
Using Recurrent Neural Networks to Generate Music

Liam Devlin

This dissertation was submitted in part fulfilment of requirements for the degree of MSc

Information and Library Studies

DEPT. OF COMPUTER AND INFORMATION SCIENCES UNIVERSITY OF

STRATHCLYDE

August 2019

Declaration

This dissertation is submitted in part fulfilment of the requirements for the degree of

MSc of the University of Strathclyde.

I declare that this dissertation embodies the results of my own work and that it has

been composed by myself. Following normal academic conventions, I have made due

acknowledgement to the work of others.

I declare that I have sought, and received, ethics approval via the Departmental Ethics

Committee as appropriate to my research.

I give permission to the University of Strathclyde, Department of Computer and

Information Sciences, to provide copies of the dissertation, at cost, to those who may in

the future request a copy of the dissertation for private study or research.

I give permission to the University of Strathclyde, Department of Computer and

Information Sciences, to place a copy of the dissertation in a publicly available archive.

(please tick) Yes [] No []

I declare that the word count for this dissertation (excluding title page, declaration,

abstract, acknowledgements, table of contents, list of illustrations, references and

appendices is 14800 words.

I confirm that I wish this to be assessed as a Type 5 dissertation.

Signature:

Date:

1

Abstract

This project focuses on the application of Recurrent Neural Networks (RNN) to the field

of generative symbolic music. The following paper discusses the current state of RNN

music generation and proposes two representations for compositions with a shared

underlying data structure. Once the compositions had been generated, they were

compared against human-written compositions by using an empirical MIR analysis

system, as well as a subjective test in which participants offered perceptual responses

to the compositions. Overall, while the system was able to produce some melodically

pleasant results, it failed to capture the long term structure and complexity of human

compositions.

2

Acknowledgements

I would like to thank my amazing partner, Rachel, for her incredible support and

unwavering patience during my studies: I truly could not have done this without your

support. I’d also like to thank my Mum for being incredibly understanding during this

project, as well as my good friend Thor who was always willing to listen to my

problems, moans and groans, and motivated me to continue my work.

3

Table of Contents

1. Introduction . 7

2. Aims . 10

3. Background / Key Literature . 11

3.1 Recurrent Neural Networks . 11

3.2 Music Theory and Data Representation . 15

3.3 Current State of Generative Music . 19

3.4 Computational Music Analysis . 20

3.5 Subjective Music Analysis . 24

4. Methodology . 26

4.1 Dataset Selection and Preparation . 26

4.2 Designing Structure of Neural Network(s) 37

4.3 Synthesising Symbolic Data . 43

4.4 Computational Music Analysis . 48

4.5 Subjective Music Analysis . 52

 5. Analysis of the System . 54

 5.1 Analysis of Network Training . 54

 5.2 Symbolic Analysis . 55

5.3 Subjective Analysis . 67

 6. Conclusion . 72

 7. Appendices . 74

4

List of Figures

Fig No. Figure Description Page No.

3.1.1 Recurrent Neural network architecture compared against feed-forward
neural network

11

3.1.2 Unrolling a recurrent neuron in RNN 13

3.2.1 Variety of Musical Time Signatures 16

3.4.1 List of jSymbolic 2.2 MIR Descriptors 23

4.1.1 loadMidiData function 28

4.1.2 Function to retrieve keras data format 29

4.1.3 Method A network data processing function 31

4.1.4 Method B network data processing function 33

4.1.5 Function to generate random comparison data 36

4.2.1 Method A Network Architecture 40

4.2.2 Method B Network Architecture 41

4.3.1 Function to convert Method A data back to MIDI 43

4.3.2 Function to convert Method B data back to MIDI Pt.1 44

4.3.3 Function to convert Method B data back to MIDI Pt.2 45

4.3.4 Function to convert Method B data back to MIDI Pt.3 46

4.3.5 Ableton Live 9 User Interface 47

4.4.1 jSymbolic2 User Interface 48

4.4.2 Contrary Motion 49

4.4.3 Similar Motion 49

4.4.4 Chromatic Motion 50

4.4.5 Stepwise Motion 50

4.5.1 Listening Questionnaire Predisposition 52

5

4.5.2 Listening Questionnaire Sample Question 52

5.1.1 Network Training Period Loss 54

5.1.2 Network Validation Loss 54

5.1.3 Final Hyperparameters for both networks 55

5.2.1 Amount of Arpeggiation Comparison 56

5.2.2 Average Note Duration Comparison 57

5.2.3 Average Simultaneous Pitches Comparison 58

5.2.4 Chromatic Motion Comparison 59

5.2.5 Contrary Motion Comparison 60

5.2.6 Stepwise Motion Comparison 61

5.2.7 Similar Motion Comparison 62

5.2.8 Repeated Notes Comparison 63

5.2.9 Melodic Embellishments Comparison 64

5.2.10 Melodic Pitch Variety Comparison 65

5.2.11 Variability of Note Durations Comparison 65

5.2.12 Variation of Dynamics Comparison 66

5.3.1 Participants Skill Level 67

5.3.2 Participants Skill Statistics 68

5.3.3 Participant Accuracy 68

5.3.4 Participants Perceived Complexity 69

5.3.5 Participants Perceived Enjoyment 69

5.3.6 Participant Replayability 70

6.1 Sample Method A Composition in Music Notation 74

6.2 Sample Method B Composition in Music Notation 74

6

1. Introduction

Neural networks belong to a family of computer algorithms known as Machine Learning

algorithms, which attempt to automate a solution to a problem. Machine learning tasks

usually concentrate on tasks that are either extremely tedious for programmers, or

where the time required to implement the algorithm traditionally is unfeasible. With

neural networks, the computer is fed massive quantities of data to “train” the network,

which is to say, the network tries to formulate a pattern from the data, such that it is

able to predict unseen classes/categories, or generate new data based on some input.

Neural networks specifically have seen a massive rise in use due in large part to the

advent of extremely sophisticated Graphics Processing Units (GPUs). Originally

intended for video games, modern GPUs often contain thousands of cores, all of which

are specifically engineered to perform vector and matrix algebra extremely quickly:

structures fundamental to the operation of neural networks (Paine et al, 2013). From

the advent of this newfound power, neural networks have been applied to a variety of

problems, including: image classification, feature extraction from audio signals,

time-series analysis of financial data and much more. With this, a variety of neural

network architectures have emerged, many of which have been fine-tuned for a

particular area of application. Convolutional neural networks have seen widespread use

in image classification due to the similarity in structure to that of the visual cortex;

feed-forward neural networks are some of the most simple ANN architectures and are

generally quite accurate at most machine learning tasks, including image processing

and natural language processing (Graves et al, 2013) tasks which, until recently, were

among the most challenging for traditional algorithms to approach.

One traditionally challenging problem, however, is the generative composition of music.

Studies by (Eck & Schmidhuber, 2002) and (Franklin, 2006) have shown traditional

neural network architectures to be unfit for generating music due to their inability to

effectively deal with time-series data, that is, data where the ordering of data-points is

important. In music the order of notes is fundamental to giving music a ‘human’ feel,

7

and in most music, many abstractions of ordering take place. In music theory and

notation, a bar (also known as a measure) is a series of notes which can be loosely

thought of as a complete musical phrase. Bars have sub-divisions of time known as

“beats” which vary based on the time-signature of the piece. Time signatures have the

largest impact on the rhythmic “feel” of the track and inform the order and spacing

between notes for at least the remainder of that bar (though in most non-classical

music, compositions will stick to one or a small number of time-signatures). From here

further abstractions may be applied to the composition’s temporal structure, a

verse-chorus song structure may be composed of a number of separate, yet closely

related bars of music, which are ordered in such a way as to have an emotional impact

in the listener.

 Recurrent Neural Networks (RNN) are neural networks that are able to keep track of

information from a previous timestep, and thus have some rudimentary form of

memory. This is useful for keeping track of so called ‘long term dependencies’, take for

example a motif from a classical piece, the composition may be over an hour long,

however specific themes and phrases from parts of the music are reused for dramatic

and emotional effect (Sutskever et al, 2014).

Another problem generative music currently faces is that while current solutions may

be aware of the form of music, e.g. they are able to capture the basic structure of music,

they are not however able to capture the semantics of music. (Langston, 1988)

describes the semantic meaning of a composition as being influenced by “experiential,

cultural and historic information (the result of activities we loosely call experience,

acculturation and learning) that does not yet exist in any machine manipulable form”.

Analysis of music (whether a generative or bespoke composition) is a

challenging task for computers. Basic statistics about the composition, such as it’s key

or tempo are relatively easy to extract with modern tools (Antti & Eronen, 2017), and

8

can even be extended to work out more involved properties of a composition, such as

it’s time-signature or key changes that occur throughout. Empirically analysing the

emotional impact or perceived ‘quality’ of a piece of music is extremely challenging (if

not impossible) due in no small part to research which suggests that human’s

assessment of music and their stylistic preferences are based almost entirely on

individual cognitive ability and past life experiences (Krumhansl, 2002). Theories such

as the Generative Theory of Tonal Music (GTTM) (Lerdahl and Jackendoff, 1983) have

made strides in making meaningful semantic analysis of music a reality. GTTM is

different from most other music analyses in that it constructs a representation of the

composition that is informed by music theory, but also by the listeners cognitive

behaviour when listening to music (Jackendoff, 1994).

Based on these factors, a reasonable assumption could be made that a neural network

with strong time-domain capabilities could prove insightful, if not useful, in the field of

generative music. Though a rather niche area of computing, generative music sees

widespread use in the video-game sector and can lead to a more optimal experience for

the consumer, as they are able to make actions which will affect the music, thus

increasing player agency (Collins, 2009). Artists such as Brian Eno (who originally

coined the phrase “Generative Music”) have also shown interest in the possibilities of

this technique , and its application in musical performances, specifically avant-garde

performances (Darko, 2009). As such, this project will discuss the experimental design

of a RNN system which generates music.

9

2. Aims

 2.1 The overall aim of this project is to develop a Recurrent Neural Network that will be

capable of producing “human” sounding music. To achieve this system, the following

aims must be met:

● Investigate the current state of Recurrent Neural Networks in the field of music

generation. This will involve analysing the strengths and weaknesses of currently

existing generative music systems using RNNs, with particular attention paid to

the structure of the generated songs.

● Develop and train a RNN with the aim of generating harmonious and temporally

structured music.

● Subjectively and empirically assess the quality of generated music.

2.2 The resources required to undertake this project are as follows:

● Computer with access to Python, Tensorflow, jSymbolicand Keras. A laptop with

a capable GPU will help speed up the training of the neural network significantly.

● Music dataset for training, in MIDI file format.

● Access to human participants for subjective analysis of generated music.

10

3. Background / Key Literature

In order to properly and effectively build the proposed neural network model, it is of

vital importance to review the existing body of RNN, generative music and surrounding

material. The following subjects were identified as the most relevant to the

development of the system.

3.1 Recurrent Neural Networks

Neural networks are a family of machine-learning algorithms which have seen

widespread adoption in the advent of new-found computer processing speed, with

applications in the field of deep learning and medical research (Paine et al, 2013). Some

of the most common neural network architectures are Feed-forward networks and

Convolutional Neural Networks: the former is among the most primitive neural network

configuration and is often used as a naive starting point, while convolutional neural

networks see extensive use in image recognition applications(Krizhevsky, Sutskever

and Hinton, 2012). One of the fundamental flaws of both Feed-Forward and

Convolutional neural networks is that they are unable to deal with time-series data,

which is any data in which the ordering of data points is important (Franklin, 2006).

