

Synthesising Images by Imagination

CHEN, Ta-Yu

This dissertation was submitted in part fulfilment of requirements for the degree of

MSc Advanced Software Engineering

DEPT. OF COMPUTER AND INFORMATION SCIENCES

UNIVERSITY OF STRATHCLYDE

August 2019

ii

Declaration

This dissertation is submitted in part fulfilment of the requirements for the degree of MSc of the University

of Strathclyde.

I declare that this dissertation embodies the results of my own work and that it has been composed by

myself.

Following normal academic conventions, I have made due acknowledgement to the work of others.

I declare that I have sought, and received, ethics approval via the Departmental Ethics Committee as

appropriate to my research.

I give permission to the University of Strathclyde, Department of Computer and Information Sciences, to

provide copies of the dissertation, at cost, to those who may in the future request a copy of the dissertation

for private study or research.

I give permission to the University of Strathclyde, Department of Computer and Information Sciences, to

place a copy of the dissertation in a publicly available archive.

(please tick) Yes [✓] No []

I declare that the word count for this dissertation (excluding title page, declaration, abstract,

acknowledgements, table of contents, list of illustrations, references and appendices is

I confirm that I wish this to be assessed as a Type 1 2 3 4 5 Dissertation (please circle)

Signature:

Date: 19/08/2019

Angie Yen

Angie Yen

iii

Abstract

In this dissertation, four GANs models (vanilla GANs, DCGAN, WGAN, and WGAN-GP) were applied

to three different training datasets including MNIST, NLVR, and Oxford-102 flowers. The models were

successfully implemented through Keras and the code of the project can be efficiently executed by Python

scripts. The limitations and the evolution of vanilla GANs were explored in the experiments of the

dissertation. We can find that firstly DCGAN alleviated the non-convergence problem and produced good

quality images on MNIST and Oxford-102 flowers; next, WGAN mitigated the mode collapse problem but

failed on Oxford-102 flowers, using unsuitable method to restrict its discriminator. Lastly, WGAN-GP

overcame all limitations and synthesised compelling images. In the end, DGAN produced the best results

of Oxford-120 flowers among all models and yielded Fréchet Inception Distance (FID) of 79 and a human

error rate of 27.78%. On the other hand, WGAN-GP synthesised the best quality images on MNIST and

NLVR. MNIST got FID of 6 and an error rate of 72.22%. NLVR obtained FID of 94 and an error rate of

19.44%.

iv

Acknowledgements

I would first like to thank my dissertation supervisor Dr. Dmitri Roussinov for his constructive guidance

and professional suggestions helped me finish this work. Finally, I want to thank my parents who supported

me during my studies. Thank you.

v

Contents

List of Figures .. viii

List of Tables ... xi

Chapter 1: Introduction ... 1

1.1 Background of the project ... 1

1.2 Research Objectives .. 4

Chapter 2: Literature Review .. 5

2.1 Background of Generative Models ... 5

2.1.1 Pixel Recurrent Neural Networks (PixelRNN) ... 5

2.1.2 Variational Autoencoder (VAE) ... 6

2.1.3 Generative Adversarial Networks (GANs) ... 8

2.2 Evolution of GANs ... 12

2.2.1 The Main Problems of Vanilla GANs ... 12

2.2.2 Structure Improvement: Deep Convolutional GAN (DCGAN) .. 14

2.2.3 New Estimating Distance: Wasserstein GAN (WGAN) ... 14

2.3 Significant Components of deep neural networks .. 18

2.3.1 Introduction of Common Activation function in Neural Networks 18

2.3.2 Introduction of Common Optimizers in Neural Networks ... 20

2.4 Evaluation of Synthetic Images .. 22

Chapter 3: Research Method ... 24

3.1 Details of GANs models ... 24

3.1.1 Original GANs .. 24

3.1.2 DCGAN .. 25

3.1.3 WGAN .. 26

3.1.4 WGAN-GP .. 27

3.2 Experimental dataset ... 28

3.2.1 MNIST .. 28

3.2.2 NLVR Dataset ... 28

3.2.3 Oxford-102 Flowers .. 29

3.3 The Design of Experiments... 30

vi

3.3.1 Experiment 1: Generate handwritten digits ... 30

3.3.2 Experiment 2: Generate Geometric Shapes .. 31

3.3.3 Experiment 3: Generate Flowers ... 31

3.4 Implement GANs’ models by Keras ... 31

3.4.1 Important components of Keras .. 32

3.4.2 Build a stacked model by Keras .. 33

3.4.3 Train GANs model by Keras .. 35

3.4.4 Build DCGAN’s model by Keras ... 36

3.4.5 Instructions of Running Code ... 38

3.5 Evaluation Methods .. 39

3.5.1 Evaluating Synthesised Images by Human Judgment... 39

3.5.2 Evaluating Synthesised Images by Fréchet Inception Distance (FID) 39

Chapter 4: The Analyse of the Experiments ... 40

4.1 The 1st Experiment: Generate Handwritten Digits .. 40

4.1.1 Vanilla GANs on MNIST ... 40

4.1.2 DCGAN on MNIST .. 42

4.1.3 WGAN on MNIST .. 43

4.1.4 WGAN-GP on MNIST ... 45

4.1.5 Model Comparisons on MNIST .. 46

4.2 The 2nd Experiment: Generate Geometric Graphics ... 49

4.2.1 Vanilla GANs on NLVR ... 49

4.2.2 DCGAN on NLVR.. 51

4.2.3 WGAN on NLVR ... 53

4.2.4 WGAN-GP on NLVR ... 54

4.2.5 Model Comparisons on NLVR ... 56

4.3 The 3rd Experiment: Generate Flower Images .. 59

4.3.1 Vanilla GANs on Oxford-102 Flowers ... 59

4.3.2 DCGAN on Oxford-102 Flowers .. 60

4.3.3 WGAN on Oxford-102 Flowers ... 61

vii

4.3.4 WGAN-GP on Oxford-102 Flowers ... 62

4.3.5 Model Comparisons on Oxford-102 Flowers ... 63

Chapter 5: Conclusions and Recommendations .. 66

5.1 Conclusions ... 66

5.1.1 Problems of Vanilla GANs ... 66

5.1.2 The improvement in GANs training stability .. 66

5.1.3 The improvement in Estimating Method .. 66

5.2 Recommendations ... 67

Bibliography ... 68

Appendix A ... 72

viii

List of Figures

Figure 1-1. Progressively-growing GANs’ concept and its compelling results (Karras et al., 2017) 2

Figure 1-2. The result of CycleGAN presented by Zhu et al. (2017) ... 3

Figure 1-3. The functionalities of FaceApp and the images are created by FaceApp 4

Figure 2-1. A brief structure of AE ... 6

Figure 2-2. The comparison between AE and VAE structure which was reproduced from Lee (2017) 7

Figure 2-3. The concept of GANs. The handwritten digits were produced by the project’s model 8

Figure 2-4. The difference between log(1 − 𝐷𝐺(𝑧)) and -log(𝐷𝐺(𝑧)) when 𝐷𝐺(𝑧) changes 11

Figure 2-5. A value function Vx, y = 𝑥2 − 𝑦2 with a saddle point (x = 0, y = 0) 12

Figure 2-6. The demonstration of the model collapse. It was produced by the project’s models 13

Figure 2-7. Two simple discrete distributions with five possible states ... 15

Figure 2-8. A transport plan of transforming 𝕡𝑔 to 𝕡𝑟 .. 15

Figure 2-9. The illustration of 𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦. The figure was reproduced from (Lee, 2018) 18

Figure 2-10. ReLU function .. 19

Figure 2-11. Leaky ReLU function ... 19

Figure 3-1. The structure of the original GAN which is used in the project ... 24

Figure 3-2. The overall architecture of DCGAN which was reproduced from Radford et al. (2015) 26

Figure 3-3. Handwritten digits which were sampled from MNIST (LeCun et al., 1998) 28

Figure 3-4. Geometric images which were sampled from NLVR dataset (Suhr et al., 2017) 29

Figure 3-5. An original image from NLVR was divided into three parts ... 29

Figure 3-6. The images which were sampled from the final training dataset ... 29

Figure 3-7. Images which were sampled from Oxford-102 flowers (Nilsback and Zisserman, 2008) 30

Figure 3-8. The training process of an original GANs model from the code of the project 35

Figure 3-9. A DCGAN’s generator built by Keras and it is captured from the project’s code 36

Figure 3-10. A DCGAN’s discriminator built by Keras and it was captured from the project’s code 37

Figure 3-11. The instruction of the training module of the project ... 38

Figure 3-12. The instruction of the evaluating module of the project .. 38

Figure 3-13. A question of the project’s questionnaire ... 39

Figure 4-1. The structures of GAN’s model for MNIST .. 40

Figure 4-2. The losses of vanilla GAN trained on MNIST ... 41

Figure 4-3. Handwritten digits generated by vanilla GANs of the project ... 41

Figure 4-4. The structures of DCGAN’s model for MNIST ... 42

Figure 4-5. The losses of DCGAN trained on MNIST ... 42

ix

Figure 4-6. Handwritten digits generated by DCGAN of the project ... 43

Figure 4-7. The structures of WGAN’s model for MNIST .. 43

Figure 4-8. The losses of WGAN trained on MNIST ... 44

Figure 4-9. Handwritten digits generated by WGAN of the project ... 44

Figure 4-10. The losses of WGAN-GP trained on MNIST .. 45

Figure 4-11. Handwritten digits generated by WGAN-GP of the project .. 45

Figure 4-12. The JS divergences of vanilla GANs and DCGAN in MNIST .. 46

Figure 4-13. The image similarity comparison of GANs in MNIST .. 47

Figure 4-14. The image similarity comparison of DCGAN in MNIST .. 47

Figure 4-15. The Wasserstein distances of WGAN and WGAN-GP in MNIST .. 48

Figure 4-16. The image similarity comparison of WGAN in MNIST .. 48

Figure 4-17. The image similarity comparison of WGAN-GP in MNIST ... 48

Figure 4-18. The structures of vanilla GANs’ model for colorful images with 64×64 pixels 49

Figure 4-19. The losses of vanilla GANs trained on NLVR ... 50

Figure 4-20. Geometric graphics generated by vanilla GANs of the project .. 50

Figure 4-21. The structures of DCGAN model for colorful images with 64×64 pixels 51

Figure 4-22. The losses of DCGAN trained on NLVR .. 52

Figure 4-23. Geometric graphics generated by DCGAN of the project.. 52

Figure 4-24. The structures of WGAN model for colorful images with 64×64 pixels 53

Figure 4-25. The losses of WGAN trained on NLVR ... 53

Figure 4-26. Geometric graphics generated by WGAN of the project ... 54

Figure 4-27. The structures of WGAN-GP model for colorful images with 64×64 pixels 54

Figure 4-28. The losses of WGAN-GP trained on NLVR ... 55

Figure 4-29. Geometric graphics generated by WGAN-GP of the project ... 55

Figure 4-30. The JS divergences of the vanilla GANs and DCGAN in NLVR .. 56

Figure 4-31. The image similarity comparison of DCGAN in NLVR.. 57

Figure 4-32. The Wasserstein distances of WGAN and WGAN-GP in NLVR ... 57

Figure 4-33. The image similarity comparison of WGAN in NLVR ... 58

Figure 4-34. The image similarity comparison of WGAN-GP in NLVR ... 58

Figure 4-35. The losses of vanilla GANs trained on Oxford-102 flowers .. 59

Figure 4-36. Flower images generated by vanilla GANs of the project ... 59

Figure 4-37. The losses of DCGAN trained on Oxford-102 flowers .. 60

Figure 4-38. Flower images generated by DCGAN of the project ... 60

Figure 4-39. The losses of WGAN trained on Oxford-102 flowers.. 61

x

Figure 4-40. Flower images generated by WGAN of the project ... 61

Figure 4-41. The losses of WGAN-GP trained on Oxford-102 flowers ... 62

Figure 4-42. Flower images generated by WGANG-GP of the project .. 62

Figure 4-43. The JS divergences of vanilla GANs and DCGAN in Oxford-102 flowers 63

