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Abstract

Coastal litter is a significant problem in Scotland, not only polluting and endangering

wildlife but also harming the vital tourism sector. Aerial images of the coastlines, as-

well as spreadsheets containing information for the majority of these images, were made

available by Scrapbook, an organisation dedicated to combating this issue. The aim of

this dissertation is to utilise this information in the design, application and evaluation

of deep learning based systems for automatically classifying these aerial photographs by

their level of litter accumulations, and to form recommendations for a fully automated

system based on these results.

In the process, a variety of solutions to domain problems are explored, such as:

insufficient samples, class imbalance, massive terrain variety, and the automated col-

lection of features for both incorporation to training and the automatic presentation

of findings. Additionally, significant processing of the supplied dataset was necessary,

some utilities involved forming a part of the proposed automated system.

Ultimately the limited dataset prevented the development of a sufficiently effective

model, performances poor for all classes other than the most numerous. However, the

efficacy of proposed methods such as data augmentation and mixed input networks was

validated, and it is proposed that through methodologies employed in this dissertation,

when more images become available, an accurate system can be deployed.
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Chapter 1

Introduction

Figure 1.1: Litter Categories (credit: https://www.scrapbook.org.uk/

Litter on Scottish coastlines costs an estimated 16 million a year (Scotsman, 2013)

to both third sector and governmental organisations, and poses a danger not only by

polluting but also threating wildlife, and harming tourism (Society, 2018a).

SCRAPbook is a volunteer project targetting litter on Scotland’s coastlines (Scrap-

book, 2019). By managing volunteer aircraft crews, photographers and clean up opera-

tions, their aim is to monitor litter accumulations across the coastlines and coordinate

clean ups in cases of significant (and ideally reachable) accumulations. Most of the

supplied images were captured by a photographer, but they are increasingly moving

towards automation, which involves an unmanned camera automatically capturing im-

ages as the aircraft passes a location. Currently, aerial photographs are examined by

hand, a time consuming process; given their high resolution, it is necessary for vol-

unteers to zoom around the image in search of litter, then fill in several columns of

an excel spreadsheet document for analysis, including categorising the image as to the
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Chapter 1. Introduction

level of litter accumulations — see Figure 1.1. Automating these classifications would

allow a reallocation of resources that, for a third sector project, would be especially

beneficial.

170GB of high resolution images are available, as-well as spreadsheets which con-

tain information such as levels of accumulation for (most of) the 93 sectors they have

segmented our coastline into. Therefore, with both images and labels, the opportunity

to apply a machine learning algorithm presents itself. We therefore proceed towards

the goal of reliably detecting litter accumulations in these high resolution images, as

an exploration and potential proof of concept that an automated system could replace

the current methods employed by Scrapbook; failing this, to understand the cause, and

make recommendations on how this can be achieved in the future.

With only around 10, 000 unique, usable images in the dataset out of 14, 000 sup-

plied, and a far smaller subset containing litter accumulations of any significant degree,

training the network is difficult. Class Five accumulations only present 83 times in the

entire dataset; class 0 accounts for 70% of images. Therefore the problem is one with

significant class sample inequality, and of significantly low samples for litter positive

images; the latter inducing a vulnerability to over-fitting. We also note there is a huge

variety in terrain among the images, which are mostly of resolution 6000 by 4000. To-

wards the end of making most use of the data provided, we proceed with the image

classification approach in mind rather than semantic segmentation, which our labels

are not suited for; semantic segmentation would require an excess of labelling.

Many issues in building and training this system require address. From the data

processing stage, the spreadsheets must be collated, resolving the many conflicts in

notation, column names, the duplicate and missing entries, and filtering those rows

which represent unusable data. We must also make best use of these sheets by, for

example, utilising available features to whittle down the set to only images which

represent the problem domain, sifting out, for example, images which do not depict

coastlines, thereby preventing these images from introducing conflicting representations

to the network, and weighing the cost of performing these operations — how will the

network react when exposed to these in a potential deployment? More important than

3



Chapter 1. Introduction

these preprocessing steps, however, is the accurate association of images with labels, so

that the supervised learning system can be trained. This not only relates to the design

and creation of the prototype model, but also for the future if more images are to be

gathered and labelled.

With many duplicate image names inside the spreadsheets, even quite significantly

among sectors, associating image-label pairs stands a significant barrier to the creation

of a prototype model. If a single sector were to be incorrectly labelled, conflicting

information would prevent appropriate learning. Many images in the spreadsheets de-

scribe images that either do not exist or were not supplied; and many images in the

folders supplied were not labelled in the spreadsheets. Further, many images appear

to be labelled in a specific row of a spreadsheet, complete with its sector and image

filename, sometimes even agreeing litter accumulation level and type, making identi-

fication difficult, but are in-fact separate, but similar, images. This can be caused by

resetting the camera, clearing its memory, resulting in the images starting from 1 again.

Even a handful of such images could harm learning through the provision of conflicting

information — e.g., a sector 0 mistakenly identified a class 5, which has only 81 − 83

images, depending on strictness of identification, out of all 10, 000 could seriously harm

learning given it makes up more than 1% of class 5 samples. With folders full of images

titled ’DSC 001.JPEG’, and quite literally hundreds of some image titles, even those

inside sectors; resolving this involves a more involved approach than simply assuming

the sector on the folder name matches the spreadsheet with the same sector in its title,

and collating this with image names.

In the end, a methodical approach is required involving detailed cross-reference of

EXIF information.

Prior to building the network, structures are needed to pass batch sized subsec-

tions of the full data given it cannot fit in memory, even with the smallest resolution.

Generators are then proposed.

The real issue however lies in training an adequate network given how few positive

samples there are, and the class imbalance inherent in the data; low sample training

sets leads quite easily to over-fitting, and class imbalances lead to sample dominance —

4



Chapter 1. Introduction

i.e., filters learned are mostly for the most numerous class as learning representations of

this class leads to a higher accuracy than the others. We therefore must apply various

sampling methods, creating utilities such as over-samplers and under-samplers, and

weighting tools such as weighted loss functions. Additionally, we wish to express to the

network that should a class 0 be mistaken for a class 5, this misclassification is worse

than a class 0 for a class 1, so perhaps should be assigned a higher loss; so we carefully

monitor the classifications via confusion matrices, attempting to solve the problem, if

it presents, in the form of a weighted loss function.

Further to the above mentioned barriers of class imbalance and over-fitting, data

augmentation is explored. This aids the imbalance by, in the additive approach, gener-

ating new samples. In the live approach, images are augmented by the generator, new

transformations each time, before they are passed to the generator. Both approaches

aid generalisation by the introduction of new images from, if applied correctly, the sam-

ple space from which future images should present, improving robustness to variation.

In tackling the huge variety of terrain and litter in the images, attempts at multiple

input models are made, feeding not only images but also numeric features including

the sector, latitude and longitude of an image. All of these factors can be automat-

ically stripped from the EXIF data of future images, meaning the future application

which contains the model can easily auto strip this data from each image exposed for

prediction. Care is taken not to over-fit the data, which presents already due to the

low number of samples, though when given more information of this kind, may lead to

further over-fitting. For example, a prime concern is that the network may learn all

coordinates where litter have appeared in the training set, over-fitting exactly, which

will not generalise to all test samples if random split used, or none if split by sector.

This is a potential flaw of splitting the data randomly versus by sector; however a by

sector split means performance is underestimated, given training on a sector learns rep-

resentations for said sector, which often have internal commonalities as-well as general

similarities to the data as a whole.

Additionally, we search many architectures, configurations and hyper-parameter

combinations to find the best model with the best performance possible; so the problem

5



Chapter 1. Introduction

is also one of optimisation.

In ’A Guide to Convolutional Neural Networks for Computer Vision’ by Salman

Khan et al (Khan et al., 2018, p. 1), Computer Vision is defined as:

‘’the science ... that seeks to develop methods which are able to replicate one of the

most amazing capabilities of the human visual system, i.e., inferring characteristics of

the 3D real world purely using the light reflected to the eyes from various objects.‘’

Machine Learning algorithms are often used for image classification tasks. Prior

to the advent of Deep Learning, methods such as the Support Vector Machine (Khan

et al., 2018, p. 22) and handcrafted feature algorithms (Khan et al., 2018, p. 14) were

used for such tasks, with the limitation that the engineer must build their own ’filters,’

or ’feature descriptors.’ Convolutional Neural Networks on the other hand are able to

automatically learn such features. (Khan et al., 2018, p. 14, 21)

In recent years, Deep Learning, that is, deep layered neural networks, have surpassed

prior methods, including shallow networks. Modern algorithms can reach very high

levels of accuracy with the right approach and enough, good quality training data.

In-fact, some neural networks approach and exceed human performance, such as with

AlexNet on the famous ImageNet dataset (Krizhevsky et al., 2012, p. 1) (Khan et al.,

2018, p. 102), shown in Figure 2.1. For image classification tasks, the Convolutional

Neural Network, a variant inspired by biological processes in the visual cortex of humans

and animals Fukushima (1980) (Khan et al., 2018, p. 31) (Géron, 2017, p. 354), is

perhaps most appropriate (Khan et al., 2018, p. 43) (Géron, 2017, p. 355).

6



Chapter 2

Overview of Relevant Literature

Figure 2.1: AlexNet Architecture (taken from ‘’A Guide to Convolutional Neural Net-
works for Computer Vision’‘ , (Khan et al., 2018, p. 103)

To understand convolutional neural networks, such as AlexNet in Figure 2.1, it is

important to first discuss the origins of the convolutional neural network, and neural

networks in general.

2.0.1 History of Neural Networks

In 1943, W. McCulloch and W. Pitts, inspired by developments in the study of mammal

brains (Géron, 2017, p. 254) (Khan et al., 2018, p. 40), proposed a computational

7



Chapter 2. Overview of Relevant Literature

model based on the synergy of neurons (McCulloch and Pitts, 1943). This proved

to be the beginning of a wave of interest in Artificial Neural Networks, perhaps the

next important advancement being Rosenblatts inception of the Perceptron in 1958

(Rosenblatt, 1958). Rosenblatt built on the neuron first proposed in 1943 to create his

one-layer network of neurons based on the so called Linear Threshold Unit(Géron, 2017,

p. 256) (Rosenblatt, 1958). Perceptrons are capable of performing binary classification

only on datasets that are linearly separable, and are also unable to solve the so called

XOR problem — the exclusive or that outputs true only when one input is true and

the other is false. Years later, it was recognised that a Perceptron with more than one

layer, called a Multi-Layer Perceptron, is far more effective (Géron, 2017, p. 250), being

able to solve the XOR problem.

Further developments were the discovery of ’‘Backpropagation,’‘ short for ’‘the back-

wards propagation of errors,’‘ as an effective and viable method of training (Rumelhart

et al., 1985), as-well as the increases in available computational power in recent years,

particularly Graphics Processor Units (GPU), enabling the training of more complex

networks (Khan et al., 2018, p. 8).

2.0.2 Origins of Convolutional Neural Networks

Feed-forward neural networks such as the Multi-Layer Perceptron are limited when it

comes to high dimensional input data. The convolutional Neural Network is superior

for image classification and recognition in that the MLP, and feed forward networks in

general, are limited by the so called ’‘curse of dimensionality,’‘ (Géron, 2017, p. 479), due

to full connection between nodes, and are therefore inappropriate for high-resolution

images; which we are using. Geron writes, in Hands on Machine Learning with Scikit

Learn and TensorFlow, on using CNNs over regular Deep Neural Networks (DNNs),

‘’though this works fine for small images it breaks down for larger images.‘’ In ‘A guide

to Convolutional Neural Networks for Computer Vision,’ Khan et al state that, ‘[CNNs

are]. . . essential for cases where we want to learn patterns from high-dimensional input

media. (Khan et al., 2018, p. 43). In addition to requiring fewer parameters, CNNs

carry the benefit of maintaining positional information (Khan et al., 2018, p. 43).

8
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Fukushima and Miyake proposed the earliest form of the CNN (Fukushima, 1980).

The ‘’Neocognitron,’‘ a model for pattern recognition, introduced the two main layer

types used in modern day CNNs: convolutional, and downsampling. They write, in

their original paper, ‘’The neocognitron can learn patterns and filters that would ordi-

narily require the architect to design.’‘ For example, in our case, we may wish to apply a

filter that sharpens certain colour spectra such as blues, and dulls others. With a CNN,

this is not necessary, as it will (ideally) learn a similar filter in training. Fukushima

and Miyake go on to state, ‘’if a set of stimulus patterns are repeatedly presented to

it, it gradually acquires the ability to recognise these patterns.’‘ This makes the pro-

cess far more automated than a typical computer vision task, for example Support

Vector Machines which necessitated manually engineered filters. Further to this, in

1988, Lecun et al applied training via the backpropagation algorithm to the neocogni-

tron in ‘’Gradient-Based Learning Applied to Document Recognition,’‘ introducing the

CNN largely as it is used today (LeCun et al., 1998) (Khan et al., 2018, p. 43). Their

architecture, named, LeNet-5, was used to recognise handwritten check numbers.

2.0.3 Structure of CNNs

Figure 2.2: An Example of Feature Representations by Layers (credit:’A Guide to
Convolutional Neural Networks for Computer Vision’ by Salman Khan et al. (Khan
et al., 2018, p. 44)

The eponymous layers in CNNs, convolutional layers, perform a mathematical op-

eration called convolution on a set of learned filters — the kernel weights that are

augmented in training, just as in other neural networks. (Khan et al., 2018, p. 46)
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Figure 2.2 shows an example of feature representations from early, mid and later

layers; later layers are combinations of the layers behind. These ’filters’ are applied to

the images to create ’feature maps.’

The convolutional layer aims to learn feature representations of the inputs. Each layer

is comprised of several convolution kernels which are used to compute different feature

maps. Specifically, each neuron of a feature map is connected to a region of

neighbouring neurons in the previous layer. — ’Recent Advances in Convolutional

Neural Networks’ by J. Gu et al. (Gu et al., 2018)

Further, it is described that filters ’slide over’ the image to create feature map.

Convolutional layers are followed by pooling layers, their purpose to reduce, or

downsample, the resolution of feature maps, thus lowering computation cost. The most

commonly used pooling operations are Max Pooling, where the maximum activations

are used, and average pooling, where an average is used. Another, less widely used

pooling method is Min Pooling, where smallest activations are used, for reasons such as

the situation depicted in Figure 2.3. Pooling clearly has significant effects on models,

and so should be considered in our methodology.

Figure 2.3: Min Pooling Example (credit: @bdhuma,
https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-
minpooling-vs-average-pooling-95fb03f45a9)
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Following pairs of convolutional and pooling layers, there are typically one or more

fully connected (dense) layers which perform high level reasoning on the feature maps.

Finally, the dense layers connect to an output layer; for example, softmax for an image

classification task (Khan et al., 2018, p. 56) (Gu et al., 2018).

As CNNs have come into popularity, new methods and architectures have been

extensively studied.

2.0.4 Recent Developments in CNNs

In more recent years, developments such as, AlexNet, (Figure ??) (Krizhevsky et al.,

2012) winner of the ImageNet competition, have shone a spotlight on CNNs for their

high performance(Gershgorn, 2018). Deep Convolutional Neural Networks are agreed

by many as the dominant paradigm for machine learning with image data. (Scott et al.,

2017) (Krizhevsky et al., 2012)

One alternative structure, the ResNet model (He et al., 2016), utilises a technique

called ’Residual Learning,’ intended to address the ’saturation’ that very deep network

suffer — where adding more layers can eventually lead to performance drops. Proposed

by He et al (2015), they state that, ‘’when deeper networks are able to start converging,

a degredation problem has been exposed: with the network depth increasing, accuracy

gets saturated... then degrades rapidly.‘’ They posit that this is not caused by over-

fitting due to the fact that excessive layering leads to worse training performance. Their

new structure is able to stack many layers without suffering the problem of saturation

due to the residual learning by use of shortcut connections. ResNet is available as a

pre-trained model in keras, discussed in subsection 2.0.8. Another available model,

and once ImageNet competition winner, is VGGNet, a 16-19 layer network that utilises

stacked convolutional layers. (Simonyan and Zisserman, 2014)

Convolutional Neural Networks are growing deeper. By increasing depth, J. Gu et

al say in ’Recent Developments in Convolutional Neural Networks’ (Gu et al., 2018),

the network can better approximate the target function with increased nonlinearity and

get feature representations. As layers are added, the level of abstraction for features
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learned increases. However, it also increases complexity, which makes the network more

difficult to optimise and easier to overfit. This also means more computational power

is required.

2.0.5 Activations, Initialisations

‘’A correct weight initialization is the key to stably train very deep networks.‘’ (Khan

et al., 2018, p. 69).

In ’Activation Functions: Comparison of Trends in Practice and Research for Deep

Learning,’ C. Nwankpa et al state that, ’ReLU is the most widely used activation

function for deep learning.’ (Nwankpa et al., 2018) It is said to offer better performance

and generalisation in deep learning as compared to sigmoid and tan, relating to it’s

near linearity, ’preserving properties of linaer models that [are] easy to optimise with

gradient descent.’ Considering backpropagation, derivatives are quick to compute.

Additionally, they discover that ReLU and Softmax output layers are used in all top

ten recent architectures tested on the ImageNet dataset.

Many alternatives to random and zero weight initialisations have been proposed.

Initialisations such as the ’Glorot Normal’ and the ’Xavier He’ initialisations have

been shown to outperform both zero and random initialisations (C. Nwankpa 2019.)

(Nwankpa et al., 2018)

The ’Xavier Initialisation’ initialises weights with a ‘’variance measure that is de-

pendent on the number of ingoing and outgoing connections from a neuron,’‘ ((Khan

et al., 2018, p. 70)), thus solving the problem that random initialisations cause for neu-

rons: ‘’the variance of its output [is] directly proportional to the number of incoming

connections.’‘ They go on to say that this initialisation leads to improved performance

in practice.

2.0.6 Applications to Aerial Photographs

The question at this point is whether we wish to perform semantic segmentation, to

isolate objects, accumulations, in an image, or to classify images unilaterally — one

label for 24 million pixels. However, we must consider that our labels are not suited for

12



Chapter 2. Overview of Relevant Literature

semantic segmentation, and so that would require likely hundreds of hours of precise

labelling all images to end up with, most likely, insufficient data to train.

Referring back to Figure Figure 1.1, the image shown on their website to describe

their classifications, it appears to indicate terrain classification would be easy. However

these images not at all representative of the dataset; more on this in section 3.1.

Object recognition models can attain very high accuracy with Aerial photographs,

(Radovic et al., 2017), with Radovic et al obtaining 97.5% targeting vehicles such as

planes and buses, using the framework, ‘YOLO’ — you only look once. However,

(Chung et al., 2018) found the YOLO algorithm to underperform alternative methods

such as traditional CNN.

64% of identifiable Scottish beach litter has origins with the public, and 17% is

classed as on the go litter, which contains, for example: drink cups or plastic bot-

tles.(Society, 2018b) (Society, 2018a). The largest category of identifiable items are

plastics. Around half overall is unidentifiable, mostly because its too tiny. Given that

litter can accumulate in many shapes, it may be hard to use an object-based framework,

but some objects, such as bottles, may be good predictors. Each instance or collection

of littering may be of a unique shape, and it is likely that aspects of the images such

as colour contrasts, for example blues and oranges in a background of natural colour

spectra, e.g., browns and greens, will provide better predictive power; this based on

Figure 1.1. However, it is still likely the Neural Network may learn some discriminatory

object patterns.

CNNs have been successfully deployed for use of ground terrain classification with

aerial photographs (Hu et al., 2018) (Sameen et al., 2018), and are especially prominent

in the field of remote sensing (Hu et al., 2018).A ‘spectral-spatial’ model (Sameen

et al., 2018) outperformed the traditional CNN by 4% in one case. This is of interest

despite us not having access to hyper-spectral data, which is often used in remote

sensing (Hu et al., 2018), but perhaps an appropriate camera/device could be applied on

recommendation to improve future performance. It is more likely that colour contrasts

will give some good results than learning a representational filter for common items.

However, some recognisable objects, perhaps those in the TrashNet image repository
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(Thung, 2017) or similar image dataset that could be used to pre-train a semantic

segmentation model and serve as good discriminators of images that contain trash, and

the quantity of those objects correspond to the level of accumulation.

2.0.7 Litter Detection with CNNs

The use of CNNs for litter detection has been proposed theoretically (Balchandani

et al., 2017) as an overhaul to current litter prevention systems; and, in conjunction

with UAVs, has been separately experimented with for real-time trash recognition at the

street level (Chung et al., 2018). In the latter case, the dataset ‘TrashNet’ (Thung, 2017)

was used for training. Given they use UAVs, they are closer to the trash, making object

recognition easier than our case. Still, their results found the CNN underperformed the

less evolved technique of Support Vector Machines, which they blamed on over-fitting.

Early stoppage, regularisation and more can help with this (Géron, 2017, p. 272) (Khan

et al., 2018, p. 79), but it is a significant barrier for applications with few training

samples, some typical classes in TrashNet having around 500 samples; the magnitude

of the present problem should become clear now, given they failed in their objective

and with even more samples, and a drone to allow perfect repositioning.

Additionally, CNNs have been used successfully for underwater litter detection (Ful-

ton et al., 2019), a case with relatively few samples. In most cases, there is agree-

ment that, as put by G. Scott et al in ‘Training Deep Convolutional Neural Networks

for Land-Cover Classification of High-Resolution Imagery’, ‘acquiring a suitably large

dataset for training DCNN is often a significant challenge.’ (Hu et al., 2018)

2.0.8 Training and Transfer Learning

(Khan et al., 2018, p. 79) state that, In practical scenarios, it is desirable to train very

deep networks, but we do not have a large amount of annotated data available for many

problem settings. A very successful practice in such cases is to first train the neural

network on a related but different problem, where a large amount of training data is

already available. ImageNet is given as an example. For our purposes, if we included

TrashNet in our pre-training, which includes images of common trash items such as
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discarded bottles and cans, this may prove useful if the route of object identification

is explored. For example, the NN may find that identifying one or several discarded

bottles in the image is a good indicator of litter levels.