Recurrent Neural Networks differ from other Neural Network architectural styles in that

the output of each neuron at any given time-step is fed back into the neuron at the next

timestep, meaning the summed input of the neuron is based on the current incoming

input, as well as the output of the neuron at the last time-step (Bown and Lexer, 2006)

11

Figure 3.1.1 illustrates the difference between a recurrent neural network and a feed

forward neural network. In feed forward networks, the output from each layer only

moves forward to the next layer until it eventually reaches the output terminal. This

means that the network is completely unaware of the output from the last timestep, not

to mention the networks state. This makes feed-forward networks sub-optimal for

music as they are not able to reproduce or capture any kind of long-term musical

structure. Recurrent neural networks help to alleviate this problem by taking the output

from each layer at time t and feeding it back into itself at time t+1 . This means that for

all recurrent neurons in the layer (more on this shortly) the neuron is aware of the

current incoming input, as well as the output from this neuron from the previous time

step. (Franklin, 2006).

Traditionally, Recurrent Neural Networks have proven challenging to train due in no

small part to the vanishing and exploding gradient problem. In short, the exploding

gradient problem describes the situation where long-term temporal dependencies

cause massive updates to the weights of the network, leading to unstable training, or

weights with NaN values. The vanishing gradient problem describes precisely the

opposite problem, where many short-term dependencies can cause the loss curve to

become so small that it is unable to make any effective change to the network and

causes the rate of learning to slow to a crawl (Pascanu et al, 2013). The

Backpropagation algorithm used to train nearly all neural networks is in itself unfit for

training RNNs due to its inability to backpropagate errors from multiple time-steps.

Backpropagation Through Time (BPTT) allows the fundamental backpropagation

algorithm to be applied to RNNs by “unrolling” the network. As can be seen from Figure

3.1.2, unrolling a recurrent network involves representing each recurrent neuron as a

series of neurons (the length of the series is equal to the number of timesteps), thus

explicitly representing the weight of a neuron at each timestep. This process is applied

to the entire network, with the result of this process being the original RNN represented

12

as a feedforward neural network, allowing traditional backpropagation to be performed

on the networks weights (Saon et al, 2014).

One major flaw with BPTT however, is that it is prone to becoming stuck in local optima

during training. This proves problematic in its application to training recurrent networks

as by their nature of repeating input from previous time-steps, RNNs naturally also

suffer from the problem of local optima (Cuellar et al , 2006). Were this problem left

unfixed for the proposed system, at some point in the generation of a composition the

network would converge on a single note and repeat indefinitely. A problem that more

generally plagues RNNs is the issue of so called “long term dependencies”. Take, for

instance, an RNN solving a NLP problem of predicting the next word in a given

sentence; for the sentence “I am from france, I speak _” , the obvious answer to a

human is ‘french’ as most humans will understand that people who live in france, must

by extension speak french. For a standard recurrent neural network however, there is

no way for the network to intrinsically understand the significance of the word “france”

in the context of the sentence, and a poorly trained RNN may not even recognise that

the next word should be some kind of language, or even a word relating to france at all.

Both of these problems are addressed by LSTM units.

LSTM networks use a special kind of recurrent connection which significantly aids an

RNNs ability to recognise and deal with long-term dependencies. The core principle of

an LSTM cell is that each cell maintains some “state” which is consistent between

13

timesteps. The inner workings of the LSTM cell state are extremely complex and fall

outwith the scope of this project, but an LSTM cell state can loosely be thought of as a

conveyor belt which flows through all-timesteps of an LSTM cell, carrying different

configurations at each point in time. At each timestep, the LSTM can be trained to either

remember or forget part of the information it is currently holding - this modified

information then becomes the state for the next timestep (Gers, Schmidhuber and

Cummins, 2000). The other components of an LSTM cell are used purely to control

what data is modified in the cell’s state. The forget gate dictates how much of the

current state should be discarded to allow for new information to flow in. As its output,

the forget gate return a number in the range 0 to 1, with 0 representing “forget

nothing” and 1 representing “forget everything”. The input gate provides the opposite

behaviour, dictating how much of the new input data should be fetched and stored in

the cells state (Olah, 2015). A simpler alternative to LSTM networks exist in GRU

(Gated Recurrent Unit) networks. GRU units have only two gates: the forget gate -

which decides how much of the current state should be forgotten, and the update gate

- which dictates how much of the current incoming activation should overwrite the

previous timestep’s activation. The most salient difference between GRUs and LSTMs is

that GRUs always expose the full state during updates, where LSTM units are able to

control the degree to which the state is exposed (Chung et al., 2014). By allowing the

network to retain information over long periods of time as well as being able to tune

how much information should be forgotten and retained at each time-step, both LSTM

and GRU networks are able to mitigate the problem of long-term dependencies as well

as helping to deal with both vanishing and exploding gradients.

14

3.2 Music Theory and Data Representation

In approaching a generative music application, it is of crucial importance to consider at

least a small amount of music theory; this section will primarily discuss western music

theory as the training data is exclusively comprised of western music, however it should

be noted that there are slight variations in music theory throughout different parts of

the world.

A note is a single musical excitement which has only 2 salient features: Pitch and

Duration. Pitch describes the tonality of the musical excitement, and is measured (in

western music theory) using the chromatic scale. This is a musical scale which

represents a mapping of Note Pitches (often simply referred to as notes) to various

frequencies, for example, take the note pitch A4, which lies at 440hz. The chromatic

scale is composed of 12 evenly-spaced pitch classes over 8 octaves, hence ‘A4’

meaning the pitch-class ‘A’ at octave 4. Increasing the octave of a note doubles the

note’s current frequency, e.g. A4 = 440Hz and A5 = 880Hz. The chromatic scale is used

as the basis for western musical scales due to its versatility, stability across many

octaves and wide-range of harmonious possibilities (Schellenberg et al., 2005).

The most fundamental collection of notes which can be considered a complete musical

passage is a bar. Each bar may have an arbitrary number of notes which compose a

musical phrase, however it is primarily the time signature (more on this shortly) which

informs the rhythmic properties of the musical expression. Note durations are relative to

the tempo (ordinarily measured in beats-per-minute), and have predetermined intervals

to denote various durations in a readable format. The most common note durations are

a crotchet, quaver and semi-brieve which represent ¼ , ⅛ and whole note lengths. It is

impossible to explain the meaning of these time designations without first explaining

the concept of a time-signature, which in western music theory, is the primary method

of expressing the rhythmic properties of a musical phrase.

15

As can be seen from Figure 3.2.1, time signatures are represented by two numbers,

which we will refer to as the enumerator and denominator for the sake of ease. The

enumerator refers to the number of pulses (more commonly referred to as beats) per

bar, while the denominator refers to the value - or duration - of each beat. The tempo

and time signature’s denominator are the primary methods for informing the reader of

the “speed” of a musical phrase.

In order to achieve the goal of “human feeling” music, the system would ideally

understand the distinction between sections of music; these segments of music are

usually broken down into verse, chorus and bridge components (Sloboda, 1991). While

this seems extremely simple, most popular music is written exclusively within the

confines of this structure denoted “verse-chorus form”, with minor variations introduced

in each section to minimise the repetition and elicit an emotional response from the

listener (Doll, 2011). With this being said, there are vastly more complicated forms of

music such as freeform jazz, which can almost be said to contain no discernable

structure. There are also many examples of popular music which do not conform to the

verse-chorus form, but due to its prevalence in music and its relatively simple rules, the

verse-chorus form will be used as the basis for all general structure we wish the system

to be able to replicate.

Beyond the basic music theory involved in designing a generative music system, a huge

consideration in any neural network system is the form of the representation.

16

One of the most common ways to digitally represent music is MIDI (Musical Instrument

Digital Interface). MIDI does not seek to recreate the exact sound of a piece of music,

MIDI instead captures musical events for an arbitrary number of instruments, which can

be layered within a single file. An example of an event would be a “note on” event,

which would correspond to a given instrument, and would be passed through a note (or

pitch) to play at a given velocity, e.g. how hard the note was played. MIDI was originally

developed in 1983 with the goal of allowing synthesizers from multiple different

companies to communicate; it has since become a ubiquitous way of storing music. It

has since seen use in MIR (Music Information Retrieval) domains as a supplementary

asset to a given musical signal, for the purposes of both musical feature extraction and

classification (Cataltepe et al, 2005).

In MIDI, a note’s pitch is represented as a number in the range 0 to 127. For example,

MIDI note 72 represents the note C in the 5th octave, which is approximately equivalent

to 524Hz. MIDI notes are modelled to represent all available notes on the chromatic

scale, which means that certain musical styles such as microtonal music cannot be

accurately represented using MIDI. Due to this limitation, MIDI is primarily used to

represent western music as it simply lacks the infrastructure to effectively deal with

non-western pitch representations. Velocity describes how hard a note was excited by

an instrument, and can be loosely thought of as a measure of loudness and dynamics.

The velocity value is also ranged 0-127, with 0 representing no excitement at all, and

127 representing the maximum volume for a note. For this project, the velocity will

primarily be thought of as a loudness metric (as this project only seeks to generate

music for a piano), however for other instruments, velocity impacts not only the volume

of the sound, but the way the excitement sounds tonally. Take, for example, a drum kit;

while increasing velocity will make the drum hits louder, this will also cause the drum

hits to sustain longer, and potentially even change the tone depending on how hard the

drum was hit (Dannenberg, 2006).

17

In terms of representation, MIDI is often used as a starting point for data preparation, as

all of the information required for the network can either be directly sampled from the

MIDI file, or extrapolated from the existing data. Common to all representations is the

inclusion of Pitch and Velocity as features. Time features such as note duration and

start are usually less consistently defined, but can generally be split into one of two

approaches: relative timing and absolute timing. In relative timing, the note’s start time

(not duration) is relative to the start time of the last note, in absolute timing , the note’s

start time is the absolute time it should start, in seconds (Eck and Schmidhuber, 2002b)

Tokenization is a process ordinarily used in Natural Language Processing (NLP)

applications, in which a dataset is encoded into a symbolic representation where each

symbol represents some facet of a dataset, for instance, words in a NLP neural

network. Tokenization makes use of a concept known as a ‘dictionary’ which holds all of

the tokens and the original data they represent. Dictionaries are almost always a fixed

length, meaning some of the original data may no longer be representable; this is a

necessary sacrifice as large dictionaries can lead to exponential increases in training

time, or the possibility of divergence if the given dictionary is sufficiently large (Luong et

al., 2015). In NLP applications, data usually takes the form of a list of n-length vectors

of integers (with each integer representing a word from the dictionary, and thus the

vector representing a sentence). Tokenization has seen application to sentiment

analysis of user reviews (Maas et al., 2011), real-time machine translation (Devlin et al.,

2014) as well as password security analysis (Melicher et al., 2016). The application of

this approach to generative music is not a novel concept: a study which used a

Transformer decoder to generate music also used a tokenized symbolic representation

with extremely promising results (Cheng-Zhi et al., 2018). Another study proposes

fundamental similarities between language and music, specifically with regard to

metrical structure and phrasing (Jackendoff, 2009).