Figure 4-44. The image similarity comparison of DCGAN in Oxford-102 flowers 64

Figure 4-45. The Wasserstein distances of WGAN and WGAN-GP in Oxford-102 flowers..................... 64

Figure 4-46. The image similarity comparison of WGAN-GP in NLVR ... 65

Figure A-1. Instruction of the questionnaire ... 72

Figure A-2. Inviting participants to join the questionnaire ... 73

Figure A-3. The questions for choosing synthesised digit images of GANs and DCGAN 74

Figure A-4. The questions for choosing synthesised digit images of WGAN and WGAN-GP 75

Figure A-5. The questions for choosing synthesised geometric graphics of GANs and DCGAN 76

Figure A-6. The questions for choosing generated geometric graphics of WGAN and WGAN-GP 77

Figure A-7. The questions for choosing generated flower images of GANs and DCGAN 78

Figure A-8. The questions for choosing generated flower images of WGAN and WGAN-GP 79

xi

List of Tables

Table 4-1. FID of vanilla GANs and DCGAN which were trained on MNIST ... 46

Table 4-2. FID of WGAN and WGAN-GP which were trained on MNIST .. 48

Table 4-3. FID of vanilla GANs and DCGAN which were trained on NLVR ... 57

Table 4-4. FID of WGAN and WGAN-GP which were trained on NLVR .. 58

Table 4-5. FID of vanilla GANs and DCGAN which were trained on Oxfor-102 flowers 63

Table 4-6. FID of WGAN and WGAN-GP which were trained on Oxfor-102 flowers 65

1

Chapter 1: Introduction

1.1 Background of the project

Machine learning becomes a buzzword and its influence in many domains has grown rapidly in recent years.

Practical applications of machine learning include face recognition and speech recognition (Lison, 2015).

In general, high-quality features considerably affect the performance of machine learning models (Bantum

et al., 2017). Nevertheless, extracting useful features from raw data needs a lot of domain knowledge. The

difficulty of extracting features especially occurs in the domain where we are hard to describe their features

by ourselves (LeCun et al., 2015). For instance, it is difficult to decide what kind of features could be used

for categorizing the emotion in a speech.

The progress of deep learning overcomes the difficulty and forgoes extracting features from high-

dimensional data. Deep learning is based on artificial neural networks (ANN) (Jain et al., 1996). Unlike ANN

which has few hidden layers, the architectures of deep learning have multiple hidden layers. The well-known

architectures of deep learning include convolution neural networks (CNNs) (LeCun and Bengio, 1995), recurrent

neural networks (RNNs) (Rumelhart et al., 1988) and generative adversarial networks (GANs) (Goodfellow et

al., 2014). Deep learning learns the representation of sophisticated data by computing the weights and the

biases of deep learning models. Through the training of a deep learning model, it can obtain appropriate

internal parameters for its task such as speech recognition. Deep learning makes huge progress in traditional

applications of machine learning such as image classifications. Hu et al. (2018) proposed SENets, a the-

state-of-the-art image classification model, which won the championship of the 2017 ILSVRC.

Recently, researchers have shown an increased interest in generative models with deep learning. A

generative model is a model which takes a training dataset and learns the representation of the data

distribution (Goodfellow et al., 2014). The generative model can generate more new data which conform

with the distribution which learned from the training dataset. For instance, a generative model is fed with

different kinds of flowers images and learns the representation of these images. After the model was trained,

it can generate new flower images which may not exist in the training dataset but conformed with the

distribution of the training dataset.

Famous generative models include Pixel Recurrent Neural Networks (PixelRNN) (Oord et al., 2016),

Variational Autoencoders (VAE) (Kingma and Welling, 2013, Rezende et al., 2014, Kingma et al., 2016)

and Generative adversarial networks (GANs) (Goodfellow et al., 2014). The project focuses on GANs,

which is the most well-known breakthroughs in the domain of generative models recently. A discriminator

and a generator which are neural networks constitute GANs. The functionality of the generator is generating

2

artificial data. And then, the discriminator takes the synthesised data and distinguish the real data from fake

data. The objective of the generator is misleading the discriminator to do the wrong judgment. In other

words, the purpose of the discriminator is increasing the accuracy of distinguishing fake data. Through the

competition mechanism, GANs can learn the distribution of the training dataset. In respect of generating

images, GANs can generate sharper images and produce them more quickly than VAE and PixelRNN

respectively.

Along with the progress of GANs, it can be applied on different kinds of applications. There are two

common applications demonstrated below. The first and the most common application is the image

synthesising. Radford et al. (2015) proposed DCGAN which successfully introduced convolution neural

networks into GANs. It provided a group of stable training architectures which can amplify the scale of

GANs models in terms of the synthesising images. Because of the success of DCGAN, many GANs models

applied the architecture of DCGAN on their models (Goodfellow, 2016). Progressively-growing GANs

Karras et al. (2017), proposed in 2017, can synthesis images with 1024 × 1024 pixels. It demonstrated the

capability of generating compelling pictures with high-resolution. Its strategy is using the architecture

which is composed of multiple GANs with different scales. In the beginning of the model, the generator

generates low-resolution images with 4 × 4 pixels. After the model converges, the scale of the model is

increased to produce 8 × 8 pixels images. Through the same process mentioned above, the resolution of

generated images can be scaled up to 1024 × 1024 pixels progressively. Figure 1-1 presented the concept

of progressively-growing GANs and its compelling results.

Figure 1-1. Progressively-growing GANs’ concept and its compelling results (Karras et al., 2017)

3

The second application is the image-to-image translation. The application is translating input images into

output images. The purpose of the task is to find the mapping relationship between input and output. Zhu

et al. (2017) proposed CycleGAN, which is a successful method to learn the mapping between two image

distributions. The architecture of CycleGAN is dual. An image Input_A from domain 𝐷𝐴 is fed to the first

generator 𝐺𝐴→𝐵 whose job is to transfer images from the domain 𝐷𝐴 to the domain 𝐷𝐵. The output of 𝐺𝐴→𝐵

is Generated_B and it is fed into the second generator 𝐺𝐵→𝐴 and the discriminator of 𝐷𝐵 respectively. The

output of 𝐺𝐵→𝐴 is Cycle_A and its constraint is as close to Input_A as possible. On the other hand, an image

Input_B from the second domain 𝐷𝐵 is fed into generator 𝐺𝐵→𝐴 and is transferred to the domain 𝐷𝐵 to get

and image Generated_B. The remaining steps are as same as above. The strength of CycleGAN is that it

can be trained on unpair datasets. For instance, if you want to transfer horses to zebras, you don’t need to

prepare a bunch of horse images with corresponding zebra images. The image of horses and zebras can be

collected independently.

Figure 1-2 demonstrated the fascinating result of CycleGAN.

Figure 1-2. The result of CycleGAN presented by Zhu et al. (2017)

In the current market, a mobile application called FaceApp is a good example for applying the techniques

of GANs in practice. This app is developed by Russian company Wireless Lab and uses machine learning

to synthesising high-quality photographs in terms of face transformations (Vincent, 2017). Its functions

include changing hair color, swapping genders, changing users’ age and adding a smile on your face. The

result is compelling and highly competitive in the market. Figure 1-3 illustrated the capability of FaceApp.

4

Figure 1-3. The functionalities of FaceApp and the images are created by FaceApp

1.2 Research Objectives

Although the rise of GANs brought a new perspective to generative models, it has two major problems.

One is that the original GANs is hard to be trained. If the architecture of the model is not good enough,

GANs may not converge. The other is the mode collapse problem. It means that models only generate a

few types of data. To solve the problems, many advanced GANs-based models were proposed. The

dissertation focused on utilizing these advanced GANs models to synthesis images and comparing their

performance with the original GANs. The objectives of the dissertation are demonstrated below:

1. Implementing proposed GANs models including the original GAN, DCGAN, WGAN, and

WGAN-GP

2. Implementing an automatic model training procedure which includes loading training datasets,

training generative models, recoding training losses, generating synthesising images and evaluating

models’ performance.

3. Using vanilla GANs as a baseline and trained all GANs models on three datasets including MNIST,

NLVR, and Oxford-102 flowers.

4. Executing the performance comparison amongst models included the quality of synthesising

images and the convergence of the models

The dissertation was divided into five chapters. The 1st chapter as presented above. Next, the 2nd chapter

presented the relevant literature. The literature review presented three common generative models including

PixelRNN, VAE, and GANs, and the detail of GANs was emphasized. Then, the 3rd chapter demonstrated

the implementation of the generative models and the designs of the experiments. After that, the results of

the experiments were analyzed in the 4th chapter. Finally, the conclusions and the recommendations were

presented in the 5th chapter.

5

Chapter 2: Literature Review

The chapter reviewed three common generative models including PixelRNN, VAE and GANs. Moreover,

the details about the evolution and the evaluation method of GANs were demonstrated.

2.1 Background of Generative Models

This section demonstrated three common generative models which used the deep learning technique to

construct their structures and trained their models. All of the models adopted different perspectives to learn

the data distribution which they wanted to catch.

2.1.1 Pixel Recurrent Neural Networks (PixelRNN)

PixelRNN is an explicit density generative model and its likelihood can be computed tractably (Oord et al.,

2016). It is based on fully visible belief networks (FVBNs) which can transfer an n-dimensional probability

distribution 𝑥 into a product of 1-dimensional probability distributions based on the chain rule of

probability (Frey et al., 1996). The task of PixelRNN is generative colorful images with 𝑛2 pixels and the

probability of each image 𝑝(𝑥) can be shown as equation (2-1. The distribution of each pixel

𝑝(𝑥𝑖|𝑥1, … , 𝑥𝑖−1) is composed of the distribution of previous pixels with three channels including Red (R),

Green (G), Blue (B). Hence, the distribution of the i-th pixel can be rewritten as equation (2-2.

 𝑝(𝑥) = ∏𝑝(𝑥𝑖|𝑥1, … , 𝑥𝑖−1)

𝑛2

𝑖=1

 (2-1)

 𝑝(𝑥𝑖|𝑥<𝑖) = 𝑝(𝑥𝑖 , 𝑅|𝑥<𝑖)𝑝(𝑥𝑖 , 𝐺|𝑥<𝑖 , 𝑥𝑖 , 𝑅)𝑝(𝑥𝑖 , 𝐵|𝑥<𝑖 , 𝑥𝑖 , 𝑅, 𝑥𝑖 , 𝐺) (2-2)

PixelRNN has twelve two-dimensional Long Short-Term Memory (LSTM) layers. LSTM is a variation of

Recurrent Neural Network (RNN) to overcome the gradient vanishing problem (Hochreiter and

Schmidhuber, 1997). The layers of LSTM be composed of memory cells which be connected recurrently.

Memory cells consist of three gate units including input gate, forget gate and output gate and the mechanism

of LSTM makes models have the capability for capturing long-range context over time. To obtain the

interdependence between pixels in mages, PixelRNN adopts spatial LSTM (Graves and Schmidhuber, 2009)

with two dimensions.

PixelRNN provides two types of LSTM layers including Row LSTM and Diagonal BiLSTM. In Row

LSTM, the probability of the i-th pixel is composed of the input-to-state component and the recurrent state-

to-state component with one-dimensional convolution which is size is 𝑘 × 1 (𝑘 ≥ 3). The Row LSTM can

compute features row by row. However, it only refers to partial previous pixels instead of the whole

6

previous pixels. In Diagonal BiLSTM, the probability of i-th pixel is composed of the input-to-state

component with 1 × 1 convolution kernel and the state-to-state component with 2 × 1 convolution kernel.