It has been proven that the weights of CNNs learned in the first layer are general

(Azizpour et al., 2015), and therefore can be used for a separate purpose as that trained

on. This is called Transfer Learning — the utilisation of pre-trained models for alternate

purposes ((Khan et al., 2018, p. 72)). Khan et al state that, ‘’For this purpose, small

learning rates are used ... so that the learning previously acquired on the previous

dataset (e.g., ImageNet) is not lost.’‘ Further, Khan et al offer a second approach:

to build your own architecture, then train on a large dataset that is available, then

repurpose this model for the desired task with the initialisation of a successful model

for that commonly available dataset.

Transfer learning can, when domains are similar, improve results — especially in

cases of insufficient sample quantity. However, transfer learning is not allows appro-

priate. In the article ’A comprehensive hands on guide to transfer learning with real

world applications in deep learning,’ by (Sarkar, 2018), he states that:

‘’ There can be scenarios where transferring knowledge for the sake of it may make

matters worse than improving anything (also known as negative transfer). We should

aim at utilizing transfer learning to improve target task performance/results and not

degrade them. We need to be careful about when to transfer and when not to.‘’

Therefore when applying transfer learning, the possibility of ’negative transfer’ will

be kept in mind.

Further to training optimisation, the consensus is that batch normalisation improves

performance, with (?) stating it was integral to performance in their spectral-spatial

terrain classification model, and (Khan et al., 2018, p. 76) stating it, provides robustness

against bad weight initialisations [and] improves convergence rates. They go on to state

that, it integrates the normalisation in the network by allowing back-propagation of

errors through the normalisation layer, and therefore allows end-to-end training of deep

networks. Similar ideas are expressed in (Géron, 2017, p. 282). It should therefore be

used in the present case to optimise the training phase.
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Unsupervised pre-training has been proven to improve deep learning models Erhan

et al. (2010). However it is perhaps less often used in recent times due to more effective

optimisation measures such as Transfer Learning, custom initialisations and Adam

(along with its varieties) optimisers.

2.0.9 Multiple Input Models

Multiple image input deep convolutional networks have been applied in some domains,

but mixed numeric/categorical and image input models less so. One particular example

is ’House Price Estimation from Visual and Textual Features’ Ahmed and Moustafa

(2016).

They combine textual and numeric features such as neighbourhood area, number of

rooms, with visual ones: images of the home and its interior. The combined features are

fed to a fully connected mutli-layer Neural Network that estimates the house price as

its single output, therefore being a regression task. ’To train and evaluate our network,’

they say, ’we have collected the first houses dataset (to our knowledge) that combines

both images and textual attributes.’

Ultimately, their model outperforms the best existing model already published for

that dataset — ’Through experiments, it was shown that aggregating both visual and

textual information yielded better estimation accuracy compared to textual features

alone.’

Additionally, many articles such as ’Keras: Multiple Inputs and Mixed Data,’ (Rose-

brock, 2019), discuss the topic.

2.0.10 Data Augmentation and Insufficient Training Samples

‘’The problem with small datasets is that models trained with them do not generalise

well from the validation and test set. Hence, these models suffer from the problem of

over-fitting.‘’ (Perez and Wang, 2017)

In ‘’The Effectiveness of Data Augmentation in Image Classification using Deep

Learning’‘ (Perez and Wang, 2017), two methods are proposed for augmentation: gen-

erating augmented data prior to training, meaning expanding the dataset, and alter-
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nately to augment and classify simultaneously — through a method called ’Neural

Augmentation,’ where training samples were combined to form new representations.

The Adam optimiser is used. They find that traditional augmentation outperforms in

some cases, while their proposed approach outperforms by a small margin in others at

the cost of much longer training times.

Data Augmentation has been extensively applied in deep learning image recognition

tasks (Khan et al., 2018, p. 74), where the necessity of large datasets is a common

issue. Salman Khan et al state that, ’[Data Augmentation] is often a very easy way

of enhancing the generalization power of CNN models. Especially for cases where the

number of training examples is relatively low.’ Khan goes on to state that datasets can

be increased in size by orders of magnitude, generating new samples for each based on

a set of operations.

Some simple types of data augmentation as applied to images are: cropping, rotat-

ing, flipping, horizontally and vertically, and adding random noise for example, single

pixel changes (known as ’salt and pepper’), or shifting RGB colours slightly. These

simple approaches are considered to be very successful in some cases; however, there

are higher level methods of data augmentation, such as the creation of synthetic sam-

ples, for example by the use of a Generative Adversarial Network (Perez and Wang,

2017).

Real world deep learning applications are often faced with the problem of insuffi-

ciently numerous samples, with specialist domains in particular, such as the medical

imaging domain, where the number of examples of a rare tumour types are small (Perez

and Wang, 2017). A recent approach to the problem is the use of Generative Adver-

sarial (Neural) Networks, which produces outputs similar to the data it has trained on,

meaning they can be used to generate new training data.

In ’Conditional Infilling GANs for Data Augmentation in Mammogram Classifica-

tion,’ by (Wu et al., 2018), Generative Adversarial Networks (GANs) are applied to

the domain of detecting lesions in Mammograms to screen for cancer where limited

samples are available. The GAN is used to automatically generate lesions on an image

that is without lesion, a negative sample, to create an image that is a realistic repre-
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sentation of how a lesion would present in that negative sample. In our case, we could

find the area of the image with trash, then superimpose that to a non trash image to

create a realistic depiction of accumulations in that image. However these algorithms

are extremely computationally costly, and cannot be applied adequately to such high

resolution images with the hardware available.

Wu et al note that every 1000 iterations, ‘’we increase the relative proportion of

real data used by 20%, such that the final iteration is trained on 90% real data. We

observe that this regime helps prevent early over fitting and greater generalisation for

later epochs.‘’

Relating back to this project’s purpose, this is an interesting idea to explore given

our extreme class imbalance — varying the ratio of real to synthetic images so that by

the last epochs only real images are seen and fine tuned on with lower learning rate,

though our images will only be transformed through simple operations like mirroring

and brightening/dulling due to the computation requirements for GANs on high reso-

lution data. Augmenting every image, deigned ’live’ augmentation in articles, may be

too extreme. This dynamic ratio could improve generalisation not only to the test set,

but outside of it, in the sample space in which future images reside, as representations

of the sample space have been learned, then fine tuned to the real images. Also of

note — to achieve better performance, they initiated with Image Net weights, which

entailed training their network on the ImageNet dataset first.

The issue with applying transfer learning from a pre-trained (on the ImageNet

repository) model to the present task is that our images are of much higher resolution

and distinctly separate domain; considering the size features will be, and the size of

filters/feature maps as applied to 224× 224 images, this kind of transfer learning may

be what’s called a ’negative transfer.’ (Sarkar, 2018) However, Sarkar also suggests this

may aid in finding small features in large images (our case.)

In the article ’A comprehensive hands on guide to transfer learning with real world

applications in deep learning,’ (Sarkar, 2018) , he writes:

‘’There can be scenarios where transferring knowledge for the sake of it may make

matters worse than improving anything (also known as negative transfer).’‘
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So it is possible for a weight transfer to harm performance, particularly when the

domains are very different.

2.0.11 Sample Inequality

In ’Towards Effective Classification of Imbalanced Data with Convolutional Neural Net-

works,’ (Raj et al., 2016), they discuss the tendency for real datasets, such as ours, to

have overly numerous classes dominate the dataset, thereby having a ’strong bias to-

wards the majority class.’ Additionally, they discuss the weighting of mis-classifications,

such that ’in medical applications, the cost of erroneously classifying a sick person as

healthy can have a larger risk than wrongly classifying a healthy person as sick.’ This

relates to our problem also, as, up to a point, we would rather return the most positive

classes we can at the cost of returning more images in total, and similarly would ideally

weight a mis-classification of a class 0 for a class 5, say, litter accumulation, as having

a higher cost than of a 0 for a 1.

As a solution to the class imbalance problem, two approaches are discussed: over or

under-sampling the training data to a point of equality, or using a different algorithm.

Ultimately they combine several approaches towards the end of ’cost-sensitive learning.’

While not exactly their approach, in the same general vein of ideas as cost, we

could weight our cost function so that it values class 4 samples as 10× that of a class

0, meaning the network will value better a filter which aids classification of 1 class 4

than 9 class 0s.

2.0.12 Multi-input Deep Networks

Multi-Input Models combining multiple sets of image data have been applied in a

variety of image recognition tasks, from flower identification but combining numeric,

categorical and image data is less common. (Ahmed and Moustafa, 2016) published

one such approach.

(Ahmed and Moustafa, 2016) propose a mixed input network combining images

and numerical data for house price estimation — that is, regression. Their model

outperformed the numeric only network, but they did not compare to an image only
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network. On the topic of rarity, they state:

‘’This paper announces the first dataset, to our knowledge, that combines both visual

and textual features for house price estimation . . . Through experiments, it was shown

that aggregating both visual and textual information yielded better estimation

accuracy compared to textual features alone.’

Therefore, we may see performance boosts with the inclusion of this data in our

model.

In the article ’Keras: Multiple Inputs and Mixed Data,’ (Rosebrock, 2019), another

mixed numeric and image input network is applied to a model is applied to the same

dataset discussed above.

Rosebrock states that:

‘’Developing machine learning systems capable of handling mixed data can be

extremely challenging as each data type may require separate preprocessing steps,

including scaling, normalization, and feature engineering.‘’

The preparation of numeric data in our case could include, for example, normalisa-

tion of the latitude and longitude columns, as-well as the consideration of our somewhat

large Sector categorical variable; might it be better considered a continuous variable,

the parabolic or circular nature of its relation to latitude and longitude providing better

information to the network?

On the state of mixed input models in research, Rosebrock offers, ‘’working with

mixed data is still very much an open area of research and is often heavily dependent

on the specific task/end goal.‘’

Considering our end goal, the inclusion of location defining data seems appropriate

given such a wide sample space from which each image is drawn exists. Any way to aid

the network in this area should be explored.
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Methodology

The main topic of research is as follows: can an automated deep learning system be

used to automatically classify aerial imagery of the Scottish coastline into levels of litter

accumulation?

Towards this end, the following section lays out a series of research questions, each

representing a facet of the many barriers, explorations and decisions involved in the

development and demonstration of such a system, in particular towards the current

validity with the limited data and resources available, and recommendations for future

work based on methodologies proposed, as-well as the proposition of new practices at

Scrapbook to facilitate the implementation of such a system in the future.

3.0.1 Research Questions

• In deep learning, the data is the most important factor in any system. How can

we pre-process the data, including cleaning, compression and downsizing, to best

prepare for model building while maintaining quantity and quality? Additionally,

given there is some ambiguity in associating some images with labels, how can

we accurately pair every image with a label where available, balancing certainty

that no conflicting information is given to the network with the need for as much

data as possible?

• With what architecture and configuration can the network be best built? This

includes exploration of input shape, given the highest resolution inputs mean a
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trade-off with depth and complexity of architecture. This necessitates the passing

of data through generators: how will these be created, and later amended to suit

different models and methods?

• Class imbalance is significant in the data. Firstly, does this harm performance?

If so, of the many ways to address this, which best mitigates this issue? Conse-

quently, positive samples are significantly low in number. Can methods such as

alternate sampling approaches, data augmentation, initialisations and architec-

ture improve the over-fitting associated with this problem? And which approach

for each of these methods best improves generalisation?

• Would a binary system perform better than multi-class, and if so, is it appropriate

to the purpose of the overall project? If such a binary system is trained, at what

threshold should a class be considered positive to maintain the balance such

that, given the problem domain, more false positives than false negatives may be

desired, while maintaining a balance with the number of images returned?

• Significant variation in terrain among the images is present. Is there a way

to address this through architecture or other means? If so, does this improve

performance, in general but also in some cases where the variation may be causing

issue, i.e., particular samples or regions with distinct representations?

• Given the model is intended for use to process images in bulk, if features other

than images were to be passed to the model for training, only automatically

collectable features could be collected. What, if any, meets this criteria, and does

the inclusion of these features improve performance? If so, how these can be

collected?

• Is the final model of strong enough performance that it could replace the current

system at Scrapbook and be deployed? How feasible is the deployment of this

model?

• Regardless of how effective the model is discovered to be, given at this stage we

have limited data and more will be available in the future, what basic structure
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should be deployed to generate results in such a fashion that it can be used for

analysis by any interested party?

• Given analysis of the above methodologies, what recommendations from this anal-

ysis can be made so that the current practices at Scrapbook can align with the

requirements of a deep learning system, and so that the best deep learning system

could be deployed?

3.1 Data Processing

Considering the question of dataset generation and image-label pairing, the data is now

discussed.

Figure 3.1: Scotland’s Coastline Divided into Sectors
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Scrapbook have supplied 13, 880 images segmented by sector and date of collection,

each sector typically having an excel spreadsheet which contain information on the ma-

jority of these images. These are also segmented in some cases by ’parts’, where there

are mainland and island images, and in other cases some nearby groups of sectors are

amalgamated in one spreadsheet. All images are from 2018 and from various dates,

but typically one pass of a sector, segmented as shown in Figure 3.1.Due to the quan-

tity of these images and spreadsheets, as-well as the inconsistencies to be discussed

shortly, automatic processing is necessary. The methodology is then to amalgamate

these spreadsheets to a master csv, and assign, accurately, a file path to every row

where labels exist. The implementation of this is proposed in the following subsec-

tion 3.1.1.

3.1.1 Spreadsheets

Processing these spreadsheets entails the creation of several functions. To make best

use of the columns available, while considering that to pass a feature to the network,

given the methodology of modelling is supervised learning, it must be automatically

collectable information; otherwise it is unusable for the purpose of an automatic system;

a system which creates a data structure based on image EXIF and, perhaps as a later

recommendation, information available online such as forecasted weather and tidal

data, correlated with dates of collection, once more data has been collected. As the

Scrapbook image analysis system stands, these sheets provide the tools for coordination

of clean ups. We repurpose these to train a new system.

In discourse with Sophie from SCRAPbook, she stated the sheets are ’rudimentary,’

having been filled by various volunteers at different times who ’zoom around’ the images

searching for accumulations, then filling in various columns. Consequently, while some

basic (and varying) protocol has been followed, there are significant inconsistencies

in features recorded, conventions used, as-well as overlap and redundancy between

sheets, and some mistakes/missing values. However, on the positive, there are labels

— notation: ’Litter Intensity’ [0, 5] — for the majority of entries in the spreadsheets.
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Index([’Survey’, ’Sector’, ’Image_Path’, ’Image_Name’, ’Lat’, ’Long’,

’Image_Quality’,

’Confirm_ Litter_P/A’, ’Litter_Intensity’, ’Litter_Type’,

’Litter_Location’, ’Coastal Character’, ’Image_Quality’, ’Other

features’, ’Unnamed: 12’,

’Unnamed: 13’],

dtype=’object’)

Above we see the columns typically present in a volunteer filled sheet. See below

for a brief description of each column alongside some notes.

• ’Survey’ — The Date of Image Capture

• ’Sector’ — A categorical for designated areas

• ’Image Name’ — The filename of the image in question; this became a significant

issue later on as they are not unique

• ’Litter Intensity’ — the label, this varies from 0 to 5, a categorical measure for

intensity of accumulations; element of subjectivity in many cases; refer to Figure

??

• ’Litter Type’ — the nature of litter present; typically includes entries like, ’fish

boxes,’ ’plastic bags,’ or, more rarely, ’literally everything.’

• ’Litter Location’ — a less subjective column, this features values from the range:

[’foreshore’, ’backshore’] and so forth

• ’Coastal Character’ — a description of the terrain, such as rocky, sandy or indus-

trial

• ’Image Quality’ — a descriptor of the quality of the images, using various con-

ventions, e.g., ’Good’, ’Medium’, ’N’, ’Not Usable,’ ’Mid.’

In considering feature selection of this text dataset, it is important to recall the

purpose of the model; to automatically and efficiently analyse many images at once,

25



Chapter 3. Methodology

saving valuable volunteer time. It is therefore not appropriate to input, for example,

a Coastal Character value for each image. We can consider the inputting of the value:

sector; which is present in some spreadsheets but not most, and we have automatically

stripped from the filenames of the excel spreadsheets (note there are discrepancies and

missing sectors.) What is more desirable however is automatically detecting the sector

based on the longitude and latitude. Nearby sectors typically have similar terrains and

litter objects, so a mislabel of a sector or two over is not a serious issue.

From Figure 3.1, we can see the sectors adjoin each-other and run counter-clockwise

around the coastlines. It’s important to realise the longitude/latitude information refers

to the GPS EXIF data of the photograph, and hence the location of the aeroplane, not

the area itself. We then determine sector of future samples through nearness to the

GPS coordinates.

Additionally, the spreadsheets must be concatenated and pre-processed via imple-

mentation through simple Python scripts. Application of this can be found in analysis,

with much of the code available in the appendix due to size, the significant parts in-

cluded in the main body.

3.1.2 Images

While the majority of images are of resolution 6000 by 4000, some, particularly from

Sector 1, are only 12.1 Mega-pixels (as opposed to 24) and have resolution 4256 by

2832. The question is then, prior to feeding images to the networks, whether to upscale

these to max resolution by use of an upscaling algorithm, or pad them with zeroes, or

lastly to downscale the rest to this lower resolution. No upscaling algorithm has been

shown to perform better in deep learning than downscaling all images to the lowest

image size in the relevant dataset, so we rule out option 1; but zero padding is still an

option. Given lower input shape means easier training, and training at high resolution

takes a long, long time, we go for option 3 and downscale the images.

It’s observed that to maintain sufficient model complexity and a batch size that

promotes variety of class before weight augmentations, float16 data-type is a necessity,

given the increases in memory usage with higher types. Given PIL reduces images to
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8 bit colour depth anyhow, information loss is neglible.

Another noteworthy property of the data is the apparent extreme rarity of high

accumulation samples, which we discuss in greater detail in subsection 3.1.1. Mitigating

the effects of this may necessitate sampling techniques, or loss weightings.

3.1.3 Terrain Variety

Figure 3.2: Examples of Terrain Variation

As can be seen in Figure 3.2, there is a broad variety of terrain within the dataset.

Among ’natural’ backdrops, there is variety between grassy, rock, sand, cliff and dirt/-

mud terrains, while the less natural areas are either industrial or pedestrian, containing

the colours and geometric shapes which might serve as strong distinguishers, learned

filters, of litter presence in natural images; features likely to trigger false positives in

said areas. Additionally, some ’beachy’ areas that are inhabited may trigger false posi-

tives as items that are not necessarily litter but could be (e.g., a picnic, people in bright
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clothing, bicycles) will be present. Given most images do not contain people, and most

are undeveloped, rural landscapes, the model may learn to identify litter more easily

in rural, monotonous images, with low density and development.

Each image in the figure also has some variety in distance, elevation and angle.

Ideally, our model would grow invariant to these factors, as-well as brightness, shadows

— bearing in mind the sun (dependent on time of day also of-course) shines from

slightly different angles as we travel around the coast from West to East. It’s likely

that data augmentation will help towards this end, exposing the model to synthetic

images which approximate variation in some of these factors — for example, rotations

for angle of aircraft, brightness for lighting changes, zooms for distance.

We should also note that among the sectors there is a great variance in the number

of samples available, with some folders having as few as 40 images; however, ideally

the network will learn that Sectors near each-other have (typically) similar terrain —

instances where this does not hold are, for example, where country landscapes meet

towns and tourist destinations, which can present as inter-Sector variance.

As for how to treat this issue, the multi input model is proposed (see subsec-

tion A.3.2.

3.1.4 What is Litter?

Understanding the items SCRAPbook are interested in is important moving for-

ward. As Sophie stated in the interview, not all items constitute ’litter’ in their eyes.

For example, while manufactured, industrial wood such as in Figure 3.3, referred to as

’timber’ in spreadsheets, do count as litter, natural wood items like driftwood do not,

despite sometimes accumulating in masses at some sites.

Sophie, correspondent at Scrapbook, stated:

“They’re natural items, so it doesn’t take away from the view, and it’s not polluting

anything.”

Timber presents very often in sectors 1 and 2; Sophie provided some clarity:
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Figure 3.3: Timber at Section 1

‘’We think a shipping container may have been lost at sea near [sector 2], releasing a

whole load of timber; it floats, so it’s just drifting up to shore’‘

Timber may prove troublesome for the network to represent, the colour spectrum

similar to the backgrounds it typically presents at. The geometric pattern, a syn-

thetically straight edged rectangle shape, may be adequate, but shapes like these —

signposts, fences — are commonplace on many areas, particularly developed ones. But

the filter would only apply to a relatively small variety of sectors, those on the south

east coast; considering this situation, aiding the network in understand the location of

samples via coordinates or a categorical sector feature could be beneficial. It is expected

that incidence of litter types will correlate strongly with performance, in addition to

samples per class.

Despite the strong presence of timber in sectors 1 and 2, timber is not one of the

top ten items found overall:

While the items depicted in Figure 3.4 represent the majority of litter manifesta-

tions, there are also unique situations like strewn boat debris, classified as high accu-

mulations, therefore an instance of interest in evaluating CNN performance, so we can

later assess performance by recognition of litter types. Instances like these warrant

discussion when considering applying, for example, a loss function which suggests to
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(a) Credit: Scrapbook 2018 Report (b) A Fishbox

(c) Timber

Figure 3.4: Common Items

the network that nearby classes have more in common each-other than those further

away. Ideally, the network would detect the presence of a feature laying on natural

terrain; examination of the final model’s filters and feature maps may indicate, though
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Figure 3.5: A Fish Box in Section 2

the expectation is for many indiscernible features more to do with colour bands, and

some edges, than a feature map clearly defining such rare samples as boat wrecks.