18

3.3 Current State of Generative Music

There have been many successes of the application of RNNs to a particular subset of a

musical piece, such as melody composition (Chen & Miikkulainen, 2001), drum grooves

(Hutchings, 2017) and even small segments of music using a multi-layer system which

trains one network on chord structures, and another to compose melody within the

confines of the generated chord structure (Eck and Schmidhuber, 2001).

One potential problem highlighted by (Eck and Schmidhuber, 2002a) is that many

neural networks use multiple time-steps to one note, which needlessly complicates

both the network as a whole and the training process. The same study also suggests

for the sake of simplicity and efficiency: a predetermined note distribution should be

established for the entire dataset, e.g. notes in a song will have a minimum distribution

of pitch (jumps in 3 semitones, rather than 1 semitone for the chromatic scale). This

was seconded by (Franklin, 2006) who also suggested that a traditional mapping of

pitch, e.g. 12 notes per scale and 8 octaves of notes, may be a poor representation for

pitch, with respect to training accuracy. This was, however, disproven by (Liu and

Ramakrishnan, 2014) who successfully trained a model using data which took the form

of a 2D vector of pitch activations over many timesteps.

Another approach highlighted by (Skuli, 2017) takes a simultaneously simpler and more

sophisticated approach to representation. This approach removes all timing features

with a predetermined interval between every note, drastically limiting the expressive

capabilities of the network. The network does however distinguish between a single

note as a musical excitement and a chord,

One significant challenge still facing generative music solutions is capturing the

so-called “long-term structure” of music, which can be thought of as the culmination of

long-term dependencies which govern the style of a particular composition (Eck and

Schmidhuber, 2002b). One recent approach looks at tackling the problem of ‘long-term

19

structure’ through the use of a Transformer Decoder network, which significantly

improved the quality of prediction compared to other state-of-the-art models,

specifically with regard to note duration and timing. This representation for this

approach utilised a symbolic approach for pitch and velocity, where note duration and

activation were dictated by a piano-roll like time-series structure (Cheng-Zhi et al.,

2018).

3.4 Computational Music Analysis

A significant challenge in computationally analysing music, and its perceived quality, is

that a human’s appreciation for music is hugely dependent on their life and the context

in which they listen to the piece (Ariza, 2009). As such, music’s perceived quality can be

thought of as a culmination of the listener’s emotional response and their cognitive

ability / experiences (Krumhansl, 2002). Some formative work by (Lerdahl and

Jackendoff, 1983) attempts to disambiguate a musical piece into the way humans

purportedly perceive music. Labelled GTTM (Generative Theory for Tonal Music), this

technique is intended as a rule-set that governs the generation of music (Dodd, 2015)

but has also been applied to perceptual music analysis systems, and works by splitting

the music into 4 discrete components: the prolongonal tree, time-span tree, metrical

structure and grouping structure (Eck and Schmidhuber, 2002a). Grouping structure

describes the relationship between a grouping of notes (or a phrase), the metrical

structure describes the rhythmic feel of a phrase, the time-span tree is a hierarchical

tree which allocates an importance to a given note in a phrase, and finally, the

prolongonal tree expresses the notion of tension and release within a given section. As

both a method of analysis and generation, GTTM has amazing potential to generate

music which mimics human emotion. One major caveat is that no standard

implementation of GTTM exists and as such, must be implemented by the programmer.

An approach by (Hamanaka et al, 2015) highlighted many potential issues with GTTM,

not least of which was the lack of a formal implementation for computers, as well as

20

many of the proposed rules (specifically how the music generation is started) being

ambiguously described. The approach Hamanaka et al took was to take a sheet music

representation (similar to that provided by Sibelius or other music authoring software),

and apply a subset of GTTM recursively over increasing sizes of musical phrase. This

technique denoted ATTA, or Automatic Timespan Tree Analyzer (Hamanaka et al,

2015), looks at a small phrase of music and recursively looks at its position, relative to a

larger and larger subsection of music. This allows the analysis system to be more

perceptually aware of the intended tone of a given phrase; for example, many happy

songs will have minor chords, or even minor sections which provide a different feel to

the music, without necessarily making the song sound inherently ‘ sad’.

Unfortunately, no solid computational implementation for GTTM analysis yet exists. As

noted by (Hamanaka, Hirata and Tojo, 2007), GTTM has proven difficult to interpret as a

computational algorithm due to vague rules in the original specification, and as such,

very few applications have made attempts to use GTTM for analysis. For this system,

analysing the emotional response of a listener to the generated compositions is out of

scope, but some method of analysing the musicality of a generated piece is essential to

ascertain if the system has been able to produce a pleasant musical composition.

Computational Musicology (CM) is a multidisciplinary subject which aims to combine

computer science and music theory; it covers a broad range of well-documented

research areas, such as mathematical music theory, music information retrieval (MIR)

and computer generated music (Volk, Wiering and van Kranenburg, 2011). For this

project, we are primarily interested in the analytical aspects of CM and will be focussing

on MIR, as it has seen the most widespread adoption (and therefore, development)

following the mass digitisation of popular music in the late 1990s and early 2000s . MIR

has a wide variety of applications, from forming music recommendations based on a

corpus of existing music, to automatic music transcription (Klapuri and Davy, 2011) .

Two main approaches exist for MIR: Signal-based MIR, which operates on the raw

21

audio signal (or signal files such as .wav, .mp3), and symbolic MIR which operates on

binary formats such as MIDI (Li et al., 2017) . This project will focus on symbolic MIR, as

our output representation will be a binary MIDI file. A small handful of MIR toolkits exist

for a variety of languages including music21 for python (Cuthbert and Ariza, 2010) ,

Essentia for C++ and Python (Bogdanov et al., 2013), and the framework this project

will utilise, jSymbolic.

jSymbolic is part of a collection of MIR tools known as jMIR; it is a symbolic MIR tool

which operates on MIDI and MusicXML data, providing a massive collection (see Figure

3.4.1) of musical descriptors such as: pitch and harmony, melodic intervals, rhythmic

intervals, musical texture and has seen use in a variety of MIR studies (Raffel, 2016)

(Odekerken, 2018) (Wickland, Calvert and Harley, 2018). The framework was originally

intended with the goal of automating user suggestions and classification of music; more

recently, however, the framework has seen use in the field of Machine Learning (Mckay,

Cumming and Fujinaga, 2018) as well as Musicology, where researchers used

jSymbolic analysis data to predict the emotion of a composition (Lu et al, 2010)

22

Figure 3.4.1 Complete list of jSymbolic 2.2 MIR Descriptors

23

3.5 Subjective Music Analysis

As humans are the intended target for the output of the system, subjective analysis of

the compositions will be performed (as a supplement to computational analysis) to

assess the human reaction to the pieces. In setting out to design our subjective music

assessment, our most salient goal is to identify, to what extent, test subjects are able to

discern between the generated music and bespoke compositions. As previously

discussed, perception and enjoyment of music is highly subjective and is informed

hugely by an individual's life experiences (Krumhansl, 2002). Another study expanded

up on this by proposing that one’s age and cultural background may have an even more

significant perceptual impact on music than life experiences. The same study also

showed that music’s perceived ‘complexity’ varies with age, but common to both young

and old, cultural differences can create perceptual complexity (Morrison et al, 2008); for

example, an Indian pop song perceived as simple by Indian listeners may be perceived

as complex by a naive western listener who has no frame of reference for what “simple”

Indian pop music should sound like.

Upon designing the listening test for participants to assess the perceived quality of a

given composition, the primary focus was to ensure that data analysis would yield

meaningful results that could be interpreted to gauge overall enjoyment of a

composition. As a full listening test with trained musicians was out of the scope (and

budget) of this project, it was decided an informal questionnaire would be used to

subjectively analyse a human’s reaction to the generative composition. One commonly

used method for collecting perceptual data is the use of the Likert Scale, a psychometric

scale which ordinarily poses a statement to the participant and offers 5 categorised

responses: Strong Disagree, Disagree, Neutral, Agree, Strong Agree (Nemoto and

Belgar, 2013). Likert-style questionnaires can be split in to two varieties: one in which

the questions use the likert scale categories as a response but are disparate from other

questions, and the other in which multiple questions are related to one subject or trait

which we are trying to measure (Boone and Boone, 2012). This study will use the latter

24

approach as we are trying to gauge an overall enjoyment of the composition, rather

than answer distinct questions about the properties of the music. The counterpart to

the questionnaire will be the accompanying compositions, and although the format is

not that of a listening test, some insight can be gained into the ideal listening conditions

for participants. One study evaluated the performance of 6 different listening test

methodologies and their effectiveness in evaluating the perceived “pleasantness” of 10

different engine sounds. The study asserts that a likert-type scale is a good choice for

listening tests in which the goal is to assess the pleasantness of a single sound for each

question (Parizet, Hamzaoui and Sabatié, 2005). The proposed method has some

additional stipulations; in order to minimise the chance of bias, subjects must be

allowed to hear all sounds before making a decision and must have the ability to repeat

a sound.

25

4. Methodology

This section will discuss the methodology used to undertake this project and

implementation of the system. When approaching the implementation of any project, it

is important to keep in mind the original aims of the project, whilst simultaneously

allowing crucial insight gained from the literature review to be utilised effectively.

4.1 Dataset Selection and Preparation

Due to the fact that 2 representations will be discussed and compared, the preparation

of data will be discussed in detail before tackling any other stage of the implementation.

The network architecture will be discussed along with the python implementation using

keras, and finally, the testing methodology will be outlined. As with any machine

learning task, having access to a high quality and quantity data-set is fundamental to

the success of the overall system. The identified ideal format for the data would be

MIDI, due to the fact that each note of a midi file can be seen as a time-step. In

comparison, time-series analysis of an audio file is extremely complicated, due to the

fuzzy timestep size as well as the extreme complexity of extracting specific musical

instruments, such as drums, lead vocals, keyboards etc from the original signal. Other

symbolic formats such as MusicXML may also have been considered if not for the lack

of widespread support, thus availability to a sufficiently large quantity of MusicXML

was not available. The ideal data-set was to belong to one genre of music, and while

including music from multiple genres may be possible, it complicates the process

needlessly and vastly increases the search space for the network, leading to longer

training times and poorer overall results. The final dataset was taken from

www.piano-midi.de and consists purely of classical music from composers such as

Tchaikovsky and Mozart, with a total of approximately 300 unique compositions in the

entire set. This may seem like a fairly small dataset, but considering that the network is

only attempting to emulate one style, and given that each song may contain thousands

of notes, we end up with a small but well suited and clean dataset.

26

http://www.piano-midi.de/

Two methods of representation are proposed (henceforth referred to as Method A &

Method B): Method A proposes that each note of the song be considered its own

timestep, with pitch, velocity and timing information stored as the timestep’s features;

Method B proposes a piano-roll like representation, where each timestep represents a

designation of time containing a list of notes that are active at this point in time. Both of

these approaches have seen prior use as highlighted by the literature, and both have

their own set of advantages and disadvantages. As previously mentioned, mapping a

single note to multiple timesteps can lead to a lack of comprehension, while Method A’s

approach of treating each new note as a new timestep can fail to capture the rhythmic

structure of a composition. This project will look at evaluating the effectiveness of both

approaches, and conclude with a recommendation. Before discussing these methods

further, the following tools were used to aid the implementation for this part of the

system.