Diagonal BiLSTM can compute features along the entire diagonal of an image at once and captures the

information of whole previous states for the i-th pixel. Hence, the training speed of the Diagonal BiLSTM

model is faster than the model based on Row LSTM. Oord et al. (2016) also propose a simplified

architecture, PixelCNN which is based on Convolutional Neural Networks (CNN) and shares the same core

components in the PixelRNN. PixelCNN has fifteen fully convolution layers without any pooling layers.

The advantage of PixelCNN is computing the whole features of an image at once and has the fastest training

speed among the models mentioned above. Nevertheless, PixelCNN only refers to the neighbor input-to-

state component. The main drawbacks of both PixelRNN and PixelCNN are a new image must be generated

pixel by pixel and it cost a lot of time.

2.1.2 Variational Autoencoder (VAE)

Before illustrating the idea of variational autoencoders (VAE), the concept of autoencoders needs to be

explained first. Traditionally, an autoencoder (AE) consists of an encoder and a decoder and they are neural

networks. An encoder takes a high-dimensional vector 𝑋as input and produces a lower-dimensional vector

Code as output after going through a neural network encoder. Code is fed into a decoder which can output

a vector �̂� which its dimension is as the same as the encoder’s input. A brief structure is shown in Figure

2-1. There are some constraints such as the dimension of Code is smaller than input data 𝑋 . A

undercomplete autoencoder is an example of this type of constraint. This constraint makes autoencoders

extract significant components of input data rather than just simply copy the input. The undercomplete

autoencoders use linear activation functions and apply mean-square error (MSE) between 𝑋 and �̂� as a

reconstruction loss which needs to be minimized. Traditionally, AE is used to reduce the data’s dimension

and makes a training process for a machine learning model more efficiently. The technique of AE has been

developed since the 1980s (Bourlard and Kamp, 1988, Hinton and Zemel, 1994) and it has been expanded

with deep neural networks (Hinton and Salakhutdinov, 2006).

Figure 2-1. A brief structure of AE

7

Variational autoencoders (VAE) are the variations of autoencoders and famous as a generative model.

Figure 2-2 demonstrates the difference between AE and VAE in terms of structures. VAE introduces three

new terms including a mean code μ, a standard deviation σ and a noise being sampled from a normal

distribution to concrete the code layer. Each component of the code can be demonstrated as equation (2-3.

Besides minimizing a reconstruction loss, VAE needs to minimize a latent loss. According to the derivation

in the paper of Kingma and Welling (2013), the latent loss function can be demonstrated as shown in

equation (2-4 when noise is drawn from a normal distribution. Both decoders of AE and VAE can generate

new instances but VAE can create more various instances because of being a probabilistic model.

Figure 2-2. The comparison between AE and VAE structure which was reproduced from Lee (2017)

 𝑐𝑖 = 𝑒𝑥𝑝(𝜎𝑖) × 𝑒𝑖 + 𝜇𝑖 (2-3)

 ∑(𝑒𝑥𝑝(𝜎𝑖) − (1 + 𝜎𝑖) + (𝜇𝑖)
2)

3

𝑖=1

 (2-4)

8

2.1.3 Generative Adversarial Networks (GANs)

GANs is a deep learning generative framework proposed by Goodfellow et al. (2014). GANs consists of

two multilayer perceptrons including a generator and a discriminator. The goal of the generator is capturing

the distribution of the training data and the task of the discriminator is telling real data which is from training

dataset from fake data which is generated by a generator. Figure 2-3 demonstrates the concept of GANs.

The generator is fed with a noise vector which is sampled from a normal distribution and generates a fake

image. Meanwhile, a real image is sampled from the training dataset and the discriminator tell which one

is real by assigning real images to 1 and fake images to 0. In the training process, these two models compete

iteratively until the generator fully learns the representative of training data and the discriminator gets 50%

accuracy on telling fake data. The above description is a simple way to illustrate the idea of GANs. A further

illustration is demonstrated below.

Figure 2-3. The concept of GANs. The handwritten digits were produced by the project’s model

The distribution of the generator is 𝑃𝑔 which learns from data 𝑥 with the input noise vector 𝑧 drawn from

noise prior distribution 𝑝𝑧(𝑧). Through the generator 𝐺(𝑧; 𝜃𝑔) with parameters 𝜃𝑔, an input noise vector 𝑧

can be mapped to data space. Further, the discriminator 𝐷(𝑥; 𝜃𝑑) with parameter 𝜃𝑑 produces a single

scalar to show the probability of a data 𝑥 from training dataset 𝑝𝑑𝑎𝑡𝑎. 𝐷(𝑥) is trained to have the best

capability which can assign 1 to the data from 𝑝𝑑𝑎𝑡𝑎 and 0 to the data from 𝑃𝑔. In the meanwhile,𝐺(𝑧) is

trained to minimize the value of log(1 − 𝐷(𝐺(𝑧)). It means that the purpose of 𝐺(𝑧) is maximizing the

probability of 𝐷(𝑥) been cheated. Obviously, GANs is not a simple optimization problem with a single

objective. Instead, it is a minimax optimization problem with a value function V(D, G) and can be

mathematically demonstrated as equation (2-5.

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] +𝔼𝑧~𝑃𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] (2-5)

9

To solve this minimax optimization problem, 𝐺 is fixed and we focus on max
D

V(D, G) firstly. The following

derivation demonstrates what is the global optimum for the discriminator 𝐺.

𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] +𝔼𝑥~𝑃𝑔(𝑥)[𝑙𝑜𝑔(1 − 𝐷(𝑥))]

= ∫ 𝑃𝑑𝑎𝑡𝑎(𝑥)
𝑥

𝑙𝑜𝑔𝐷(𝑥)𝑑𝑥+∫ 𝑃𝑔(𝑥)
𝑥

𝑙𝑜𝑔(1 − 𝐷(𝑥))]𝑑𝑥

= ∫ [𝑃𝑑𝑎𝑡𝑎(𝑥)
𝑥

𝑙𝑜𝑔𝐷(𝑥) + 𝑃𝑔(𝑥)𝑙𝑜𝑔(1 − 𝐷(𝑥))]𝑑𝑥

To get maximal 𝑉(𝐷, 𝐺), the optimal 𝐷∗ needs to maximize 𝑃𝑑𝑎𝑡𝑎(𝑥)log𝐷(𝑥) + 𝑃𝑔(𝑥)log(1 − 𝐷(𝑥))

with given 𝑥. To make the following derivation more readable, 𝑃𝑑𝑎𝑡𝑎(𝑥), 𝑃𝑔(𝑥) and𝐷(𝑥) are replaced as

a, b and D respectively. Hence, we can get an equation 𝑓(𝐷) = 𝑎log(𝐷) + 𝑏log(1 − 𝐷). To get the optimal

𝐷∗ which makes 𝑓(𝐷) is maximal, we can calculate the derivative of 𝑓(𝐷)with respect to 𝐷 and find 𝐷∗

which makes the derivative is zero.

𝑑𝑓(𝐷)

𝑑𝐷
= 0 ⟺ 𝑎 ×

1

𝐷
+ 𝑏 ×

1

1 − 𝐷
× (−1) = 0

⟺ 𝑎 ×
1

𝐷∗
= 𝑏 ×

1

1 − 𝐷∗

⟺ 𝑎(1 − 𝐷∗) = 𝑏𝐷∗

⟺ 𝐷∗ =
𝑎

𝑎 + 𝑏

⟺ 𝐷∗(𝑥) =
𝑃𝑑𝑎𝑡𝑎(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝑔(𝑥)

From above derivation, we can get Proposition 1.

Proposition 1. When 𝐺 is fixed, the optimal 𝐷 is

 𝐷∗(𝑥) =
𝑃𝑑𝑎𝑡𝑎(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝑔(𝑥)
 (2-6)

Therefore, 𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺) is equal to 𝑉(𝐷∗, 𝐺) and 𝑉(𝐷∗, 𝐺) can be rewritten as the following:

V(D∗, G) = 𝔼x~Pdata(x) [log
Pdata(x)

Pdata(x) + Pg(x)
] + 𝔼x~Pg(x) [log

Pg(x)

Pdata(x) + Pg(x)
]

= ∫ Pdata(x)
x

log
Pdata(x)

Pdata(x) + Pg(x)
dx + ∫ Pg(x)

x

log
Pg(x)

Pdata(x) + Pg(x)
 dx

= ∫ Pdata(x)log
Pdata(x) ×

1
2

(Pdata(x) + Pg(x)) ×
1
2

dx + ∫ Pg(x)log
x

Pg(x) ×
1
2

(Pdata(x) + Pg(x))
1
2

x

dx

10

= −2log2 + ∫ Pdata(x)log
Pdata(x)

(Pdata(x) + Pg(x)) ×
1
2

dx + ∫ Pg(x)log
x

Pg(x)

(Pdata(x) + Pg(x))
1
2

x

dx

We can observe that the above second and third term are Kullback–Leibler divergence (KL) respectively.

𝑉(𝐷∗, 𝐺) = −2𝑙𝑜𝑔2 + 𝐾𝐿 (𝑃𝑑𝑎𝑡𝑎 ‖
𝑃𝑑𝑎𝑡𝑎 + 𝑃𝑔

2
) + 𝐾𝐿 (𝑃𝑔 ‖

𝑃𝑑𝑎𝑡𝑎 + 𝑃𝑔

2
)

= −2𝑙𝑜𝑔2 + 2𝐽𝑆𝐷(𝑃𝑑𝑎𝑡𝑎‖𝑃𝑔)

The above second term is Jensen-Shannon divergence (JSD) between two distribution Pdata and Pg. After

finding the optimal discriminator D∗ , we can obtain the optimal G∗ by minimizing V(D∗, G). Because

Jensen-Shannon divergence is non-negative, and it is zero when two distributions are equal, the global minimum

V(D∗, G) occurs when Pdata is equal to Pg.

The high-level overview of the training process is shown below:

1. Initialize the discriminator D0 and the generator G0 with parameters 𝜃𝑑
0 and 𝜃𝑔

0 respectively.

2. Train GAN with n times iteration and do the below step within each iteration:

▪ Block 1: repeat k times

i. Sampling m examples x1,x2,…,xm from the data distribution 𝑃𝑑𝑎𝑡𝑎(𝑥)

ii. Sampling m noise vectors 𝑧1, 𝑧2, …, 𝑧𝑚 from the noise prior distribution 𝑃𝑧(𝑧)

iii. Updating the parameters of discriminator by ascending the gradient of 𝑉�̃� with the

learning rate 𝜂:

𝑉�̃� =
1

𝑚
∑[log𝐷(𝑥𝑖) + log (1 − 𝐷 (𝐺(𝑧𝑖)))]

𝑚

𝑖=1

𝜃𝑑 = 𝜃𝑑 + 𝜂∇𝑉�̃�(𝜃𝑑)

▪ Block 2: execute once

i. Sampling m noise vectors 𝑧1, 𝑧2, …, 𝑧𝑚 from the noise prior distribution 𝑃𝑧(𝑧)

ii. Updating the parameters of generator by descending the gradient of 𝑉�̃� with the

learning rate 𝜂:

𝑉�̃� =
1

𝑚
∑[log(1 − 𝐷 (𝐺(𝑧𝑖)))]

𝑚

𝑖=1

𝜃𝑔 = 𝜃𝑔 − 𝜂∇𝑉�̃�(𝜃𝑔)

11

Nevertheless, at the beginning of the training process, the gradient of 𝐷(𝐺(𝑧)) is small because 𝐺 is not

good enough to defraud 𝐷. In other words, the changing of log(1 − 𝐷(𝐺(𝑧))) is slight and it makes the

training process inefficient. To learn the model quickly in the early stage, log(1 − 𝐷(𝐺(𝑧))) can be

replaced with −log(𝐷(𝐺(𝑧)) in practice. Figure 2-4 illustrates the difference these two functions when

𝐷(𝐺(𝑧)) changes and it can be observed that the changing of the function -log(𝐷(𝑥)) is more severe

initially. Hence, minimizing −log(𝐷(𝐺(𝑧)) is more productive than minimizing log(1 − 𝐷(𝐺(𝑧))).