Clean up crews would be dispatched to sites such as Figure 3.3 given the accumula-

tion level — a class 2 + is severe, warranting action, Sophie has said. So a widespread

variety of items is not necessary for an area, or more specifically an image, to be classed

as a 2+ or even 5 (there is a class 5 instance which contains no plastics of any kind,

instead a widespread shipwreck; which is an industrial item.) Learning could be diffi-

cult for such samples as a desirable scenario would be for the network to ’count’ the

likely presence of filters representing commonly occurring items — our labels can be

thought of not as distinct, unique domains, but overlapping and sequential levelling of

a more general space of filters; with also some features such as the mentioned ship-

wreck, perhaps representable as collections of timber, manufactured wood, or just by

the presence of individual parts. Regardless, the rarity of occurrence for such items

may consequently mean poor performance in those classifications.

Fish boxes (Figure 3.5) were the most common item found, often washing up from

shipping vessels when dumped or lost at sea. Due to their bright blue colour and square

edge shapes, and the significant quantity there are in the data, these should be easy to

identify — that is, for our CNN to learn a representing filter.

Plastics, defined to be so if ’plastic component observed,’ accounted for 59% of

litter collected by Scrapbook in 2018 Society (2018b); which is the year of capture for

our images. Another consideration is that of micro-plastics, hard to identify from such

elevation and distance, though instances exist where small but visibly identifiable plas-
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tics sporadically covered segments of terrain. In these cases, the colour and consistent

shape should learn to adequate learning, if there are enough samples.

3.1.5 Unusable Images

Figure 3.6 is an example of an inappropriate image, the reason being the lack of coast-

line. The features, distance, terrain and general area of the photo do not share simi-

larities with the rest of the data.

Figure 3.6: An Unusable Image

Among the images, there is a significant presence of such non coastal captures;

perhaps taken by accident, or the photographer — all of these seemed to be manually

captured, based on the images captured before and after (aiming) — looking for land-

scapes. The quantity of such images is so large that it raises an issue worth investing

effort to solve; to class these as 0 could give conflicting information to the network,
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which could struggle to find commonalities among the features of these often suburban

towns and beaches, cliffs, all bordered by water on the side of the aircraft. It’s unlikely

that the network would learn anything valuable about the structure of the data as

a whole from these, and so we desire to remove or except them from training. The

approach proposed is discussed in subsection 3.1.1.

3.2 Addressing Sampling Issues

With the primary issues being the lack of samples for rare classes and the associated

imbalanced distribution, the following methods are proposed as potential solutions.

Each method has drawbacks as-well as its intended outcome, to be discussed now.

Solutions proposed here are then implemented and analysed in ??.

3.2.1 Over and Under Sampling

Over and under sampling entails artificially re-sampling and removing samples so to

artificially balance the data-set by distribution of class. Over sampling each class to

the greatest number of samples, sector 0, means appending, with repeated values, each

class until there are 6000 samples, then 30, 000 samples in total to be iterated through

each epoch.

A number of drawbacks to this approach include a danger of skewing distribution of

predictions, and the fact that extending our rare samples in quantity does not expand

the sample space from which they are drawn, meaning it is not a full representation of

the domain of the classes 1 and up. It is possible that this approach simply approximates

iterating through the data in its naturally unbalanced form for many epochs, then

unnecessarily processing samples repeatedly from which the same representations can

be drawn.

Implementing this is simple, via the following function, a part of the created utilities

module:

@staticmethod

def equalise_samples(df):
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"""

Over-Samples the rare classes until they are all the same n as the

most numerous class

"""

max_n = df.Litter_Intensity.value_counts()[0]

return DFUtils.over_sample_df(df, max_n)

Where the over sample function is as follows:

@staticmethod

def over_sample_df(df, n=700):

"""

over-samples the more numerous classes to n

"""

df_1s, df_2s, df_3s, df_4s = df[df.Litter_Intensity == 1],

df[df.Litter_Intensity == 2], \

df[df.Litter_Intensity == 3],

df[df.Litter_Intensity == 4]

df = df[df.Litter_Intensity < 1]

for df_n in [df_1s, df_2s, df_3s, df_4s]:

while df_n.shape[0] < n:

df_n = df_n.append(df_n.sample(n=1))

df = df.append([df_1s, df_2s, df_3s, df_4s])

return df.sample(frac=1).reset_index(drop=True)

The addition of one sample per iteration, drawn randomly, includes re-placement.

34



Chapter 3. Methodology

This data-frame can then be passed to generators in the same way as the natural

data-frame.

Similarly to under-sample, the following accomplishes this:

def under_sample_df(df, n=600):

"""

under-samples the more numerous classes

"""

for label in set(df.Litter_Intensity.values):

df_m = df[df.Litter_Intensity == label]

df = df[df.Litter_Intensity != label]

df = df.append(df_m.sample(n=n))

return df.sample(frac=1).reset_index(drop=True)

When implementing these methods, analysis of comparison to using the original

data-frame should be made, thereby answering the questions of: does this improve by

class performance, and performance in general.

It is possible that a system which passes through the data as is, with no weighting

of loss and class, could achieve the same results. A ceiling of performance is hit while

the network initially finds gains in fitting class 0 well, but continuing training past this

point means the network can only improve by fitting the rest of the samples also.

Additionally, to answer the research problem pertaining to the nature of the classes

themselves; their meaning is distinct levels of the same concept, and so were the network

to understand a class 0 should be mistaken for a class 1 more often than a class 5, it

may lead learning away from inappropriate, over-fitting filters such as representations

of the terrain at which most or even all positive samples have in the training data.

This raises a question of the number of filters used, as if we allow many, over-fitting by

full or partial representation of samples can occur, rather than the ideally generalisable
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features in these images. More generalisable filters may be learned with less filters and

the penalising loss proposed.

To implement this, the following code is proposed for use as a loss function:

def custom_loss(y_true, y_pred, beta=0.03):

"""

This loss adds a penalty to predictions that are significantly far away

from the true value.

"""

y_true_val = K.argmax(y_true) # get true class index

y_pred_val = K.argmax(y_pred) # pred class index

d = K.abs(y_true_val - y_pred_val) / 4 # 0 to 1

mod = K.exp(beta * d) # is at-least one, at most

return mod * K.categorical_crossentropy(y_pred, y_true)

This adds an additional cost of 3% to categorical cross-entropy with β = 0.003,

which can be varied for analysis. The idea behind the small number is to not excessively

damage the well researched and effective categorical cross-entropy function, but to lead

away from representations of features that do not generalise.

3.2.2 Data Augmentation

With Data Augmentation, improvements are sought in the issue of sample and class

imbalance, meaning both the rarity of samples of interest and the skewed distribution

of classes; and to aid in reduction of over-fitting through both the introduction of

these samples which are augmented within the sample space from which, theoretically,

future images will come, and with live augmentation to prevent exact representations

of the training data being learned by the introduction of uniquely augmented images

for each sample, the network then seeing a better representation of the domain space

and therefore giving more generalisable solutions.
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To apply data augmentation, the following generator is created.

class ImageGenerators:

aug_datagen = ImageDataGenerator(rotation_range=30,

brightness_range=(-0.3, 0.3),

width_shift_range=0.1,

channel_shift_range=0.1,

height_shift_range=0.1,

shear_range=0.2,

zoom_range=0.2,

fill_mode=’nearest’,

horizontal_flip=True,

vertical_flip=True,

rescale=1 / 255.0,

data_format=’channels_last’,

dtype=np.float16)

The operations proposed are: rotate in a range of 30◦, which is intended to simulate

the random variation in angle of camera/aircraft to the coastline, and zoom to simulate

variations in distance and elevation. Shear transformations are also intended to improve

robustness to angle, distance variations, altering perspective similar to how new images

could appear.

Note that an advantage of the Image Data Generator approach is the option to fill

blank areas caused by transformations such as rotations with the nearest pixels, which

exist as a consequence of necessitating the same input shape as the input images for

all images. Considering the alternative, filling with a single colour such as ’white’ or

’black’, which are the options using PIL to augment images, using the nearest pixel

interpolation could prevent harmful features such as black or white corners from being

picked up by filter maps — the pooling type used is a factor here, considering for

example max pooling, white is 255 in RGB code, and therefore could overpower other

features of these synthetic images; and similarly 0 is black, so inappropriate for min

pooling — see Figure ??.
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Width and height shifts too are designed to simulate the variation among the data,

in which there are typically several consecutive photographs of the same litter as they

pass a location. Synthetically generating new ones from training images could give sim-

ilar images to future, unseen test images; particularly given a series of images represent

one instance due to the data capture process. This is a potential flaw, not wholely of

data augmentation but splitting the data as a whole. However, real future images, not

those of the test set, are likely to be very similar to those existing already; but with

more data, particularly more class 1+ samples, a more complete sample space can be

drawn from.

Horizontal flips are intended to aid in the recognition of litter as we can develop

better representations of the litter when seen from different perspectives. Vertical flips

however may not be appropriate given the skeletal structure of typical samples —

sea, beach, land; shore; foreshore; back-shore, etc — is then inverted, placing the sea

in the sky. This could harm learning, but also could improve by developing better

representations of features; experimentation will indicate.

Below applies the image generator with the ’flow from data-frame’ approach, where

the data-frame holds image paths and labels.

ImageGenerators.aug_datagen.flow_from_dataframe(dataframe=train_df,

directory=’/home/strychl2/DATA/scrap-1200x800-24/’, class_mode=’categorical’,

color_mode=’rgb’, target_size=(800, 1200), x_col=’rel_fp’,

y_col=’Litter_Intensity’, batch_size=20, interpolation=’nearest’,

shuffle=True)

Augmentation should only be applied to the training set for obvious reasons. Given

our dataframe contains image paths, it is more appropriate than the alternative flow

methods such as flow from directory, requiring images to the isolated by class in separate

subdirectories.

We can use the same image generator for validation and testing, applying no trans-

formations other than rescale. Alternatively we can use one of the many others created,

as long as the same methodology is used — e.g., not under-sampling as we can’t re-

define the training data-frame on epoch end with the image generator; which may be
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inappropriate for this approach.

Below is an image generator that applies only rescaling, to normalise.

no_aug_gen = ImageDataGenerator(rescale=1 / 255.0,

data_format=’channels_last’, dtype=np.float16)

The subsequent generator, to ’flow’ the data sequentially for training, is similar to

the one identified above, just passing either a validation or test data-frame with all

other parameters the same.

For the additive approach, we can generate images to a specified directory as below:

images = df.sample(n=10)

gen = ImageGenerators.aug_datagen.flow_from_dataframe(dataframe=images,

directory=’/home/ulrich/PycharmProjects/scrap/scrap-1200x800-24/’,

save_to_dir=’/home/ulrich/Documents/Project

Stuff/augmented_images/’,

class_mode=’categorical’,

color_mode=’rgb’,

target_size=(800, 1200),

save_prefix=’aug’,

x_col=’rel_fp’,

y_col=’Litter_Intensity’,

batch_size=10,

interpolation=’nearest’,

shuffle=True,

validate_filenames=False)

gen.next()

At the top, for demonstration, we just take a random sample. In application, we

draw only from the training data-frame, and whether we draw randomly or from speci-

fied classes is a question that analysis can answer. Representations of class 0 could still

be improved, and so generating some new class 0 samples may aid performance; but

comparatively class 1/2 + are the prime interests so it’s appropriate to generate pro-
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portionately more of these, e.g., for class m , generate nsyntheticm = nsamplesm for each

selected augmentation, for each desired class. The result is inflated samples to a de-

gree of 3−6, selecting appropriate transformations such as rotations, mirrors, sheering,

brightness, zooms, height/width shifts. This is a significant increase, not equivalent to

the same sample gains with non-synthetic data; but perhaps an improvement.

On applying this, a number of black images are discovered. Alternate normalisations

affect the frequency, some standardise options formatting all pixels to 0; but regardless

of method employed, some images returned black. Manually applying transformations

is a possible solution.

A question then is, when applying additive augmentation, should the generated

images be sampled randomly, shuffled throughout the data, or, as in some academic

applications, start at high proportions and decrease as we near completion of training,

aiding generalisation?

As for live augmentation, the question is what configurations, meaning operations

and vale ranges, will provide best results; with a static augmented set, this is final, and

so should be executed with the best discovered results from experimentation with live

augmentation.

3.3 Models

Convolutional Neural Networks, which are typically applied with only one image input

and one output layer, can be very powerful, learning high level abstractions of input

data. It is highly possible that the image only input version of the CNN could attain the

same performance as the multi-input, using the high level reasoning from later dense

layers to overcome the issue of terrain variety; perhaps checking for the presence of all

filters associated with litter, not requiring a feature to indicate what to expect/what

filters may be more appropriate. Therefore more neurons in the dense layers, and

similarly more dense layers, in addition to more filters in the convolutional layers,

could approximate the proposed multi-input solution to the terrain variation present in

the data. However, perhaps a less complex multi-input model could also achieve this;

which is especially valuable considering how low batch size must be for some proposed
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deep architectures on higher resolution data.

3.3.1 Generators

While several generators are defined for different purposes, the following is an example

of a generator for the image only model which does not utilise over and under sampling;

incorporating these simply means that, in addition to resetting n and breaking the loop

once the data-frame is iterated through, a new random subset of class 0s and 1s are

taken from the master train data-frame, and one is initialised at start. For over-

sampling all to max value, the same generator can be used. Examples can be found in

Appendix A.

Note that this generator cannot be used for keras live image augmentation, requiring

an image generator discussed in 3.2.2.

def data_generator(df, batch_size, mode=’train’, weights=None):

n = 0 # init n at 0

while True: # eternal loop

images, labels = [], [] # a list for images and labels

while len(images) < batch_size: # loops until batch created

if n == df.shape[0]:

n = 0 # reset n

df = df.sample(frac=1).reset_index(drop=True)

break # last batch likely to not have batch size samples

img = prep_image(df.loc[n, ’image_path’])

images.append(img)

labels.append(df.loc[n, ’Litter_Intensity’]) # appends nth label

n += 1 # index goes up each time we add to our batch lists
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yield (np.array(images, dtype=np.float16,

tf.keras.utils.to_categorical(labels, num_classes=classes))

The generator runs through the data-frame iteratively until the last sample is

reached, then resetting the index and shuffling the data-frame, appending batches of

images and labels, pre-processed via ’prep image,’ which loads via PIL, converts to

array and normalises, by methods such as division of max pixel, centre at mean and

min-max, which were experimented with. Labels are one hot encoded to allow soft-max;

for a binary system, one hot can still be used for example with binary cross-entropy

loss, resulting in predictions such as: [0.25, 0.75]; which can equivalently be converted

to just one value. Alternate losses like Area under the Receiver Operating Characteris-

tic can be used in binary classification also, with one output, which can then be used as

the threshold where we decide which class a sample belongs to — this can be altered,

for example were it pushed to 0.3, samples with more than 0.3 estimated probability

would be classified as belonging to class 1. This has a trade-off with samples returned,

in the present case particularly extreme given the support (number of samples) of class

0.

Non-sequential generators are not thread-safe, such as the Image Data Generator

shown in subsection 3.2.2, and so multi-processing must be disabled for use with this

generator.

Both sequential and Image Data Generators (which allow augmentation through

Keras library) were also written, but are mostly trivial as a base class and function is

provided by keras, so they are available in the appendix.

Tweaking a typical generator for multiple inputs is quite simple; for example, re-

ferring back to the generator above, as-well as the image and label lists which are filled

each batch, a third container is inserted, into which the desired numerical features are

appended.

labels = []

batch_df = pd.DataFrame(columns=[’Sector’, ’Lat’, ’Long’]) # the 3

numeric features
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imgs = []

This uses three features, but can be extended or reduced to any number of features.

The appending is as below.

batch_df = batch_df.append(df[[’Sector’, ’Lat’, ’Long’]].iloc[n])

# append 3 numeric features

Yielding the batch then simply includes the numeric data-frame as converted to

an array, with the two inputs passed as a list so the model can separate them from

the labels, and sample weights used to weight costs — particularly useful when using

class weighting as keras functionality currently only applies class weighting to train-

ing, so validation information is unweighted which makes comparison, especially early

stopping, spurious.

sample_weights = np.array([weights[litter_value] for litter_value

in labels]) # weight the batch

yield ([np.array(imgs, dtype=np.float16), np.array(batch_df,

dtype=np.float16)],

np.array(tf.keras.utils.to_categorical(labels,

num_classes=classes), dtype=np.uint8),

sample_weights)

3.3.2 Image Only Networks

The following code is capable of creating a typical CNN architecture with the keras

’functional’ API according to parameters passed in the function call.

As arguments, the model function takes: the pooling layer desired; whether batch

normalisation should be applied; the number of filters for each layer as a tuple, which

gives us the number of convolutional/pooling layer pairs; as-well as the number of dense

neurons (and hence layers); and dropout.

def base_cnn(pooling=AveragePooling2D, batch_norm=True, filters=(32, 64, 128,
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160, 196, 256, 352, 712),

dense_neurons=(8196, 2048, 1024), dropout=0.3):

input_layer = layer = Input(shape=input_shape)

for n_filters in filters:

layer = Conv2D(filters=n_filters, kernel_initializer=’he_normal’,

kernel_size=[3, 3], padding=’same’,

activation=tf.nn.relu)(layer)

if batch_norm is True:

layer = BatchNormalization()(layer)

layer = pooling(pool_size=[2, 2], strides=2)(layer)

layer = Flatten()(layer)

if dropout != 0

layer = Dropout(dropout)(layer)

for neurons in dense_neurons:

layer = Dense(neurons, activation=tf.nn.relu,

kernel_initializer=’he_normal’)(layer)

if batch_norm is True:

layer = BatchNormalization()(layer)

softmax_output = Dense(classes, activation=’softmax’,

kernel_initializer=’he_normal’)(layer)

model = Model(inputs=input_layer, outputs=softmax_output)

print(model.summary())

return model
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By iterating through the filters passed, layers are added, batch normalisation applied

if desired, and the selected pooling layer connected, until we have appended all required

convolutional and pooling layers to the model structure.

Similarly, the dense layers are attached, following the flattening of the feature maps

returned by the final pooling layer, which is necessary to connect with the dense, feed-

forward component for high level reasoning prior to prediction.

This structure allows easy configuration of networks by passing arguments to the

run file, which draws models, generators and utilities from separate modularised files.

Only one function is then required for various models, easing experimentation.

We can then use this to explore the effects of architecture.

3.3.3 Transfer Learning

With transfer learning, we wish to optimise the network initialisation and improve

model performance by importing the basic geometric shapes and edges learned in first

layers of such networks. This optimises training and may aid in the problem of low

samples, as perhaps less data will then be required to create representational filters.

However, as the problem domains of ImageNet pre-trained models, close up and low

resolution images of objects, and the present domain of interest are distinctly separate,

only the earliest layers are likely to be of any use; if at all.

ResNet is a convolutional network utilising a technique called residual learning. This

is unique in the ’layer skips’ applied. Skipping, with double or triple layer skips, reuses

weights from other layers and hence requires less computational power for complex

networks. This allows deeper architectures to be created which do not suffer from

divergence of performance caused by weight saturation.

Loading the pre-trained models available in keras is simple. Note the ’input shape’

parameter, augmenting the structure of the imported model to allow for our significantly

larger images. For this to be effective on the highest resolution image approach, the

features detected would likely have to be relatively small — this model was designed

to identify features in 224× 224 size ImageNet files, the features, for example, cats and
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dogs which take up a large proportion of the frame.

To load only the first layers, that is, the first convolutional and pooling layers along

with activations, padding and batch normalisation, the primary approach, the following

model is created, shown segment by segment:

def first_layers_resnet(input_shape=(800, 1200, 3), pooling=AveragePooling2D,

batch_norm=True,

filters=(32, 64, 64, 96, 128, 128), dense_neurons=(2048, 1024),

dropout=None):

res_model = ResNet50(include_top=False, weights=’imagenet’,

pooling=’avg’, input_shape=input_shape,

classes=classes)

input_layer = layer = res_model.input

for resnet_layer in res_model.layers[1:7]: # adding res net layers (1st

conv pool and actvns etc)

layer = resnet_layer(layer)

del res_model

Similar to the customisable functions generated for the other CNNs, the code here

allows customisation of setup and architecture. The model is imported by calling the

’ResNet50’ function, with the top (prediction layer) removed, the weights for the model

trained on the ImageNet repository, which is the reason for using this model.

The input layer is isolated before iteratively appending the first 6 layers to the

input, which are convolution up to pooling. The resnet model is then deleted to clear

its memory usage.

Then, similar to the previous CNN, we append the convolutional and pooling rows

along with batch normalisation and dropout, if desired; and the dense layers as above.

for n_filters in filters: # adding own layers
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layer = Conv2D(filters=n_filters, kernel_initializer=’he_normal’,

kernel_size=[3, 3], padding=’same’,

activation=tf.nn.relu)(layer)

if batch_norm is True:

layer = BatchNormalization()(layer)

layer = pooling(pool_size=[2, 2], strides=2)(layer)

layer = Flatten()(layer)

if dropout is not None:

layer = Dropout(dropout)(layer) # throwing in dropout after flatten

for neurons in dense_neurons:

layer = Dense(neurons, activation=tf.nn.relu,

kernel_initializer=’he_normal’)(layer)

if batch_norm is True:

layer = BatchNormalization()(layer)

output = Dense(classes, activation=tf.keras.activations.softmax,

kernel_initializer=’he_normal’)(layer)

model = Model(inputs=input_layer, outputs=output)

for layer in model.layers[1:7]:

layer.trainable = False

model.summary()

return model

the model takes, then, the input layer from ResNet, and connects this to the output

of our soft-max model. We set these first layers untrainable so as not to undo the basic

shapes and edges learned when training.
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3.3.4 Multi-Input Models

A Multi-input model — numeric and image array — is possible for the problem domain.