Pretty_midi

Pretty_midi is a python library which provides a wide variety of helper functionality for

interacting with and altering MIDI data. Pretty_midi is used for loading in the raw midi

data and converting it to a format appropriate for the neural network, as well as for

converting neural network predictions back into midi data. The framework splits MIDI

data up into an extremely simple structure, with a midi file containing N number of

instruments, which themselves contain N number of notes. A note contains the pitch

and velocity, as well as the start and end time, making conversion to the network

representation a much more streamlined process.

Numpy

A ubiquitous mathematics and scientific computation library which provides a massive

collection of functionality as well as memory-efficient and performant data containers.

Numpy’s data containers (array, ndarray, matrix) also work extremely well with

tensorflow (discussed further shortly) and have the added benefit that they can be

27

saved to and loaded from a text file, meaning computation and conversion to the

network format need only be performed once, after which the data-set can simply be

reloaded with a few simple lines of python.

Before converting the input MIDI data to the representation proposed for Method A and

B, a common format is introduced to make conversion to both representations easier

and the system more modular overall. The first stage in this process is to load in the raw

midi data using pretty_midi.

Figure 4.1.1 Function to load in MIDI data

28

Figure 4.1.1 shows the method which loads in the raw pretty_midi data and stores each

object in a dictionary for further processing. It is passed a list of paths and attempts to

load these paths as pretty_midi objects. Furthermore, the function takes a minOctave

and maxOctave parameter which allows us to limit the range of available pitches in our

dataset, which has two distinct advantages. The first advantage is that there are more

tokens available for the time-features of the note, allowing for greater rhythmic

diversity. Secondly, as fewer pitches exist across the dataset, the search space is

narrowed significantly which (in theory) should allow the network to better understand

the relation between pitches. After the initial raw data has been loaded in, the next step

in the system is to convert this data into a general format used in both Methods A & B.

Figure 4.1.2 : Function to retrieve common data-format used in methods A & B.

29

From Figure 4.1.2, we can see that the common format is retrieved by passing through

a dictionary containing all the pretty-midi objects as well as a key_distributions object,

which was originally planned for use in a post-processing pass, however this

post-processing technique was later abandoned and as such the key distribution vector

goes unused (The decision was made to leave the key-distributions in the code-base,

as although they are currently unused, continued development of the system could

likely make use of these vectors for refinements relating to melody and chordal

structures.). For each note in each composition, we record its pitch and velocity (which

are attributes of the pretty_midi.Note class) we then record the duration of the note

(calculated as the note’s end time - the note’s start time) and finally, an ‘offset’, which is

the amount of time (in seconds) that has elapsed since the last note was activated. The

shape of the data returned from getKerasData() is (Total Number of Songs, Number of

Notes in Song, 4). The next sections will discuss the method-specific data-preparation

process.

Method A

As previously discussed, Method A treats each timestep as a new note in the

composition. Each note contains 4 features: pitch, velocity, duration and offset - which

indicates the amount of time that has passed between this note and the last activated

note. The labels for this approach then are a list of all notes from every midi file, with

the data being a list of N notes which corresponds (and leads to) the current label note.

The sequence size for the training data was experimented with, and as such, warrants

further discussion in the analysis section.

Each feature of the note was tokenized and stored in a shared dictionary, which had a

maximum size of 500 tokens. While limiting the musical possibilities the system would

be able to reproduce, limiting the dictionary size is a common practice for increasing the

performance, accuracy and training time of a neural network.

30

Figure 4.1.3 shows us the function which takes in our raw keras_data object and

converts this into the training labels and data. This process starts by collecting every

pitch, velocity, offset and duration that occurs throughout the entire dataset and

counting the occurences of this feature. Using the occurrence dictionaries, we are able

to establish which durations and offsets occur most often and use these as our tokens.

The getTokensA function uses these occurrences to produce the final vocabulary, which

is a mapping of int indices to MIDI messages e.g. (1 = 81, 2 = 0.0013 etc.) Having

collected the final set of tokens, we then iterate through keras data object, converting

each MIDI message to a token using the getNoteTokenA method, forming the label

data. This method takes a MIDI message and token dictionary and returns the nearest

possible value to the original MIDI message as a token.

Figure 4.1.3 : Method A Data Processing Method

31

Having collected the current label, that is the note at the current timestep, we next wish

to collect a list of N previous notes, to form the associated data with our label. As

previously mentioned, the data for this system will take the form of a list of N notes (N

denoted in code as sequenceSize). This is achieved by creating a loop which iterates

over the previous N notes from the position of the current label note, tokenizing each

previous note in the same method as used for the label, before and adding it to a list.

Once the list has been filled, it is added to the data array. The final shape of the labels is

then = Total number of Notes x 4 (pitch, velocity, offset, duration), with the final shape

of the data being = Total number of notes x Sequence Length x 4.

Method B

For this approach, each time-step denotes a segment of time, which contains N active

notes (the number of concurrently active notes was also experimented with and will be

discussed further in the analysis portion of this project). The number of time-steps per

second was also parameterised to aid in the experimental part of this project. The label

representation for this approach would be an individual timestep, with the training-data

being a list of N timesteps which corresponds (and leads to) the current label timestep.

Duration and start-time are baked into the representation for this approach: if a note

was not in the previous timestep but appears in the current timestep, this is considered

a new note starting; conversely, if a note was in the previous timestep but does not

appear in the current timestep, this is considered the end of a note. The number of

timesteps per second (referred to as timestep resolution) was determined through

experimentation (and will be discussed further in the analysis section) however a rough

guideline kept this number between 10 and 30. Limiting the timestep resolution too

heavily would result in little to no rhythmic diversity or complexity, however a resolution

too large could lead to the neural network failing to comprehend the sequence at all.

Due to the removal of time as a note feature, this method benefits from a significantly

reduced dictionary size, only representing the available pitches for a small number of

32

velocities. As such, a note is composed of a single token, where the token represents a

pitch at a specific velocity.

Figure 4.1.4 : Method B Data Processing Method

Figure 4.1.4 shows the implementation of the data processing for Method B’s

representation, which takes in a few extra parameters which alter the properties of the

33

final Method B data. Parameterisation of the data preparation stage made it much

easier to test new configurations and sped up development of the system by a

significant margin. The new parameters introduced are: num timesteps, timestep

resolution and num simultaneous notes. The number of timesteps is simply the total

number of timesteps that we wish to compose our training instance from, meaning how

many seconds of the training instance will be used. This parameter was added due to

the fact that the researcher’s computer did not have enough RAM or GPU VRAM to

store the entire Method B dataset when the entire songs were sampled. The timestep

resolution denotes the number of samples that will be taken per second, e.g. a

resolution of 10 means that for every second of symbolic music, 10 seconds will be

taken. The number of simultaneous notes describes how many different notes can be

active at any given timestep. We start the process in a similar way to that of the first

method, collecting all of the occurrences for pitch, velocity and timing features (though

offset and duration occurrences were not used for this method). We next generate the

tokens which, in this method, encapsulate both a pitch and velocity. As mentioned in

the introduction, the compositions have been limited to a range of 3 octaves, meaning

that a total of only 36 pitches exist throughout the dataset. Furthermore, to reduce the

search-space and reduce the complexity of the network, only 4 velocity values are

sampled per note, meaning the total number of tokens available is just 144. The

function specifies a max tokens parameter which is unnecessary for the current

approach, however, should more pitches / velocities be required during further

development of the system, this functionality may prove useful.

Having retrieved the token, we are now able to begin creating our data and labels for

Method B. We start by iterating through the songs in the raw keras data format,

creating an empty 2D numpy array and filling this with 0s, indicating no active note (0

is used as the null token for both approaches). The final shape of this array is The total

number of timesteps x the number of simultaneous notes. We also create a

34

lastStartTime variable, which is used to calculate where the current note should be

placed, with respect to the placement of the last note

The next step is to calculate the note’s position and duration in the numpy array: the

start position of the note is added to the lastNoteCounter, which in turn is multiplied by

the timestep resolution and cast to an int to find the concrete starting index of this note.

The duration is calculated in a similar manner, multiplying the timestep resolution by the

length of the note and casting the result to an int. Having found the indices where our

note should start and the amount of timesteps the note should occupy, we must next

check that we are able to add this new note to the song’s numpy array: this is achieved

by iterating through each identified timestep and checking for any null tokens (0). If a

null token is found, the new note replaces the null token and the loop breaks to continue

onto the next timestep to be checked, otherwise the note is not added to the dataset.

We then iterate through every note in the unprocessed data format and extract the

pitch, velocity, offset and duration, taking the pitch and offset and feeding this into the

vocabulary to find the closest available token. The resulting dataset form the labels for

this system. As previously stated, the data for this system is a series of N timesteps

which correspond to the current label timestep. This is achieved by iterating through

the label data, sampling the previous N timesteps from the current label timestep and

storing this in an array. Having completed the training data, the function finally returns

the data, labels and tokens, for later use converting the predictions back to MIDI format.

The final shape of the labels is = Total Number of Timesteps x Num Simultaneous

Notes, and the final shape of the data is = Total Number of Timesteps x Sequence

Length x Num Simultaneous Notes.

Random Comparison

A common approach when evaluating a ML application is to perform a comparison

against random data. This is extremely beneficial when performing analysis of the

35

generated music as we are better able to evaluate the extent to which the neural

network is able to reproduce “human-sounding” music.

Figure 4.1.5 : Random comparison Data Generation Method

From figure 4.1.5 the function to generate random MIDI data can be seen. The function

takes in the number of random MIDI files to generate as it’s only parameter. For each

random composition, we start by randomly selecting a number of notes to generate as

well as creating a PrettyMIDI and Instrument object to contain our generated notes. For

each note in each composition, we randomly generate an Int in the range 0-127 for the

Pitch and velocity,. For offset and duration, we reuse the occurrences dictionary

previously used in the tokenisation process, and sample the minimum and maximum for

each feature, using these values as the bounds for our random data. Having generated

the required data for a note, we create a new pretty_midi Note object and append this

to the instrument’s note array. Finally, we add the instrument to our PrettyMIDI object

and write this file out to the random MIDI directory.

36

4.2 Designing Structure of Neural Network(s)

This section will discuss the design and implementation of the final network

architectures. The design of the network draws inspiration from various sources,

however the primary influence for the design of this network came from a GitHub

repository (available at https://github.com/Skuldur/Classical-Piano-Composer) (Sigurður

Skúli, 2017) which proposes a similar (yet more simple) representation of a note, with a

similar sequence like approach used to predict new music. Programming was

performed in python using a variety of frameworks, which will be briefly outlined.

Tensorflow

Tensorflow is an open source symbolic mathematics library developed by Google. It

allows for extreme performance across a range of programming tasks, it is however

most commonly used for machine learning tasks - specifically neural networks. The

primary reason Tensorflow was used for this project is due to the researchers familiarity

with Tensorflow, the possibility of offloading large tasks to the GPU as well as it’s

integration to the keras framework.

Keras

Keras is an open-source machine-learning framework originally created by a single

developer, Francois Chollet. Keras has a strong focus on Neural Network programming,

allowing for standard feed-forward neural networks, convolutional neural networks and

recurrent neural networks to be developed. A strong effort has been made to make

Keras a user-friendly experience, with minimal code required to setup and train a neural

network, and even contains functionality intended to make data pre-processing easier

(such as train-test splits and word-embedding functionality). The most important

aspects of Keras to discuss are the Model, Layers and Optimisers.

