   assess   the   quality   of  

prediction   made   by   the   network.   It   was   primarily   used   to   analyse   the   training   period  

performance   of   both   networks   for   this   project.  

 

A   note   on   Compute   Power  

One   significant   factor   to   consider   when   designing   any   neural   network   is   the   available  

compute   power   of   the   development   system.   In   this   case,   the   computer   was   equipped  

with   a   6-core   CPU,   16GB   RAM   and   a   4GB   GPU   (3GB   usable)   and   as   such,   very   large  

networks   with   vast   data-sets   would   likely   not   be   feasible.   During   the   experimentation  

stage,   many   networks   either   failed   to   begin   training   or   even   failed   to   compile   at   all   due  

to   a   lack   of   memory   on   the   GPU.   As   such,   the   network   configuration   may   be  

sub-optimal   for   performance,   as   allowing   a   greater   number   of   timesteps   per   label,   or   a  

higher   dimensionality   of   LSTM   cell   may   have   yielded   better   results.  
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Method   A   Network  

 

The   final   architecture   for   Method   A   is   composed   of   4   dense,   fully-connected   layers   and  

2   LSTM   cells   (CuDNNLSTM   is   an   LSTM   cell   which   has   been   optimised   for   GPU   training  

in   keras).   The   architecture   is   relatively   simple   and   was   derived   through   experimentation.  

The   network   accepts   a   15x4   tensor   as   it’s   input,   with   the   4   numbers   representing   the  

note   features,   and   15   the   number   of   timesteps   (previous   note)   used   to   predict   the  

current   label.   The   final   output   of   the   network   is   a   4   neuron   hidden   layer,   with   each  

neuron   corresponding   to   a   part   of   the   note   (e.g.   pitch).   
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Method   B   Network  
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The   final   network   architecture   for   the   Method   B   representation   can   be   seen   in   Figure  

4.2.2.   The   network   accepts   a   100x4   vector   as   its   input   (100   timesteps,   4  

simultaneously   active   notes)   and   produces   a   4   feature   vector   which   correspond   to   the   4  

active   notes   at   the   current   timestep.   The   full   network   is   composed   of   4   LSTM   cells   and  

4   fully-connected   dense   layers.   Experimentation   was   used   to   dictate   the   exact  

parameters   of   the   various   network   layers,   however   the   theory   is   that   the   network   has  

some   arbitrary   amount   of   memory   which   stores   the   incoming   sequence   before   any  

manipulation   of   the   data   is   performed.   The   sequence   is   then   fed   through   another   LSTM  

cell   and   dense   layer,   whose   parameters   were   dictated   through   experimentation.   The  

final   layers   of   the   network’s   dimensionality   and   size   are   proportional   to   the   shape   of   the  

data,   e.g.   the   final   layer   is   a   4   neuron   fully-connected   dense   layer   corresponding   to   the  

4   active   notes   at   the   current   time-step   (the   current   label).   The   second   to   last   layers  

have   the   same   number   of   neurons   as   tokens   that   exist   in   the   dictionary,   and   above   that  

exists   a   fully-connected   dense   layer   whose   number   of   neurons   is   proportional   to   the  

length   of   the   sequence   fed   in   to   the   network.   
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4.3   Synthesizing   symbolic   data  

After   the   network   has   generated   some   predictions,   a   method   for   converting   this  

representation   back   to   MIDI   for   synthesization   is   required.   

Method   A  

 

Figure   4.3.1   :   Function   to   convert   Method   A   data   back   to   MIDI  

 

As   can   be   seen   from   Figure   4.3.1,   the   function   to   convert   network   data   back   to   MIDI  

takes   4   arguments:   the   predictions   made   by   the   network   (notes),   the   original   token  

vocabulary,   an   auxiliary   dictionary   used   to   segment   the   token   dictionary   into   pitch,  

velocity   and   timing   section   and   finally   the   name   of   the   model   that   generated   the  

composition.   We   start   by   creating   a   new   Pretty_Midi   object   and   adding   a   Piano  

instrument   to   it   (instrument   code   0   is   grand   piano).   We   then   create   a   variable   to   track  

the   last   note’s   start   time   and   begin   iterating   through   the   data.   For   each   note,   we  

convert   the   pitch,   velocity,   offset   and   duration   from   their   token   representation   to   their  

original   value,   creating   a   new   Pretty_Midi   note   object   and   using   these   values   as   the  

parameters   to   create   this   note.   Once   the   note   has   been   created,   we   add   it   to   the  
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PrettyMIDI   object   and   perform   a   cleaning   pass,   which   keeps   all   notes   positioned  

relatively,   but   will   randomly   alter   the   key   to   add   diversity   to   the   generations.    

Method   B  

 
Figure   4.3.2   :   Function   to   convert   Method   B   data   back   to   MIDI   Pt.1  

 

From   Figure   4.3.2,   we   can   see   the   first   part   of   our   function   for   converting   Method   B  

data   back   to   Midi,   like   with   Method   A,   we   start   by   creating   a   new   PrettyMIDI   object   and  

adding   a   piano   to   the   classes   instrument   list.   We   next   create   two   new   variables,   the  

timestepCounter   and   current_notes   dictionary.   The   timestepCounter   is   used   to   keep  

track   of   the   current   timestep,   and   the   current   notes   dictionary   is   used   to   keep   a   record  

of   which   notes   are   currently   being   played.   We   begin   the   conversion   by   iterating  

through   the   predictions   made   by   the   network   and   converting   them   to   ints   using   the  

round   function.   We   next   iterate   through   all   of   the   messages   in   the   current   timestep   and  

check   if   they   are   in   our   current_notes   dictionary.   If   they   are   not,   a   new   key   is   added   to  

the   dictionary   and   a   counter   is   started.   The   counter   represents   the   number   of   timesteps  
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that   note   has   been   active   for,   and   will   be   later   converted   back   to   seconds.   If   the   note   is  

in   the   current   notes   dictionary,   we   increment   the   counter   by   1.   