Given the application is intended to process large quantities of images without human

effort, inputting most features present in the supplied volunteer sheets is inappropriate;

for example, we do not wish to input the terrain type (referred to as coastal character)

for every single image, and we cannot reliably auto-detect this — e.g., associate a gps

location with a coastal character, given the inter-sector variety and that flight paths

may change.

Recall that images contain the earlier discussed meta-data known as EXIF, and

this can be automatically stripped from images for use in the model. Sector, to be

autodetected via a function which compares the GPS coordinates of the plane identified

as flying over/near the specified sector, may be a very useful attribute combining this

with features learned by the CNN could lead to interesting inferences; for example, some

sectors may have a particular item commonly occurring, e.g., the timber in sectors 1-10,

and so the CNN may pay more attention to that particular feature: timber in the area

that a shipping box full of timber was lost near. Additionally, the time of day may

impact the CNN such that it devalues the importance of colour later/earlier in the day,

given the de-saturation of darkness. Other examples may arise such that the black

box model learns discrimination that a human observer may overlook. Similarly, the

latitude/longitude features themselves, and the date (rationally one might conjecture

we use the time of year, accounting for seasonal variation, rather than full date; however

we have limited data-points. After a long time of data collection and recompiling the

model, SCRAPbook could have a highly accurate system following methodology such

as this.)

This approach could also increase likelihood of a positive prediction in sectors that

tend to have more litter, which may not generalise to future data. A potential flaw

though is that the model could under-perform when analysing images from sectors with

few samples; on completion of this multi-input models training, it is then appropriate to

analyse performance by sector, particularly on the test set as generalisability is a prime

concern (and more information could promote overfitting in the network), to check for
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a relationship with number of samples in said sector, and perhaps other patterns such

as the backdrop of those areas affecting ability to learn.

?? in Appendix A shows the architecture of the proposed multi-input single output

model; Figure 3.7 shows the summary, including parameter count and layer connections,

input shapes.

The connection here is after the flatten layer, concatenating those inputs (our second

input being just one feature, and adding just one neuron to the following layer.) They

then both can be used for high level reasoning in the dense layers.

Figure 3.7: Multi-Input Model Summary
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From the model’s summary, we can see the number of parameters is relatively

similar to image only networks; therefore, including the numeric information is not

computationally costly. As the number of features in the second, numeric data increase,

this will increase also, but still remain a tiny proportion of parameters in the multi-input

model. Therefore if an any associated performance improvement, even only training

speed, is discovered, extending the configuration to include the numeric data is a worthy

endeavour.
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Analysis

Implementing and evaluating the methodologies proposed in Methodology begins with

the dataset, which we analyse and prepare based on the approaches posed; confronting

issues such as the presence of unsuitable images, duplicates data-frame rows and images,

and the creation of IDs for cross reference between images and spreadsheet entries, and

image compression.

4.1 Building the Dataset

Refer to appendix for this implementation in full, not in the main body due to the

length and the somewhat tangential relevance to the main problem; the following are

presented as significant tools developed..

4.1.1 Tools Developed

Below is defined for consistence in the quality column of the master data-frame.

def fix_quality(qual):

"""

Categorises ’quality’ input to one of 4 values, or nan.

"""

try:

vals = [’h’, ’m’, ’l’, ’n’]
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if str.lower(qual[0]) in vals:

return str.lower(qual[0])

else:

return np.nan

except TypeError:

return np.nan

This works as the notation variances ranged from the full words, e.g., ’higher,’

’Higher,’ and capitalisation: ’m,’ ’M’, ’Mid,’ Medium.’ In some cases, notes were

passed as the volunteer was unsure; we exempt these due to the ambiguity.

This is then used to filter the unusable images, which is trivial.

Removing the unsuitable images is intended to improve training of the network,

preventing conflicting information from being passed to the network; for example, the

classifying of 0 for these images could prevent commonalities with the typical repre-

sentation for class 0 being discovered as the structure of the image changes from the

typical: sea shore, foreshore, back-shore, land. It’s worth noting however that the net-

work in deployment will be passed these images, and the network may underperform

on these samples. Were more data gathered, with consistent recording of the quality

column, or a new column which more explicitly refers to the image’s suitability, a better

network can be trained, perhaps with two outputs: one for accumulations, and one for

suitability.

Primarily the utilities developed strip EXIF data from images for cross-reference

with the data-frame, the function then having an additional purpose to extract this

kind of data for the proposed end application which generates a data-frame for each

image through iteration.

Many tools were created, however the following presented represent the significant

utilities.

The function below, which is half of a larger function to follow, requires the PIL

Image and ExifTags modules. First, the function extracts EXIF data from a given

image, where the function is passed the path to that image.
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def open_image_get_lat_long(image_path):

img = Image.open(image_path)

exif = {ExifTags.TAGS[i]: j for i, j in img._getexif().items() if i in

ExifTags.TAGS}

try:

info = exif[’GPSInfo’]

except KeyError:

lat, long = ’’, ’’

return lat, long

An image is opened via PIL Image by its path. Then a dictionary containing all

available EXIF informations is created. ’Try’ is used to handle the cases where the

images do not have any EXIF data, these images often being from the subset which

have lower resolution and were perhaps captured with a different camera, or at-least

with different settings. The exception returns empty latitude and longitude information

which we can then infer in ID creation that the next best alternative, sector and image

name, be used for cross reference.

Following this, the latitude and longitude are extracted from the dictionary if avail-

able. Some images contain EXIF but not GPS data.

try:

lat = info[2][0][0] + ((info[2][1][0] / info[2][1][1]) / 60)

long = info[4][0][0] + ((info[4][1][0] / info[4][1][1]) / 60)

lat, long = round(lat, 5), -round(long, 5)

except KeyError:

lat, long = ’’, ’’

return lat, long
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Indexes are selected based on exploring the dictionary returned, which contains

further information such as date and time of capture. The longitude is rounded as

a positive and then made negative to maintain consistency with the method used by

Scrapbook in the spreadsheets, the rounding to 5 decimal places also for consistency.

Division by 60 converts to decimal, the notation used in Scrapbook sheets.

To generate this data for each sample, this function is executed iteratively over a set

of file paths. The returned data is then appended to a data-frame. Paths are gathered

through functions such as the following, with more available in the appendix.

def get_paths(img_dir):’

paths = []

for path, dirs, files in os.walk(img_dir, topdown=True):

paths.append(path)

return paths[1:]

This collects subdirectories for later image search. Note that the first path returned

is a null directory so the list is sliced from index 1 upward.

With these, the full paths to each image is gathered.

def get_file_paths():

paths = get_paths()

file_paths = []

for path in paths: # iterate over all paths, including subdirectories

for item in os.listdir(path): # only interested in files

if os.path.isfile(os.path.join(path, item)) and

(item.endswith(’.JPG’) or item.endswith(’.JPEG’)):
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file_paths.append(str(path) + ’/’ + str(item))

return file_paths

IDs are then somewhat trivially generated, and used to assign a path to an image

with a greater degree of certainty than the simpler method of sector and image name.

For example, the following component of the ID creator:

if lat != ’’ and long != ’’:

id = str(sect) + ’~’ + str(file_name) + ’~’ + str(lat) + ’~’ +

str(long)

else:

id = str(sect) + ’~’ + str(file_name)

In cross reference, only the filename and the GPS are used initially as some sectors

are misplaced; but maintaining the sector in the ID allows for easy identification of a

sample. Otherwise, sector and image name is a reasonable alternative.

4.2 Preliminary Analysis of Spreadsheet Features

Given the proposition of a multi-input model, determining whether Sector, latitude

and longitude have a bearing on the levels of intensity is appropriate. While we will

be throwing our data into various neural networks, in what’s often called a ’black box’

approach, it is also still valuable to understand any relationships present among the

features/data.

Figure 4.1 shows samples by sector.

Images per sector vary from around 40 to over 600, but we note sectors 23 and 57

both carried some ambiguity in designation, some images in the sector 23 folder and
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Figure 4.1: Latitude and Longitude vs Litter Accumulations

spreadsheet for example actually belonging to sectors one or two over (thus explaining

the very few samples in sector 20), and similarly sectors 57-60 were lumped together.

As they’re similar locations, captured on the same flight, it doesn’t affect analysis

much. This may explain the high sample counts, that they’re simply amalgamations of

nearby sectors. Sector one at 600 samples, however, is an outlier in terms of number

of samples; the rest typically lie between 50 and 200. The cause may be simply the

length of the area, having more coastline than some other sectors at which the sea is

bordered by cliffs and hence there is no area for which litter to wash up.

An initial idea was to train separate networks for each sector, however the impracti-

cality of training 93 networks (76 practically due to missing sectors and amalgamations)

coupled with the inter-sector variety suggest one network, perhaps with a multi-input

segment providing a means to account for outer-sector variation. Terrains do change

with sector, northern and higher elevation (rocky cliffs for example) coastlines being

56



Chapter 4. Analysis

typically colder and hence more barren; but there are commonalities in all, and learning

from the images in other sectors should carry over, being hugely beneficial to all data

as opposed to separate networks.

Figure 4.2 depicts accumulations by location (of the aircraft) by shade as shown in

the colour bar on the right, lightest values being highest intensity instances. Each point

represents an image captured. The path tracked along the coast outlines somewhat a

map of Scotland, given the aircraft flies around all coastlines.

One anomylous picture appears in the centre of land, perhaps an image taken of

the aircraft crew before flying out, an accidental capture, or a mistaken recording of

coordinates in a spreadsheet; a sample that was not filtered by image quality or lack of

a label.

Figure 4.2: Latitude and Longitude vs Litter Accumulations
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We can see the areas of dense accumulations, likely corresponding to ocean tides,

perhaps sewage flows, rather than nearby population density. A particularly dense

region appears on the top left, with a latitude of around 58◦ and longitude −5.7◦.

While there are many instances of litter dense areas on the east coast, the west coast

appears worse, possibly relating to the ocean currents.

Figure 4.3: Heat Map of Numeric Data-Frame Features

From Figure 4.3, sector, longitude and latitude don’t appear to correlate with litter

intensity. Expectedly, longitude and Sector correlate, however, perhaps surprisingly,

latitude does not, while it does correlate with longitude — referring to Figure 4.2 this

is perhaps caused by the winding costs on the west, meaning several sectors are adjacent

in terms of latitude, thus reducing the correlation.

Despite these factors having negligible correlations with litter intensity, they still

58



Chapter 4. Analysis

may aid the network in the high level reasoning of the dense layers, for example it may

be determined that for areas which typically have low accumulations, a prediction of

class 4 would be unlikely, so could require higher confidence to assign a higher soft-max

value, or just decrease the soft-max prediction.

4.3 Initial Models

The first network, architecture available at subsection A.4.2, applied for the problem

used images of size 512 × 356 to allow faster training and therefore more networks

trained for exploration, as-well as easier transfer learning. There initial models were

largely unsuccessful; primarily due to the limited ID association, using sector and image

name for label association, causing some conflicting information by incorrect labels, and

having far less data in total — some of which being, at the time, unidentified duplicates.

Additionally, the lower resolution, observed to correlate strongly with performance, is

a factor in the low performance.

precision recall f1-score support

0 0.32 0.21 0.26 164

1 0.35 0.24 0.29 184

2 0.21 0.38 0.27 120

3 0.22 0.36 0.27 110

4 0.00 0.00 0.00 32

5 0.00 0.00 0.00 20

avg / total 0.27 0.26 0.25 630

We can see there are only 630 samples in total for this test set, which is 0.2 of the

whole set. All classes perform poorly, the ceiling observed through many runs with this

resolution and shallower architectures — the above is only five convolutional layers.

More layers led to inability to converge in training, suggesting over-complexity.

Shallow networks, which paradoxically can contain more parameters than deeper

ones due to the gradual reduction of parameters in the CNN by creating filters and
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then downsampling, tended to over-fit more so than deeper ones.

The model depicted here quickly reached a full test fit within a few epochs despite

relatively low learning rates explored, the trade-off with very slow loss updates; further

reductions appeared to simply delay the same over-fitting. A ceiling of up to 0.03

precision, recall and f1-score equilibrium was observed. Thus a generalisable, accurate

network could not be drawn from this low-res data, with this architecture. Samples by

class correlates strongly with performance, expectedly.

More layers and filters are necessary to achieve better test results, with at-least seven

to eight convolutional/pooling layers appearing necessary. However, given the final

architecture will require its own optimisation in this regard, explorations for smaller

resolution datasets are prepared only for experimentation and generalised to the high

resolution architectures.

Therefore we proceed to deeper architectures, and higher resolutions.

4.3.1 Deeper Network

Dropout of 0.3 and batch normalisation at all layers was used to mitigate over-fitting.

The architecture most complex, expectedly, over-fits the quickest. Within 800 sam-

ples, at the learning rate of 0.00001, a 0.96 training fit was reached. The presence of

over-fitting is difficult to mitigate, particularly with deeper architectures. With shal-

lower and less filter configurations, divergence in training and over-fitting represent

two ends of the scale from which model’s performed. Addressing this, for example with

data augmentation, can be found in subsection 3.2.2.

In Figure 4.6, we can see the training accuracy quickly rise to a full fit despite

attempts at regularisation and a low learning rate. Weighted accuracy, in orange,

diverges from unweighted and is low at 0.35; the model classifies around 0.6 of samples as

an aggregate correctly. This is caused by the network’s only decent performance being

for class 0, as seen below, and despite the class weighting which leads the network away

from learning representations only for the dominant class. The network has learned to
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Figure 4.4: Deep CNN Training

fit the class 1 + samples in the training set, but has failed to generalise.

Here we can see the performance degrading as the number of samples in each class

decreases. The cause is clear: lack of samples.

precision recall f1-score support

0 0.76 0.66 0.71 1174

1 0.32 0.36 0.34 412

2 0.16 0.17 0.17 152

3 0.13 0.20 0.16 111

4 0.10 0.12 0.11 60

avg / total 0.56 0.52 0.53 1909

Now doing confusion matrix
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[[780 203 65 90 36]

[164 149 46 36 17]

[ 49 57 26 14 6]

[ 27 42 16 22 4]

[ 13 22 9 9 7]]

With the image only, He initialisation, batch normalisation, dropout, regardless of

variation in complexity, number of neurons, the ceiling of performance appears to be

around 0.35 weighted accuracy, meaning adjusted so that each class weighs an equal

component. While the models can classify 0s with somewhat acceptable precision and

recall, the rest of the classes were predicted poorly.

From the confusion matrix, we can see that the most common prediction for all

classes is 0, meaning the kind of learning desired, that the network would mistake

classes for their neighbours more often than farthest classes, is not being achieved.

This is likely related to performance in general, as we can see that class 0 samples were

most commonly mistaken for class 1, which is an acceptable error.

4.3.2 Effect of Sampling Methods

To illustrate the effect of sampling and loss weighting, a typical network configuration

is ran with 5 convolutional/pooling layers rising from 16 filters to 60, and 2 dense layers

of 2048 and 1024 neurons. No class weighting, and no sampling method is employed.

[[0.21140419 0.21032912 0.21088189 0.18906109 0.1783237 ]

[0.21140419 0.21032912 0.21088189 0.18906109 0.1783237 ]

[0.21140419 0.21032912 0.21088189 0.18906109 0.1783237 ]

...

[0.21140419 0.21032912 0.21088189 0.18906109 0.1783237 ]

[0.21140419 0.21032912 0.21088189 0.18906109 0.1783237 ]

[0.21140419 0.21032912 0.21088189 0.18906109 0.1783237 ]]

The above are soft-max predictions for the test set, predicted by the model described

above. Clearly each row is identical, meaning every estimation is identical and therefore
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trivial; this is essentially the mean model.

As explained before, these relatively low complexity networks still over-fit quickly.

But without an equalising sampling technique such as over or under-sampling, and

the absence of a class weighting, the network predicts class 0 and 1 almost unilaterally,

resulting in a misleading test accuracy of close to 60% — but only due to the dominance

of that class. The precision, then, is low.

To introduce a weighting for loss and other metrics in training, the following function

is created:

def get_class_weights(df):

"""

Gets ratios of samples so that they’re worth some value more than class

0, most dominant

"""

cw = [n for n in df.Litter_Intensity.value_counts()]

return dict(zip(range(0, len(cw)), [max(cw)/n for n in cw]))

With this class weighting, (an equalised sampling technique was observed to produce

similar results), the confusion matrix changes as follows:

precision recall f1-score support

0 0.61 0.55 0.58 1172

1 0.21 0.16 0.18 417

2 0.11 0.03 0.04 150

3 0.07 0.03 0.04 111

4 0.05 0.36 0.08 59

avg / total 0.44 0.39 0.40 1909

Now doing confusion matrix

[[646 193 20 28 285]
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[236 65 7 7 102]

[ 85 28 4 1 32]

[ 67 13 4 3 24]

[ 24 9 2 3 21]]

The results are poor still, but the distribution of estimates changes.

The cause of the poor performance here is over-fitting; so, were over-fitting to be

solved, e.g., via data augmentation, the need for class weighting may dissipate.

When using under-sampling, we have the ability to randomly sub-sample class 0

and 1 at each epoch, using, for example, n = 700 samples for each class each epoch.

The result on the distribution of predictions is similar, however leads to spikes at each

re-sampling step.

Figure 4.5: Training Performance for an Under-Sampled Approach
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Given the number of samples per epoch changes according to over and under sam-

pling, the rate of convergence changes in terms of epochs, but remains the same when

considering iterations: there are still the same weight augmentations every n = batch

size iterations. However, with under-sampled data, a new random subset of class 0s

and 1s at each epoch means often a performance spike, occurring in either direction

often, due to learning from the random subset that sometimes does not generalise well;

and sometimes better (to the new subset.) This spike is illustrated on Figure 4.5, which

shows accuracy by batch rather than epoch to demonstrate this.

When balancing samples, each batch then contains a similar proportion of each

class, and hence augments weights (filters) based on losses calculated for samples of

each class at every augmentation. However, using class weighting and leaving the

data as is can lead to more augmentations for class 0; the augmentations should be

more slight as it is under-weighted as compared to other classes. This means that, for

example, one class 4 sample has the same effect on loss calculations as 10 class 0s.

Over-sampling has a computational significance as-well, training repeatedly on the

same images and therefore extending training time per epoch. Less epochs may be

required then, since there is an approximation with more epochs of less samples each.

However, a benefit of balancing samples if done so for validation and training data

also (with care not to over-sample the data-frame prior to segmentation but to each of

the train, validation and testing data-frames) is the validation accuracy monitored gives

a clearer picture of the model’s performance as a whole, the equivalent being a weighted

average of accuracy for the class weighting approach; this is utilised in training, and

the effect of the weighting is clear as iterations pass and the weighted accuracy rises

above the non-weighted accuracy.

All methods are observed not to preserve the inherent distribution of predictions

in the data, the proportion of samples estimated as belonging to a class varying with

accuracy, but not by approach. As seen above, there are several hundred samples

(almost all incorrectly classified) as being class 4 despite only 59 samples of class 4

existing in the test set, and under 300 in the data as a whole.

Therefore, the sampling technique, including using a weighting for loss calculations,
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have similar effects on the distribution of predictions. Similarly, each method is ap-

proximately effective at solving the class imbalance issue, variations mostly being the

number of epochs required.

Attempts at using the custom weighted loss to penalise ’worse’ errors resulted in

divergence and difficulty training. This suggests it may be more appropriate to train for

best performance by class and allow the effect of mislabelling classes as their neighbour

more often to occur naturally as the model learns better representations; which did

occur for class 1 of its own accord. It’s unfortunate however that nudging this in the

right direction, away from inappropriate learning, is unsuccessful.

4.3.3 Architecture Explorations

Figure 4.6: Deep CNN Training
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Achieving a generalisable performance with such imbalanced data is difficult, nearly

all configurations attempted either resulting in non-convergence or over-fitting, like

Figure 4.6, and a val/test performance of half the training performance.

From Figure 4.6, the divergence of accuracy from weighted accuracy appears, coin-

ciding with the network fitting class 0 well, but not others. This is not due to over-fitting

but the lack of samples, most likely. Using a lower learning rate however draws out

similar results, but over a longer time-frame.

To aid this, early stopping is applied, which works well with under-sampled data

as there are more validation checks comparatively to weight augmentations. Deciding

how many epochs, or to what value of loss/acc the network should arrive at before

divergence of validation and training, or non-convergence, is a matter of trial and

error. Broad fluctuations in performance sometimes meant epochs passed without

improvement, sometimes even lower performance, which then recovered and passed

previous levels. Therefore large patience values were necessary.

Batch normalisation in image only networks worked best when placed both after

pooling layers, as opposed to convolutional layers, and in both cases additionally after

dense layers. Average pooling was observed to perform better.

4.4 Binary System

While a multi-class system is desirable, a model which outputs 1, that is, the probability,

of litter presence past some threshold and 0 otherwise would still be valuable. The issue

is that with such vast information in the images, a label with only two possible values

may be insufficient for the network to learn. However, as there is more data per class

due to amalgamation, performance may improve; it may be analogous to the multi-class

system trained with categorical cross-entropy and amalgamating predictions that way,

or result in an independent new approach at learning and hence new results.

A benefit of this is due to the possibility of training metrics like area under the

ROC curve, and the output of a single value, the threshold of which we can use to

explore the balance between sensitivity and specificity, we can explore solutions which

trade-off between False Negatives and True Positives. As for the threshold, recalling
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the domain, it may be better to receive more False Positive and less False Negatives

given missing an accumulation is worse than examining less images. However, this is

only true up to a point, as returning half the dataset defeats the purpose.