Figure 2-4. The difference between log(1 − 𝐷(𝐺(𝑧))) and -log(𝐷(𝐺(𝑧))) when 𝐷(𝐺(𝑧)) changes

Along with GANs arises, it provides solutions to problems encountered by existing generative model:

1. Complex Markov chains don’t be used in the training process. Instead, GANs can be simply trained

with backpropagation.

2. GANs can generate more sharp images than those created by traditional models such as VAE.

3. GANs is unsupervised machine learning and it can be widely applied in unsupervised and semi-

unsupervised machine learning domain.

4. The generator of GANs can generate images in parallel unlike traditional model such PixelRNN

which needs to generate images pixel by pixel.

However, vanilla GANs still has some issues:

1. The training of GANs model may not converge. Sometimes, the gradient descent may not work

well in the training process. It means that the training of GANs is more unstable than some

traditional models such as VAE and PixelRNN.

2. GANs models encounter gradient vanishing and mode collapse problems.

To solve these issues and improve the performance of GANs, many novel GANs-based models were

proposed. The following chapters illustrated how do these models deal with the problems of GANs.

12

2.2 Evolution of GANs

2.2.1 The Main Problems of Vanilla GANs

I. Non-convergence

The training objective of GANs is finding a Nash equilibrium in a minmax game. Figure 2-5 demonstrates

a value function V(x, y) with a saddle point (x = 0, y = 0) is a solution of a Nash equilibrium. When G is

fixed, D cannot get more benefit as it changes around the saddle point, and vice versa. However, in the

training process of GANs, both the update of the generator and discriminator may eliminate each other’s

progress. It makes the loss of models fluctuate and the training process hard to converge. At the early stage

of GANs’ research, researchers used human monitoring to check the quality of images at a certain interval

and terminate the model training if necessary. The method was not a scientific method and did not solve

the root cause.

Figure 2-5. A value function V(x, y) = 𝑥2 − 𝑦2 with a saddle point (x = 0, y = 0)

II. Mode collapse

Another problem of vanilla GANs is mode collapse. It means that the generator only generates one or a few

modes of the data. A complete mode collapse seldom occurs, but a fractional mode collapse happens often

in practice. For instance, a GANs model learns a digital image representation from MNIST (LeCun et al.,

1998) dataset which contains digits from 0 to 9. As shown in Figure 2-6, a model with mode collapse

generated numerous number eight instead of the other nine different number. Instead, a model without mode

collapse can generate all digits. This kind of mode collapse is inter-class mode collapse and another type is

intra-class (Huang et al., 2018). There are many writing styles in each digit. However, an intra-class mode

collapse model only generates a certain writing style instead of every style.

13

Figure 2-6. The demonstration of the model collapse. It was produced by the project’s models

Goodfellow (2016) gives a primary explanation to illustrate why mode collapse happens. An original

training process of GANs is minimax optimization and an optimal generator is obtained (equation (2-7). In

practice, the training process may like maxmini optimization which is shown in equation (2-8 sometimes.

𝐺∗ = 𝑚𝑖𝑛

𝐺
𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺) (2-7)

𝐺∗ = 𝑚𝑎𝑥

𝐷
𝑚𝑖𝑛
𝐺

𝑉(𝐷, 𝐺) (2-8)

In the maxmini training process, the generator is updated multiple times in a loop and may map all input

noise vector z into the same generated data. In that way, the generator can be easy to cheat the discriminator.

Because the optimal generator already been insensitive to input noise z before training the discriminator at

next round, the gradient descent method makes the discriminator move to a worse state. Furthermore, the

responsibility of the discriminator is only telling real data and fake data without examining the diversity of

fake data. Eventually, GANs model only generates very few types of data and mode collapse occurs. In the

original GANs, it suggests that the generator should avoid making too much progress without updating the

discriminator (Goodfellow et al., 2014). Another useful method called mini-batch discriminator is proposed

to alleviate the mode collapse problem (Salimans et al., 2016). Minibatch discriminator takes multiple input

data at once instead of one by one. Through inner layers of the discriminator, each input can be transformed

into a vector of features. The discriminator multiplies these vectors with a tensor and gets feature matrixes

of each input data. By computing L1-distance between feature matrixes row by row, the discriminator can

calculate the similarity of input data. Hence, the minibatch discriminator not only distinguishes real and

fake data but also compute the diversity of data. Through the mechanism, the generator reduces the intention

to generate single-mode data to fool the discriminator and the mode collapse problem is alleviated. The

following sections demonstrated advanced GANs models which applied different strategies to solve the

issues of GANs.

14

2.2.2 Structure Improvement: Deep Convolutional GAN (DCGAN)

Convolutional neural networks (CNNs) (LeCun et al., 1998) which can capture different spatial features of

images through different kernels have shown well performance on the classification domain in recent years.

DCGAN successfully adapts the strength of CNNs and modified it to build up a more stable GANs-based

model comparing with the original GANs (Radford et al., 2015).

The traditional architecture of CNNs has four main parts including the convolution layer, the pooling layer,

the flatten layer and the fully connected layer (LeCun et al., 1998). CNNs utilizes different convolution

layers to extract interesting features and reduce computation amount by pooling layers. After that, all feature

maps generated by pooling layers are flattened and connected with fully connected layers as general deep

neural networks.

DCGAN does not use the architecture of the original CNNs directly, it adopts a variation of CNNs called

the all convolution net (Springenberg et al., 2014). Instead of using pooling layers, the all convolution net

applies strided convolution layers to implement spatially dimension reduction. There are three main

emphases in the architecture of DCGAN. Firstly, it is just like the all convolution net. Pooling layers are

abandoned, and fractional-strided and strided convolution layers are used in the generator and discriminator

respectively. Strided convolutions layers make spatial downsampling be learned by the generator and the

discriminator respectively. Secondly, there is no fully connected layer both in the generator and the

discriminator. It increases the efficiency of the model convergence. Finally, Batch normalization is added

after every layer except the output layer of the generator and the input of the discriminator. It improves the

efficiency of training in deep neural networks and prevents the generator from the mode collapse problem.

The reason for not applying all layers with batch normalization is preventing GANs model from instability.

In terms of activation functions, three activation functions, including ReLU, Tanh and Leaky ReLU, are

applied in the networks. All layers of the generator use ReLU activation function except for the output layer

which adopts Tanh activation function. Leaky ReLU is applied to all layers of the discriminator. Through

experiments and the observations of the paper (Radford et al., 2015), these setup of activation functions

enhance the speed of the training process and make models reach the convergence.

2.2.3 New Estimating Distance: Wasserstein GAN (WGAN)

Arjovsky et al. (2017) proposed Wasserstein GAN (WGAN) which provided solutions to no-convergence

and mode collapse problems observed in the original GAN. WGAN introduced the Earth-Mover (EM)

distance which can be called as Wasserstein-1 distance into GAN to replace the KL and the JS divergence

which evaluate the distance between real and generated data distribution in the vanilla GAN. Before

15

illustrating EM distance, we can consider two simple discrete distributions 𝕡𝑔 and 𝕡𝑟with five possible

states 𝑥 and 𝑦 respectively which is shown in Figure 2-7. There are many transport plans which can

transform 𝕡𝑔 to the target distribution 𝕡𝑟 and each of transport plan has a cost. The cost of transport plans

can be defined as ∑ 𝛾(𝑥, 𝑦)‖𝑥 − 𝑦‖𝑥,𝑦 . For instance, Figure 2-8 demonstrates a transport plan 𝛾(𝑥, 𝑦) with

the transport cost 8.

Figure 2-7. Two simple discrete distributions with five possible states

Figure 2-8. A transport plan of transforming 𝕡𝑔 to 𝕡𝑟

The EM distance is the optimal transport plan which has the smallest cost which is shown in equation (2-9.

Comparing with the JS and the KL divergence, The Wasserstein distance provides more smooth gradients

all over the data space and prevents model training from the gradient vanishing problem.

 𝑊(𝕡𝑔, 𝕡𝑟) =
𝑖𝑛𝑓

𝛾 ∈ (𝕡𝑔 , 𝕡𝑟)
∑𝛾(𝑥, 𝑦)‖𝑥 − 𝑦‖

𝑥,𝑦

=
𝑖𝑛𝑓

𝛾 ∈ (𝕡𝑔, 𝕡𝑟)
𝔼(𝑥,𝑦)~𝛾‖𝑥 − 𝑦‖ (2-9)

16

Based on the Wasserstein distance, WGAN proposed a new objective function (equation (2-10) to evaluate

the Wasserstein distance between real data 𝑃𝑑𝑎𝑡𝑎 and generated data 𝑃𝑔. 𝑓 is a critic, and its functionality

is evaluating the quality of fake data generated by the generator. Unlike the discriminator in the original

GAN which gives a real data possibility of the data generated by the generator, the critic in WGAN told the

generator about its progress and help the generator to learn better. There is a constraint of 𝑓 which it must

be a 1-Lipschitz function. The Lipschitz function is defined as equation (2-11. It means that 𝑓 should be a

smooth function.

 𝑊(𝑃𝑑𝑎𝑡𝑎 , 𝑃𝑔) =
𝑚𝑎𝑥

𝑓 ∈ 1 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧𝔼𝑥~𝑃𝑑𝑎𝑡𝑎[𝑓(𝑥)] − 𝔼𝑥~𝑃𝑔[𝑓(𝑥)] (2-10)

‖𝑓(𝑥1) − 𝑓(𝑥2)‖ ≤ 𝐾‖𝑥1 − 𝑥2‖

𝑓𝑖𝑠𝑎1 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 as K = 1

(2-11)

However, the 1-Lipschitz function is hard to be tracked in a high dimensional space. Hence, WGAN simply

uses weight clipping to constrain the critic. The weight clipping is forcing parameters 𝜃 of the critic to be

in a specific region. If 𝜃 is bigger than constant 𝑐 and the program makes 𝜃 be equal to 𝑐. Furthermore, if

𝜃 is smaller than -𝑐, the program makes 𝜃 be equal to −𝑐.

The following illustrates the high-level pseudo code of WGAN:

1. Initialize the critic f0 and the generator G0 with parameters 𝜃𝑓
0 and 𝜃𝑔

0 respectively.

2. Train WGAN with n times iteration and do the below step within each iteration:

▪ Block 1: repeat k times

i. Sample m examples 𝑥1,𝑥2,…,𝑥m from the data distribution 𝑃𝑑𝑎𝑡𝑎(𝑥)

ii. Sample m noise vectors 𝑧1, 𝑧2, … , 𝑧𝑚 from the noise prior distribution 𝑃𝑧(𝑧)

iii. Update the parameters of the critic by ascending the gradient of 𝑊�̃� with the

learning rate 𝜂 and restrict 𝜃𝑓 by weight clipping:

𝑊�̃� =
1

𝑚
∑[𝑓(𝑥𝑖) − 𝑓 (𝐺(𝑧𝑖))]

𝑚

𝑖=1

𝜃𝑓 = 𝜃𝑓 + 𝜂𝛻𝑊�̃�(𝜃𝑓)

𝜃𝑓 = 𝑐𝑙𝑖𝑝(𝜃𝑓 , −𝑐, 𝑐)

▪ Block 2: execute once

i. Sample m noise vectors 𝑧1, 𝑧2, … , 𝑧𝑚 from the noise prior distribution 𝑃𝑧(𝑧)

17

ii. Update the parameters of generator by descending the gradient of 𝑊�̃� with the

learning rate 𝜂:

𝑊�̃� = −
1

𝑚
∑𝑓(𝐺(𝑧𝑖))

𝑚

𝑖=1

𝜃𝑔 = 𝜃𝑔 − 𝜂∇𝑊�̃�(𝜃𝑔)

Moreover, WGAN removes sigmoid activation function in the last layer of the critic and uses RMSProp as

an optimizer instead of momentum-based optimizers such as momentum and Adam.