 

 
Figure   4.3.3   :   Function   to   convert   Method   B   data   back   to   MIDI   Pt.2  

 

We   next   iterate   through   the   current   notes,   checking   if   they   exist   in   the   current   notes  

dictionary;   if   the   note   is   in   the   current   timestep,   we   do   nothing,   otherwise   we   interpret  

this   as   the   end   of   the   note.   We   retrieve   the   pitch   and   velocity   from   the   token   dictionary,  

ensuring   they   do   not   exceed   the   maximum   MIDI   value   of   127.   The   start   time   of   the   note  

is   calculated   by   dividing   the   starting   timestep   by   the   timestep   resolution,   converting   it  

back   into   seconds.   The   same   process   is   applied   to   the   duration   -   the   total   number   of  

timesteps   the   note   lasted   for   is   divided   by   the   timestep   resolution,   resulting   in   the  

duration   in   seconds.   These   values   are   used   to   create   a   new   Pretty_Midi   note   object   and  

added   to   the   instrument.   After   all   the   finished   notes   have   been   added   to   the   Pretty_Midi  

object,   they   are   removed   from   the   current   notes   dictionary.  
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Figure   4.3.4   :   Function   to   convert   Method   B   data   back   to   MIDI   Pt.1  

 
The   final   part   of   this   function   takes   place   after   all   predictions   have   been   iterated  

through.   We   check   if   the   current   notes   dictionary   has   any   remaining   notes   left,   and   if  

so,   add   them   to   the   instrument   class.   Next   we   get   rid   of   our   current   notes   dictionary   as  

it   is   no   longer   needed,   we   then   add   the   instrument   to   the   Pretty_Midi   object   and  

perform   a   cleaning   pass,   which   simply   randomises   the   key   and   slows   the   composition  

down.   This   was   performed   as   many   of   the   compositions   tempo   were   too   fast,   but   the  

intervals   between   notes   were   still   sound.   We   then   finally   write   the   midi   file   to   disk   for  

evaluation.   

 

As   a   small   aside,   it   should   be   noted   that   the   human   compositions   used   for   both  

subjective   and   computational   analysis   will   first   be   converted   to   either   Method   A   or   B’s  

representation,   and   then   processed   back   to   MIDI.   This   will   be   performed   to   eliminate  

any   potential   bias   in   terms   of   disparity   between   representations.   This   is   a   particularly  

important   consideration   for   Method   B   which   uses   a   drastically   reduced   timestep  

resolution   compared   to   standard   MIDI   (Standard   MIDI   uses   480   ‘ticks’   per   second).   
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The   final   compositions   were   synthesized   using   Ableton   Live,   a   Digital   Audio  

Workstation   (DAW).   Ableton   has   a   wide   variety   of   built-in   digital   instruments,   as   well  

as   an   extremely   useful   toolset   for   visualising   and   manipulating   MIDI   data.   Figure   4.3.5  

shows   the   Ableton   user   interface,   with   a   sample   neural   network   composition’s   piano  

roll   show   on   the   lower   half   of   the   screen.   
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4.4   Computational   Music   Analysis  

Computational   analysis   of   the   generated   music   was   performed   in   order   to   empirically  

analyse   the   performance   of   the   network   against   other   solutions,   such   as   human  

composed   music,   as   well   as   randomly   generated   music,   purely   for   the   sake   of  

comparison.   Analysis   was   performed   using   jMIR,   specifically   the   jSymbolic2   tool,   which  

offers   a   vast   number   of   music   descriptors   which   can   be   dumped   to   XML   for   further  

analysis.   Many   of   the   descriptors   are   fairly   self   explanatory   in   their   meaning   (e.g.  

variability   of   note   durations   or   pitches)   however,   some   of   the   descriptors   have   a   larger  

basis   in   music   theory   than   in   simple   mathematics,   and   as   such,   will   briefly   be   outlined.   
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Contrary   Motion  

When   discussing   motion   in   the   context   of   a   musical   phrase,   it   is   first   important   to  

define   precisely   what   motion   actually   means.   The   motion   of   a   given   musical   phrase   can  

be   thought   of   as   a   direction   in   which   the   melody   moves,   or   how   the   pitch   and   other  

important   properties   (   such   as   velocity,   duration   etc.)    change   over   the   course   of   the  

passage.   As   such,   contrary   motion   describes   two   or   more   musical   voices   which   are  

“moving”   in   perfect   opposite   directions,   where   one   voice   is   ascending   a   given   scale   or  

phrase,   and   the   other   is   descending   the   same   passage.  

 

Similar   Motion  

Similar   motion   occurs   when   two   or   more   voices   are   playing   the   same   shape   of   melody  

at   different   base   pitches.   The   intervals   between   the   steps   need   not   be   identical   to  

exhibit   similar   motion,   if   all   interval   changes   between   both   voices   are   identical,   the  

motion   is   instead   described   as   parallel.   