The binary model is trained initially with binary cross-entropy; samples with a label

of 2 or more are classed as 1, and classes 0 and 1 are classed 0. As for the distribution,

this means that 5/6 of the data is of class 0. A class weighting, which, while in some

applications may be unnecessary, is here used to prevent the model from outputting a

modal result given that the modal result has been observed to achieve higher accuracy

than best non-trivial solutions.

As with other comparisons, the network configuration is 8 convolutional and pooling

layers with 4096, 2048 and 1024 dense neuron layers; the only difference is the output,

which can be set to either 2 or 1 instead of the usual 5 — when using two, the ouputs

are related in the form: input 1 = 1 − input 2. The full model summary can be seen

in Appendix A subsection A.4.1 with the plot omitted as it is several pages long.

4.4.1 Results

(a) Loss (b) Accuracy

Figure 4.7: Binary Training Performance

After early stoppage at 12 epochs and the restoration of best weights, the model

reaches a training loss of 1.0785, accuracy of 0.6198, weighted accuracy of 0.6915, and

validation loss of 0.8208, non weighted accuracy 0.5943, and weighted accuracy (not

pictured) of 0.708. The class weighting is calculated as before, but in this case weights

class 1 samples around 5× that of class 0.
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Interestingly, as can be seen on Figure 4.7, the validation loss is lower than the

training loss, though training accuracy is higher than validation accuracy; behaviours

like this can suggest over-regularisation, given dropout is not used in validation and

testing. As the same structure and architecture was used with the other comparisons,

this suggests the binary structure has less of a need for regularisation and thus suffers

less from over-fitting. Perhaps the cause is the relative increase in samples by class.

It was observed in experimentation that finding a configuration which maintained a

similar training and validation accuracy was significantly easier with this model than

the multi-class models.

The weighted accuracy however is only one part of the picture, the poor recall for

class 0 and precision of class 1 completing this to give similar results as the equivalent

multi-class results. Were we to condense the multi-class results from earlier sections,

similar results would be obtained.

precision recall f1-score support

0 0.91 0.55 0.68 1586

1 0.24 0.72 0.36 323

avg / total 0.79 0.58 0.63 1909

The precision of class 0 is unimpressive when considering the poor recall value, the

network only catching around half of the class 0 samples. That the network made only

867 predictions for the 1586 true samples (support) is interesting; the predictions do

not conform to the distribution inherent in the data. Perhaps a cost function which

penalised this could result in better test results; however there is no guarantee this

distribution would continue in deployment. Over-fitting to a conformed expectation of

distribution could prevent increases or decreases in litter from being detected. Therefore

the system should remain as is, though requiring more data, given that the only goal

is to reliably separate 0 and 1; of 0 to 5.

Class 1 was mistaken for class 2 more than three times its presence in the test set

— a poor result.
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Overall, the same pattern emerges: over-fitting, performance significantly related to

samples by class. However, on condensing the classes, the recall of class 0 deteriorated,

likely due to the fact that there can be no other misclassification of class 1.

The performance, binary accounted for, is similar to the multi-class model. A

significantly greater amount of class 0s were mistaken for class 1s than the converse,

which correlates to the support — around half are mis-classified.

[[867 719]

[ 91 232]]

The above was trained with binary cross entropy and thus had two ouputs for

the soft-max confidences, which can be thought of as probabilities and is somewhat

redundant as they should equal 1− the other. Training for another metric such as area

under the ROC curve — the plot of sensitivity and specificity — with only one output,

which we can apply a threshold to for our predictions, may be more appropriate as we

can then alter the ratio of false positives to false negatives to result in more predictions

but less false negatives; this aligns more with the problem domain, but given the

poor performance it is not worth further investigation, of which the main point of

experimentation would be the trade-off between images returned as positives and false

positives. Were a reasonable number of images, including low confidence positives,

returned alongside their probabilities, this may suit Scrapbook more in their analysis.

As it stands, the number of false negatives is 91.

As to the question of whether the binary system is more appropriate, given that

the errors are of similar magnitude when accounting for the difference in method, that,

were we to condense the muli-class system and form two classes from that, a similar

result would be returned, the multi-class classification system is recommended moving

forward due to the increase in information it brings, and considering the eventual

purpose of the model prototypes built in this dissertation. The binary system ultimately

gives no advantage over the multi-class, and necessitates information loss; therefore it’s

concluded that the multi-class approach is superior.

Figure 4.8 demonstrates further the poor performance of the binary model, with
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(a) Precision vs Recall (b) Receiver Operating Characteristic

Figure 4.8: Binary Training Performance

subfigure a demonstrating that high values of either type mean low values of the other,

and thus the model does not trade off well with these factors; were the line tracking

not from 0,0 but higher, and to the top right, this would indicate good performance of

the classifier.

As for the ROC curve on subfigure b, which plots False Positives against True

Positives, the ratio of false positives to true positives is below the identity line, which

means the model performs worse than the random solution.

Considering the research question about selecting a threshold which returns predic-

tions of more true positives at the cost of returning more false positives, and images

in general, the sheer number of samples being from class 0 mean that this quickly be-

comes unfeasible. Based on this and the above analysis, a multi-class system is more

appropriate, to be perfected when enough data is gathered.

4.5 Recycling Weights and Models

Transfer learning with ResNet, using imported models entirely and also only the early

weights of those models, was unsuccessful, likely due to the huge domain differences,

and the difference between the architecture and theory behind these models and our

simple CNN.

The complexity of these models, designed for low resolution images, meant they

could not be loaded in their entirety to memory while maintaining a resolution accept-
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able for performance. However, the weights of the early layers are those of interest.

Additionally, VGGNet was attempted, code available in Appendix A subsection A.3.3,

the results of which being extreme over-fitting due to the low batch size of 1 required,

followed by crashes due to memory issues.

When applying transfer learning via the early layers of ResNet, an improvement

in initialisation training accuracy was noted. However, this led to further over-fitting

— faster than in the He initialised networks. Therefore, a lower learning rate is used,

as-well as a reduction in steps per epoch so validation performance can be monitored

more frequently; the over-fitting typically falling between epochs, and hence the best

weights are missed.

An equal sampled split so that 600 of each class, over-sampled and under-sampled

depending on the class, are seen each epoch, and the more numerous classes re-sampled

for the next epoch.

With transfer learning, an accuracy similar to the ’He’ initialised network could not

be reached, nor exceeded. Accuracy, regardless of architecture, learning rate, seemed

to diverge early on, with no generalisable representations learned. Given the imported

layers are frozen, it may be that even the basic geometric features aren’t as optimal as

those learned by the previous CNN.

The predictions themselves oscillated, as can be seen in Figure 4.9, between different

mean class predictions; for example, the 60+% non weighted accuracy coincides with

the y = 0 model. As for the other values, they repeat, as the model switches between

guesses.

precision recall f1-score support

0 0.00 0.00 0.00 1174

1 0.00 0.00 0.00 412

2 0.08 1.00 0.15 152

3 0.00 0.00 0.00 111

4 0.00 0.00 0.00 60
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Figure 4.9: Transfer Learning Failure

avg / total 0.01 0.08 0.01 1909

Only class 2 is predicted. Based on Figure 4.10, the class it landed on is random;

were another epoch to have passed, another class could’ve been selected. The class

weighting prevented the selection of 0 unilaterally.

[[ 0 0 1174 0 0]

[ 0 0 412 0 0]

[ 0 0 152 0 0]

[ 0 0 111 0 0]

[ 0 0 60 0 0]]

Therefore we will not employ transfer learning with ResNet in the final model
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recommendations, given the low performance.

Figure 4.10: Transfer Learning Failure: Loss

The application employed may then be an example of ‘’negative transfer’‘ as dis-

cussed in chapter 2. To further explore transfer learning would then entail the discovery

of a dataset with a domain more similar to the present, such as drone footage or some

other high resolution aerially captured data — but perhaps not satellite data due to

the overhead angle.

The problem of over-fitting remains, not just in this case but with all models ap-

plied. The clear divergence in directions is evidence of significant over-fitting. More

interestingly, the (orange) validation does not tend initially to improve prior to a di-

vergence, but tracks upward; as opposed to a parabolic shape where the initial loss

improves to a point, where the network begins over-fitting and divergence presents.
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When loading the weights from the prior model, trained on the same training set

but with images downsized in the generator for speed, not all layers conform to the

requirements; for example, the flatten layer expects a specific number of neurons which

is different with different input shapes. However, having the weights of every convolu-

tional layer is possible, and beneficial, if only for a stronger initialisation.

4.6 Multi Input Model

Three features are used for exploration of the architecture: sector, latitude and longi-

tude.

The multiple input model, available in full in Appendix A subsection A.3.2, is

implemented via the following simple amendments to the single input model, namely

the creation of an additional input, where ’multi features’ is the number of features

used, passed as an argument, so that the same function can be used to generate multi-

input models with arbitrary numeric/categorical inputs.

image_input = layer = Input(shape=input_shape)

numeric_input = Input(shape=(multi_features, ))

The numeric input is connected to the flatten layer, which connects to the dense

layers. This allows the consideration of these inputs in high level reasoning, ideally

learning that some sectors are prone to both have more litter accumulations in genera

(and vice versa) and also certain types of litter, which could mean that the application

of a filter to the image would be given more confidence.

layer = concatenate([numeric_input, flat])

The inputs are concatenated, adding additional neurons for each input to the flatten

layer. This then connects to the dense layers as normal. Connecting to convolutional

layers is not appropriate, and inclusion at the earliest possible stage is likely the best

approach as the network can consider this information along with the feature maps

from the convolutional/pooling layers. It is possible to add this information as part

of a single input, as another dimension to the array (meaning 4 dimensional), but this
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increases computation time significantly.

Normalisation of latitude and longitude is achieved through min-max inside the

generator.

The architecture used for control purposes is: 8 layers with up to 256 filters, and

three dense layers with 4096, 2048 and 1024 neurons. Average pooling, ’He’ initialisa-

tions for all layers are employed.

To maintain the distribution of classes, no over or under sampling technique is

employed, however the use of class weighting in loss is employed to prevent the learning

of ’mean/mode’ solutions, where high accuracies and low losses can be obtained by

predicting class 0 for the majority of classes, learning past that point being difficult

due to the ceiling of performance observed for the lesser sample quantity classes.

Following presentation of results, comparisons with the single input is made via a

table in terms of aggregate performance; and additionally the relation to performance

by location and sector is explored as compared to the single input model.

Batch normalisation is applied after pooling layers based on results in prior sections,

as-well as a dropout of 0.3 which is observed to balance over-fitting with the divergence

and over regularisation associated with dropout, indicated in experimentation by vali-

dation results which were higher than training — given dropout is only applied during

training.

4.6.1 Results

precision recall f1-score support

0 0.63 0.57 0.60 1174

1 0.21 0.03 0.05 412

2 0.09 0.12 0.10 152

3 0.05 0.25 0.09 111

4 0.03 0.03 0.03 60

avg / total 0.44 0.38 0.39 1909
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[[667 32 126 322 27]

[216 11 51 113 21]

[ 83 5 19 39 6]

[ 62 3 14 28 4]

[ 28 2 8 20 2]]

Figure 4.11: Multi Input Model: Training Accuracy

Figure 4.11 shows the training accuracy as-well as validation, and weighted val-

idation accuracy. The model was restored to best performance due to consequent

over-fitting. Over-fitting begins around epoch 15, while performance on validation still

improves at a reduce rate. Following this, loss stagnated, which was the monitored

training metric, and the model diverges leading to poor performance. This represented

the best results found for the multi-input with three features. For the present task, this
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appeared to represent an improved balance of over-fitting due to the very low learning

rate and further epochs. The model trained for around two hours, diverging past epoch

thirty to worse validation loss, hence the termination and restoration of best epoch.

It is worth noting that a simple architecture as compared to the similar, yet still

subtly poorer, results from the single input architecture; the inclusion of numeric fea-

tures may reduce necessity for neurons in the high level reasoning dense layers. The

postulated reason for this is that the numeric features contribute to the application of

filters to the images in a way that is mostly learned by the dense layers in the single

input but at more cost to computations required and time.

The divergence is more clear in the loss diagram.

Figure 4.12: Multi Input Model: Training Loss

Where the accuracy appears to still trend upward in Figure 4.11, the divergence is
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clearer in Figure 4.12, where validation has diverged significantly from training since

the beginning, indicating over-fitting — as with all models attempted. However, that

validation loss ceases to improve at a certain point, indicates the criteria for stoppage;

which was automatically executed.

Despite the further over-fitting, when treated, the network outperforms the single

input model, reaching a weighted validation accuracy of 0.3613, which is 0.01 higher

than the best accuracy achieved with the single input model with the deepest architec-

ture used. The aggregate precision increases by 0.04 and f1-score by 0.01.

Additionally, on experimentation with architecture and number of filters, it’s dis-

covered that the multi-input model is able to achieve similar or better performance

than the single input with less dense layers: the high level reasoning. It’s possible that

the single input network’s high level reasoning was able to treat the terrain variation

with a similar effectiveness as the high resolution is with less neurons. Therefore using

the multiple input architecture is valuable and perhaps the gathering of more numeric

features will become appropriate with the expansion of the dataset.

Therefore the multi-input model improves over the single, image only input model,

though exacerbating over-fitting, already a serious issue, and reduces the need for

neurons in the dense high level reasoning layers. The final model should then utilise

multiple inputs, including sector, latitude and longitude.

In analysing these results, attention should be paid not only to the general per-

formance as compared to the single input model, but particularly to performance by

sector and by location in coordinates.

Figure 4.13 shows performance by location, where the δ parameter is the difference

from predicted class to actual, giving more information than simply whether the pre-

diction was correct — one away is better than four away. The colour bar is the this

delta factor, while the size of the plot symbol is the number of samples in that sector

(that region). Darker crosses mean worse predictions. There are a few noticeable dark

crosses which are quite small as compared to the rest, but overall the variance is too
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Figure 4.13: Multi Input Model: Performance Map

great to say whether samples by sector effects the accuracy of predictions. Therefore

the samples by class may be a greater factor.

Predictions are worse in high intensity areas, given the model adequately predicts

0 while performing worse on classes 1+.

There doesn’t appear to be much of a difference as compared to single input models,

which supports the idea that the multi-input model allows less dense neurons in the

final layers but does not significantly improve performance by location and sector over

that model. However, with less filters, and simpler architecture required to achieve

similar results, it is a worthy extension to the final model which is constrained by the

hardware ceiling.

"Single Input Comparison"

precision recall f1-score support
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0 0.77 0.28 0.41 1174

1 0.23 0.15 0.18 412

2 0.12 0.38 0.18 152

3 0.11 0.35 0.17 111

4 0.03 0.20 0.06 60

avg / total 0.54 0.26 0.32 1909

[[331 168 235 205 235]

[ 65 63 129 75 80]

[ 19 20 57 26 30]

[ 9 12 37 39 14]

[ 4 8 23 13 12]]

"Multi Input Comparison"

precision recall f1-score support

0 0.84 0.41 0.55 1174

1 0.28 0.26 0.27 412

2 0.15 0.34 0.21 152

3 0.13 0.47 0.21 111

4 0.07 0.23 0.11 60

avg / total 0.60 0.37 0.43 1909

[[481 222 178 180 113]

[ 67 109 91 99 46]

[ 11 33 52 39 17]

[ 8 21 17 52 13]

[ 4 9 13 20 14]]

The final model will then include an additional input with Sector, latitude and

longitude. Further improvements on this in later research could involve the inclusion of

81



Chapter 4. Analysis

further factors such as date, which is inappropriate at this stage with only one date per

sector, gathered on one pass. Cycling observations such as seasoning could be learned,

the model eventually becoming invariant.

4.7 Data Augmentation

Insufficiency of samples has been a prime factor in the performances of models thus

far, with a clear observed correlation between samples per class and performance of

that class. Data Augmentation is one proposed approach to mitigate this, with several

unique implementations discussed in chapter 3.

4.7.1 The Augmented Images

While applying the augmentations manually produced very simple, realistic transfor-

mations, they were perhaps flawed by, for example, no fill by nearest pixel for blank

regions after rotations. Whether it is better to pad with zeros or nearest pixels is un-

clear, given both can give harmful information to the network, but use of the Image

Data Generator

Here are some examples of those generated by the functions created manually for

this project.

On utilising the Image Data Generator keras utility with typical initialisation se-

tups, many images appeared significantly distorted — to the point of blackness in

some images; many appeared useless for analysis, the features being obscured and thus

providing harmful information to the network.

Sub-figure 1 of Figure Figure 4.14 is heavily effected by shear, and the fills of nearest

colour around the regions that would be blank. It is not exactly an ideal representation

of future images, the coastal region being partially obscured.

Sub-figure 2 shows channel shift, damaging the information, though the beach fea-

ture remains. The distortion appears to place more significance on the centre, as these

centre-wise operations should, preserving, in this case, the feature; however in many

other images the features are spread throughout. Overall, these augmentations may be

82



Chapter 4. Analysis

(a) A sheered and Shifted Image (b) Channel and Various Shifts

Figure 4.14: Poor Augmentations

too extreme. A more subtle range both of transformations and their degree of variation

will be compared.

Based on the above, it appears that for the present purpose, augmentation is vul-

nerable to information loss in cases where the important features, litter accumulations,

are not central but instead spread out. Therefore transformations that shift should be

slight, set to a maximum of 0.05 based on visual examinations.

These are highly unlikely representations of future images, having been augmented

to a severe degree. Therefore we proceed with a smaller range of transformations, each

of lesser degree.

Channel shifts are then removed, as-well as ranges tightened on remaining opera-

tions other than brightness which was increased to (-0.6, 0.6) towards network adaption

to lighting variation. Vertical flips, while causing boats to fly, are kept in as they may

improve robustness to angle of objects, allowing better filter representations; though

logically similar images are not going to appear in future data.

Most interesting of Figure Figure 4.15 is sub-figure c, appearing almost as a whole

new image; it’s a simple mirror: a flip around the horizontal axis. The robustness gains

from such augmentations as Figure Figure 4.15 are worthy of the process, aiding the

network in learning filter representations, perhaps like the red box, by exposure to the

feature from new angles, lightings and distances.

Overall, the augmentation is not perfect, though it is automatic.

83



Chapter 4. Analysis

(a) Original (b) Brightness and Standardised

(c) Mirrored, slight Shifts (d) Sheering, Rotation

Figure 4.15: Augmentation Examples

4.7.2 Live Augmentation: Keras Image Data Generator

First, live augmentation was employed via the Keras ImageDataGenerator object,

which performs selected augmentations from defined ranges on every image.

Initial attempts, particularly keras live image generator methods, did not improve

performance by class, resulting in similar to slightly worse overall performances. One

posited reason is the skewed information that can be generated by over-augmentation,

which the image data generator can do by applying many augmentations at once, even

resulting in black images every so often.

Manual augmentation performed similarly to the baseline, and so for space reasons,

expansive augmentation is presented.

4.7.3 Expansive and Dynamic Augmentation

Application of dynamic and expansive augmentation, meaning the dataset is expanded

and not augmented in place as with the live approach, requires more adjustments to

the generator than for live augmentation. The following is the main methodology, with
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the full structure available in the appendix at subsection A.2.1:

First, introduce a variable for how many augmented images are desired per batch.

This starts at 0.8, meaning 80% of the batch will be augmented, drawn randomly from

the training data-frame.

n_augs = round(0.8 * batch_size)

Then as the empty containers for the data of each batch are generated, on each

iteration, a new random sample of the training data is selected for augmentation.

while True: # eternal loop

augs = df.sample(n=n_augs).reset_index(drop=True)

images = [] # a list for image arrays

labels = [] # a list for labels

The augmented portion of the batch is appended first, the idea being that the weight

augmentations may generalise better to see true samples before the weight updates.

At the end of each epoch, the proportion of augs to be initialised at each batch

changes as follows:

n_augs = round(n_augs - (n_augs/total_epochs))

4.7.4 Overall Best

Of the above defined approaches, the manual augmentations with dynamic ratio per-

formed best.

precision recall f1-score support

0 0.83 0.27 0.40 1174

1 0.24 0.16 0.20 412

2 0.09 0.29 0.14 152

3 0.10 0.42 0.16 111
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4 0.04 0.20 0.06 60

avg / total 0.58 0.25 0.31 1909

[[314 161 291 244 164]

[ 44 67 98 112 91]

[ 7 29 44 36 36]

[ 8 13 19 47 24]

[ 4 5 15 24 12]]

Performance by class was still
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4.8 Attempts at Higher Resolution Input Network

(a) Training Loss

(b) Weighted Training Accuracy

Figure 4.16: Hectic High Resolution Training

Figure 4.16 shows a typical implementation of a high resolution input model, this

particular example an 8 layer convolutional/pooling with from 16 up to 256 filters

and two dense layers at 2048 and 1024 with numeric inputs of Sector, Latitude and
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Longitude as-well as images at resolution 2400 × 1600 and live augmentation of every

sample throughout.

As with other attempts at high resolution inputs, the necessary complexity could

not be achieved without running out of memory, at times during training but typically

on loading the model itself. The learning rate for this sample was 1 exp−10, but various

were explored, the following observed: with a batch size of 1, preventing the network

from instantly reaching training accuracies of 1 for most samples meant vast reductions

in learning rate, middle grounds allowing the network some gains in accuracy but to

a ceiling of around 0.23 for 2400 × 1600, which is a little over half the dimensions of

the smallest images provided,the network then unable to improve further and simply

oscillating between different solutions that accurately predict class 0 and no others.