Nevertheless, there is a problem with WGAN. As the authors said, weight clipping is not good enough to

constrain the critic to be a 1-Lipschitz function. Because the setting of 𝑐 is tricky. If 𝑐 is too large, it may

make the critic hard to be trained optimally. If 𝑐 is too small, the gradient vanishing problem may arise

(Arjovsky et al., 2017).

To more specifically constrain the critic, Gulrajani et al. (2017) proposed WGAN-GP with the gradient

penalty to enforce the 1-Lipschitz constraint on the critic. The authors observe that “A differentiable

function is 1-Lipschtiz if and only if it has gradients with norm at most 1 everywhere” (Gulrajani et al.,

2017). Therefore, the objective function is added a gradient penalty (equation (2-12) to be an alternative

way to constrain the critic. Because it is hard to calculate the norm of gradients on entire data space,

WGAN-GP only compute the gradient’s norm of data which is from the penalty distribution 𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦.

Eventually, the objective function of WGAN-GP can be rewritten as equation (2-13). 𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦is composed

of the middle points of a pair of data sampled from 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝑔 respectively which is shown in Figure 2-9.

From the experiments of WGAN-GP , using gradient penalty only with data from 𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦 shows the

peformance of the model is better than WGAN and can restrict the critic more appropriately (Gulrajani et

al., 2017).

 𝑊(𝑃𝑑𝑎𝑡𝑎 , 𝑃𝑔) = 𝑚𝑎𝑥
𝑓

(𝔼𝑥~𝑃𝑑𝑎𝑡𝑎[𝑓(𝑥)] − 𝔼𝑥~𝑃𝑔[𝑓(𝑥)]− 𝜆∫ 𝑚𝑎𝑥(0, ‖𝛻𝑥𝑓(𝑥)‖− 1)𝑑𝑥)

𝑥

 (2-12)

𝑊(𝑃𝑑𝑎𝑡𝑎 , 𝑃𝑔) ≈ 𝑚𝑎𝑥

𝑓
(𝔼𝑥~𝑃𝑑𝑎𝑡𝑎[𝑓(𝑥)] − 𝔼𝑥~𝑃𝑔[𝑓(𝑥)] − 𝜆𝔼𝑥~𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦[𝑚𝑎𝑥(0,‖𝛻𝑥𝐷(𝑥)‖− 1)]) (2-13)

18

Figure 2-9. The illustration of 𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦. The figure was reproduced from Lee (2018)

2.3 Significant Components of deep neural networks

In the section, significant components of deep neural networks were illustrated. These components were

also used in GANs models which were implemented in the project.

2.3.1 Introduction of Common Activation function in Neural Networks

The purpose of activation functions is introducing non-linear feature into neural networks. It makes neural

networks solve complex problems by using a small number of nodes. In general, multiple inputs multiplied

with their weights are summed up and the summation is fed into activation function to compute an input

for the next layer. The section demonstrates two activation functions which are used in the research.

• ReLU

ReLU was proposed by Nair and Hinton (2010) and defined as 𝑅(𝑥) = 𝑚𝑎𝑥(0, 𝑥). It gives output the

same value as the input if the input is bigger than 0 (Figure 2-10). Otherwise, it outputs 0. Its computation

effort is less than sigmoid and tanh. It also introduces sparsity into models by making some node inactivated.

ReLU is broadly applied to hidden layers to prevent models from the overfitting problem. The advantages

of ReLU are alleviating the gradient vanishing problem and enhancing the efficiency of the training process.

Its disadvantage is causing some nodes dead because of the existence of 0 regions. It could make part of

neural networks stop working as known as dying ReLU.

19

Figure 2-10. ReLU function

• Leaky ReLU

Leaky ReLU is a variation of ReLU (Maas et al., 2013). Unlike ReLU, leaky ReLU has no 0 regions. It

makes inputs which are smaller than 0 multiplied with a small ratio such as 0.01 (Figure 2-11). Leaky ReLU

has the same advantages of ReLU but prevents models from the dying ReLU problem. Leaky ReLU is also

frequently applied on hidden layers of neural networks.

Figure 2-11. Leaky ReLU function

20

2.3.2 Introduction of Common Optimizers in Neural Networks

The training of deep neural networks is based on the gradient descent method which computes the gradients

of models with training dataset and updates models’ weights toward the opposite direction of gradients.

Common optimizers include SGD and Momentum. The former updates the gradient data by data and the

latter introduces a physical mechanism to SGD. This section introduced another two optimizers which were

used in the project to improve the efficiency of the gradient’s computation.

• Adagrad

The learning rate of the training process plays an import role in the training process in terms of its efficiency

and convergence. If the learning rate is too big, it may make models hard to converge because of the

vibration of the cost. If the learning rate is too small, the speed of models’ convergence is too slow. Hence,

it is hard to choose an appropriate learning rate in the beginning. Furthermore, the learning rate may be

different in different stages of the training process. At the beginning of a model training, a big learning rate

can make the model have huge progress. When the model almost reaches the global minimum, a small

learning rate helps it reach the target decently. Adagrad introduces a changeable learning rate to SGD

(Duchi et al., 2011). An adjustable term
1

√n+ϵ
 is added. Hence, the learning rate can change by time. 𝑛 is

the sum of past gradients’ square and 𝜖 prevents the value in root computation from being 0. Through the

mechanism, the learning rate can be changed by time and improve the efficiency of the model training.

Nevertheless, the learning rate becomes very small along with the accumulation in the denominator. This

main disadvantage makes models stop learning knowledge from their training datasets.

 𝑊𝑡+1 ←𝑊𝑡 − 𝜂
1

√𝑛 + 𝜖

𝜕𝐿𝑡
𝜕𝑊𝑡

 𝑛 = ∑(
𝜕𝐿𝑟
𝜕𝑊𝑟

)
2𝑡

𝑟=1

• RMSprop

Root Mean Square Propagation (RMSprop) was invented by Tieleman and Hinton (2012). The method was

not published on a paper but was taught on Tieleman and Hinton’s lecture. The format of RMSprop is

shown below and is similar to Adagrad. However, the former adds vtwhich is the combination of the

exponential average of the square of past gradients and the square of the current gradient. ρ is moving

average parameter and is suggested as 0.9. RMSprop can solve small learning rate problem of Adagrad.

RMSprop also prevents training processes from the oscillation of the cost by slowing down learning tempo

automatically.

21

 𝑊𝑡+1 ←𝑊𝑡 − 𝜂
1

√𝑣𝑡 + 𝜖

𝜕𝐿𝑡
𝜕𝑊𝑡

 𝑣𝑡 = 𝜌𝑣𝑡−1 + (1 − 𝜌) (
𝜕𝐿𝑡
𝜕𝑊𝑡

)
2

• Adam

Adaptive Moment Estimation (Adam) is a machine learning optimizer which also adopts an adaptive

learning rate (Kingma and Ba, 2014). It combines the advantages of Momentum and RMSprop. Momentum

refers to previous gradients and changes the range of weights updating. RMSprop adjusts the current

gradient based on its intensity. Adam computes the estimates of the first moment of gradients m𝑡 and the

second moment of gradients v𝑡. These are biases on these two terms. Hence, Adam uses m̂𝑡 and �̂�𝑡 to alleviate

them. In the end, the updating of the models’ weights can be shown below. In practice, 𝛽1, 𝛽2 and 𝜖 are set as 0.9,

0.999 and 10−8 respectively. The settings work well according to the authors’ experiments (Kingma and Ba, 2014).

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)
𝜕𝐿𝑡
𝜕𝑊𝑡

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) (
𝜕𝐿𝑡
𝜕𝑊𝑡

)
2

 �̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡

 �̂�𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡

𝑊𝑡+1 ←𝑊𝑡 − 𝜂

1

√�̂�𝑡 + 𝜖
�̂�𝑡

Some of the above optimizers seem to have complex computation. However, they are easy to be applied

through current open-source neural network libraries such as Keras (Chollet, 2015). Developers simply use

functions of neural network libraries to choose specified optimizers for their models.

22

2.4 Evaluation of Synthetic Images

An intuitive evaluation method is conducting a questionnaire about asking participants to distinguish

images which are created by generative models. Salimans et al. (2016) used Amazon Mechanical Turk

(MTurk) to perform the subjective evaluation on GANs. AMT is an internet platform built by Amazon and

hiring people to do tasks which are hard for computers but effortless for human.

Besides the qualitative evaluation method, quantitative methods are also used to evaluate the performance

of generative models. There are two widely used quantitative evaluation methods including and Fréchet

Inception Distance (FID) (Heusel et al., 2017).

The first one is Inception Score (IS) which was proposed by Salimans et al. (2016). The authors applied a

pre-trained image classifier, Inception, which can classify input images and give the top-5 most likely class

(Szegedy et al., 2016) to calculate IS. IS evaluates a generative model based on tow criteria. The first

standard is a generative model can produce meaningful images. It means that a conditional label distribution

𝑝(𝑦|𝑥) has low entropy and. The second standard is a great variety of images can be generated via the

model. In the other word, the entropy of the marginal 𝑝(𝑦) = ∫𝑝(𝑦|𝑥 = 𝐺(𝑧)) 𝑑𝑧 is high and the equation

can be changed as 𝑝(𝑦) =
1

𝑁
∑ 𝑝(𝑦|𝑥𝑖)𝑁
𝑖=1 practically. Furthermore, 𝑝(𝑦|𝑥) is a distribution with a pick and

𝑝(𝑦) is a mean distribution. It means that if the KL divergence between these two distributions is bigger,

the performance of models is better. In conclusion, IS can be defined as equation (2-14.

 𝐼𝑆 = 𝑒𝑥𝑝(𝔼𝑥𝐾𝐿(𝑝(𝑦|𝑥) ∥ 𝑝(𝑦))) (2-14)

However, IS still has some limitations. Barratt and Sharma (2018) concluded two types of IS’s limitations

including IS-itself type and usage scenario type. In IS-itself type, the first limitation is that IS is sensitive

to inner weights of pre-trained classifiers. For instance, the value of IS in the Inception model trained by

TensorFlow and the Inception model trained by Keras are different. The difference could overweight the

improvement claimed by new proposed models. The second limitation in this type is the calculation

procedure of Inception Score. The common calculation process is generating 50000 images, dividing them

into 10 equal parts, calculating Inception Score of each part and calculating the mean and the variance.

However, each part only contains 5000 images and is not enough to represent the marginal 𝑝(𝑦). The

recommended method is calculating Inception Score of 50000 images at once. In usage scenario type, the

first limitation is Inception Score is unreasonable if the training dataset of generative models is not same as

the training dataset of pre-trained classifier. Hence, it is better to train Inception model with same dataset

which is used by generative model. The second limitation is Inception Score is only a rough guideline and

23

cannot be used to optimize generative models directly. The last limitation is Inception Score cannot detect

the overfitting phenomenon of generative models.

The other evaluation method is Fréchet Inception Distance (Heusel et al., 2017). It is based on the idea of

Fréchet Distance which is used to calculate the distance between two multivariate normal distributions

(Dowson and Landau, 1982). FID extracts feature both of generated images and realistic images

respectively from the last pooling layer in Inception and calculate the Fréchet Distance between them. From

the last pooling layer, the mean of feature 𝑚 and the covariance matrix 𝐶 can be obtained. Hence, equation

(2-15 shows FID between real images (𝑚𝑟,𝐶𝑟) and generated images (𝑚𝑔,𝐶𝑔).