 

Chromatic   Motion  

Chromatic   motion   occurs   when   one   or   more   musical   voices   is   linearly   ascending   /  

descending   the   chromatic   scale.   Chromatic   motion   is   the   most   basic   form   of   melodic  

line,   and   may   be   erroneously   considered   an   indicator   of   low   complexity,   however   when  

used   in   moderation,   it   can   elicit   specific   emotions   in   the   listener,   such   as   suspense   or  

dread.  
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Stepwise   Motion  

Stepwise   motion   occurs   when   one   or   more   musical   voices   linearly   ascends   or   descends  

a   given   musical   scale.   Stepwise   motion   is   similar   to   chromatic   motion   but   will   sound  

inherently   more   “musical”   as   the   key   of   the   musical   phrase   is   respected   with   stepwise  

motion.  

 

Figure   4.4.5   shows   music   notation   for   so   called   conjunct,   disjunct   and   mixed   melodies,  

with   a   conjunct   melody   being   synonymous   with   stepwise   motion.   Disjunct   motion   has  

much   more   variety   in   the   intervals   between   pitches   and   often   jumps   large   amounts  

between   the   pitches   of   the   key,   compared   to   a   conjunct   melody,   which   as   previously  

mentioned,   moves   linearly   in   a   direction,   with   no   major   change   to   the   interval   between  

notes.  
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Amount   of   Arpeggiation  

Arpeggiation   is   a   type   of   broken   chord   (where   each   of   the   notes   are   played   separately)  

in   which   the   notes   of   the   chord   are   played   in   ascending   and   descending   order   (e.g.   C,   E,  

G,   E,   C,   E…)   The   amount   of   arpeggiation   then,   is   the   percentage   of   notes   in   the  

composition   that   exhibit   arpeggiation.   

 

Metrical   Diversity  

The   metrical   diversity   descriptor   indicated   a   high   variety   in   rhythmic   feel   throughout   the  

composition.   It   is   distinct   from   variability   of   note   durations   in   that   it   considers   the  

duration   and   timing   of   notes   in   the   context   of   the   surrounding   notes,   where   the  

variability   of   notes   is   considered   across   the   entire   composition.  

 

Melodic   Embellishments  

A   melodic   embellishment   (also   known   as   an   ornament)   is   a   small   musical   phrase   added  

on   top   of   some   recurring   melody.   The   embellishment   usually   exists   within   the   same   key  

and   is   often   slightly   faster   than   the   current   tempo   to   highlight   its   effect.   They   are  

non-essential   to   the   “core”   melody   of   the   passage,   buy   instead   serve   to   decorate   and  

reduce   repetition.   Melodic   embellishments   are   a   fine   indicator   of   complexity.   

 

Repeated   Notes  

Repeated   notes   describes   the   percentage   of   notes   in   the   composition   which   have   the  

same   pitch   as   the   previous   note.   A   high   amount   of   repeated   notes   can   generally   be  

considered   an   indicator   of   low   complexity,   as   complex   melodies   often   contain   many  

different   pitches   with   a   wide   variety   of   intervals   between   pitches.   

These   descriptors   formed   the   core   of   the   computational   analysis   component,   giving   a  

strong   baseline   indicator   in   the   corpus   of   human   compositions   to   compare   with   the  

algorithmic   compositions.   Having   performed   analysis   using   the   jSymbolic   framework,  

the   XML   results   were   processed   using   python,   with   various   plots   and   comparisons  

being   drawn   using   the   matplotlib   framework.  
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4.5   Subjective   Music   Analysis  

This   section   will   detail   the   use   of   a   listening   questionnaire   on   human   participants   to  

gauge   the   perceived   quality   and   complexity   of   the   generated   pieces,   compared   to   that  

of   human   compositions.   The   listening   questionnaire   was   performed   in   the   Strathclyde  

Livingstone   Tower   Floor   11   labs,   with   participants   being   made   up   of   friends   and   family.  

 

The   questionnaire   was   composed   of   two   sections:   a   brief   disposition   about   musical  

ability   and   knowledge   and   a   nine   song   listening   test.    
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As   can   be   seen   from   figure   4.5.2,   the   listening   test   portion   of   the   questionnaire   asks  

participants   to   decide   if   the   current   composition   was   generated   by   a   computer   or  

written   by   a   human.   Following   this   is   a   series   of   questions   which   asks   participants  

whether   they   enjoyed   the   composition,   how   they   felt   about   the   complexity   of   the   piece  

and   if   the   participant   would   choose   to   listen   to   the   piece   again.   The   participants  

responses   are   recorded   using   a   likert-style   scale,   where   participants   can   respond  

neutrally,   agree   or   disagree,   or   strongly   agree   /   disagree.   The   benefit   of   using   a  

likert-scale   in   this   situation   is   that   it   provides   perceptual   information   about   how  

participants   responded   to   all   of   the   compositions.   Having   a   suite   of   trained   musicians  

perform   a   test   with   more   of   a   music   theory   basis   would   undoubtedly   provide   a   higher  

level   of   insight   into   what   differentiates   generated   and   bespoke   compositions   at   a  

technical   level,   but   this   was   unavailable   to   the   researcher   and   well   outwith   the   scope   of  

the   project.   