The batch size of 1 is postulated to be a prime factor in this. With 4256 × 2832,

further reductions in complexity are required and the effect is exaggerated; the balances

found between the extreme over-fitting and non-divergence to present solutions which

more complex architectures, particularly with many dense layer neurons and using

downsampled data, outperformed. However, there is likely a resolution size which

performs better than the as yet best demonstrated results, but the observation is the

same; some level of downsampling is necessary unless access to more GPUs is available.

The initial goal was to use mid resolution downsampled images to train, then import

the convolutional layer weights (the filters), to the higher resolution architectures which

can then fine tune and improve performance further. From visual examination of the

images, some level of downgrading is acceptable to maintain object and feature clarity,

but of-course using higher resolution allows more defined features and hence more

accurate filters and feature maps as they’re applied to the image, while necessitating

deeper and more complex architectures to facilitate the learning of said filters.

In application, a major difficulty presented: the reduction in complexity required to

accommodate such high input shapes, meaning the low to mid downsized sample archi-

tecture from which we recycle the weights — same data splits — is necessarily smaller,

and observed to result in weighted accuracy ceilings of around 0.28 weighted accuracy

of the model to be recycled, the typical adequate class 0 performance, sometimes low

88



Chapter 4. Analysis

recall but high precision, and descending but unilaterally poor predictions as samples

per class decreases to class 4, being at best, with augmentation, a significantly poor

f1 score of 0.16, which is the harmonic mean of precision and recall to give a trade-off

between the two as a measure of overall effectiveness for the classifier.

Given to adequately learn from high resolution images, the filters must necessarily

be both larger and more complex, meaning combinations of more filters learned in

earlier layers, so more layers and filters are required in general.

Computational requirements played a role here also, with some models requiring

5 hours for one pass through the data, which typically resulted in either drastic over-

fitting or, more commonly, a near complete fit of class 0, for which most of batches (of

one sample in extreme cases) augmented weight based on learning from only one class.

Therefore the following results present an unfortunate poor solution, the hardware

ceiling being a large factor, and the other related factor being the small batch size

required which leads to less generalisable weight augmentations — much literature on

the topic suggests each batch, at-least in general, should contain at-least one sample

per class, which is not possible with batch sizes of 1. Depending on just how high

the input shape is — experimentation ranged from the maximum 6000 × 4000 with

rescaled 12 megapixel images up to the 24 that the majority of the data conforms to,

to 4256 × 2832, the smallest resolution of the image supplied as is, and 2400 × 1600,

then to the 1200× 800 which was most successful, and the 600× 400 used in the very

beginning.

Overall, this indicates some level of downsampling is acceptable, but depends greatly

on the available machines for training. With more power, deeper architectures can be

trained on the highest resolution images for very long times, likely weeks rather than

days and hours as it has been in the present case with the mid range resolutions.

Given that with the mid range resolution model formulations adequate class 0 per-

formances were achieved, though poorer otherwise, it is probable that with enough

data, downsampling to this or a similar level is acceptable for future models. The effect

of live downsampling is a consideration also; considering continuous recompiling, were

a cloud environment used, with plenty of storage space, for the future application, data
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could be automatically compressed and scaled down via the data generation script.

Additive data augmentation could be applied then too, given increasing the dataset in

a desktop application where storage space may be a concern is inappropriate.

4.9 Combining Approaches: Final Efforts

Figure 4.17: The First Layer Filters of the Multi-Input Network (with Live Augmen-
tation)

Combining the findings of earlier sections, namely that the following are observed

to improve generalisation performance: incorporating numeric and categorical features

(which can be automatically gathered), utilisation of live data augmentation, passing

a class weighting while training to mitigate the effects of imbalanced data, and us-

ing sample wise weighting with generators to monitor for early stoppage without bias
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towards more numerous samples, and iterating through the entire dataset each epoch

without under-sampling due to the observed instability, and without over-sampling due

to the increase in computation costs with no observed benefit over class weighting.

The ultimate performance is:

precision recall f1-score support

0 0.84 0.41 0.55 1174

1 0.28 0.26 0.27 412

2 0.15 0.34 0.21 152

3 0.13 0.47 0.21 111

4 0.07 0.23 0.11 60

avg / total 0.60 0.37 0.43 1909

[[481 222 178 180 113]

[ 67 109 91 99 46]

[ 11 33 52 39 17]

[ 8 21 17 52 13]

[ 4 9 13 20 14]]

This is an overall improvement over best efforts from single input networks and

multi input without augmentation, but still not accurate enough to be deployed.

4.10 Proposed Application

While the model is not yet accurate enough for deployment, were it to be so, the model

can be loaded via keras in a python script, the architecture saved as a function and the

weight saved as ’.hdf5’. It’s then loaded and the user defined directory is searched for

images, which are exposed for prediction iteratively and the results output to a csv for

analysis.

An interface allows the user to open directories containing the new images. They

are then iteratively exposed for prediction, the results collected and displayed in the
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form of a dashboard — showing particularly areas, by sector, that have changed in litter

accumulations, as-well as generally displaying lists of all high accumulation predictions

and their locations by Sector and GPS of image capture.

Prior to compile via PyInstaller, the application consists of modularised python files,

as-well as a keras model file containing the weights. In the modularised python scripts,

there are pre-processing tools for the images, as-well as utilities to automatically gather

EXIF data which is used both as numeric features and for the presentation of results,

given returning an image, which are zoomed in and impossible to identify, for every

positive sample would flood the interface. Therefore the results are presented in a data

structure format and saved as an excel spreadsheet for Scrapbook to then coordinate

their clean ups. Additionally, the application should have a validation interface, where

a small portion of the predicted data can be validated/invalidated, then recompiling

the model with up to date data, maintaining generalisability.

When compiled to an executable by PyInstaller, all packages, such as Tensorflow

and Keras, will be stored in the application, which means a significant amount of space.

The application is intended for use on desktop machines; or later as a cloud application.

One of the greatest concerns in providing an application to Scrapbook to analyse

directories full of images is that, in order to predict, the model must be loaded and

batches, necessarily of size one, provided to the model for prediction. This can consume

a significant amount of memory, the models having millions of parameters. A cloud

based application would be ideal, but otherwise, a simpler model

4.10.1 Demonstration of Concept: Automatically Gathering Data

For a given directory of images, utilising some functions defined throughout ?? and

Appendix A, a data structure can be generated which contains:

• image name — the filename of each image

• file path — where to find the image, both for passing to the generator to gather

predictions, and so users can check the images when analysed, and assess the

situation. In the future, were a highly accurate model developed, a GUI could
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display images when clicked on; this is more user friendly than the generation of

an excel or csv document.

• Sector — the projected sector of the image. If folders are still labelled by sector

in the future, which may not be the case as Scrapbook move further towards

automation, the utilities defined in master csv creation can detect this. However,

the main proposition is the use of the sector detection function, which computes

nearness to all defined Sectors and selects the closest one.

• Date — date of capture. At present, with so few collection dates, this is of limited

utility, and could cause severe over-fitting, and also may not generalise outside

of the test set; considering an image in the test set may be of the same date as

a training sample, with similar coordinates, the network could learn this exactly

and achieve a low loss. This wouldn’t generalise as accumulations change over

time. However in the future, this could be highly valuable. Instead of the date

as a categorical feature, to communicate the cyclical nature of seasonal variation,

the feature could be converted to days since year start — the range (1, 365),

and normalised by division of 365, and used then as a numeric float variable.

The network can then learn seasonal representations. As the number of samples

increase, with many images captured over a long time-frame, the network should

then grow invariant to seasonal change.

• Time of Day — this is useful factor given it accounts for some proportion of

lighting variations, weather being a factor also. With enough samples, incorpo-

rating this feature into the numeric portion of the model, the network could learn

invariability to brightness.

• Latitude — the use of GPS has already been discussed, so it is appropriate only

to add that, with enough samples, the network could associate certain image

representations with particular areas, thus better detecting fluctuations such as

the presence of new litter.

• Longitude — see above. Note that for both longitude and latitude, conversion to
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decimal is used, with consistent method (e.g., of rounding to five decimal places),

and normalised only as part of the model’s pre-processing, either in the generator

or by a data-frame prepare function, so as not to skew the information which will

be dumped to csv.

• Prediction — Lastly, after the generation of the data structure with all the above

for each image provided, the data-frame is exposed for prediction and the results

appended. Predictions will be of classes either 0 to 4 or 0 to 5, depending on how

much class 5 data is gathered; in the early stages, only 0 to 4 is recommended.

The data-frame is then sorted by forecasted litter intensity and saved to both excel

and csv for Scrapbook to then analyse.

Producing infographics is another possibility. Maintaining a data structure with

(ideally validated) accumulations from the last coastline pass will allow the generation

of graphics which convey accumulations by area and other simple comparisons, but

more importantly showing increases — this is especially valuable as the detection of

new accumulations is the prime purpose of the analysis. It is likely that accumulations

from earlier passes will remain, likely with some variation, but exacerbation of a region,

by GPS and by sector, and the presentation of new accumulations , are the main points

of interest.
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Conclusions and

Recommendations

In general, the goal of implementing an accurate prototype model, as proof of concept

that automation can overhaul the current method of analysis, was not achieved. With

such a limited dataset, particularly with so few samples, despite the extensive measures

taken, no methodology was able to produce a viable model; therefore an automated

system cannot be implemented at this stage. However, at a later stage where more data

is available, and perhaps more computing power to train deeper networks on the highest

resolution data, a similar methodology to that proposed may be employed towards the

end of automating these classifications. Multiple input models, as-well as extensive data

augmentation, have been established as performance improving methods, and such it

is recommended they be employed in future attempts towards the same ends as this

dissertation. Additionally, the system is able to classify samples of class 0 with up to

0.9 accuracy, and class 1 with 0.4, a factor directly related to the number of samples,

demonstrating that, in all likelihood, if more samples of the rare classes were gathered,

such a system could be applied. Perhaps with 6000 samples per class, meaning periodic

flybys by Scrapbook over a period which allows time for new accumulations to form,

such a system may then be possible.
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5.1 Reflections on Models Applied

In general, building an accurate system is out of reach with these approaches and

the current data limitations, particularly the low sample sizes. Generalisable patterns

cannot be learned for any class other than 0, which has 6000 samples — the connection

is clear. With high resolution images like these, we require more images per class than,

say, the 700-1000 often recommended for ImageNet, where objects comprise most of

the 224× 224 frame.

Higher resolution images, and hence input shape, meant higher accuracies, but also

required more computational power, accordingly slowing training and necessitating

architecture changes and very low batch sizes — the former limiting performance, and

the latter possibly causing problems with imbalanced data. Perhaps to optimise this,

future attempts at working with this data could apply progressive resizing, where early

stages are trained on downsampled input images to learn the base structure, then, as

time training continues, the resolution scaled up to coincide with the increasing level

of abstraction for features learned by the network.

All networks, regardless of depth and complexity, had a tendency to quickly over-

fit the training data even with regularisation, data augmentation and a low learning

rate. This reflects the dataset, with its significant class imbalance and sample insuffi-

ciency. Varying the structure aids with this, such as the use of batch normalisation and

dropout, but these add only small gains, and further strain to computational power,

making remaining below the hardware ceiling difficult. Ultimately, the optimisation is

in creating the best network that will run — without crashing due to memory alloca-

tions over what’s available. Even a slow training network is adequate as the solution

is worth days, a week of time even if, while monitoring, it continues to improve in

validation.

Architectures with greater depth and more filters performed slightly better in terms

of generalisation than shallower ones, perhaps indicating a high level of abstraction

is necessary for this problem domain. Average pooling proved more effective than

’Max,’ and the ’He Normal’ initialisation outperformed random; the ImageNet first
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layer initialisation from ResNet outperforming both.

Transfer learning was limited in this domain due to the dissimilarity between avail-

able pre-trained models, typically trained on low resolution, object based datasets such

as ’ImageNet,’ and the present domain. The filters from the first convolutional and

pooling layers performed similarly to the Xavier initialisation with an equivalent setup.

This could, however, be due to the particular choice of model; in the future, alternate

pre-trained models could be explored — perhaps inquiries could be made to publishers

of scientific papers on high resolution aerial data.

Learning rate decay was essential in preventing late stage divergence of validation

and training loss, at the stage where base representations of the images were learned

but, likely related to the low number of samples, struggling to find generalisable filters

and instead over-fitting.

Clearly the model struggled to train, most likely caused by the low sample sizes for

classes 1 +, as evidenced by the stronger performance of class 0 in all models attempted.

Samples per sector seemed to be an insignificant factor as compared to samples per

class; the true variation is throughout the data as a whole, not isolated by class.

The basic CNNs over-fit the data quite easily even with batch normalisation and

dropout. A likely reason is the low sample size, not having enough data to learn a

generalisable solution and hence learning too closely the representation of the training

samples.

Multi-input models perform similarly to slightly better than the single input CNNs,

their extra numeric features appearing to allow less complex dense structures prior to

soft-max output, due perhaps to learning a simpler relationship between filters and

GPS, sectors and so forth than the complex one learned in a three layer 8196 neuron

max dense construct.

The multi-input model is more computationally efficient as the equivalently per-

forming single layer CNNs, reaching similar performances without the need for as many

neurons in the dense layers and filters in the convolutional layers. Adding numeric fea-

tures to a CNN barely increases the number of parameters, and so in that regard is

optimal. However, adding numeric features can also increase the tendency for over-
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fitting, so caution should be taken.

Data augmentation improved results, aiding generalisability and improving end ac-

curacy/loss. An operations list of the following was observed to be most effective:

rotation, sheering, brightness, shifts and mirrors. Augmentation particularly improves

performance on low sample classes, and so is especially useful for this problem domain.

5.2 Recommendations

If the current Scrapbook data gathering and volunteer analysis system is to continue

while more images are gathered, by the same methodology as described and applied in

subsection 3.1.1, more labelled data can be gathered, pre-processed and collated, which

is useful in any case; thus demonstrating the concept of the application.

Otherwise, their methodology may change to better suit an application of deep

learning on recommendations; for example, the following: adopt a rigid set of stan-

dards, for features recorded and notation, units and so forth; then we could perform

multiple outputs models, not possible presently as only half the data has a categorial

’litter location’ and ’litter type’ with already too few samples. These would allow ob-

ject detection, a multi-label classification system, and relative object isolation in the

image, further easing analysis by Scrapbook in a final system through the provision of

information additional information.

In any case, with the system proposed, an interface can provide a dashboard showing

areas, and particular samples, estimated as containing accumulations and at what

levels; then images can be accessed to assess the situation and proceed as their current

system dictates — dispatching cleaning volunteers.

Given the primary issue throughout this project has been the low number of sam-

ples for classes other than 0 and perhaps 1, gathering more data, over many dates of

collection, is a strong recommendation. With the huge amount of information con-

tained in these high resolution images, it is likely that a substantially greater amount

of data is required to train a model with high accuracy across classes, a model that

becomes invariant to the many variations future data will come with; e.g., litter against

a background that has never presented in the dataset thus far.
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In Analysis, we’ve shown the number of samples per class is a stronger indicator

of accuracy than the number of samples in a sector; indicating there is only so much

the network can learn from the class 0 samples. More class 2+ samples are necessary,

so that future models may under-sample classes 0 and 1 to an equality with adequate

litter positive samples, while still having enough data to accurately train the model,

simultaneously solving the class inequality and loss issue.

While high resolution images offered a greater accuracy, they also necessitate more

computational power. To achieve the highest accuracy, it may be a worthy investment

to utilise more GPUs, training in parallel — which is possible in keras and tensorflow.

This would allow deeper, more complex architectures to be trained, learning higher

level abstractions of the data and allowing higher batch sizes which may be beneficial

in imbalanced datasets such as this; given the weights, our filters, are augmented at

the end of each batch, with the huge variety in terrain, types of litter, and the still

existing presence of non-representational images, it is perhaps more appropriate to

augment based on the loss of a batch, likely to then learn a more generalisable filter

representation with a random selection of images. Additionally, a future network may

benefit from the creation of a new category, not likely in the litter accumulations feature

but instead a categorical similar to ’image quality’ in some columns of the spreadsheets:

image relevant; the network could then predict this also, isolating these cases, which

are a small minority, but then would be able to offer better predictions to these images

which will still be passed to a future model when tasked with automatically generating

predictions for an entire, unprocessed dataset — necessarily unprocessed given that is

the proposed system’s purpose. If such a network could effectively isolate these images,

performance could improve. This is a good alternative to classifying them a 0, which

could provide conflicting information for the network, of which enough exists already

due to the huge varieties in class 0. Therefore it is recommended that volunteers filling

future spreadsheets include a column such as this, or at-least unilaterally fill in the

image quality column rather than sporadically as it stands.

A further recommendation in this regard is to adopt clearer standards of notation,

preventing issues such as the conflicts in latitude and longitude form: Cartesian vs
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decimal. Also, widespread recording of the litter’s location could allow a multiple input

or ensemble approach that would in effect perform semantic segmentation, producing

a numeric estimation of litter location, while not being able to physically identify the

feature on the image. This could be integrated with a semantic segmentation approach,

but would require many, many labels.

Additionally, a system of file name generation for supplied images is recommended

to prevent issues such as those discussed with the supplied dataset: duplicate image

names. Alternately, the GPS correlation approach proposed and implemented could be

employed as standard; but this may be unnecessary.

Semantic segmentation in general should be attempted if through some effort the

images could be labelled as required. Given the huge amount of information in a 24

MegaPixel image, 24 million pixels, one label is not ideal for the network to learn;

especially with so few samples. Following a semantic segmentation approach may be

better as the network could be trained with external datasets for these features, such as

the TrashNet repository: a dataset containing images of commonly found trash items.

The network could then learn to recognise these features in the high resolution images,

isolating the regions and classifying the images as positive, and expressing the location

in an interactive dashboard for Scrapbook to analyse.

In future, when more data is gathered, a new model should be attempted (of high

resolution input shape, with at-least 9 layers, data augmentation and multiple mixed

type inputs); this model should utilise additional numeric features, not only those

available in the spreadsheets, of which more are required to label new images, but also

other automatically collectable attributes such as weather, in a time series or an average

of a (debatable) period, and tidal formations, indicating when sea litter could wash up

— a weighted ensemble combining the CNN, feed forward networks and tidal models

could prove highly effective.

Data augmentation has been shown to substantially improve results. As the dataset

grows in quantity in the future, the effect may be less marked; but it is still recom-

mended, particularly for the rare classes. Simple types of augmentation such as rota-

tions and mirrors represent well the kind of variation space future samples will originate.
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Live augmentation over static is recommended due to the fact that the network is not

likely to see the exact same image twice, meaning better generalisation as a result of

improved robustness to the variation inherent in the images. Data augmentation is par-

ticularly useful in this case as simple augmentations such as rotation give new synthetic

data within the space of likely future images.

Further to simple augmentation methods, Generative Adversarial Networks could

be explored to create new images in general, but more valuably synthetic class 2-5

accumulation images, further to the end of solving the low samples and class imbalance

issues; however a great deal of computational power is necessary to generate realistic

synthetic images of such high resolution. Therefore further GPUs to train in parallel are

necessary. If successful, though, a synthetic image could be effectively an automated

superimposing of trash features onto class 0 images, creating a realistic representation

of how litter could present on that image’s coastline. The converse is also possible —

remove trash from class 2+ images, but is perhaps less important, unless future surveys

note the accumulations rarely change over time, in which case it would be useful to

have these synthetic varieties in the dataset as we could then better detect if these

coasts were cleaned, meaning they are now class 0s.

As the data grows, the expectation of distribution may be as follows, assuming

similar proportions of litter present and a similar number of photographs are captured:

Therefore an estimate of 5−10 more passes, which does not necessitate one per year

— in-fact, were more passes taken at periods of say, per month, an accurate system

could be developed then.

Finally, on following the suggestions above, if an accurate system is created, the

model should then be wrapped in the cloud or a remote server, continually retraining

on data gathered at specified intervals, towards the end of maintaining generalisability

and staying up to date — particularly relevant given litter can present at new locations

which the network could struggle to learn if not exposed to positive predictions before in

these terrains; the model should then be connected to a desktop application with a user

friendly interface, as Scrapbook have to technical knowledge, with which they will open

folders of images for automatic processing. EXIF information would be automatically
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scraped, as-well as weather and tidal predictions tied to sectors via GPS, a numeric

dataset then auto-created, the features of which all automatically gathered. A loading

bar with a time estimate then would present before a dashboard indicates the findings:

areas with litter that were litter free last survey date shown first, as a location on a map,

sector and prediction, then clickable to view the image itself and perhaps an isolation

of the feature. Optionally, the user could then navigate to a validation/invalidation

interface where a portion of predictions will be assessed, particularly high accumulation

classes, then training the model further with these new image-label pairs. Over time,

the system will improve in accuracy such that it may replace current methods.
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Appendix

A.0.1 Packages

IDE: PyCharm Professional 18.2; Python version: 3.7.1

IDE used to write code on personal machines which was then uploaded to Github,

cloned on the server, and executed remotely via SSH; in terminal. As new files were

written and others updated, Git pulls were used to update the files remotely.

• Pandas: used for processing the excel spreadsheets and csv files, and additionally

for the data-frame structure in data generation.

• Numpy: used for mathematical operations such as ’ceiling’ in calculating number

of batches required to iterate through all available data once (per epoch.) Also

used to convert data to arrays before ’yielding’ with the data generator.

• Tensorflow: a machine learning library, we use tensorflow as the backend for Keras

(described below) to utilise the GPU for ’graphical calculations;’ additionally use

TensorBoard for model structure and performance visualisation

• Keras: a deep learning library available as part of the Tensorflow package and in-

dependently; includes pre-defined convolutional, pooling and dense layers, as-well

as support for multi-input type models via the ’functional’ API. Additionally pro-

vides support for creation of data generators to provide batch sized increments of

input arrays, allowing us to stay beneath the hardware ceiling. Provides function-
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ality to simultaneously generate batches with the CPU while training is executed

on the GPU via the ’train on batch’ and ’fit generator’ approaches. We use both

the ’sequential’ and ’functional’ APIs dependent on the model.