The model class can be thought of as a container of arbitrary length for neural network

layers. A few variants of the model class exist, but by far the most common is the

37

https://github.com/Skuldur/Classical-Piano-Composer

Sequential model, in which the model is entirely self contained and in which all layers

feed forward. Models also contain the functionality to begin training, as well as make

predictions, provided data has been fed and the network contains no errors.

The layers API provides a wide selection of neural network layers, which allows the

programmer to rapidly prototype and develop new network architectures. Specifically,

keras implements the LSTM and GRU cell making development of a recurrent network

solution significantly easier. Keras also implements other types of layers such as Dense

fully connected layers, as well as convolutional layers and dropout layers (for

regularization). One consideration is that the beginning layer in any model must specify

the input shape of the data, while the final layer must present the same shape as the

input label.

An optimiser encapsulates the algorithm that will perform backpropagation on the

network, as well as various other functionality (such as network unwrapping for

recurrent layers). Keras offers a range of optimisers such as SGD, Adadelta, RMSprop,

and the optimiser used by both configurations in this network, Adam.

The final end to end process for developing a neural network in Keras as such entails

designing your architecture, rapid implementation thanks to the extremely simple

syntax, and evaluating the results from the network.

Keras is able to run atop a variety of low-level machine learning frameworks, including

Theano, Microsoft’s Cognitive Toolkit as well as Tensorflow. Keras is also able to

leverage the power of Tensorflow’s GPU compute capabilities, vastly increasing the

speed of training. Enabling GPU support for Tensorflow can be a cumbersome task,

requiring specific driver versions, an outdated version of CUDA compute, CuDNN as

well as a range of other Nvidia software; however, the benefit is immediately felt in

terms of speed. One consideration for GPU acceleration on large datasets is that when

38

using GPU acceleration, the data is stored on the graphics memory rather than RAM as

GPU memory is often magnitudes faster than desktop DDR3/4. As a result, for very

large data-sets, GPU accelerated training may need to be performed in batches, as

most modern graphics cards are limited to approximately 8GB.

Helpful Tools

As well as the core programming frameworks previously discussed, the following tools

were employed for a variety of tasks which significantly aided the development of this

project. The primary IDE for this project was Spyder, due to its ability to run small

snippets of code as well as the extremely useful Variable Explorer feature. Variable

Explorer made visualising and debugging data significantly less frustrating than it could

have been, especially considering native support for most Numpy containers.

Tensorboard is a sub-module of Tensorflow which allows for easy visualisation of the

training process for a neural network. Furthermore, it allows for deep statistical analysis

of the network training period, as well as other metrics to assess the quality of

prediction made by the network. It was primarily used to analyse the training period

performance of both networks for this project.

A note on Compute Power

One significant factor to consider when designing any neural network is the available

compute power of the development system. In this case, the computer was equipped

with a 6-core CPU, 16GB RAM and a 4GB GPU (3GB usable) and as such, very large

networks with vast data-sets would likely not be feasible. During the experimentation

stage, many networks either failed to begin training or even failed to compile at all due

to a lack of memory on the GPU. As such, the network configuration may be

sub-optimal for performance, as allowing a greater number of timesteps per label, or a

higher dimensionality of LSTM cell may have yielded better results.

39

Method A Network

The final architecture for Method A is composed of 4 dense, fully-connected layers and

2 LSTM cells (CuDNNLSTM is an LSTM cell which has been optimised for GPU training

in keras). The architecture is relatively simple and was derived through experimentation.

The network accepts a 15x4 tensor as it’s input, with the 4 numbers representing the

note features, and 15 the number of timesteps (previous note) used to predict the

current label. The final output of the network is a 4 neuron hidden layer, with each

neuron corresponding to a part of the note (e.g. pitch).

40

Method B Network

41

The final network architecture for the Method B representation can be seen in Figure

4.2.2. The network accepts a 100x4 vector as its input (100 timesteps, 4

simultaneously active notes) and produces a 4 feature vector which correspond to the 4

active notes at the current timestep. The full network is composed of 4 LSTM cells and

4 fully-connected dense layers. Experimentation was used to dictate the exact

parameters of the various network layers, however the theory is that the network has

some arbitrary amount of memory which stores the incoming sequence before any

manipulation of the data is performed. The sequence is then fed through another LSTM

cell and dense layer, whose parameters were dictated through experimentation. The

final layers of the network’s dimensionality and size are proportional to the shape of the

data, e.g. the final layer is a 4 neuron fully-connected dense layer corresponding to the

4 active notes at the current time-step (the current label). The second to last layers

have the same number of neurons as tokens that exist in the dictionary, and above that

exists a fully-connected dense layer whose number of neurons is proportional to the

length of the sequence fed in to the network.

42

4.3 Synthesizing symbolic data

After the network has generated some predictions, a method for converting this

representation back to MIDI for synthesization is required.

Method A

Figure 4.3.1 : Function to convert Method A data back to MIDI

As can be seen from Figure 4.3.1, the function to convert network data back to MIDI

takes 4 arguments: the predictions made by the network (notes), the original token

vocabulary, an auxiliary dictionary used to segment the token dictionary into pitch,

velocity and timing section and finally the name of the model that generated the

composition. We start by creating a new Pretty_Midi object and adding a Piano

instrument to it (instrument code 0 is grand piano). We then create a variable to track

the last note’s start time and begin iterating through the data. For each note, we

convert the pitch, velocity, offset and duration from their token representation to their

original value, creating a new Pretty_Midi note object and using these values as the

parameters to create this note. Once the note has been created, we add it to the

43

PrettyMIDI object and perform a cleaning pass, which keeps all notes positioned

relatively, but will randomly alter the key to add diversity to the generations.

Method B

Figure 4.3.2 : Function to convert Method B data back to MIDI Pt.1

From Figure 4.3.2, we can see the first part of our function for converting Method B

data back to Midi, like with Method A, we start by creating a new PrettyMIDI object and

adding a piano to the classes instrument list. We next create two new variables, the

timestepCounter and current_notes dictionary. The timestepCounter is used to keep

track of the current timestep, and the current notes dictionary is used to keep a record

of which notes are currently being played. We begin the conversion by iterating

through the predictions made by the network and converting them to ints using the

round function. We next iterate through all of the messages in the current timestep and

check if they are in our current_notes dictionary. If they are not, a new key is added to

the dictionary and a counter is started. The counter represents the number of timesteps

44

that note has been active for, and will be later converted back to seconds. If the note is

in the current notes dictionary, we increment the counter by 1.

Figure 4.3.3 : Function to convert Method B data back to MIDI Pt.2

We next iterate through the current notes, checking if they exist in the current notes

dictionary; if the note is in the current timestep, we do nothing, otherwise we interpret

this as the end of the note. We retrieve the pitch and velocity from the token dictionary,

ensuring they do not exceed the maximum MIDI value of 127. The start time of the note

is calculated by dividing the starting timestep by the timestep resolution, converting it

back into seconds. The same process is applied to the duration - the total number of

timesteps the note lasted for is divided by the timestep resolution, resulting in the

duration in seconds. These values are used to create a new Pretty_Midi note object and

added to the instrument. After all the finished notes have been added to the Pretty_Midi

object, they are removed from the current notes dictionary.

45

Figure 4.3.4 : Function to convert Method B data back to MIDI Pt.1

The final part of this function takes place after all predictions have been iterated

through. We check if the current notes dictionary has any remaining notes left, and if

so, add them to the instrument class. Next we get rid of our current notes dictionary as

it is no longer needed, we then add the instrument to the Pretty_Midi object and

perform a cleaning pass, which simply randomises the key and slows the composition

down. This was performed as many of the compositions tempo were too fast, but the

intervals between notes were still sound. We then finally write the midi file to disk for

evaluation.

As a small aside, it should be noted that the human compositions used for both

subjective and computational analysis will first be converted to either Method A or B’s

representation, and then processed back to MIDI. This will be performed to eliminate

any potential bias in terms of disparity between representations. This is a particularly

important consideration for Method B which uses a drastically reduced timestep

resolution compared to standard MIDI (Standard MIDI uses 480 ‘ticks’ per second).

46

The final compositions were synthesized using Ableton Live, a Digital Audio

Workstation (DAW). Ableton has a wide variety of built-in digital instruments, as well

as an extremely useful toolset for visualising and manipulating MIDI data. Figure 4.3.5

shows the Ableton user interface, with a sample neural network composition’s piano

roll show on the lower half of the screen.

47

4.4 Computational Music Analysis

Computational analysis of the generated music was performed in order to empirically

analyse the performance of the network against other solutions, such as human

composed music, as well as randomly generated music, purely for the sake of

comparison. Analysis was performed using jMIR, specifically the jSymbolic2 tool, which

offers a vast number of music descriptors which can be dumped to XML for further

analysis. Many of the descriptors are fairly self explanatory in their meaning (e.g.

variability of note durations or pitches) however, some of the descriptors have a larger

basis in music theory than in simple mathematics, and as such, will briefly be outlined.

48

Contrary Motion

When discussing motion in the context of a musical phrase, it is first important to

define precisely what motion actually means. The motion of a given musical phrase can

be thought of as a direction in which the melody moves, or how the pitch and other

important properties (such as velocity, duration etc.) change over the course of the

passage. As such, contrary motion describes two or more musical voices which are

“moving” in perfect opposite directions, where one voice is ascending a given scale or

phrase, and the other is descending the same passage.

Similar Motion

Similar motion occurs when two or more voices are playing the same shape of melody

at different base pitches. The intervals between the steps need not be identical to

exhibit similar motion, if all interval changes between both voices are identical, the

motion is instead described as parallel.

Chromatic Motion

Chromatic motion occurs when one or more musical voices is linearly ascending /

descending the chromatic scale. Chromatic motion is the most basic form of melodic

line, and may be erroneously considered an indicator of low complexity, however when

used in moderation, it can elicit specific emotions in the listener, such as suspense or

dread.

49

Stepwise Motion

Stepwise motion occurs when one or more musical voices linearly ascends or descends

a given musical scale. Stepwise motion is similar to chromatic motion but will sound

inherently more “musical” as the key of the musical phrase is respected with stepwise

motion.

Figure 4.4.5 shows music notation for so called conjunct, disjunct and mixed melodies,

with a conjunct melody being synonymous with stepwise motion. Disjunct motion has

much more variety in the intervals between pitches and often jumps large amounts

between the pitches of the key, compared to a conjunct melody, which as previously

mentioned, moves linearly in a direction, with no major change to the interval between

notes.

50

Amount of Arpeggiation

Arpeggiation is a type of broken chord (where each of the notes are played separately)

in which the notes of the chord are played in ascending and descending order (e.g. C, E,

G, E, C, E…) The amount of arpeggiation then, is the percentage of notes in the

composition that exhibit arpeggiation.

Metrical Diversity

The metrical diversity descriptor indicated a high variety in rhythmic feel throughout the

composition. It is distinct from variability of note durations in that it considers the

duration and timing of notes in the context of the surrounding notes, where the

variability of notes is considered across the entire composition.