 

The   listening   tests   were   carried   out   at   the   strathclyde   Livingstone   tower   labs   with   a  

total   of   10   participants   taking   the   test.   Subjects   were   given   consent   forms   to   complete  

and   immediately   return,   after   which   the   test   promptly   began.   All   subjects   wore  

ATH-M50   headphones   to   listen   to   the   same   compositions,   in   the   same   order.  

Participants   listened   to   a   total   of   9   compositions   (each   of   which   were   20   seconds   in  

length)   which   were   evenly   divided   among   3   categories:   Method   A,   Method   B   and  

human-written   compositions.   

 

The   results   of   the   subjective   analysis   section   were   recorded   to   paper   and   later  

transferred   to   an   XML   document   for   processing   and   analysis   in   python.   
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5.   Analysis   of   the   System  

5.1   Analysis   of   Network   Training  

 

 

Figure   5.1.1   :   Network(s)   Training   Period   Loss   curve  

 

Figure   5.1.2   :   Network(s)   Validation   Loss   curve  

 

The   above   figures   show   the   loss   and   Mean   Absolute   Error   (MAE)   of   both   network  

architectures   over   the   training   and   testing   period.   The   final   Method   A   network   trained  

for   90   epochs,   while   the   Method   B   network   trained   for   150.   Method   A   has   a   steep  

descent   in   loss   but   unfortunately   flatlines   early,   leading   to   a   lack   of   comprehension.  

Method   B   has   a   more   consistent   loss   but   again,   it   flatlines   at   approximately   epoch   80.  

This   is   unlikely   to   be   explained   by   learning   rate,   as   for   both   methods,   it   was   already  

extremely   small,   meaning   even   if   progress   were   small,   some   progress   would   be   made.  

What   is   more   likely   is   that   both   network   architectures   reached   the   limit   of   their  

comprehension,   based   on   the   network   configuration,   and   simply   could   not   learn  
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anything   new.   Furthermore,   the   underlying   data   may   have   some   underlying   noise  

providing   a   hard   limit   to   the   minimum   error.  

 

Hyper-parameters   such   as   the   learning   rate,   batch-size   and   epochs   were   dictated  

through   extended   experimentation,   testing   many   configurations   of   both   networks,  

parameters   and   even   the   underlying   structure   of   the   data.   

 

 

 

5.2   Symbolic   Analysis  

This   section   will   detail   the   use   of   symbolic   MIR   data   (obtained   from   jSymbolic2)   to  

analyse   the   performance   of   the   two   methods,   drawing   a   comparison   with   a   baseline  

random   measurement,   as   well   as   a   corpus   of   human   compositions.   Each   human  

composition   was   converted   to   either   Method   A   or   B’s   network   representation,   then  

back   to   MIDI   which   helped   to   reduce   bias,   as   both   networks   had   an   inherent  

disadvantage   in   a   drastically   lower   time-step   resolution   and   a   reduction   of   the   number  

of   available   pitches.   

 

50   compositions   were   taken   from   the   Method   A   &   B   networks,   a   random   solution   and  

the   training   dataset.   These   compositions   were   then   bulk   analysed   in   jSymbolic.   
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Amount   of   Arpeggiation  

 

 

 

Arpeggios   are   sequences   of   notes   which   outline   a   specific   chord,   or   in   some   instances  

an   entire   key.   They   are   a   good   indicator   that   the   network   understands   chordal  

structures   as   well   as   timing   intervals   as   arpeggios   are   usually   played   with   fixed   timing  

intervals   between   notes.   

 

Looking   at   Figure   5.2.1,   on   the   left   we   have   the   absolute   percentage   of   arpeggiation  

across   all   tested   datasets,   with   the   right   comparing   random,   Method   A   and   Method   B  

difference   against   human   compositions.   This   style   was   adopted   for   all   MIR   metrics   as   it  

allows   insight   into   the   raw   performance   of   the   network,   but   also   can   help   us   to   reason  

how   close   each   method   was   to   achieve   a   “human-like”   sound.   From   this,   we   can   see  

that   Method   B   is   the   clear   winner,   having   the   most   similar   amount   of   arpeggiation   with  

an   almost   identical   distribution,   due   to   the   extremely   low   standard   deviation.   Method   A  

reported   the   highest   amount   of   arpeggiation,   though   this   is   likely   a   bug   with   the  

jSymbolic   algorithm   for   arpeggiation,   as   previously   discussed,   Method   A   was   unable   to  

capture   the   structure   of   the   music   at   all,   and   infinitely   repeated   one   note   across   all  

time-steps.   As   expected,   the   random   solution   performed   worst.   
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Average   Note   Duration  

 

 

The   average   note   duration   is   not   a   useful   indicator   for   detecting   any   particular   musical  

feature   by   itself,   however   during   the   experimentation   stage   of   the   project,   many   of   the  

early   networks   compositions   had   extremely   poor   temporal   awareness,   and  

compositions   would   often   be   extremely   long   and   drawn   out   (the   random   solution   also  

suffered   from   this   problem   and   required   a   hard   limit   on   the   duration   of   a   note,   as   to   not  

crash   jSymbolic).   As   such,   note   duration   was   included   to   clearly   highlight   any   instances  

in   which   notes   are   placed   extremely   sporadically.   