• sklearn: a library with many machine learning tools and metrics to evaluate sets

of predictions

• PIL: an imaging library used to process, save, compress, resize and augment

images; contains the library Image and ImageEnhance, the latter used for example

in brightness enhancement while the former is the basic functionality (e.g., save

images.)

• os: used for searching directories, enabling us to strip information from spread-

sheets and collate many image folders. Primarily used ’list dir’ to list all subdi-

rectories and files in a directory.

• random: used for shuffling lists

• datetime: used for saving log files; attaches the date of execution.

A.1 Data Processing and Creation

The following was written to describe the time consuming process of building a dataset

from the spreadsheets and images, initially loosely associated; it is not necessary to

read in entirety. Some was used in the main body to describe the overall methodology.

The supplied spreadsheets have many inconsistencies in manner of value recording

for many features, and variety of columns included also. For example, many sheets have

no Sector column, others no Survey column, which holds the date of collection, and

some have categorical Litter Present(Y/N). Extensive data preparation was applied to

make best use of all supplied.

Of the features, Litter Intensity is most appropriate for use as our label. A single

label, a numeric category from 0 to 5, for an entire image may be insufficient information

for the network to learn. However, we make the best use of the information available

semantic segmentation would be a far too costly, in terms of time, approach: the
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column Litter Location indicates the location of accumulations, typically holding values

such as backshore, foreshore, and more rarely, literally everywhere; were it possible to

accurately identify the foreshore and the backshore in future unlabelled images, an

approach utilising this information could be useful. However, this would require an

external training set/model, such as edge set detection semantic segmentation networks;

something which could be explored in further work. Given we wish to automate the

en-masse processing of images, this is a column of little use to us in terms of model

building, as we cannot provide a label of this value automatically for future images,

but may be of interest in understanding the problem. However, were it to have more

samples, to have been recorded in all data-frames, it could be used as a second output,

in effect a form of semantic segmentation.

Image Name holds the filename of the image a volunteer has examined. Note there

are duplicates even inside of single spreadsheets in some cases; while in the image

folders, exact duplicate filenames cannot exist.

Image Quality as a column is of particular utility in filtering out unusable images,

of which there are a great many photographs of towns and villages, other random

things which are not coastlines.

Only around a third of the images have a recorded quality, but we can use this to

automatically sift those designated unusable. Many of these are those unrelated, non-

coastal images mentioned, while others are exceptionally blurry or otherwise degraded,

therefore the column is of use. As with most features, a variety of notations were used

by the volunteers, such as the use of N, n, Not Usable for unusable images the following

function catches these varieties and cleans the column (when applied to the dataframe.)

def fix_quality(qual):

"""

Categorises ’quality’ input to one of 4 values, or nan.

:param qual:

:return:

"""

try:
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out = str(qual)

if str.lower(qual[0]) == ’h’:

return ’h’

if str.lower(qual[0]) == ’m’:

return ’m’

if str.lower(qual[0]) == ’l’:

return ’l’

if str.lower(qual[0]) == ’n’:

return ’n’

else:

return np.nan

except TypeError:

return np.nan

Note that entries which do not ascribe to any of the desired forms, commonly in

the form of a textual comment where a volunteer was unsure, are converted to nan,

to give us a clear picture of how many values are missing, and allow conversion to an

appropriate replacement when utilising the column for analysis. Whether the images

should be designated as medium, high or low is largely irrelevant, as it is the unusable

ones of interest. Therefore we fill these entries with ’m’, the medium value, which is

not the mean or mode — high.

The function works by detecting the first letter of the string, in lower case to

catch case differences, and designating the associated value. Images of low quality, on a

cursory examination, tend to be blurred or from an usually far distance, and so we keep

these given the random noise they represent, thus improving the models robustness to

variation.

It is a worthy consideration that while these images are likely to appear in future

data which is processed by the model, and the model may not predict well on these

images. But adding another category of classification, for example, ’irrelevant’ is per-

haps appropriate given so many images were not classified in this regard. The proposed

category could be introduced in one of two ways: as an extra feature of the accumula-
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tion feature, or as a new feature entirely; the latter is more appropriate, particularly if

employing a loss function which suggests non-independence of classes, expressing the

sequentially increasing levels from 0 to 5. This approach is similar to regression in a

sense. Utilising regression, where a float could be returned as an output, could indi-

cate a confidence between two classes. The flaw in this, however, is that some higher

accumulation classifications do not share great commonalities with lower ones, for ex-

ample the presence of widespread shipwreck debris, distinct from the characteristics of

moderate, 1− 2 classes, often with small items such as bottles and plastic bags strewn

throughout the coastline.

However, the assumption could be made that those not classified be designated as

relevant. This is spurious on examination, but with the limited information, may still

improve prediction on these images.

Other columns which required cleaning are the latitude and longitude, which contain

some entries using the Cartesian coordinate system, while the dominant convention is

decimal ( a negative for a westward longitude, for example, which all of Scotland falls

under.) The following function, when applied to the dataframe, corrects these entries

(note that ◦ replaces the ”\degree” in the actual code.

def fix_lat_long(value):

""" checks for degrees and converts if so; also rounds to 5 decimal

places"""

value_original = str(value)

if ’N’ in value_original:

low = value.split(’\degree’)[0].split(’N’)[0]

value = value.split(’\degree’)[1].split(’N’)[0]

value = filter(lambda x: x in "0123456789.", value)

value = ’’.join(value)

value = float(low) + (float(value) / 60)
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if ’W’ in value_original:

low = value.split(’\degree’)[0].split(’N’)[0]

value = value.split(’\degree’)[1].split(’N’)[0]

value = filter(lambda x: x in "0123456789.", value)

value = ’’.join(value)

value = -(float(low) + (float(value) / 60))

else:

try:

if float(value_original) < 0:

value = -round(-float(value_original), 5)

else:

value = round(float(value_original), 5)

except ValueError:

return np.nan

return value

This works by detecting the N and W present in a Cartesian coordinate systems.

Division by 60 converts to decimal. The end value is rounded to 5 decimal places for

consistency. Note the bottom section if statement detecting a negative value (the case

with longitude), this ensures consistency in rounding as the round function rounds up,

which in the case of a negative number rounds, well, still up but the opposite of if it

were a positive number (the program they’ve used to extract the coordinates follows
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this convention.)

Towards automation, this code can be used to fill future spreadsheets or data struc-

tures, ensuring a consistent form and simpler input than the previous extraction, re-

quiring manual input of information.

The dataframe is created by iterating through all spreadsheets, appending each

sheet’s relevant columns to the main dataframe.

for sheet in spreadsheets:

df = pd.read_excel(sheet, sheet_name=’SCRAPbook_image_assessment_form’)

if ’Sector’ not in df.columns: # sector not in some sheets

sect = get_sector(sheet) # get from excel filename if so, reasonable

alternative

If the spreadsheet does not contain a Sector column, we use the next best alternative:

auto detecting it by reading the name of the spreadsheet via the following functions:

def get_number(num):

"""

gets number from mixed char input, returns nan for any unwanted input

:param num:

:return:

"""

try:

num = str(num)

except TypeError:

return np.nan

name = filter(lambda x: x in ’0123456789’, num) # filters all not in the

string

name = ’’.join(name) # converts generator to string

try:
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return int(name)

except ValueError or TypeError:

return np.nan

def get_sector(sheet):

sect = get_number(sheet.split(’/’)[-1])

if np.isnan(sect) is True:

return np.nan

else:

sect = str(sect)[0:2]

return sect

Cases where this approach is problematic are, for example, the spreadsheet titled 57-

60, which we detect as 57. A possible solution is to detect sector by GPS, however this

is vulnerable to changes in flightpath. Therefore this approach is the best alternative

in cases where latitude and longitude are unavailable.

With the creation of unique IDs for all images, we have the ability to detect exact

duplicates. Many of these exist in the spreadsheets cases where perhaps sectors overlap,

and so an image is recorded in several sheets. This reduces the total number of entries

from 14 thousand to ten thousand, in addition to the removal of unusable images,

showing the significant redundancy. Outside of this, we also drop columns with no litter

intensity label, as without a label we cant use these rows for training also considering

the cases where a litter intensity value is not recorded due to the image being unsuitable

for analysis, catching some of the values which do not have an Image Quality value but

are unusable. We also clean other columns via this function, which unifies data type

(e.g., float/integer) for columns:

def column_cleaner(df, col, type_data=’integer’):

df[col] = pd.to_numeric(df[col], errors=’coerce’, downcast=type_data)

df = df[df[col].notna()]
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if type_data is ’integer’:

df[col] = df[col].astype(int)

return df, df[col]

else:

df[col] = df[col].astype(float)

return df, df[col]

The end dataframe, with path added, has the following columns:

Index([’index’, ’Image_Name’, ’Sector’, ’Lat’, ’Long’, ’Image_Quality’,

’Litter_Intensity’, ’Litter_Type’, ’id’, ’path’],

dtype=’object’)

Considering the filtered images, using these to pre-train a network via unsupervised

learning so that it learns representations of the images could be explored, but given

many of these do not conform to the usual image structure, and most of these were

likely unlabelled for a reason, it is risky to do so, perhaps leading the network away

from a better initialisation.

A.1.1 Collating Spreadsheets

In all, the spreadsheets concatenate to form a dataframe with 14755 rows; however,

many are duplicates, likely due to the overlap among ’Sectors;’ a geographical boundary

which segments the coastlines into 93 areas, ’tracking anti-clockwise around Scotland

from 1,’ Sophie stated.

Below we illustrate the variation in features volunteers have recorded values for:

<class ’pandas.core.frame.DataFrame’>

RangeIndex: 14755 entries, 0 to 14754

Data columns (total 7 columns):

Image_Name 14075 non-null object

Image_Quality 11582 non-null object

Lat 13993 non-null object

Litter_Intensity 11650 non-null object

Litter_Type 5567 non-null object
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Long 13992 non-null object

sect 14755 non-null object

dtypes: object(7)

memory usage: 807.0+ KB

Note that many ’sector’ values were automatically assigned by reading/parsing the

’.xlsx’ spreadsheet filenames for the numeric contents, which could be thought of as

a case of ’weak’ labelling — there are inconsistencies. For this reason, later we use

sector as an identifier if and only if there are no latitude and longitude values for

cross-reference; meaning, only for those rows where no GPS info was inserted, and for

images which do not contain any EXIF GPS information (of which there are a subset of

several hundred images, probably captured via a camera either without the capability

or with the function disabled, or lost in some sort of pre-processing); we observe these

images begin typically with ’IMG ’ rather than ’DSC ’.

Image Quality is of great utility for us, bearing in mind the presence of ’stray’

images in the data which do not represent the problem domain: e.g., images of villages

(not coastlines), land artefacts. With this column, we can auto-sift the images from

the data-frame and accordingly not compress and re-save these images prior to sever

upload and model execution. We bear in mind the flaw, however, that future images

will not be able to auto-detect poor quality; given SCRAPbook are moving towards

automation photography, this issue may solve itself: no more photographers capturing

images of interesting things, or their homes!

For later cross-reference, we add a column: ’origin;’ this holds the sheet from which

all labels and other information was taken, allowing examination in cases where perhaps

two images are associated with a label; in most cases this is the result of duplicate

images, while in others it is caused by the small ’sector + img name’ ID images, 23

samples which could not be uniquely identified as they lacked EXIF data; and in some

others, cases where no images were found — the origin sheet then manually checked to

observe this.

Most images in the dataset contain little to negligible litter accumulations, an in-

equality present in many real world machine learning applications. Following full data
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preparation and cleansing we have the following distribution:

Out[48]:

0 6302

1 2217

2 684

3 600

4 206

5 81

Name: Litter_Intensity, dtype: int64

df.shape

Out[47]: (10090, 8)

Note how few samples there are of class 5; if the network fails to discriminate these well

we may amalgamate the class 4 and 5 SCRAPbook have indicated that a forecasting

of the exact categories, while desirable, could be satisfactorily replaced with a model

that returns instead those greater or equal to a class 2 situation, and those predicted

to be a class 0 or 1: a binary system. Accordingly, a combination of 4 and 5 to mean

most serious accumulations beforehand would be acceptable, in hopes this provides an

adequate solution. Following completion of the first networks training phase, the results

of the classification matrix will illuminate the issue. If, for example, the model most

commonly misclassifies a class 5 as a class 4, or even 3, this is less problematic than to

mistake a class 5 for a class 0. An approach which takes into account what could be

abstractly seen as a nesting of classes is sought; a class five is a class 2,3,4 but to a higher

degree: a greater scale. In a sense, the problem is similar to a regression task. Perhaps

then a custom loss function, based on categorical cross-entropy but which exponentially

(or conversely logarithmically), or some other way, assigns a weight misclassifications

of contrast (0 for 5) as being of higher loss than a 2 for 3.

Training the network to improve the accuracy, for example, is then problematic as

the model could achieve over 60% accuracy simply by predicting 0 for every image. It

is appropriate then to consider other metrics by which we should train the network and

monitor the progress of the model.
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A.1.2 Unique ID System

Matching an image with the corresponding label is the utmost priority at this stage. A

single section with incorrect labels, for example due to volunteer error or inconsistency

in input of sector feature in the spreadsheets, provides conflicting information for the

network and thus damages ability to learn the inherent patterns in the data. Creating

a new ID to address the faults of the prior approach, we utilise latitude and longitude

to uniquely identify each image, with the added bonus of identifying duplicate cases

(where the same image is labelled on multiple spreadsheets, often with subtle variation

preventing a duplicate identification); this approach is the most accurate way of iden-

tifying an image due to inconsistencies in recorded sector by volunteers and duplicate

image filenames.

Given IDs have already been assigned for each row in the dataframe, comprised

of the information from the spreadsheets, we now create IDs for every image supplied

to the end of cross referencing. The general approach is to first search the directory

containing the images for each subdirectory, detect the sector through stripping numeric

information from the folder name, then search these subdirectories for images, open

these images using Image package from PIL (Pillow), and using ExifTags from PIL we

open the images to gather the necessary GPS information. To do this, first a function

is made to list all full paths to images in the given directory which contains all images.

def get_paths():

img_dir = ’/media/ulrich/Seagate Expansion

Drive/scrapbookimages2018/2018_SCRAPbook_Images/’

paths = []

for path, dirs, files in os.walk(img_dir, topdown=True):

paths.append(path)

return paths[1:]
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def get_file_paths():

paths = get_paths()

file_paths = []

# file_list = []

for path in paths: # iterate over all paths, including subdirectories

for item in os.listdir(path): # only interested in files

if os.path.isfile(os.path.join(path, item)) and

(item.endswith(’.JPG’) or item.endswith(’.JPEG’)):

file_paths.append(str(path) + ’/’ + str(item))

return file_paths

Then we create a function to open an image from its path and extract the latitude

and longitude, if available.

def open_image_get_lat_long(image_path):

img = Image.open(image_path)

exif = {ExifTags.TAGS[k]: v for k, v in img._getexif().items() if k in

ExifTags.TAGS}

try:

info = exif[’GPSInfo’]

except KeyError:

lat, long = ’’, ’’

return lat, long

115



Appendix A. Appendix

try:

lat = info[2][0][0] + ((info[2][1][0] / info[2][1][1]) / 60)

long = info[4][0][0] + ((info[4][1][0] / info[4][1][1]) / 60)

lat, long = round(lat, 5), -round(long, 5)

except KeyError:

lat, long = ’’, ’’

return lat, long

The above code extracts the information from the EXIF dictionary returned from

the ExifTags object, the indexes referring to the numeric values held in the dictionary,

which includes values such as N for north and W for west (note this makes longitude

negative) and converting from the cartesian coordinate system to decimal by division

with 60. Note that we round the negative value of longitude as the behaviour of

the Python round function always rounds up, and so would essentially round down

our negative number if we rounded negative longitude instead of rounding positive

longitude and taking the negative of this.

Then IDs can be created with this information via the following function:

def create_id_lat_long(image_path):

folder = image_path.split(’/’)[-2]

file_name = image_path.split(’/’)[-1]

try:

sect = str(get_number(folder))[0:2]

except IndexError or TypeError or ValueError:

sect = ’0’
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if np.isnan(int(sect)) is True:

return np.nan

else:

lat, long = open_image_get_lat_long(image_path)

if lat != ’’ and long != ’’:

id = str(sect) + ’~’ + str(file_name) + ’~’ + str(lat) + ’~’ +

str(long)

else:

id = str(sect) + ’~’ + str(file_name)

return id

Note that we create an id with sector and image filename if no gps information is

available from an image; and if we cant detect sector from the folder name (a case of

this is the folder supplied named JPG, containing images of unclear origin however if

these images contain gps info, we will be able to identify them, another positive to this

new extensive approach to image/label association.) Following this, we simply iterate

through the file paths to assign an ID to each path.

def assign_ids():

file_paths = get_file_paths()

ids = []

# n = 0

for path in file_paths:

# n += 1

# print(path, n)
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id = create_id_lat_long(path)

ids.append(id)

return file_paths, ids

The output is then two lists in the desired order.

There are two cases in which latitude and longitude are not available for cross

reference between the excel spreadsheets and the images themselves: volunteer failed

to input available GPS information to spreadsheets, according ID does not incorporate

that information, and image itself has no GPS information different cameras were used

to take photographs on different occasions, learned via exploring EXIF data, and some

have GPS disabled or possibly no GPS ability.

To match an image with the correct label we then have to account for those eventu-

alities: The necessary code must then detect the type of ID it is cross referencing to be

one of two: uses lat and long, or uses only sector and image name, the best alternative.

Initially, a simple approach was attempted: to check if the full IDs match, excluding

sector to catch those cases where sector is incorrectly input to spreadsheets or was not

entered in spreadsheets and so we use the alternative: detecting sector by reading

the spreadsheet filenames, which carries some uncertainty (for example in the case of

spreadsheet 57-60).

This approach originally failed to identify an image path (the function of the ID,

cross referencing) for around 20% of the data. On examination, the cause in most

cases appeared to be small incremental differences in latitude and longitude caused by

differences in behaviour of the Python round function, which was used to round each

latitude and longitude value for both IDs to five decimal places for consistency image

set and spreadsheet set and also in behaviour of conversion from cartesian coordinate

system to decimal; SCRAPbook informed in the interview that freeware was used in

most cases to strip the GPS information from images and input to the spreadsheets,

however some sheets used the cartesian system, which we converted for consistency
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in the spreadsheet dataset creation. To account for this, a delta parameter is created

which is the absolute difference of the latitude and longitude. Care must be taken to

ensure a delta parameter threshold too large is not selected as differences in coordinates

can be minute. To address this, instead of breaking the loop (which iterates over the

full list/series of IDs) when a match is found, the loop continues and adds 1 to a new

variable n matches that is first initialised at 0. A warning is then given if multiple image

paths are found for a pair of dataframe-image set IDs. We can then alter the delta

threshold until there is only one unique match for each image, and identify duplicates

by examination.

In the end, we assign a path to each image in the dataframe, exported as csv, and

our data generation process is no longer vulnerable to incorrect labels outside the case

of volunteer error in assigning a label to that image, which is very possible as zooming

the images is required to satisfactorily examine for the presence of litter.

A.1.3 Matching IDs and Creating Compressed Datasets

Given IDs have already been assigned for each row in the dataframe, comprised of

the information from the spreadsheets, we now create IDs for every image supplied

to the end of cross referencing. The general approach is to first search the directory

containing the images for each subdirectory, detect the sector through stripping numeric

information from the folder name, then search these subdirectories for images, open

these images using Image package from PIL (Pillow), and using ExifTags from PIL we

open the images to gather the necessary GPS information. To do this, first a function

is made to list all full paths to images in the given directory which contains all images.

def get_paths():

img_dir = ’/media/ulrich/Seagate Expansion

Drive/scrapbookimages2018/2018_SCRAPbook_Images/’

paths = []

for path, dirs, files in os.walk(img_dir, topdown=True):
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paths.append(path)

return paths[1:]

def get_file_paths():

paths = get_paths()

file_paths = []

# file_list = []

for path in paths: # iterate over all paths, including subdirectories

for item in os.listdir(path): # only interested in files

if os.path.isfile(os.path.join(path, item)) and

(item.endswith(’.JPG’) or item.endswith(’.JPEG’)):

file_paths.append(str(path) + ’/’ + str(item))

return file_paths

Then we create a function open an image path and extract the latitude and longi-

tude, if available.

def open_image_get_lat_long(image_path):

img = Image.open(image_path)

exif = {ExifTags.TAGS[k]: v for k, v in img._getexif().items() if k in

ExifTags.TAGS}

try:
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info = exif[’GPSInfo’]

except KeyError:

lat, long = ’’, ’’

return lat, long

try:

lat = info[2][0][0] + ((info[2][1][0] / info[2][1][1]) / 60)

long = info[4][0][0] + ((info[4][1][0] / info[4][1][1]) / 60)

lat, long = round(lat, 5), -round(long, 5)

except KeyError:

lat, long = ’’, ’’

return lat, long

The above code extracts the information from the EXIF dictionary returned from

the ExifTags object, the indexes referring to the numeric values held in the dictionary,

which includes values such as N for north and W for west (note this makes longitude

negative) and converting from the cartesian coordinate system to decimal by division

with 60. Note that we round the negative value of longitude as the behaviour of

the Python round function always rounds up, and so would essentially round down

our negative number if we rounded negative longitude instead of rounding positive

longitude and taking the negative of this.