 𝐹𝐼𝐷 = ‖𝑚𝑟 −𝑚𝑔‖
2
+ 𝑇𝑟(𝐶𝑟 + 𝐶𝑔 − 2(𝐶𝑟𝐶𝑔)

1
2) (2-15)

Comparing with IS, FID is more consistent with judgment conducted by humans and more capable to resist

the effect of noise. Furthermore, FID can detect the intra-class mode collapse and IS cannot fulfill the same

thing (Heusel et al., 2017). FID compares features form generated and real images and it makes FID more

reasonable than IS. However, both cannot detect the overfitting of generative models. In this study, FID is

applied to evaluate generative models because it has more advantages than IS as mentioned above.

24

Chapter 3: Research Method

The project used four GNAs models including original GANs, DCGAN, WGAN, and WGAN-GP to

generate images from the different training dataset. These models were evaluated based on the speed of

models’ convergence, the quality of generated images and the variety of images.

3.1 Details of GANs models

The details of GANs models were divided into three parts in terms of the structures of GANs models, the

loss function of the model and the training process.

3.1.1 Original GANs

• The structure of the model

The generator of the original GANs was a simple fully-connected neural. There were four hidden layers in

the networks with a 100-dimensional input layer and an output layer with the same shape as training images.

All hidden layers had 512 neural nodes and applied Leaky ReLU activation functions except for the fourth

layer which used Tanh. From the first to fourth hidden layers, the number of their nodes are 256, 512, 1024

and the product of training images’ shape respectively.

The discriminator was a binary classifier. It was also a simple neural network which had two hidden layers

with Leaky ReLU activation functions. The discriminator took an image which was flattened as an input

and outputs a value which was between 0 to 1 to present the possibility of real images.

In practice, the generator and the discriminator were created individually. The discriminator was trained

firstly. Then, these two neural networks were combined as a generative adversarial network and it was

trained with the fixed discriminator to get the optimal generator. Figure 3-1 illustrated the overall structure

of the original GANs.

Figure 3-1. The structure of the original GAN which is used in the project

25

• Loss function

In the original GANs, both the discriminator and the combined neural network used binary cross-entropy

as loss functions. Intuitively, it was reasonable for the discriminator to use binary cross-entropy as its loss

function because the task which the discriminator wanted to solve was a binary classification problem. For

the combined neural network, it took a noise input and the input was fed into the generator. The generator

outputted an image and it was the input of the discriminator. After training the discriminator, the generator

can be optimized by training the combined neural network with the fixed discriminator. Hence, the

combined neural network also solved a binary classification problem.

• Training process

The training process was like the process illustrated in section 2.1.3. In the original paper (Goodfellow et

al., 2014), the discriminator can be trained multiple times before optimizing the generator. In the research,

both discriminator and the generator are trained one time in each iteration. Adam optimizer is used in the

neural networks for optimizing the speed of model training.

3.1.2 DCGAN

• The structure of the model

As its name, DCGAN adopted convolution neural networks to build its architecture. Unlike traditional

convolution neural networks, there was no pooling layer in DCGAN. Fractional-strided and strided

convolution layers were applied on the generator and the discriminator respectively. To more easily explain

DCGAN’s structure, we assumed that training dataset was colorful images with 64 × 64 pixels. As usual,

the input of the generator was a 100-dimensional noise which was sampled from a normal distribution. The

noise was connected by a layer with 4 × 4 × 1024 nodes and the layer was followed by a ReLU activation

function. The output of the layer was reshaped to three-dimensional space and its size was 4 × 4 × 1024.

After this layer, the following layers used fractional-strided convolution to perform the upsampling of data

with batch normalization and ReLU function. It was worth to know that the batch normalization and ReLU

were not used on the output layer. It only used Tanh function and outputs images with 64 × 64 × 3 pixels.

3 meant that a colorful image had R, G, and B channels. From the structure of the generator, it can be

observed that the generator’s output was upsampled layer by layer. It meant that DCGAN provided

flexibility for different training datasets with different sizes.

The structure of the generator can be extended by users’ need. In terms of the structure of the discriminator,

it was almost the reverse of the generator. The discriminator took an input with 64 × 64 × 3 pixels and it

used strided convolution with 2 steps to downsample the data layer by layer. All convolution layers used

26

Leaky ReLU as activation functions and they were followed by batch normalization except for the first

convolution layer. In the end, the last convolution layer was connected fully with the out layer which has a

node. Like the original GAN, the discriminator outputted a value to show the probability of real images.

Figure 3-2. The overall architecture of DCGAN which was reproduced from Radford et al. (2015)

• Loss function and training process

The loss function of DCGAN was binary cross-entropy. The training process of the original GANs can be

applied in DCGAN directly and Adam optimizer was used in the deep neural networks.

3.1.3 WGAN

• The structure of the model

Because the structure of DCGAN made the training process more stable, it was widely used in many GANs

as a base structure. Hence, deep convolution neural networks were used in the discriminator and the

generator of WGAN. However, there was a changing in WGAN. The sigmoid was removed from the output

layer of the discriminator. Consequently, the discriminator produced a value which was not constrained

between 1 to 0.

• Loss function

Unlike, the vanilla GAN and DCGAN, there was no log function in WGAN. Hence the loss of WGAN was

easier to compute. 𝑦𝑡𝑟𝑢𝑒 was ground truth and 𝑦𝑝𝑟𝑒𝑑 was the value produced by the discriminator in WGAN.

The loss of WGAN can be formulated as equation (3-1 in practice.

27

 𝑊𝑎𝑠𝑠𝑒𝑟𝑠𝑡𝑒𝑖𝑛𝐿𝑜𝑠𝑠 =
1

𝑚
∑[𝑦𝑡𝑟𝑢𝑒 ×𝑦𝑝𝑟𝑒𝑑]

𝑚

𝑖=1

 (3-1)

• Training process

The main structure of WGAN’s training process was similar to GANs’ but there were three differences in

the former. Firstly, we trained the discriminator once in each iteration. Nevertheless, the discriminator of

WGAN was trained 5 times in each iteration. Secondly, the optimizer was RMSProp instead of momentum-

based optimizers such as momentum and Adam. Thirdly, there was a weight clipping procedure before

updating the weights of the model. The parameter 𝑐 of the weight clipping was 0.01 and it constrained the

weights between -0.01 to 0.01.

3.1.4 WGAN-GP

• The structure of the model

In this project, WGAN-GP followed the structure of WGAN’s model. Like WGAN, there was no sigmoid

in the output layer. There was a difference between WGAN and WGAN-GP. There was no batch

normalization in the discriminator of WGAN-GP. Although there were many GANs’ models which applied

the batch normalization to stabilize the training of the models, the process of the batch normalization went

against the gradient penalty in WGAN-GP because the gradient penalty treated inputs one by one instead

of the entire batch of inputs. Through the experiments of WGAN-GP, the model did well without the

gradient vanishing problem in spite of a lack of the batch normalization.

• Loss function

The main progress of WGAN-GP was utilizing the gradient penalty to constrain the discriminator to be a

1-Lipschitz function more appropriately. Besides the Wasserstein loss, there was a gradient penalty loss in

WGAN-GP.

• Training process

The training process of WGAN-GP was pretty much like WGAN’s except for the former used Adam instead

of RMSProp to be an optimizer.

28

3.2 Experimental dataset

There were three datasets employed in the project to analyse and evaluate the performance of these GANs

model.

3.2.1 MNIST

MNIST was a dataset of various handwritten style digits which modified from NIST dataset which was

shown in Figure 3-3 (LeCun et al., 1998). MNIST was extensively used in machine learning domains such

as classification (Cireşan et al., 2012, Deng, 2012) and generative models (Kingma and Welling, 2013,

Mirza and Osindero, 2014, Maaløe et al., 2016). It contained 60000 training data and 10000 test data, and

both included digital images from 0 to 9. These images were grayscale and normalized to 28 × 28 pixels.

In practical, we can utilize TensorFlow’s function to download MNIST from the internet. Each image was

linearized and represented by a vector of size 1× 784. The dimension of these images was quite smaller

than other dataset and suitable for primary experiments of generative models.

Figure 3-3. Handwritten digits which were sampled from MNIST (LeCun et al., 1998)

3.2.2 NLVR Dataset

NLVR dataset was proposed by Suhr et al. (2017) and created for natural language processing (NLP).

Although we did not perform NLP in the project, the dataset contained many geometric images and was

suitable for exploring the capability of GANs models. Images of NLVR dataset were composed of three

boxes which contained different type, size and color geometric shapes (Figure 3-4). The boxes were

separated by two gray bars which were shown in Figure 3-5. Because we only focused on generating

different combinations of geometric shapes, the boxes were isolated from original images of NLVR and

were resized to 64 × 64 pixels. After these image processing, the training dataset contained 9,306 images.

Figure 3-6 demonstrated the geometric images which were sampled from the final training dataset.

29

Figure 3-4. Geometric images which were sampled from NLVR dataset (Suhr et al., 2017)

Figure 3-5. An original image from NLVR was divided into three parts

Figure 3-6. The images which were sampled from the final training dataset

3.2.3 Oxford-102 Flowers

Oxford-102 flowers database was composed of 102 flower categories which occur in the UK frequently

(Nilsback and Zisserman, 2008). The number of flowers’ images was 8,189 and each category comprised

between 40 and 258 colorful images. The database was used in many experiments of GAN to evaluate their

performance (Reed et al., 2016, Zhang et al., 2017, Bodnar, 2018). These images had different scales, poses,

and lights which is shown in Figure 3-7. In the report, the images were resized into 64 × 64 pixels and fed

to generative adversarial networks.

30

Figure 3-7. Images which were sampled from Oxford-102 flowers (Nilsback and Zisserman, 2008)

3.3 The Design of Experiments

This section demonstrated three experiments which explored the performance of different GAN models on

interesting datasets such as Oxford-102 Flowers.

3.3.1 Experiment 1: Generate handwritten digits

The first experiment was using MNIST to train GAN models and generated handwritten digits. The iteration

of the model training was 30,000 times. The losses of the generator and the discriminator were recorded

and performed further analysis. The models were saved every 10,000 iterations. Furthermore, the generator

generated 64 images every 200 iterations. Saving images in different stages of the model training can help

us to monitor the state of the models. Theoretically, the models which were trained on MNIST should

generate recognizable images. Hence, the first experiment can confirm the correctness of models’ structures

and their hyperparameters such as optimizers.

It was worth to mention that the structure of DCGAN was not the same as the structure demonstrated in

section 3.1. Because the size of the images was 28 × 28 pixels in MNIST, the structure of DCGAN was

simpler. For the generator, the input was reshaped to 7 × 7 × 128 and upsampled to 14 × 14 × 128. After

that, the following hidden layer kept up-sampling the input to 28 × 28 × 64 and the last convolution layer

made the output be 28 × 28 × 1. 1 meant a gray-scale image has only a channel. For the discriminator, it

took an image as input and its dimension was 28 × 28 × 1. The first and second strided convolution layer

made the data be 14 × 14 × 1 and 7 × 7 × 1 respectively. To make the computation easier, a zero padding

was used for making the data be 8 × 8 × 1. And then, the third strided convolution layer can make the data

31

be 4 × 4 × 1. In the end, the flatten layer made the output be a digit. The structures of WGAN and WGAN-

GP also were changed based on DCGAN for MNIST.

3.3.2 Experiment 2: Generate Geometric Shapes

After training GANs models with simple gray-scale image dataset, it was exciting to expand the scale of

GANs models to generate more complex images. The second experiment was training GANs models based

on geometric shapes. NLVR dataset was used in the experiment. Images of NLVR was colorful and bigger

than images of MNIST. It meant that GANs models were more complicated and had more parameters. The

training iteration was 30,000 times, and the generator also generated 64 images every 200 iterations. Models

were saved every 10,000 iterations. Because images of NLVR were resized to 64 × 64 pixels, the structure

of DCGAN was the same as the structure shown in section 3.1.2.