 

From   Figure   5.2.2   we   can   see   that   Method   B   performs   most   similarly   to   human  

compositions,   with   a   significantly   reduced   standard   deviation,   and   as   such   a   reduced  

variety   of   note   durations.   Method   A   performs   extremely   poorly   in   this   category   with  

practically   zero   variance   to   the   note   duration.   Random   average   was   wildly   off   compared  

to   all   other   datasets,   though   variance   between   durations   was   similar   to   both   Methods   A  

&   B.  
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Average   Number   of   Simultaneous   Pitches  

 

 

 

The   average   number   of   simultaneous   pitches   describes   the   average   number   of   notes  

active   at   a   given   time.   This   descriptor   helps   to   identify   the   ratio   of   melody   to   chords   in  

the   composition.   Though   it   is   not    a   substitute   for   proper   tonal   analysis,   it   is   simply   a  

good   indicator   when   compared   against   human   compositions.   As   can   be   seen   from  

Figure   5.2.3,   surprisingly,   the   best   performing   approach   is   random   with   a   tiny   difference  

in   average   compared   to   human   compositions,   though   it   should   be   noted   the   difference  

in   variance   is   quite   large,   with   random   again   having   a   very   low   deviation.   Method   B  

performed   poorly   in   this   regard,   with   a   massive   deficit   in   both   error   and   variance.  

Method   A   had   the   lowest   overall   difference   in   number   of   simultaneous   pitches,   but   still  

had   a   large   difference   in   variance   due   to   only   one   note   being   played   at   a   time.   
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Chromatic   Motion  

 

 

 

Chromatic   Motion   describes   a   phrase   or   melody   which   moves   up   or   down   the   chromatic  

scale,   as   opposed   to   following   the   key   of   the   piece.   Chromatic   motion   may   often   sound  

inharmonious   due   to   the   fact   the   key   is   not   being   respected   whatsoever;   it   is,   however,  

often   used   in   small   amounts   to   add   tonal   flavour   to   a   musical   phrase   and   can   can   elicit  

emotion   from   the   listener.   Specifically,   chromatic   notes   which   produce   a   dissonant  

sound   can   imply   tension,   unease   and   uncertainty.   With   this,   looking   at   Figure   5.2.4   we  

can   see   that   the   corpus   of   human   compositions   had   by   far   the   largest   amount   of  

chromatic   motion   as   well   as   the   largest   variance.   The   high   variance   shows   us   that   the  

mean   is   not   in   fact   typical   of   the   dataset,   and   as   such,   chromatic   motion   is   used   across  

human   compositions   to   an   extremely   varied   degree.   All   other   methods   of   composition  

failed   to   even   come   close   to   human   performance   in   terms   of   chromaticism,   with   the  

random   method   being   the   closest   available   method.   This   is   to   be   expected   as   random  

solutions   have   no   awareness   about   any   kind   of   musical   structure,   thus   the   likelihood  

that   a   musical   key   is   respected   is   extremely   low.   Both   Methods   A   &   B   performed   poorly  

in   terms   of   matching   a   human   composition,   with   Method   B   performing   only   slightly  

better   than   Method   A,   which   exhibited   no   chromatic   motion   at   all.  
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Contrary   Motion   

 

 

 

Contrary   motion   describes   the   musical   phenomena   where   two   or   more   musical   voices  

are   moving   in   opposite   directions,   specifically   in   terms   of   pitch.   Contrary   motion   is   not  

specifically   an   indicator   of   complex   music,   however   it   shows   at   least   a   comprehension  

of   key,   as   for   contrary   motion   to   be   respected,   both   voices   must   be   traversing   the   same  

scale   in   opposite   directions.   Here,   the   random   solution   was   the   closest   to   that   of   the  

human   compositions   in   terms   of   mean   value,   however   the   difference   in   deviation   was  

rather   significant,   with   human   compositions   exhibiting   a   wider   range   of   contrary   motion  

overall.   Though   Method   B   had   a   much   higher   mean   score,   the   difference   in   deviation  

between   Method   B   and   human   compositions   was   relatively   small,   meaning   the   variance  

in   contrary   motion   was   quite   similar   to   that   of   human   compositions,   despite   having  

more   on   average.   Method   A   was   by   far   the   worst   performer   compared   to   human  

compositions,   exhibiting   no   contrary   motion   at   all.   
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Stepwise   Motion  

 

 

 

Stepwise   motion   refers   to   movement   in   a   musical   passage   that   is   linearly   ascending   or  

descending   a   given   musical   scale.   Higher   values   show   a   clear   comprehension   of   key,  

though   stepwise   motion   is   not   necessarily   considered   a   universally   positive   indicator   of  

complexity   in   music.   The   opposite   of   stepwise   motion   would   be    skipwise    motion,  

though   jSymbolic   unfortunately   does   not   provide   this   as   a   descriptor.   Skipwise   motion  

describes   a   melodic   line   that   again,   respects   the   key   of   the   current   section,   but   does   not  

linearly   ascend   the   scale   of   the   key,   instead   skipping   between   the   various   pitch  

intervals.   From   Figure   5.2.6   we   can   see   that   no   method   came   close   to   matching   the  

human   training   set   score,   with   a   significantly   higher   mean   score   and   variance   than   any  

other   method.   Again,   Method   B   was   the   closest   to   the   human   compositions   but   not   by  

a   substantial   margin   over   random,   which   is   disappointing.   Method   A   was   again   the  

worst   performer   having   the   highest   deficit   in   both   mean   value   and   deviation.   
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Similar   Motion  

 

 

 

Similar   motion   describes   the   musical   phenomena   where   two   or   more   musical   voices   are  

moving   in   similar   (though   not   necessarily   perfectly   similar)   directions.   Similar   motion  

implies   the   presence   of   a   counter   melody:   both   voices   move   in   the   same   approximate  

direction   at   different   pitch   intervals   as   we   would   expect   to   see   with   a   counter-melody;  

we   cannot,   however,   explicitly   say   that   the   phrases   described   by   similar   motion   belong  

to   the   same   key,   and   as   such   cannot   guarantee   a   harmonious   counter-melody.  