Melodic Embellishments

A melodic embellishment (also known as an ornament) is a small musical phrase added

on top of some recurring melody. The embellishment usually exists within the same key

and is often slightly faster than the current tempo to highlight its effect. They are

non-essential to the “core” melody of the passage, buy instead serve to decorate and

reduce repetition. Melodic embellishments are a fine indicator of complexity.

Repeated Notes

Repeated notes describes the percentage of notes in the composition which have the

same pitch as the previous note. A high amount of repeated notes can generally be

considered an indicator of low complexity, as complex melodies often contain many

different pitches with a wide variety of intervals between pitches.

These descriptors formed the core of the computational analysis component, giving a

strong baseline indicator in the corpus of human compositions to compare with the

algorithmic compositions. Having performed analysis using the jSymbolic framework,

the XML results were processed using python, with various plots and comparisons

being drawn using the matplotlib framework.

51

4.5 Subjective Music Analysis

This section will detail the use of a listening questionnaire on human participants to

gauge the perceived quality and complexity of the generated pieces, compared to that

of human compositions. The listening questionnaire was performed in the Strathclyde

Livingstone Tower Floor 11 labs, with participants being made up of friends and family.

The questionnaire was composed of two sections: a brief disposition about musical

ability and knowledge and a nine song listening test.

52

As can be seen from figure 4.5.2, the listening test portion of the questionnaire asks

participants to decide if the current composition was generated by a computer or

written by a human. Following this is a series of questions which asks participants

whether they enjoyed the composition, how they felt about the complexity of the piece

and if the participant would choose to listen to the piece again. The participants

responses are recorded using a likert-style scale, where participants can respond

neutrally, agree or disagree, or strongly agree / disagree. The benefit of using a

likert-scale in this situation is that it provides perceptual information about how

participants responded to all of the compositions. Having a suite of trained musicians

perform a test with more of a music theory basis would undoubtedly provide a higher

level of insight into what differentiates generated and bespoke compositions at a

technical level, but this was unavailable to the researcher and well outwith the scope of

the project.

The listening tests were carried out at the strathclyde Livingstone tower labs with a

total of 10 participants taking the test. Subjects were given consent forms to complete

and immediately return, after which the test promptly began. All subjects wore

ATH-M50 headphones to listen to the same compositions, in the same order.

Participants listened to a total of 9 compositions (each of which were 20 seconds in

length) which were evenly divided among 3 categories: Method A, Method B and

human-written compositions.

The results of the subjective analysis section were recorded to paper and later

transferred to an XML document for processing and analysis in python.

53

5. Analysis of the System

5.1 Analysis of Network Training

Figure 5.1.1 : Network(s) Training Period Loss curve

Figure 5.1.2 : Network(s) Validation Loss curve

The above figures show the loss and Mean Absolute Error (MAE) of both network

architectures over the training and testing period. The final Method A network trained

for 90 epochs, while the Method B network trained for 150. Method A has a steep

descent in loss but unfortunately flatlines early, leading to a lack of comprehension.

Method B has a more consistent loss but again, it flatlines at approximately epoch 80.

This is unlikely to be explained by learning rate, as for both methods, it was already

extremely small, meaning even if progress were small, some progress would be made.

What is more likely is that both network architectures reached the limit of their

comprehension, based on the network configuration, and simply could not learn

54

anything new. Furthermore, the underlying data may have some underlying noise

providing a hard limit to the minimum error.

Hyper-parameters such as the learning rate, batch-size and epochs were dictated

through extended experimentation, testing many configurations of both networks,

parameters and even the underlying structure of the data.

5.2 Symbolic Analysis

This section will detail the use of symbolic MIR data (obtained from jSymbolic2) to

analyse the performance of the two methods, drawing a comparison with a baseline

random measurement, as well as a corpus of human compositions. Each human

composition was converted to either Method A or B’s network representation, then

back to MIDI which helped to reduce bias, as both networks had an inherent

disadvantage in a drastically lower time-step resolution and a reduction of the number

of available pitches.

50 compositions were taken from the Method A & B networks, a random solution and

the training dataset. These compositions were then bulk analysed in jSymbolic.

55

Amount of Arpeggiation

Arpeggios are sequences of notes which outline a specific chord, or in some instances

an entire key. They are a good indicator that the network understands chordal

structures as well as timing intervals as arpeggios are usually played with fixed timing

intervals between notes.

Looking at Figure 5.2.1, on the left we have the absolute percentage of arpeggiation

across all tested datasets, with the right comparing random, Method A and Method B

difference against human compositions. This style was adopted for all MIR metrics as it

allows insight into the raw performance of the network, but also can help us to reason

how close each method was to achieve a “human-like” sound. From this, we can see

that Method B is the clear winner, having the most similar amount of arpeggiation with

an almost identical distribution, due to the extremely low standard deviation. Method A

reported the highest amount of arpeggiation, though this is likely a bug with the

jSymbolic algorithm for arpeggiation, as previously discussed, Method A was unable to

capture the structure of the music at all, and infinitely repeated one note across all

time-steps. As expected, the random solution performed worst.

56

Average Note Duration

The average note duration is not a useful indicator for detecting any particular musical

feature by itself, however during the experimentation stage of the project, many of the

early networks compositions had extremely poor temporal awareness, and

compositions would often be extremely long and drawn out (the random solution also

suffered from this problem and required a hard limit on the duration of a note, as to not

crash jSymbolic). As such, note duration was included to clearly highlight any instances

in which notes are placed extremely sporadically.

From Figure 5.2.2 we can see that Method B performs most similarly to human

compositions, with a significantly reduced standard deviation, and as such a reduced

variety of note durations. Method A performs extremely poorly in this category with

practically zero variance to the note duration. Random average was wildly off compared

to all other datasets, though variance between durations was similar to both Methods A

& B.

57

Average Number of Simultaneous Pitches

The average number of simultaneous pitches describes the average number of notes

active at a given time. This descriptor helps to identify the ratio of melody to chords in

the composition. Though it is not a substitute for proper tonal analysis, it is simply a

good indicator when compared against human compositions. As can be seen from

Figure 5.2.3, surprisingly, the best performing approach is random with a tiny difference

in average compared to human compositions, though it should be noted the difference

in variance is quite large, with random again having a very low deviation. Method B

performed poorly in this regard, with a massive deficit in both error and variance.

Method A had the lowest overall difference in number of simultaneous pitches, but still

had a large difference in variance due to only one note being played at a time.

58

Chromatic Motion

Chromatic Motion describes a phrase or melody which moves up or down the chromatic

scale, as opposed to following the key of the piece. Chromatic motion may often sound

inharmonious due to the fact the key is not being respected whatsoever; it is, however,

often used in small amounts to add tonal flavour to a musical phrase and can can elicit

emotion from the listener. Specifically, chromatic notes which produce a dissonant

sound can imply tension, unease and uncertainty. With this, looking at Figure 5.2.4 we

can see that the corpus of human compositions had by far the largest amount of

chromatic motion as well as the largest variance. The high variance shows us that the

mean is not in fact typical of the dataset, and as such, chromatic motion is used across

human compositions to an extremely varied degree. All other methods of composition

failed to even come close to human performance in terms of chromaticism, with the

random method being the closest available method. This is to be expected as random

solutions have no awareness about any kind of musical structure, thus the likelihood

that a musical key is respected is extremely low. Both Methods A & B performed poorly

in terms of matching a human composition, with Method B performing only slightly

better than Method A, which exhibited no chromatic motion at all.

59

Contrary Motion

Contrary motion describes the musical phenomena where two or more musical voices

are moving in opposite directions, specifically in terms of pitch. Contrary motion is not

specifically an indicator of complex music, however it shows at least a comprehension

of key, as for contrary motion to be respected, both voices must be traversing the same

scale in opposite directions. Here, the random solution was the closest to that of the

human compositions in terms of mean value, however the difference in deviation was

rather significant, with human compositions exhibiting a wider range of contrary motion

overall. Though Method B had a much higher mean score, the difference in deviation

between Method B and human compositions was relatively small, meaning the variance

in contrary motion was quite similar to that of human compositions, despite having

more on average. Method A was by far the worst performer compared to human

compositions, exhibiting no contrary motion at all.

60

Stepwise Motion

Stepwise motion refers to movement in a musical passage that is linearly ascending or

descending a given musical scale. Higher values show a clear comprehension of key,

though stepwise motion is not necessarily considered a universally positive indicator of

complexity in music. The opposite of stepwise motion would be skipwise motion,

though jSymbolic unfortunately does not provide this as a descriptor. Skipwise motion

describes a melodic line that again, respects the key of the current section, but does not

linearly ascend the scale of the key, instead skipping between the various pitch

intervals. From Figure 5.2.6 we can see that no method came close to matching the

human training set score, with a significantly higher mean score and variance than any

other method. Again, Method B was the closest to the human compositions but not by

a substantial margin over random, which is disappointing. Method A was again the

worst performer having the highest deficit in both mean value and deviation.

61

Similar Motion

Similar motion describes the musical phenomena where two or more musical voices are

moving in similar (though not necessarily perfectly similar) directions. Similar motion

implies the presence of a counter melody: both voices move in the same approximate

direction at different pitch intervals as we would expect to see with a counter-melody;

we cannot, however, explicitly say that the phrases described by similar motion belong

to the same key, and as such cannot guarantee a harmonious counter-melody.

Unfortunately neither Method A or B were able to achieve similar results to that of

human compositions, with both methods being beaten by the random solution. The

significant deviation on the human composed dataset also implies that the mean is not

an indicative value for the rest of the human dataset. Similar motion may be an unfit

descriptor for comparison then, as without a strong human baseline comparison, the

network results are rendered useless.

62

Repeated Notes

The repeated notes indicator describes the number of notes that are the same as the

note that came before them; this is a good indicator of low complexity. Unfortunately

both methods again performed poorly against a human dataset with even the random

solution outpacing both methods, with respect to achieving human like quality. One

important consideration is that repeated notes refers only to the pitch, and does not

account variations in timing or velocity, and as such, the random solution may be at a

slight advantage, as PRNGs are by nature designed to produce unpredictable results,

and the same randomly generated pitch is unlikely to appear many times in a row.

Looking at both Methods A and B, the clear winner is B with a significantly lower mean

repeated notes and wider variance. Here, a low variance in Method A indicates an

extremely strong prevalence of repeated notes; this is true as almost all compositions

were the same note repeated over and over again, with only minor differences in timing

and duration.

63

Melodic Embellishments

The melodic embellishments descriptor describes the number of ornamental notes in a

given composition. Embellishments serve to make a passage of music more exciting

and less repetitive. As can be seen from Figure 5.2.9, the best performing solution was

Method B, though the difference in variance between B and human compositions is

rather substantial. The human compositions exhibited a massive variance, and as such,

may be a poor baseline for comparison. It does highlight, however, that while Method B

appears to be the best approach out of the other computational methods, in reality the

deviation is much more constrained than human compositions, meaning that while

human compositions may sometimes have many embellishments in a piece, the

generative solution is likely to have a very small amount of ornamentation by

comparison. Method A suffers from the same problem to an even more significant

degree, with lower embellishments and an even narrower deviation. The random

solution had the least accurate mean score of all generative solutions, but did in fact

beat both Method A and B in terms of variance.

64

Melodic Pitch Variety

Melodic Pitch Variability is exactly as it sounds, it describes the variability of melodic

pitches in a given composition. Though not precisely an indicator of complexity, this

metric gives us some insight into the variety of musical notes considered for the

composition. The closest method to human compositions for this descriptor was

Method B in terms of mean, though the variance of the random solution was slightly

closer to that of the human compositions.