3.3.3 Experiment 3: Generate Flowers

Although NLVR dataset was more complex than MNIST, its images were not as complicated as images we

saw in the world. Hence, Oxford-102 Flowers was used for training more sophisticated generative models

for creating real-world images. Images of Oxford-102 Flowers had different scales, poses, and lights. It

meant that there were more latent features in the dataset. Therefore, it was more challenge for generative

models to generate meaningful images. Because the dataset was more complex, the iteration of the training

process was 40,000 times. The models were also saved every 10,000 iterations and generate images every

200 iterations. We also used the same models’ structures shown in section 3.1.2.

3.4 Implement GANs’ models by Keras

Keras was an open-source machine learning library which was proposed by Chollet (2015). It was a high-

level API written by Python and designed as the top of prevalent neural-networks such as TensorFlow and

Theano. Keras provided a user-friendly modeling API for deep learning developers. Users did not worry

about building fundamental structures of models such as making tensors. Keras used a component called

Backend to transfer low-level computations to TensorFlow or Theano. Keras let developers implement their

deep learning models rapidly and helped them get initial results quickly. In this project, TensorFlow was

used as the Backend of Keras. Because the structure of DCGAN was applied intensively in the project, we

mainly used DCGAN to illustrate how to use Keras to build models.

32

3.4.1 Important components of Keras

• Sequential

The first step for building deep learning models was creating a “Sequential” object. Sequential was the

main component to connect all elements in Keras. Developers can add multiple layers to construct their

neural networks.

 import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD

model = Sequential()

Models utilized “add” function to stake multiple neural network layers. For the first layer, developers

needed to specify the dimension of input data.

 model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dense(64, activation='relu'))

• Dense

Dense was a fully connected neural network layer. Usually, there were two important parameters. One was

“units” which was a positive number to determine the dimension of the output. The other was “activation”

which specified used activation functions such as sigmoid.

 Dense(units, activation=sigmoid)

• Conv2D

Conv2D performed 2D convolution computation. The following function demonstrated four crucial

parameters of Cond2D. “filters” was the depth of output. “kernel_size” was the size of the 2D convolution

window. “strides” was the step of 2D convolution window in terms of row and column. “padding” was a

mechanism for handling the boundary problem in convolution computation. There were two options in

“padding”. One was “same” and the other was “valid”. “same” used zero-padding which added 0 value

around the boundary of images. It made convolution computation can fit the size of images. If “valid” was

used, convolution computation abandons elements which did not meet with the convolution window and

its step. In the project, we set this parameter as “same”. In that way, the size of outputs is was the size of

inputs divided by the number of convolution step.

 Conv2D(filters, kernel_size, strides=(1, 1), padding='same')

33

• Conv2DTranspose

Conv2DTranspose performed up-sampling intelligently and magnified the size of images. “strides”

controlled the size of an image. The following code demonstrated an image’s size was doubled. The

function was used in the generator of DCGAN

 Conv2D(filters, kernel_size, strides=(2, 2), padding='same')

• Dropout

Dropout algorithm randomly set some nodes of layers as 0. It can alleviate the overfitting problem and be

used in convolution neural networks frequently. “rate” was the ratio of dropped nodes.

 Dropout(rate)

• BatchNormalization

BatchNormalization performed the batch normalization algorithm. It can prevent models from gradient

vanishing problem and stabilize the training process. Developers can set the momentum of the moving

mean and the moving variance through “momentum”.

 BatchNormalization(momentum=0.99)

3.4.2 Build a stacked model by Keras

Because a GANs model was composed of a discriminator and a generator, we needed to stack two models

through Model class of Keras. Firstly, we created a Sequential object which had two hidden layers.

 self.latent_dimension = 100
self.images_shape = (28, 28, 1)

generator = Sequential()

generator.add(Dense(512, input_dim=self.latent_dimension))
generator.add(BatchNormalization())
generator.add(LeakyReLU(alpha=0.2))
generator.add(Dense(np.prod(self.images_shape), activation='tanh'))
generator.add(Reshape(self.images_shape))

Then, we used a Model object to wrap this model which took a 100-dimensional input and outputted an

image with the size 28 × 28 × 1.

 random_noise = Input(shape=(self.latent_dimension,))

generated_image = generator (random_noise)

self.generator = Model(random_noise, generated_image)

34

After instancing the generator, we can use the same elements to create the discriminator.

 discriminator = Sequential()

discriminator.add(Flatten(512, input_shape=self.image_shape))
discriminator.add(Dense(512))
discriminator.add(LeakyReLU(alpha=0.2))
discriminator.add(Dense(512))
discriminator.add(LeakyReLU(alpha=0.2))
discriminator.add(Dense(1, activation='sigmoid'))

Unlike the generator, the discriminator took an image as an input and outputted a fraction.

 images = Input(shape= self.images_shape)

validity = model_d(images)
self.dicriminator = Model(images, validity)

In Keras, models needed to be configured by “compile” function. The model of the discriminator was

compiled firstly, and the optimizer of the model was Adam. There were three main parameters including

the learning rate, 𝛽1, and 𝛽2 in Adam. In compile function, you can determine the loss function, the training

optimizer, and evaluation metric.

 optimizer = Adam(0.0002, 0.5, 0.999)
self.discriminator.compile(loss='binary_crossentropy',
 optimizer=optimizer,
 metrics=['accuracy'])

After compiling the discriminator, we set up the input “z” of the generator and instance the output of the

generator “image”.

 z = Input(shape=(self.latent_dim,))
image = self.generator(z)

Then, we made the discriminator untrainable before stacking models because the discriminator was fixed

when the generator was trained. The discriminator took the product of the generator as its input. The

following code built the connection between these two models.

 self.discriminator.trainable = False
validity = self.discriminator(image)

After connecting the generator and the discriminator, we built a complete GANs model as below.

 self.combined = Model(z, validity)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)

35

3.4.3 Train GANs model by Keras

The section demonstrated how to use Keras to train GANs models. The GANs model was trained 1000

times in the example. In each iteration, the discriminator was trained firstly, and then the stacked model

was trained. Before training the models, the ground truth of the data needed to be specified. If an image

was real, it was label 1. If an image was fake, it was label 0. The following code created label vectors and

their length was the same as the batch size.

valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))

The training process can be divided into five steps which were shown in Figure 3-8. Firstly, we sampled a

batch of images from a training dataset and created a noise tensor randomly. Secondly, the generator

produced a batch of fake images. Thirdly, the discriminator was trained with a whole batch of real images

and fakes images respectively. “train_on_batch” function can perform a gradient update algorithm with a

batch of data. Fourthly, we created a noise tensor for training generator. Finally, the generator can be trained

through training the stacked model. Because the discriminator in the stacked model was untrainable, we

can train the generator with a fixed discriminator. After training the discriminator and the generator,

presenting their loss could be good for observing the state of models.

Figure 3-8. The training process of an original GANs model from the code of the project

36

3.4.4 Build DCGAN’s model by Keras

Section 3.4.2 only demonstrated how to build an original GANs model by Keras. This section further

illustrated a DCGAN’s structure which was stacked by Keras.

We can explore the detail of DCGAN from its generator. As usual, the generator was instanced as a

Sequential. A dense object was used to concrete the first hidden layer which took a 100-dimensional noise

and outputted a tensor with the size 1024 × 4 × 4. The tensor was the start of fractional-strided convolution

stack. Conv2DTranspose was used from the second to fifth hidden layers. The stride of Conv2DTranspose

was 2 and it can upsample the data intelligently. The size of the feature maps in fractional-strided

convolution layers was 5 by 5. Following the paper of DCGAN (Radford et al., 2015), activation functions

of layers were ReLU except for the output layer which used Tanh. As shown in Figure 3-9, a generator with

a deep convolution neural network can be built easily and orderly.

Figure 3-9. A DCGAN’s generator built by Keras and it is captured from the project’s code

37

A discriminator built by Keras was shown in Figure 3-10. From the first hidden layer, we can see the

discriminator took an image as an input and used convolution computation with 2 strides to perform the

downsampling of the input. The first hidden layer was followed by three convolution layers which kept

downsampling the data with the batch normalization. In the end, a flatten layer was used to transfer the data

into a 1 × n vector. n was the number of the last convolution layer’s output. The flatten layer was followed

by a fully-connected layer. The output of the full-connected layer was the probability of real data. The

dropout algorithm was employed in all convolution layers to prevent the model from the overfitting problem.

We applied LeakyReLU in all hidden layers besides the output layer which employed Sigmoid. After

building the models of DCGAN, the same training procedure which was shown in section 3.4.3 can be used

to training DCGAN.

Figure 3-10. A DCGAN’s discriminator built by Keras and it was captured from the project’s code

38

3.4.5 Instructions of Running Code

The code of the project was composed of the training module and the evaluating module. Figure 3-11

demonstrated how to use “GAN_main.py” to train different types of GANs on three different training

datasets. Furthermore, Figure 3-12 illustrated how to utilize “GAN_evaluation.py” to evaluate GANs by

calculating their FID and synthesising corresponding images.

Figure 3-11. The instruction of the training module of the project

Figure 3-12. The instruction of the evaluating module of the project

39

3.5 Evaluation Methods

To evaluate the quality of generated images, qualitative and quantitative evaluation methods were applied.

The former was employing questionnaires to perform human judgment, and the latter was computing

Fréchet Inception Distance (FID) to obtain objective scores (Heusel et al., 2017).

3.5.1 Evaluating Synthesised Images by Human Judgment

The questionnaire was modified from experiments performed by Salimans et al. (2016). It was divided into

three parts according to different datasets. Firstly, each question demonstrated real and fake images which

were sampled from the corresponding dataset and generative models respectively (Figure 3-13). And then,

there were 4 images which were composed of 2 real and 2 generated images. Participants were required to

annotate fake images. In the process, the role of participants was similar to a discriminator in a GANs model.

A good generator should make human hard to discriminate the difference between real and generated

images. The higher the error rate of discriminating fake images is, the better the generative model is. The

full questionnaire was presented in Appendix A.

Figure 3-13. A question of the project’s questionnaire

3.5.2 Evaluating Synthesised Images by Fréchet Inception Distance (FID)

A generative model generated 5,000 images each time and its FID was calculated. The smaller the FID is,

the better the generative model is. FID can also detect the mode collapse in models. Thorough the objective

evaluation, the quality of numerous synthesised images can be examined automatically.

40

Chapter 4: The Analyse of the Experiments

This chapter demonstrated the results of experiments and comparing the performance of the models with

each other.

4.1 The 1st Experiment: Generate Handwritten Digits

The first experiment was using GANs models to generate binary handwritten images. The structures of

models were modified to take images with 28 × 28 pixels as inputs. All models were trained with 128

batch size and 30,000 epochs.

4.1.1 Vanilla GANs on MNIST

The structures of the generator and the discriminator was presented in Figure 4-1. Both models are built

with multilayer perceptron (MLP). There are 533, 505 and 1,493,520 parameters in the discriminator and

the generator respectively.

Figure 4-1. The structures of GAN’s model for MNIST

From the line graphic (Figure 4-2), the loss of the discriminator increased dramatically firstly. After around

300 epochs, its figure remained steady with a small vibration. For the loss of the generator, it decreased

rapidly in the beginning and start to climb. It reached a peak of 1.2 in 1500 epochs and kept steady after

4000 epochs. Both the losses of the generator and the discriminator had small vibration along with the

training progressing. The phenomena implied that these two neural networks competed in the maxmin game.

41

Figure 4-2. The losses of vanilla GAN trained on MNIST

Figure 4-3 demonstrated generated images in different training stages from 10,000 to 30,000 epochs. After

observing, the generator can produce a higher quality of images along with the increase of the training

epochs. However, there were some limitations such as the white noise around digits, uncomplete shape, and

rouge boundaries.