Unfortunately   neither   Method   A   or   B   were   able   to   achieve   similar   results   to   that   of  

human   compositions,   with   both   methods   being   beaten   by   the   random   solution.   The  

significant   deviation   on   the   human   composed   dataset   also   implies   that   the   mean   is   not  

an   indicative   value   for   the   rest   of   the   human   dataset.   Similar   motion   may   be   an   unfit  

descriptor   for   comparison   then,   as   without   a   strong   human   baseline   comparison,   the  

network   results   are   rendered   useless.   
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Repeated   Notes  

 

 

 

The   repeated   notes   indicator   describes   the   number   of   notes   that   are   the   same   as   the  

note   that   came   before   them;   this   is   a   good   indicator   of   low   complexity.   Unfortunately  

both   methods   again   performed   poorly   against   a   human   dataset   with   even   the   random  

solution   outpacing   both   methods,   with   respect   to   achieving   human   like   quality.   One  

important   consideration   is   that   repeated   notes   refers   only   to   the   pitch,   and   does   not  

account   variations   in   timing   or   velocity,   and   as   such,   the   random   solution   may   be   at   a  

slight   advantage,   as   PRNGs   are   by   nature   designed   to   produce   unpredictable   results,  

and   the   same   randomly   generated   pitch   is   unlikely   to   appear   many   times   in   a   row.  

Looking   at   both   Methods   A   and   B,   the   clear   winner   is   B   with   a   significantly   lower   mean  

repeated   notes   and   wider   variance.   Here,   a   low   variance   in   Method   A   indicates   an  

extremely   strong   prevalence   of   repeated   notes;   this   is   true   as   almost   all   compositions  

were   the   same   note   repeated   over   and   over   again,   with   only   minor   differences   in   timing  

and   duration.   
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Melodic   Embellishments  

 

 

 

The   melodic   embellishments   descriptor   describes   the   number   of   ornamental   notes   in   a  

given   composition.   Embellishments   serve   to   make   a   passage   of   music   more   exciting  

and   less   repetitive.   As   can   be   seen   from   Figure   5.2.9,   the   best   performing   solution   was  

Method   B,   though   the   difference   in   variance   between   B   and   human   compositions   is  

rather   substantial.   The   human   compositions   exhibited   a   massive   variance,   and   as   such,  

may   be   a   poor   baseline   for   comparison.   It   does   highlight,   however,   that   while   Method   B  

appears   to   be   the   best   approach   out   of   the   other   computational   methods,   in   reality   the  

deviation   is   much   more   constrained   than   human   compositions,   meaning   that   while  

human   compositions   may   sometimes   have   many   embellishments   in   a   piece,   the  

generative   solution   is   likely   to   have   a   very   small   amount   of   ornamentation   by  

comparison.   Method   A   suffers   from   the   same   problem   to   an   even   more   significant  

degree,   with   lower   embellishments   and   an   even   narrower   deviation.   The   random  

solution   had   the   least   accurate   mean   score   of   all   generative   solutions,   but   did   in   fact  

beat   both   Method   A   and   B   in   terms   of   variance.  
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Melodic   Pitch   Variety  

 

 

Melodic   Pitch   Variability   is   exactly   as   it   sounds,   it   describes   the   variability   of   melodic  

pitches   in   a   given   composition.   Though   not   precisely   an   indicator   of   complexity,   this  

metric   gives   us   some   insight   into   the   variety   of   musical   notes   considered   for   the  

composition.   The   closest   method   to   human   compositions   for   this   descriptor   was  

Method   B   in   terms   of   mean,   though   the   variance   of   the   random   solution   was   slightly  

closer   to   that   of   the   human   compositions.   

 

Variability   of   Note   Durations  
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Similar   to   the   performance   on   variability   of   pitches,   method   B   achieves   a   very   similar  

mean   score   when   compared   to   the   other   methods,   however   random   again   comes  

closest   in   terms   of   variance.   Method   A   showed   the   worst   performance   again,   with   no  

variability   to   note   durations   whatsoever   recorded   by   jSymbolic.   

 

Variation   of   Dynamics  

 

 

For   the   variability   of   dynamics,   surprisingly,   the   best   performance   was   had   by   Method  

A,   which   had   a   closer   mean   score   and   variance   to   human   compositions   than   either  

random   or   Method   B.   Method   B   was   the   worst   performer   with   an   exceedingly   high  

variability   of   dynamics,   with   very   little   variance.   