Considering the point of the potential future application would be to expose for

prediction images which have never been processed, functions including the above will

instead be used to automatically gather this information. A great deal of information

can be stripped from EXIF and automatically passed to excel spreadsheets or csv files,

which Scrapbook or another interested party can then view, in effect an auto-generated

report.
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Towards correlating images and labels, though, IDs can be created for images with

this information via the following function:

def create_id_lat_long(image_path):

folder = image_path.split(’/’)[-2]

file_name = image_path.split(’/’)[-1]

try:

sect = str(get_number(folder))[0:2]

except IndexError or TypeError or ValueError:

sect = ’0’

if np.isnan(int(sect)) is True:

return np.nan

else:

lat, long = open_image_get_lat_long(image_path)

if lat != ’’ and long != ’’:

id = str(sect) + ’~’ + str(file_name) + ’~’ + str(lat) + ’~’ +

str(long)

else:

id = str(sect) + ’~’ + str(file_name)

return id

Note that we create an id with sector and image filename if no gps information

is available from an image; and if we cant detect sector from the folder name (a case

of this is the folder supplied named JPG, containing images of unclear origin, later
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revealed as from sectors 20 − 23 however if these images contain gps info, we will be

able to identify them, another positive to this new extensive approach to image/label

association.) Following this, we simply iterate through the file paths to assign an ID

to each path.

def assign_ids():

file_paths = get_file_paths()

ids = []

# n = 0

for path in file_paths:

# n += 1

# print(path, n)

id = create_id_lat_long(path)

ids.append(id)

return file_paths, ids

The output is then two lists in the desired order, which we use to append file paths

to the data-frame; thus having exact matches.

When adding paths to the images, accurately associating a label with an image, a

significant amount of images are lost; however, the cause primarily is the images dont

exist in the supplied dataset. For example, a large number of images, over one thousand

four hundred, from sector 23 are described in the associated spreadsheet, but only

four hundred exist in the supplied folder. Searching by latitude and longitude where

available and excluding sector in pairing of labels with images solves the issue of images

being labelled in the wrong sector spreadsheet or included in the wrong sector folder,

and allow us to definitively say an image does not exist (in the set supplied, images either

in SCRAPbook possession or failed to transfer properly.) The only situation in which

we cannot positively identify a pairing is when latitude/longitude is not available in the
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spreadsheets or the image EXIF; these cases however make up only a small minority

in the null path subset of the dataframe, which has 1414 rows, as opposed to the prior

ID’s 2400.

The subset of null images for sector 57, with the last ID approach over 1000 strong,

notably had the convention of not including the file extension, .JPG or .JPEG, in the

Image Name column. So we augment the dataframe to automatically add this extension

if neither one is present, and use this information together with GPS, ignoring sector,

to identify; this reduced the number of null paths by over 700.

null.Sector.value_counts().iloc[0:5]

Out[14]:

22.0 279

3.0 164

24.0 160

7.0 145

2.0 128

Name: Sector, dtype: int64

Unidentifiable images are now spread out through the data, and are unidentifiable as

no label with their GPS, or name + sector, exist in the data-frame. Quite possibly, they

weren’t supplied, or were lost in data transfer. Particularly, several sectors surrounding

sector 23 are missing many images — these are referred to in a spreadsheet, but are

not present in the supplied images.

For comparison of these approaches, the following table compares the samples re-

turned by using the ID type ’Sector’ + ’Image Name’ in column 1 with the stricter

EXIF approach described above.

Clearly a substantial improvement over the last system, and with the added benefit

of identifying duplicates and preventing, more adequately, any incorrect labelling.
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class Samples (original ID) Samples (EXIF ID)

0 5048 6201
1 1915 2320
2 630 762
3 549 645
4 197 239
5 70 72

Table A.1: Samples in Both ID Approaches

A.2 Generators

A.2.1 Expansive Augmentation Generator

def expansive_aug_gen(df, batch_size, mode=’train’, weights=None,

total_epochs=20):

df_main = df

n_augs = round(0.8 * batch_size)

n = 0 # init n at 0

n_epochs = 0

while True: # eternal loop

augs = df.sample(n=n_augs).reset_index(drop=True)

images = [] # a list for image arrays

batch_df = pd.DataFrame(columns=[’Sector’, ’Lat’, ’Long’]) # the 3

numeric features

labels = [] # a list for labels

if mode == ’train’: # only augment if training

for n_b in augs.index: # putting augmented images at the start of

the batch so generalises better

try:

img = aug_image(augs.loc[n_b, ’image_path’])
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except IOError:

continue

images.append(img)

batch_df = batch_df.append(augs[[’Sector’, ’Lat’,

’Long’]].iloc[n_b])

labels.append(augs.loc[n_b, ’Litter_Intensity’])

while len(images) < batch_size: # loops until batch created

if n == df.shape[0]: # reach end of list; take new subsample of

train set and reset n, end batch

if mode == ’train’: # only under-sample if we are training; new

random subset

df = undersample_df(df_main) # under-samples the training

set

n_epochs += 1

n_augs = round(n_augs - (n_augs/total_epochs))

n = 0 # reset n

break # last batch likely to not have batch size samples

try:

img = prep_image(df.loc[n, ’image_path’]) # in-case image can’t

be loaded for any reason

except IOError: # missing files

n += 1

continue

# Now we append the relevant data to fill the batch

images.append(img) # append array to list
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batch_df.append(df[[’Sector’, ’Lat’, ’Long’]].iloc[n]) # append 3

numeric features

labels.append(df.loc[n, ’Litter_Intensity’]) # appends nth label

n += 1 # index goes up each time we add to our batch lists

# now the batch is created.

labels = tf.keras.utils.to_categorical(labels, num_classes=classes) #

to one hot encoded

if weights is None:

yield ([np.array(images, dtype=np.float16), np.array(batch_df,

dtype=np.float16)],

np.array(labels, dtype=np.uint8))

else:

yield ([np.array(images, dtype=np.float16), np.array(batch_df,

dtype=np.float16)],

np.array(labels, dtype=np.uint8), weights)

A.3 Model Scripts

A.3.1 Variable CNN

def cnn(input_shape=(800, 1200, 3), pooling=AveragePooling2D,

batch_norm=(True, True),

filters=(32, 64, 128, 160, 196, 256, 352, 712),

dense_neurons=(8196, 2048, 1024), dropout=0, stride=2,

classes=5):

"""
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To alter the number of layers, simply pass a different length tuple to

filters and dense neurons. Also takes

pooling argument.

"""

input_layer = layer = Input(shape=input_shape)

for n_filters in filters: # add convolutional and pooling layers with

batch norm before pooling

layer = Conv2D(filters=n_filters, kernel_initializer=’he_normal’,

kernel_size=[3, 3], padding=’same’,

activation=tf.nn.relu)(layer)

if batch_norm[0] is True:

layer = BatchNormalization()(layer)

layer = pooling(pool_size=[stride, stride], strides=2)(layer)

layer = Flatten()(layer) # flatten the pooling output

if dropout != 0:

layer = Dropout(dropout)(layer) # dropout before dense layers

for neurons in dense_neurons: # add the dense layers, optional batch norm

layer = Dense(neurons, activation=tf.nn.relu,

kernel_initializer=’he_normal’)(layer)

if batch_norm[0] is True:

layer = BatchNormalization()(layer)

softmax_output = Dense(classes, activation=’softmax’,

kernel_initializer=’he_normal’)(layer)

model = Model(inputs=input_layer, outputs=softmax_output)
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print(model.summary())

return model

A.3.2 Multi-Input

def multi_input(input_shape=(800, 1200, 3), pooling=AveragePooling2D,

multi_features=3, batch_norm=(True, True),

filters=(16, 32, 64, 128, 160, 196, 256, 352),

dense_neurons=(8196, 2048, 1024), dropout=0,

classes=5):

image_input = layer = Input(shape=input_shape)

numeric_input = Input(shape=(multi_features, ))

for n_filters in filters:

layer = Conv2D(filters=n_filters, kernel_initializer=’he_normal’,

kernel_size=[3, 3], padding=’same’,

activation=tf.nn.relu)(layer)

layer = pooling(pool_size=[2, 2], strides=2)(layer)

if batch_norm[0] is True:

layer = BatchNormalization()(layer)

flat = Flatten()(layer)

layer = concatenate([numeric_input, flat])

if dropout != 0:

layer = Dropout(dropout)(layer)

for neurons in dense_neurons:
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layer = Dense(neurons, activation=tf.nn.relu,

kernel_initializer=’he_normal’)(layer)

if batch_norm[1] is True:

layer = BatchNormalization()(layer)

softmax_output = Dense(classes, activation=’softmax’,

kernel_initializer=’he_normal’)(layer)

model = Model(inputs=[image_input, numeric_input], outputs=softmax_output)

print(model.summary())

# plot_model(model, to_file=’mutli_input_model.png’)

return model

A.3.3 VGG Pre-Trained Model

def vgg16(input_shape):

vgg_model = VGG16(include_top=False, classes=classes, weights=’imagenet’,

pooling=’avg’, input_shape=input_shape)

layer = Flatten()(vgg_model.output)

layer = BatchNormalization()(layer)

layer = Dense(2048, activation=tf.keras.activations.relu,

kernel_initializer=’he_normal’)(layer)

layer = BatchNormalization()(layer)
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layer = Dense(1024, activation=tf.keras.activations.relu,

kernel_initializer=’he_normal’)(layer)

layer = BatchNormalization()(layer)

output = Dense(classes, activation=tf.keras.activations.softmax,

kernel_initializer=’he_normal’)(layer)

model = Model(inputs=vgg_model.input, outputs=output)

model.summary()

return model

A.3.4 Full ResNet

def resnet(input_shape=(800, 1200, 3)):

from tensorflow.python.keras.applications.resnet50 import ResNet50

model = Sequential()

model = ResNet50(include_top=False, classes=classes, weights=’imagenet’,

pooling=’avg’, input_shape=input_shape)

model.add(Flatten())

model.add(BatchNormalization)

model.add(Dense(128, activation=tf.keras.activations.relu,

kernel_initializer=’he_normal’))

model.add(BatchNormalization())

# dense_2 = Dense(1024, activation=tf.keras.activations.relu,

kernel_initializer=’he_normal’)(bn1)

# bn2 = BatchNormalization()(dense_2)
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model.add(Dense(classes, activation=tf.keras.activations.softmax,

kernel_initializer=’he_normal’))

model.summary()

return model

A.3.5 First Layers Transfer Learn for ResNet

def first_layers_resnet(input_shape=(800, 1200, 3), pooling=AveragePooling2D,

batch_norm=(True, True),

filters=(32, 64, 128, 160, 196, 256), dense_neurons=(2048,

1024), dropout=0):

res_model = ResNet50(include_top=False, weights=’imagenet’,

pooling=’avg’, input_shape=input_shape, classes=classes)

input_layer = layer = res_model.input

for resnet_layer in res_model.layers[1:7]: # adding res net layers (1st

conv pool and actvns etc)

layer = resnet_layer(layer)

# del res_model

for n_filters in filters: # adding own layers

layer = Conv2D(filters=n_filters, kernel_initializer=’he_normal’,

kernel_size=[3, 3], padding=’same’,

activation=tf.nn.relu)(layer)

if batch_norm[0] is True:

layer = BatchNormalization()(layer)

layer = pooling(pool_size=[2, 2], strides=2)(layer)
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layer = Flatten()(layer)

for neurons in dense_neurons:

layer = Dense(neurons, activation=tf.nn.relu,

kernel_initializer=’he_normal’)(layer)

if batch_norm[1] is True:

layer = BatchNormalization()(layer)

if dropout != 0:

layer = Dropout(dropout)(layer)

output = Dense(classes, activation=tf.keras.activations.softmax,

kernel_initializer=’he_normal’)(layer)

model = Model(inputs=input_layer, outputs=output)

for layer in model.layers[0:7]:

layer.trainable = False

model.summary()

# plot_model(model, to_file=’transfer_learning_network.png’)

return model

A.4 Model Plots and Summaries

A.4.1 Binary Script

Layer (type) Output Shape Param #

=================================================================
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Figure A.1: Multi-Input Model
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input_1 (InputLayer) [(None, 800, 1200, 3)] 0

_________________________________________________________________

conv2d (Conv2D) (None, 800, 1200, 16) 448

_________________________________________________________________

batch_normalization (BatchNo (None, 800, 1200, 16) 64

_________________________________________________________________

average_pooling2d (AveragePo (None, 400, 600, 16) 0

_________________________________________________________________

conv2d_1 (Conv2D) (None, 400, 600, 32) 4640

_________________________________________________________________

batch_normalization_1 (Batch (None, 400, 600, 32) 128

_________________________________________________________________

average_pooling2d_1 (Average (None, 200, 300, 32) 0

_________________________________________________________________

conv2d_2 (Conv2D) (None, 200, 300, 64) 18496

_________________________________________________________________

batch_normalization_2 (Batch (None, 200, 300, 64) 256

_________________________________________________________________

average_pooling2d_2 (Average (None, 100, 150, 64) 0

_________________________________________________________________

conv2d_3 (Conv2D) (None, 100, 150, 128) 73856

_________________________________________________________________

batch_normalization_3 (Batch (None, 100, 150, 128) 512

_________________________________________________________________

average_pooling2d_3 (Average (None, 50, 75, 128) 0

_________________________________________________________________

conv2d_4 (Conv2D) (None, 50, 75, 128) 147584

_________________________________________________________________

batch_normalization_4 (Batch (None, 50, 75, 128) 512

_________________________________________________________________

average_pooling2d_4 (Average (None, 25, 37, 128) 0

_________________________________________________________________

conv2d_5 (Conv2D) (None, 25, 37, 256) 295168

_________________________________________________________________
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batch_normalization_5 (Batch (None, 25, 37, 256) 1024

_________________________________________________________________

average_pooling2d_5 (Average (None, 12, 18, 256) 0

_________________________________________________________________

conv2d_6 (Conv2D) (None, 12, 18, 256) 590080

_________________________________________________________________

batch_normalization_6 (Batch (None, 12, 18, 256) 1024

_________________________________________________________________

average_pooling2d_6 (Average (None, 6, 9, 256) 0

_________________________________________________________________

conv2d_7 (Conv2D) (None, 6, 9, 256) 590080

_________________________________________________________________

batch_normalization_7 (Batch (None, 6, 9, 256) 1024

_________________________________________________________________

average_pooling2d_7 (Average (None, 3, 4, 256) 0

_________________________________________________________________

flatten (Flatten) (None, 3072) 0

_________________________________________________________________

dropout (Dropout) (None, 3072) 0

_________________________________________________________________

dense (Dense) (None, 4096) 12587008

_________________________________________________________________

batch_normalization_8 (Batch (None, 4096) 16384

_________________________________________________________________

dense_1 (Dense) (None, 2048) 8390656

_________________________________________________________________

batch_normalization_9 (Batch (None, 2048) 8192

_________________________________________________________________

dense_2 (Dense) (None, 1024) 2098176

_________________________________________________________________

batch_normalization_10 (Batc (None, 1024) 4096

_________________________________________________________________

dense_3 (Dense) (None, 2) 2050

=================================================================
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Total params: 24,831,458

Trainable params: 24,814,850

Non-trainable params: 16,608

_________________________________________________________________

A.4.2 Low Res Summary

Layer (type) Output Shape Param #

=================================================================

conv2d (Conv2D) (None, 356, 512, 32) 11648

_________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 178, 256, 32) 0

_________________________________________________________________

conv2d_1 (Conv2D) (None, 178, 256, 64) 51264

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 89, 128, 64) 0

_________________________________________________________________

conv2d_2 (Conv2D) (None, 89, 128, 128) 204928

_________________________________________________________________

max_pooling2d_2 (MaxPooling2 (None, 44, 64, 128) 0

_________________________________________________________________

conv2d_3 (Conv2D) (None, 44, 64, 256) 819456

_________________________________________________________________

max_pooling2d_3 (MaxPooling2 (None, 22, 32, 256) 0

_________________________________________________________________

conv2d_4 (Conv2D) (None, 22, 32, 512) 1180160

_________________________________________________________________

max_pooling2d_4 (MaxPooling2 (None, 11, 16, 512) 0

_________________________________________________________________

flatten (Flatten) (None, 90112) 0

_________________________________________________________________

batch_normalization (BatchNo (None, 90112) 360448

_________________________________________________________________
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dense (Dense) (None, 4096) 369102848

_________________________________________________________________

dense_1 (Dense) (None, 2048) 8390656

_________________________________________________________________

dense_2 (Dense) (None, 1024) 2098176

_________________________________________________________________

dense_3 (Dense) (None, 6) 6150

=================================================================

Total params: 382,225,734

Trainable params: 382,045,510

Non-trainable params: 180,224

_____________________________________

A.4.3 High Res Model Summary

Layer (type) Output Shape Param # Connected to

==================================================================================================

input_1 (InputLayer) [(None, 1600, 2400, 0

__________________________________________________________________________________________________

conv2d (Conv2D) (None, 1600, 2400, 1 448 input_1[0][0]

__________________________________________________________________________________________________

average_pooling2d (AveragePooli (None, 800, 1200, 16 0 conv2d[0][0]

__________________________________________________________________________________________________

batch_normalization (BatchNorma (None, 800, 1200, 16 64

average_pooling2d[0][0]

__________________________________________________________________________________________________

conv2d_1 (Conv2D) (None, 800, 1200, 32 4640

batch_normalization[0][0]

__________________________________________________________________________________________________

average_pooling2d_1 (AveragePoo (None, 400, 600, 32) 0 conv2d_1[0][0]

__________________________________________________________________________________________________

batch_normalization_1 (BatchNor (None, 400, 600, 32) 128

average_pooling2d_1[0][0]
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__________________________________________________________________________________________________

conv2d_2 (Conv2D) (None, 400, 600, 64) 18496

batch_normalization_1[0][0]

__________________________________________________________________________________________________

average_pooling2d_2 (AveragePoo (None, 200, 300, 64) 0 conv2d_2[0][0]

__________________________________________________________________________________________________

batch_normalization_2 (BatchNor (None, 200, 300, 64) 256

average_pooling2d_2[0][0]

__________________________________________________________________________________________________

conv2d_3 (Conv2D) (None, 200, 300, 64) 36928

batch_normalization_2[0][0]

__________________________________________________________________________________________________

average_pooling2d_3 (AveragePoo (None, 100, 150, 64) 0 conv2d_3[0][0]

__________________________________________________________________________________________________

batch_normalization_3 (BatchNor (None, 100, 150, 64) 256

average_pooling2d_3[0][0]

__________________________________________________________________________________________________

conv2d_4 (Conv2D) (None, 100, 150, 64) 36928

batch_normalization_3[0][0]

__________________________________________________________________________________________________

average_pooling2d_4 (AveragePoo (None, 50, 75, 64) 0 conv2d_4[0][0]

__________________________________________________________________________________________________

batch_normalization_4 (BatchNor (None, 50, 75, 64) 256

average_pooling2d_4[0][0]

__________________________________________________________________________________________________

conv2d_5 (Conv2D) (None, 50, 75, 128) 73856

batch_normalization_4[0][0]

__________________________________________________________________________________________________

average_pooling2d_5 (AveragePoo (None, 25, 37, 128) 0 conv2d_5[0][0]

__________________________________________________________________________________________________

batch_normalization_5 (BatchNor (None, 25, 37, 128) 512

average_pooling2d_5[0][0]

__________________________________________________________________________________________________
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conv2d_6 (Conv2D) (None, 25, 37, 128) 147584

batch_normalization_5[0][0]

__________________________________________________________________________________________________

average_pooling2d_6 (AveragePoo (None, 12, 18, 128) 0 conv2d_6[0][0]

__________________________________________________________________________________________________

batch_normalization_6 (BatchNor (None, 12, 18, 128) 512

average_pooling2d_6[0][0]

__________________________________________________________________________________________________

conv2d_7 (Conv2D) (None, 12, 18, 256) 295168

batch_normalization_6[0][0]

__________________________________________________________________________________________________

average_pooling2d_7 (AveragePoo (None, 6, 9, 256) 0 conv2d_7[0][0]

__________________________________________________________________________________________________

batch_normalization_7 (BatchNor (None, 6, 9, 256) 1024

average_pooling2d_7[0][0]

__________________________________________________________________________________________________

conv2d_8 (Conv2D) (None, 6, 9, 256) 590080

batch_normalization_7[0][0]

__________________________________________________________________________________________________

average_pooling2d_8 (AveragePoo (None, 3, 4, 256) 0 conv2d_8[0][0]

__________________________________________________________________________________________________

batch_normalization_8 (BatchNor (None, 3, 4, 256) 1024

average_pooling2d_8[0][0]

__________________________________________________________________________________________________

input_2 (InputLayer) [(None, 3)] 0

__________________________________________________________________________________________________

flatten (Flatten) (None, 3072) 0

batch_normalization_8[0][0]

__________________________________________________________________________________________________

concatenate (Concatenate) (None, 3075) 0 input_2[0][0]

flatten[0][0]

__________________________________________________________________________________________________

dropout (Dropout) (None, 3075) 0 concatenate[0][0]

__________________________________________________________________________________________________
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dense (Dense) (None, 2048) 6299648 dropout[0][0]

__________________________________________________________________________________________________

batch_normalization_9 (BatchNor (None, 2048) 8192 dense[0][0]

__________________________________________________________________________________________________

dense_1 (Dense) (None, 1024) 2098176

batch_normalization_9[0][0]

__________________________________________________________________________________________________

batch_normalization_10 (BatchNo (None, 1024) 4096 dense_1[0][0]

__________________________________________________________________________________________________

dense_2 (Dense) (None, 5) 5125

batch_normalization_10[0][0]

==================================================================================================

Total params: 9,623,397

Trainable params: 9,615,237

Non-trainable params: 8,160

A.4.4 Figures

A.4.5 Tables
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