Variability of Note Durations

65

Similar to the performance on variability of pitches, method B achieves a very similar

mean score when compared to the other methods, however random again comes

closest in terms of variance. Method A showed the worst performance again, with no

variability to note durations whatsoever recorded by jSymbolic.

Variation of Dynamics

For the variability of dynamics, surprisingly, the best performance was had by Method

A, which had a closer mean score and variance to human compositions than either

random or Method B. Method B was the worst performer with an exceedingly high

variability of dynamics, with very little variance.

Findings from symbolic analysis

From symbolic analysis alone, we can see that neither Method A or B were able to fully

match the performance of the human compositions, though Method B was a better

candidate exhibiting promising results in 6 of 12 symbolic descriptors. Disappointingly,

Method B did not vastly outperform either Method A or the random in any of the Motion

descriptors, good indicators that not only pitch but also temporal structure are being

comprehended by the network. Method A was unsurprisingly a very poor performer,

again, due to the fact that the network was unable to at all capture the structure of the

training data, and resulted in either identical, or similar output regardless of the input.

66

The random solution may appear to be a rather strong candidate in theory, but based

on the average note duration descriptor alone, random solutions become too

unbearably slow to be considered listenable. Furthermore, the surprising results in

variety of pitch may be more an indication that the descriptor was a poor analytical

method more than that random compositions exhibit more melodic variability, as this

simply was not the case.

5.3 Subjective Analysis

This section will evaluate the human response to the generated compositions of

Method A and B. As previously discussed, the data was collected by conducting an

informal listening questionnaire, where participants were asked to identify if a

composition had been composed by a human or a computer. Furthermore, participants

were asked to gauge their feelings on the composition by responding to a series of

statements using a likert-style scale. Participants were played nine 20-second long

compositions, with three compositions belonging to the human corpus, three belonging

to Method A and three belonging to Method B.

67

Figure 5.3.1 and 5.3.2 show us the skill level across the participants of the study, as

well as a statistical plot showing the mean, deviation, min, max and median of

participant skill level. All statistics indicate that the test group had an extremely varied

level of musical skill, with two participants having no musical education whatsoever,

and three professional musicians. The deviation was sufficiently high enough to regard

the value of the mean as unindicative of the average skill of a participant.

68

From Figure 5.3.3, participants accuracy in identifying the composition source is shown.

On the left is the mean accuracy by question, with the right hand figure showing the

mean accuracy of predictions by composition type. Unsurprisingly, Method A was the

easiest to identify, due to the extremely simple nature of the “compositions”, with

Method B following and human compositions the most difficult to identify for test

participants.

Figure 5.3.4 shows participants responses to the statement “This composition was

musically complex”. Method B was clearly considered to produce more complex music,

and almost matches that of the human compositions, where Method A can be

considered significantly less complex. It is strange that the Method A results are as high

as they are, given the indicated quality of the compositions from symbolic analysis.

69

Figure 5.3.5 shows participants perceived enjoyment of the compositions across all

compositions, and by their source. Participants read the statement “I enjoyed this

composition” and were asked to respond using a standard likert scale. Unfortunately,

compositions from both Method A & B were significantly less enjoyable to participants

than the human-written compositions. Both methods also have a slightly larger

variance than that of the human written music, implying that the human compositions

are more consistently enjoyable than either of the networks.

Finally, Figure 5.3.6 shows participants likelihood to relisten to a composition, with

participants reading the statement “I would listen to this composition again”, again

responding using a likert scale. Method B was again, slightly closer to matching the

human compositions and had a moderate advantage compared to Method A. With this

being said, the human compositions again had a significant advantage over both

Methods of generation and a significantly lower variance, meaning that participants

wanted to listen to human compositions more consistently than either generative

method.

70

Findings from Subjective Analysis

Reflecting on the results of the listening questionnaire, it is clear that participants

preferred the human compositions in every measured way. Surprisingly, test

participants were least likely to correctly identify the human compositions out of all of

the presented methods. Method A had the highest rate of true identification, and this

also shows from participants responses to these compositions: Method A was

consistently the least preferred method of composition, scoring lowest in complexity,

replayability and enjoyability. Method B had more success falling directly in between

Method A and the human compositions, in terms of participants ability to correctly

identify the compositions source. Specifically, Method B exhibited a nearly identical

perceptual complexity to that of the human compositions. This is surprising as it almost

directly contradicts the findings from the symbolic analysis stage; while the network

was proficient in certain aspects (notably, variability of note duration), it failed to

capture many other temporal aspects, such as motion and ornamentation. Despite the

perceived similar complexity, participants still preferred the human compositions by a

significant margin, and were much more likely to relisten to a human composition than

any Method B composition.

71

6. Conclusion

This project has assessed the feasibility of using Recurrent Neural Networks as a

method of generating music by scoping existing solutions, identifying the principal

problems currently facing RNN music systems and provided two potential solutions for

evaluation. The overall goal was to produce “human sounding” music, with a goal of

achieving a long-term musical structure in the compositions. Unfortunately, neither

Method A or B were able to fully achieve this goal. Despite this, the generations from

the network were not wholly unpleasant, and while on average human participants

preferred the human compositions, some of the participants also enjoyed the generated

compositions.

To increase the number of pleasant compositions the network produces, some

combination of a selection algorithm (such as a GA) and jSymbolic analysis data could

be used to identify the best compositions, in terms of similarity to human compositions.

This would also save a lot of man-hours, as instead of having to listen to each

composition individually, the system could identify the most interesting compositions

autonomously. Furthermore, continued development of GTTM and its computational

applications could provide a much more granular and structure-focussed analysis, as

opposed to purely empirical means.

One potential issue is the relatively small size of the training dataset. This imposed a

catch-22 situation: whilst a larger dataset could well have increased the performance,

the existing dataset and network architecture had to be carefully tweaked and refined

to get running on a relatively performant PC, though the low amount of GPU memory

(4GB) may well have imposed a greater restriction on the network than initially thought.

If further development were to be continued with this project, a better GPU and larger

dataset could reasonably aid the performance of the system, as it is a well known axiom

that machine learning generally scales well with large amounts of data. Alternatively, a

cloud hosting solution (such as Google Cloud Platform) could be used to remove these

72

restrictions on the network, though this requires a significant investment of time to

setup GPU accelerated machine learning.

Based on the findings from the analysis stage, this project would recommend the use of

a sequence as the fundamental representation, in which an arbitrary number of notes

may be active (Method B). Though this method produces more data and takes longer to

train, the results are infinitely more musical than that of Method A’s representation,

which sees each note occupy its own timestep. One potential reason Method A’s

representation failed to capture the structure of the data was the fact that the timing

information was encoded as a feature of the data, rather than being represented

explicitly by the sequence (of data). One method highlighted in the literature proposes a

fixed interval between notes to solve this problem, however this directly contradicts the

aim of replicating human sounding music, as notes are often placed in extremely

irregular patterns. There is the potential that timing and pitch features are simply too

distant in terms of relation to be grouped together in one datapoint, which is indicated

by the fact that our network - which did not encode timing as a feature - performed

significantly better.

Looking to the future, RNNs and specifically LSTM / GRU networks still have much

research to undertake when aiming to identify the best techniques and practices when

dealing with generative music. Some other network architectures have had massive

successes well above what has been seen using RNNs. MuseGAN (Dong et al., 2019)

shows extremely promising results, being able to simultaneously compose five

interwoven tracks of music for bass, guitar, piano, drums and strings. The transformer

discussed in the literature review also exhibited impressive performance, besting a

traditional RNN and LSTM network by a substantial margin when attempting to

recreate Bach chorales.

73

Figure 6.1 : Example Method A composition in Music Notation

Figure 6.2 Example Method B composition in Music Notation

The code for this project is available at:

https://github.com/liamdx/RnnMu

74

https://github.com/liamdx/RnnMu

7. Appendices

Anssi Klapuri and Davy, M. (2011). Signal processing methods for music transcription .

New York ; London: Springer.

Antti. Eronen (2017). CHORUS DETECTION WITH COMBINED USE OF MFCC AND

CHROMA FEATURES AND IMAGE PROCESSING FILTERS . [online]

semanticscholar.org. Available at:

https://www.semanticscholar.org/paper/CHORUS-DETECTION-WITH-COMBINED-US

E-OF-MFCC-AND-AND-Eronen/1a279740f210c77869a7f0fcf890446e1a2e5174

[Accessed 16 Mar. 2019].

Ariza, C. (2009). The Interrogator as Critic: The Turing Test and the Evaluation of

Generative Music Systems. Computer Music Journal , 33(2), pp.48–70.

Bengio, Y., Simard, P. and Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks , 5(2), pp.157–166.

Berezovsky, J. (2019). The structure of musical harmony as an ordered phase of sound:

A statistical mechanics approach to music theory. Science Advances , [online] 5(5),

p.eaav8490. Available at:

https://advances.sciencemag.org/content/5/5/eaav8490/tab-pdf [Accessed 5 Jul. 2019].

Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., Roma, G., Salamon,

J., Zapata, J. and Serra, X. (2013). ESSENTIA: AN AUDIO ANALYSIS LIBRARY FOR

MUSIC INFORMATION RETRIEVAL . [online] Available at:

https://repositori.upf.edu/bitstream/handle/10230/32252/essentia_ismir_2013.pdf?seq

uence=1&isAllowed=y [Accessed 11 Jul. 2019].

Boone, H.N. and Boone, D.N. (2012). Analyzing Likert Data. Journal of Extension , 50(2).

75

Bown, O. and Lexer, S. (2006). Continuous-Time Recurrent Neural Networks for

Generative and Interactive Musical Performance. Lecture Notes in Computer Science ,

pp.652–663.

Cataltepe, Z., Yaslan, Y. and Sonmez, A. (2007). Music Genre Classification Using MIDI

and Audio Features. EURASIP Journal on Advances in Signal Processing , 2007(1).

Chen, C.J. (2001). Creating melodies with evolving recurrent neural networks - IEEE

Conference Publication. In: IJCNN’01. International Joint Conference on Neural

Networks. Proceedings (Cat. No.01CH37222) . [online] IEEE. Available at:

https://ieeexplore.ieee.org/abstract/document/938515 [Accessed 16 Mar. 2019].

Cheng-Zhi, A., Huang, Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C.,

Dai, A., Hoffman, M., Dinculescu, M., Eck, D. and Brain, G. (2018). MUSIC

TRANSFORMER: GENERATING MUSIC WITH LONG-TERM STRUCTURE . [online]

Available at: https://arxiv.org/pdf/1809.04281.pdf [Accessed 11 Jul. 2019].

Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2014). Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling . [online] arXiv.org. Available at:

https://arxiv.org/abs/1412.3555 [Accessed 17 Jul. 2019].

Collins, K. (2009). An Introduction to Procedural Music in Video Games. Contemporary

Music Review , 28(1), pp.5–15.

Cuéllar, M.P., Delgado, M. and Pegalajar, M.C. (2006). AN APPLICATION OF

NON-LINEAR PROGRAMMING TO TRAIN RECURRENT NEURAL NETWORKS IN

TIME SERIES PREDICTION PROBLEMS. Enterprise Information Systems VII , 7,

pp.95–102.