 

Findings   from   symbolic   analysis  

From   symbolic   analysis   alone,   we   can   see   that   neither   Method   A   or   B   were   able   to   fully  

match   the   performance   of   the   human   compositions,   though   Method   B   was   a   better  

candidate   exhibiting   promising   results   in   6   of   12   symbolic   descriptors.   Disappointingly,  

Method   B   did   not   vastly   outperform   either   Method   A   or   the   random   in   any   of   the   Motion  

descriptors,   good   indicators   that   not   only   pitch   but   also   temporal   structure   are   being  

comprehended   by   the   network.   Method   A   was   unsurprisingly   a   very   poor   performer,  

again,   due   to   the   fact   that   the   network   was   unable   to   at   all   capture   the   structure   of   the  

training   data,   and   resulted   in   either   identical,   or   similar   output   regardless   of   the   input.  

66  



The   random   solution   may   appear   to   be   a   rather   strong   candidate   in   theory,   but   based  

on   the   average   note   duration   descriptor   alone,   random   solutions   become   too  

unbearably   slow   to   be   considered   listenable.   Furthermore,   the   surprising   results   in  

variety   of   pitch   may   be   more   an   indication   that   the   descriptor   was   a   poor   analytical  

method   more   than   that   random   compositions   exhibit   more   melodic   variability,   as   this  

simply   was   not   the   case.   

 

5.3   Subjective   Analysis   

This   section   will   evaluate   the   human   response   to   the   generated   compositions   of  

Method   A   and   B.   As   previously   discussed,   the   data   was   collected   by   conducting   an  

informal   listening   questionnaire,   where   participants   were   asked   to   identify   if   a  

composition   had   been   composed   by   a   human   or   a   computer.   Furthermore,   participants  

were   asked   to   gauge   their   feelings   on   the   composition   by   responding   to   a   series   of  

statements   using   a   likert-style   scale.   Participants   were   played   nine   20-second   long  

compositions,   with   three   compositions   belonging   to   the   human   corpus,   three   belonging  

to   Method   A   and   three   belonging   to   Method   B.  
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Figure   5.3.1   and   5.3.2   show   us   the   skill   level   across   the   participants   of   the   study,   as  

well   as   a   statistical   plot   showing   the   mean,   deviation,   min,   max   and   median   of  

participant   skill   level.   All   statistics   indicate   that   the   test   group   had   an   extremely   varied  

level   of   musical   skill,   with   two   participants   having   no   musical   education   whatsoever,  

and   three   professional   musicians.   The   deviation   was   sufficiently   high   enough   to   regard  

the   value   of   the   mean   as   unindicative   of   the   average   skill   of   a   participant.   
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From   Figure   5.3.3,   participants   accuracy   in   identifying   the   composition   source   is   shown.  

On   the   left   is   the   mean   accuracy   by   question,   with   the   right   hand   figure   showing   the  

mean   accuracy   of   predictions   by   composition   type.   Unsurprisingly,   Method   A   was   the  

easiest   to   identify,   due   to   the   extremely   simple   nature   of   the   “compositions”,   with  

Method   B   following   and   human   compositions   the   most   difficult   to   identify   for   test  

participants.   

 

 

 

Figure   5.3.4   shows   participants   responses   to   the   statement   “This   composition   was  

musically   complex”.   Method   B   was   clearly   considered   to   produce   more   complex   music,  

and   almost   matches   that   of   the   human   compositions,   where   Method   A   can   be  

considered   significantly   less   complex.   It   is   strange   that   the   Method   A   results   are   as   high  

as   they   are,   given   the   indicated   quality   of   the   compositions   from   symbolic   analysis.  
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Figure   5.3.5   shows   participants   perceived   enjoyment   of   the   compositions   across   all  

compositions,   and   by   their   source.   Participants   read   the   statement   “I   enjoyed   this  

composition”   and   were   asked   to   respond   using   a   standard   likert   scale.   Unfortunately,  

compositions   from   both   Method   A   &   B   were   significantly   less   enjoyable   to   participants  

than   the   human-written   compositions.   Both   methods   also   have   a   slightly   larger  

variance   than   that   of   the   human   written   music,   implying   that   the   human   compositions  

are   more   consistently   enjoyable   than   either   of   the   networks.  

 

 

 

Finally,   Figure   5.3.6   shows   participants   likelihood   to   relisten   to   a   composition,   with  

participants   reading   the   statement   “I   would   listen   to   this   composition   again”,   again  

responding   using   a   likert   scale.   Method   B   was   again,   slightly   closer   to   matching   the  

human   compositions   and   had   a   moderate   advantage   compared   to   Method   A.   With   this  

being   said,   the   human   compositions   again   had   a   significant   advantage   over   both  

Methods   of   generation   and   a   significantly   lower   variance,   meaning   that   participants  

wanted   to   listen   to   human   compositions   more   consistently   than   either   generative  

method.   
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Findings   from   Subjective   Analysis  

Reflecting   on   the   results   of   the   listening   questionnaire,   it   is   clear   that   participants  

preferred   the   human   compositions   in   every   measured   way.   Surprisingly,   test  

participants   were   least   likely   to   correctly   identify   the   human   compositions   out   of   all   of  

the   presented   methods.   Method   A   had   the   highest   rate   of   true   identification,   and   this  

also   shows   from   participants   responses   to   these   compositions:   Method   A   was  

consistently   the   least   preferred   method   of   composition,   scoring   lowest   in   complexity,  

replayability   and   enjoyability.   Method   B   had   more   success   falling   directly   in   between  

Method   A   and   the   human   compositions,   in   terms   of   participants   ability   to   correctly  

identify   the   compositions   source.   Specifically,   Method   B   exhibited   a   nearly   identical  

perceptual   complexity   to   that   of   the   human   compositions.   This   is   surprising   as   it   almost  

directly   contradicts   the   findings   from   the   symbolic   analysis   stage;   while   the   network  

was   proficient   in   certain   aspects   (notably,   variability   of   note   duration),   it   failed   to  

capture   many   other   temporal   aspects,   such   as   motion   and   ornamentation.   Despite   the  

perceived   similar   complexity,   participants   still   preferred   the   human   compositions   by   a  

significant   margin,   and   were   much   more   likely   to   relisten   to   a   human   composition   than  

any   Method   B   composition.   
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6.   Conclusion   

This   project   has   assessed   the   feasibility   of   using   Recurrent   Neural   Networks   as   a  

method   of   generating   music   by   scoping   existing   solutions,   identifying   the   principal  

problems   currently   facing   RNN   music   systems   and   provided   two   potential   solutions   for  

evaluation.   The   overall   goal   was   to   produce   “human   sounding”   music,   with   a   goal   of  

achieving   a   long-term   musical   structure   in   the   compositions.   Unfortunately,   neither  

Method   A   or   B   were   able   to   fully   achieve   this   goal.   Despite   this,   the   generations   from  

the   network   were   not   wholly   unpleasant,   and   while   on   average   human   participants  

preferred   the   human   compositions,   some   of   the   participants   also   enjoyed   the   generated  

compositions.   

 

To   increase   the   number   of   pleasant   compositions   the   network   produces,   some  

combination   of   a   selection   algorithm   (such   as   a   GA)   and   jSymbolic   analysis   data   could  

be   used   to   identify   the   best   compositions,   in   terms   of   similarity   to   human   compositions.  

This   would   also   save   a   lot   of   man-hours,   as   instead   of   having   to   listen   to   each  

composition   individually,   the   system   could   identify   the   most   interesting   compositions  

autonomously.   Furthermore,   continued   development   of   GTTM   and   its   computational  

applications   could   provide   a   much   more   granular   and   structure-focussed   analysis,   as  

opposed   to   purely   empirical   means.   

 

One   potential   issue   is   the   relatively   small   size   of   the   training   dataset.   This   imposed   a  

catch-22   situation:   whilst   a   larger   dataset   could   well   have   increased   the   performance,  

the   existing   dataset   and   network   architecture   had   to   be   carefully   tweaked   and   refined  

to   get   running   on   a   relatively   performant   PC,   though   the   low   amount   of   GPU   memory  

(4GB)   may   well   have   imposed   a   greater   restriction   on   the   network   than   initially   thought.   

If   further   development   were   to   be   continued   with   this   project,   a   better   GPU   and   larger  

dataset   could   reasonably   aid   the   performance   of   the   system,   as   it   is   a   well   known   axiom  

that   machine   learning   generally   scales   well   with   large   amounts   of   data.   Alternatively,   a  

cloud   hosting   solution   (such   as   Google   Cloud   Platform)   could   be   used   to   remove   these  
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restrictions   on   the   network,   though   this   requires   a   significant   investment   of   time   to  

setup   GPU   accelerated   machine   learning.   

 

Based   on   the   findings   from   the   analysis   stage,   this   project   would   recommend   the   use   of  

a   sequence   as   the   fundamental   representation,   in   which   an   arbitrary   number   of   notes  

may   be   active   (Method   B).   Though   this   method   produces   more   data   and   takes   longer   to  

train,   the   results   are   infinitely   more   musical   than   that   of   Method   A’s   representation,  

which   sees   each   note   occupy   its   own   timestep.   One   potential   reason   Method   A’s  

representation   failed   to   capture   the   structure   of   the   data   was   the   fact   that   the   timing  

information   was   encoded   as   a   feature   of   the   data,   rather   than   being   represented  

explicitly   by   the   sequence   (of   data).   One   method   highlighted   in   the   literature   proposes   a  

fixed   interval   between   notes   to   solve   this   problem,   however   this   directly   contradicts   the  

aim   of   replicating   human   sounding   music,   as   notes   are   often   placed   in   extremely  

irregular   patterns.   There   is   the   potential   that   timing   and   pitch   features   are   simply   too  

distant   in   terms   of   relation   to   be   grouped   together   in   one   datapoint,   which   is   indicated  

by   the   fact   that   our   network   -   which   did   not   encode   timing   as   a   feature   -   performed  

significantly   better.   

 

Looking   to   the   future,   RNNs   and   specifically   LSTM   /   GRU   networks   still   have   much  

research   to   undertake   when   aiming   to   identify   the   best   techniques   and   practices   when  

dealing   with   generative   music.   Some   other   network   architectures   have   had   massive  

successes   well   above   what   has   been   seen   using   RNNs.   MuseGAN   (Dong   et   al.,   2019)  

shows   extremely   promising   results,   being   able   to   simultaneously   compose   five  

interwoven   tracks   of   music   for   bass,   guitar,   piano,   drums   and   strings.   The   transformer  

discussed   in   the   literature   review   also   exhibited   impressive   performance,   besting   a  

traditional   RNN   and   LSTM   network   by   a   substantial   margin   when   attempting   to  

recreate   Bach   chorales.  
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Figure   6.1   :   Example   Method   A   composition   in   Music   Notation  

 

Figure   6.2   Example   Method   B   composition   in   Music   Notation  

 

The   code   for   this   project   is   available   at:  

https://github.com/liamdx/RnnMu  
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