Cuthbert, M.S. and Ariza, C. (2010). music21: A Toolkit for Computer-Aided Musicology

and Symbolic Music Data . [online] Available at:

76

https://dspace.mit.edu/bitstream/handle/1721.1/84963/Cuthbert_Ariza_ISMIR_2010.pd

f?sequence=1&isAllowed=y [Accessed 11 Jul. 2019].

Dannenberg, R. (2006). The Interpretation of MIDI Velocity . [online] pp.193–196.

Available at:

https://pdfs.semanticscholar.org/92a7/dc5007d770e0c5a3a637f66ee128ba107a92.p

df [Accessed 19 Jul. 2019].

Darko, J. (2009). Artscape - Brian Eno In Conversation 2009 . [online] Vimeo. Available

at: https://vimeo.com/5763066 [Accessed 5 Jul. 2019].

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R. and Makhoul, J. (2014). Fast and

Robust Neural Network Joint Models for Statistical Machine Translation . [online]

Available at: https://www.aclweb.org/anthology/P14-1129.

Dodd, A. (2015). Assessing the Suitability of the GTTM as the Basis of a Generative

Music System . [online] Academia.edu. Available at:

https://www.academia.edu/31668156/Assessing_the_Suitability_of_the_GTTM_as_the

_Basis_of_a_Generative_Music_System?source=swp_share [Accessed 25 Jun. 2019].

Doll, C. (2011). Rockin’ Out: Expressive Modulation in Verse-Chorus Form. Science for

Music Theory , [online] 17(3). Available at:

http://www.mtosmt.org/issues/mto.11.17.3/mto.11.17.3.doll.pdf [Accessed 16 Mar.

2019].

Dong, H.W., Hsiao, W.-Y., Yang, L.-C. and Yang, Y.-H. (2019). MuseGAN Results .

[online] MuseGAN. Available at: https://salu133445.github.io/musegan/results

[Accessed 15 Aug. 2019].

Eck, D. and Schmidhuber, J. (2002a). A First Look at Music Composition using LSTM

Recurrent Neural Networks . [online] Available at:

http://people.idsia.ch/~juergen/blues/IDSIA-07-02.pdf [Accessed 16 Mar. 2019].

77

Eck, D. and Schmidhuber, J. (2002b). Finding temporal structure in music: blues

improvisation with LSTM recurrent networks - IEEE Conference Publication. In: Ieee.org .

[online] IEEE. Available at: https://ieeexplore.ieee.org/abstract/document/1030094

[Accessed 16 Mar. 2019].

Edwards, M. (2011). Algorithmic composition. Communications of the ACM , [online]

54(7), p.58. Available at:

http://people.cs.vt.edu/~kafura/CS6604/Papers/Algorithmic-Composition-CT-Music.pdf

[Accessed 16 Mar. 2019].

Fazenda, B. (2014). How to Design and Conduct Listening Tests for Audio and

Acoustics . [online] Available at:

https://usir.salford.ac.uk/id/eprint/34338/1/Fazenda-Uni%20of%20Salford%202015%

20-%20How%20to%20Design%20and%20Conduct%20Listening%20Tests.pdf

[Accessed 25 Jun. 2019].

Franklin, J.A. (2006). Recurrent Neural Networks for Music Computation. INFORMS

Journal on Computing , 18(3), pp.321–338.

Gers, F.A., Schmidhuber, J. and Cummins, F. (2000). Learning to Forget: Continual

Prediction with LSTM. Neural Computation , 12(10), pp.2451–2471.

Gingras, B., Marin, M.M. and Fitch, W.T. (2014). Beyond Intensity: Spectral Features

Effectively Predict Music-Induced Subjective Arousal. Quarterly Journal of Experimental

Psychology , 67(7), pp.1428–1446.

Graves, A., Mohamed, A. and Hinton, G. (2013). Speech recognition with deep recurrent

neural networks - IEEE Conference Publication . [online] Ieee.org. Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6638947 [Accessed 16

Mar. 2019].

78

Hamanaka, M., Hirata, K. and Tojo, S. (2007). ATTA: IMPLEMENTING GTTM ON A

COMPUTER . [online] Available at:

https://pdfs.semanticscholar.org/a217/804953b8fee9dee0635a5a50def5a2c1c38e.pdf

[Accessed 11 Jul. 2019].

Hamanaka, M., Hirata, K. and Tojo, S. (2014). MUSICAL STRUCTURAL ANALYSIS

DATABASE BASED ON GTTM . [online] ISMIR. Available at:

http://gttm.jp/hamanaka/wp-content/uploads/2015/12/ISMIR2014-hamanaka.pdf

[Accessed 25 Jun. 2019].

Hamanaka, M., Hirata, K. and Tojo, S. (2015). Implementing Methods for Analysing

Music Based on Lerdahl and Jackendoff’s Generative Theory of Tonal Music.

Computational Music Analysis , pp.221–249.

Hutchings, P. (2017). Talking Drums: Generating drum grooves with neural networks .

[online] arXiv.org. Available at: https://arxiv.org/abs/1706.09558 [Accessed 16 Mar.

2019].

Jackendoff, R. (1994). Consciousness and the computational mind . Cambridge (Mass.) ;

London: Mit Press.

Jackendoff, R. (2009). Parallels and Nonparallels between Language and Music. Music

Perception: An Interdisciplinary Journal , 26(3), pp.195–204.

Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012). ImageNet Classification with Deep

Convolutional Neural Networks. NIPS 2012 , [online] pp.1097–1105. Available at:

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neur

al-networ [Accessed 15 Aug. 2019].

Krumhansl, C.L. (2002). Music: A Link Between Cognition and Emotion. Current

Directions in Psychological Science , 11(2), pp.45–50.

79

Langston, P.S. (1989). Six Techniques for Algorithmic Music Composition . [online]

Available at: http://peterlangston.com/Papers/amc.pdf [Accessed 16 Mar. 2019].

Lerdahl, F. and Jackendoff, R. (1983). A generative theory of tonal music . Cambridge ;

London: The Mit Press.

Li, H., Tang, Z., Fei, X., Chao, K.-M., Yang, M. and He, C. (2017). A Survey of Audio MIR

Systems, Symbolic MIR Systems and a Music Definition Language Demo-System. 2017

IEEE 14th International Conference on e-Business Engineering (ICEBE) .

Liu, I.-T. and Ramakrishnan, B. (2014). BACH IN 2014: MUSIC COMPOSITION WITH

RECUR- RENT NEURAL NETWORK . [online] Available at:

https://arxiv.org/pdf/1412.3191.pdf [Accessed 27 Jun. 2019].

Lu, Q., Chen, X., Yang, D. and Wang, J. (2010). BOOSTING FOR MULTI-MODAL MUSIC

EMOTION CLASSIFICATION. ISMIR 2010 . [online] Available at:

https://www.researchgate.net/profile/Chen_Xiaoou/publication/220723554_Boosting_f

or_Multi-Modal_Music_Emotion_Classification/links/558a857f08ae1110021d34d8.pdf.

Luong, M.-T., Sutskever, I., Le, Q. and Zaremba, W. (2015). Addressing the Rare Word

Problem in Neural Machine Translation . [online] Available at:

https://nlp.stanford.edu/pubs/acl15_nmt.pdf [Accessed 19 Jul. 2019].

Maas, A., Daly, R., Pham, P., Huang, D., Ng, A. and Potts, C. (2011). Learning Word

Vectors for Sentiment Analysis . [online] Available at:

https://www.aclweb.org/anthology/P11-1015 [Accessed 19 Jul. 2019].

Mckay, C., Cumming, J. and Fujinaga, I. (2018). JSYMBOLIC 2.2: EXTRACTING

FEATURES FROM SYMBOLIC MUSIC FOR USE IN MUSICOLOGICAL AND MIR

RESEARCH . [online] Available at:

https://archives.ismir.net/ismir2018/paper/000026.pdf [Accessed 19 Jul. 2019].

80

Melicher, W., Ur, B., Segreti, S.M., Komanduri, S., Bauer, L., Christin, N. and Lorrie Faith

Cranor (2016). Fast, Lean, and Accurate: Modeling Password Guessability Using Neural

Networks . [online] Available at:

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_meliche

r.pdf [Accessed 19 Jul. 2019].

Morrison, S.J., Demorest, S.M. and Stambaugh, L.A. (2008). Enculturation Effects in

Music Cognition. Journal of Research in Music Education , 56(2), pp.118–129.

Odekerken, D. (2018). Audio-Symbolic Alignment of Popular Music with application to

Automatic Chord Estimation. Library.uu.nl . [online] Available at:

https://dspace.library.uu.nl/handle/1874/372620 [Accessed 19 Jul. 2019].

Olah, C. (2015). Understanding LSTM Networks . [online] Github.io. Available at:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

Paine, T., Jin, H., Yang, J., Lin, Z. and Huang, T. (2013). GPU Asynchronous Stochastic

Gradient Descent to Speed Up Neural Network Training . [online] arXiv.org. Available at:

https://arxiv.org/abs/1312.6186 [Accessed 16 Mar. 2019].

Parizet, E., Hamzaoui, N. and Sabatié, G. (2005). Comparison of Some Listening Test

Methods: A Case Study: Ingenta Connect. Acta Acustica united with Acustica , [online]

91(2), pp.356–364. Available at:

https://www.ingentaconnect.com/content/dav/aaua/2005/00000091/00000002/art000

18#expand/collapse [Accessed 19 Jul. 2019].

Pascanu, R., Mikolov, T. and Bengio, Y. (2013). On the difficulty of training recurrent

neural networks . [online] Available at: http://proceedings.mlr.press/v28/pascanu13.pdf

[Accessed 16 Mar. 2019].

Raffel, C. (2016). Learning-Based Methods for Comparing Sequences, with

Applications to Audio-to-MIDI Alignment and Matching. Columbia University.

81

Saon, G., Soltau, H., Emami, A. and Picheny, M. (2014). Unfolded Recurrent Neural

Networks for Speech Recognition . [online] Available at:

https://www.isca-speech.org/archive/archive_papers/interspeech_2014/i14_0343.pdf

[Accessed 5 Jul. 2019].

Schellenberg, E.G., Bigand, E., Poulin-Charronnat, B., Garnier, C. and Stevens, C. (2005).

Children’s implicit knowledge of harmony in Western music. Developmental Science ,

8(6), pp.551–566.

Skuli, S. (2017). How to Generate Music using a LSTM Neural Network in Keras . [online]

Towards Data Science. Available at:

https://towardsdatascience.com/how-to-generate-music-using-a-lstm-neural-network-

in-keras-68786834d4c5 [Accessed 21 Jun. 2019].

Sloboda, J.A. (1991). Music Structure and Emotional Response: Some Empirical

Findings. Psychology of Music , 19(2), pp.110–120.

Volk, A., Wiering, F. and van Kranenburg, P. (2011). Unfolding the Potential of

Computational Musicology. ICISO 2011 .

Wickland, D.D., Calvert, D.A. and Harley, J. (2018). Evaluating symbolic representations

in melodic similarity. Proceedings of the 5th International Conference on Digital

Libraries for Musicology - DLfM ’18 .

Yu, L., Wang, S. and Lai, K.K. (2006). An integrated data preparation scheme for neural

network data analysis. IEEE Transactions on Knowledge and Data Engineering , 18(2),

pp.217–230.

82