Figure 4-3. Handwritten digits generated by vanilla GANs of the project

42

4.1.2 DCGAN on MNIST

DCGAN was composed of two convolution neural networks. Their structures were simpler than standard

DCGAN because the size of the images in the training dataset was smaller. Their structure was presented

in Figure 4-4.

Figure 4-4. The structures of DCGAN’s model for MNIST

The losses of the generator and the discriminator were demonstrated in Figure 4-5. The figures for these

two neural networks decreased rapidly in the beginning and then kept steady with small vibrations.

Figure 4-5. The losses of DCGAN trained on MNIST

43

Generated images of DCGAN were presented in Figure 4-6. The quality of generated images was improved

when the number of training epochs increased. After 30,000 epochs, DCGAN generated high-quality

images. There was very little noise around digits and the shape of digits was smooth and complete.

Figure 4-6. Handwritten digits generated by DCGAN of the project

4.1.3 WGAN on MNIST

The structures of the generator and the discriminator in WGAN were based on DCGAN. There were two

differences in the discriminator of WGAN. One was no batch normalization layers and the other was no

sigmoid activation function in the output layer. Figure 4-7 demonstrated the full structures of the

discriminator and the generator.

Figure 4-7. The structures of WGAN’s model for MNIST

44

In Figure 4-8, the loss of the generator fluctuated dramatically before 1000 epochs. After that, the figure

for the generator climbed near to 0 and stayed stable. For the loss of the discriminator, there was the lowest

point around 400 epochs, and the loss increased near to 0 and remained steady. Overall, the losses of these

two neural networks converged as the training progressed.

Figure 4-8. The losses of WGAN trained on MNIST

WGAN can synthesise compelling handwritten digits (Figure 4-9). After 10,000 training epochs, the

generator already produced good-quality images.

Figure 4-9. Handwritten digits generated by WGAN of the project

45

4.1.4 WGAN-GP on MNIST

The generator and the discriminator of WGAN-GP had the same structures in WGAN. Figure 4-10

demonstrated the changing of the model’s losses. The loss of the discriminator climbed rapidly firstly and

remained steady with small vibration between -3 to -2. The loss of the generator had more fluctuation than

the figure for the discriminator, but it tended to converge.

Figure 4-10. The losses of WGAN-GP trained on MNIST

Computer-generated digits of WGAN-GP were presented in Figure 4-11. Along with the increment of the

training epoch, the quality of the images was improved.

Figure 4-11. Handwritten digits generated by WGAN-GP of the project

46

4.1.5 Model Comparisons on MNIST

Vanilla GANs and DCGAN applied the JS divergence to estimate the similarity between the real data

distribution and the generated data distribution. By contrast, the Wasserstein distance was adopted in

WGAN and WGAN-GP to estimate the distance between these two distributions. Consequently, these four

models were grouped into 2 sets. The first group was vanilla GANs and DCGAN, and the other group was

WGAN and WGAN-GP.

Figure 4-12 presented the JS divergence of vanilla GANs and DCGAN. The figure for vanilla GANs was

more fluctuating then the one of DCGAN. It ascended firstly and reached a peak of 1.1 and decreased to

the lowest point. After that, it increased again and remained steady after 8,000 training epochs. On the other

hand, the JS divergence of DCGAN decreased consistently along with the training progressing. It can imply

that DCGAN was more stable than vanilla GANs.

Figure 4-12. The JS divergences of vanilla GANs and DCGAN in MNIST

In terms of the objective evaluation, DCGAN got better FID in each training stage which can be found in

Table 4-1. FID of DCGAN was at least 10 times less than the one of vanilla GANs at each training stages.

Furthermore, the speed of DCGAN’s convergence was also faster than vanilla GANs because the former

got a satisfied FID after only 10,000 epochs.

FID

 10,000 epochs 20,000 epochs 30,000 epochs

Vanilla GANs 114 91 85

DCGAN 10 7 8

Table 4-1. FID of vanilla GANs and DCGAN which were trained on MNIST

47

Figure 4-13 and Figure 4-14 demonstrated the comparisons between the generated and the corresponding

similar real handwritten digits in GAN and DCGAN respectively. They illustrated that the generative

models can synthesis new images rather than copying the data from the training dataset.

Figure 4-13. The image similarity comparison of GANs in MNIST

Figure 4-14. The image similarity comparison of DCGAN in MNIST

In the subjective evaluation, vanilla GANs and GDCGAN got error rates of 5.56% and 44.44% respectively

on the human judgment. It meant that the generated images from DCGAN were more capable of fooling

human through their compelling quality.

Figure 4-15 presented the Wasserstein distance of WGAN and WGAN-GP. The figure for WGAN was

much less than the one of WGAN-GP. However, its changing can be observed after enlarging the sub

picture in Figure 4-15. It decreased consistently and was gradually close to 0. In the meanwhile, the

Wasserstein distance of WGAN had similar behavior. It went down firstly and tent to converge as the

training progressed. Table 4-2 demonstrated FID of these two generative models at different training stages.

When the models experienced more training, their performance became better. From Figure 4-15 and Table

4-2, we can find a positive correlation between the images’ quality and the Wasserstein distance. From

Figure 4-16 and Figure 4-17, we can observe that the images which were synthesised by WGAN and

WGAN-GP were not exactly the same as the images from the training dataset.

48

Figure 4-15. The Wasserstein distances of WGAN and WGAN-GP in MNIST

FID

 10,000 epochs 20,000 epochs 30,000 epochs

WGAN 11 8 6

WGAN-GP 8 6 6

Table 4-2. FID of WGAN and WGAN-GP which were trained on MNIST

Figure 4-16. The image similarity comparison of WGAN in MNIST

Figure 4-17. The image similarity comparison of WGAN-GP in MNIST

In terms of the subjective evaluation, WGAN and WGAN-GP yielded error rates of 52.78% and 72.22%

respectively on the human judgment. It implied that both two models can generate good quality images to

misleading the participants of the questionnaire.

49

In the first experiment, the performance of WGAN-GP was the best among these four models according to

FID and human judgment. The worst quality of handwritten digits was generated by vanilla GANs.

Furthermore, vanilla GANs was more unstable than DCGAN in the training because of its fluctuating the

JS divergence.

4.2 The 2nd Experiment: Generate Geometric Graphics

After performing GANs on the simple gray-scale image dataset, MNIST, the 2nd experiment was conducted

to explore the capability of GANs on more complex data. NLVR dataset was used in the second experiment

and its images were resized to 64×64 pixels. All models were trained with 64 batch size and 30,000

epochs.

4.2.1 Vanilla GANs on NLVR

The structures of both the generator and the discriminator were 4-layer MLP with ReLU activation function

and each hidden layer had 512 hidden units. Full structures of these two neural networks were presented in

Figure 4-18.

Figure 4-18. The structures of vanilla GANs’ model for colorful images with 64×64 pixels

The losses of the discriminator and the generator were presented in Figure 4-19. The figure for the

discriminator reached a peak of 8 after 60 training epochs and did not change anymore. The loss of the

generator increased rapidly at the beginning and climbed gently after 1400 training epochs. It reached a

peak of 16 after 4200 training epochs. The losses of these two neural networks saturated in the early stage

of the training. It meant that two neural networks stopped competing and they did not improve themselves

anymore.

50

After observing the synthesised images, we can find that the generator only generates whole gray color

images which were presented in Figure 4-20. The full mode collapse problem occurred, and the generator

only produced the same images to fool the generator. In this case, the discriminator had 50% accuracy on

distinguishing synthesised images. Generally, 50% accuracy implied a GANs model met Nash

equilibrium in a maxmini game and the model was good. However, it was only an illusion of a successful

model because of the full mode collapse problem. The problem was common in vanilla GANs when it was

applied on complicated data.

Figure 4-19. The losses of vanilla GANs trained on NLVR

Figure 4-20. Geometric graphics generated by vanilla GANs of the project

51

4.2.2 DCGAN on NLVR

To accommodate colorful images with 64x64 pixels, the structures of the discriminator and the generator

for MNIST were modified and the full structures were demonstrated in Figure 4-21.

Figure 4-21. The structures of DCGAN model for colorful images with 64×64 pixels

 Figure 4-22 demonstrated the losses of DCGAN. Most of the discriminator’s loss was near to 0 and the

generator’s loss had huge variance and spiking. The behavior implied the failure of the model. Furthermore,

the loss of the generator climbed along with the training progressing overall. The synthesised images which

were presented in Figure 4-23 showed the generator still learned a part of the distribution of the training

dataset. It can generate different combinations of squares but was not good at producing triangles and

circles. Nevertheless, the partial mode collapse problem was observed in Figure 4-23. We can discover that

only a few types of geometric combinations were produced by the generator.

52

Figure 4-22. The losses of DCGAN trained on NLVR

Figure 4-23. Geometric graphics generated by DCGAN of the project

53

4.2.3 WGAN on NLVR

WGAN utilized the similar structures of DCGAN but there was no sigmoid activation function in the

discriminator. The full structure was presented in Figure 4-24.

Figure 4-24. The structures of WGAN model for colorful images with 64×64 pixels

Figure 4-25 illustrated the losses of WGAN. The loss of the generator went down consistently. In the end,

it vibrated at a little region from -0.0001 to 0.0001. The loss of the discriminator increased gently as the

training progressed. After 12000 epochs, both these two losses converged.

Figure 4-25. The losses of WGAN trained on NLVR

54

Figure 4-26 presented the synthesised images from WGAN. In the beginning of the training, the background

was rough, and the boundaries of geometric graphics were not sharp. After 20,000 epochs, the synthesised

images were clearer, and their background was evener. The mode collapse problem was not observed in

WGAN. The generative model can produce various types of geometric images rather than only a few types

of geometric combinations.

Figure 4-26. Geometric graphics generated by WGAN of the project

4.2.4 WGAN-GP on NLVR

The structures of WGAN-GP were similar to WGAN’s. Nerveless, there was no batch normalization layer

in the discriminator. The full structure was presented in Figure 4-27.

Figure 4-27. The structures of WGAN-GP model for colorful images with 64×64 pixels

55

Figure 4-28 demonstrated the changing of two neural networks’ losses. The loss of the discriminator

increased and kept in a certain region after 1000 training epochs. On the other hand, the loss of the generator

decreased rapidly in the beginning and vibrated after 500 training epochs. Overall, two neural networks

competed to make WGAN-GP be improved. The synthesised images were presented in Figure 4-29. After

10,000 epochs, the images had even background and some geometric graphic already had sharp boundaries.

It illustrated that the convergence speed of WGAN-GP was faster than the one of WGAN. In the 30,000

epochs, WGAN-GP can generate compelling images which contained simple square combinations. These

images were saturated and clear.

Figure 4-28. The losses of WGAN-GP trained on NLVR

Figure 4-29. Geometric graphics generated by WGAN-GP of the project

56

4.2.5 Model Comparisons on NLVR

As explained in section 4.1.5 , we divided these four models into two groups. The first group was vanilla

GANs and DCGAN and the other was WGAN and WGAN-GP.

Figure 4-30 demonstrated the JS divergence of vanilla GANs and DCGAN. The former saturated at the

beginning of training. It meant that the model stopped progressing. The latter had surges sometimes and

did not change frequently.

The result of the vanilla GANs was not delightful. The full mode collapse problem occurred in the early

stage of the training. By observing its losses, the Nash equilibrium of the model was met at the beginning.

However, the fact was that the generator only synthesised images with a whole gray color to fool the

discriminator. By observing the training data further, we can find that most images’ background accounts

for over 50% of the total. It could lead the generator to only learn how to synthesis background images.

In terms of the result of DCGAN, it illustrated that the generator can catch a part of real data’s distribution

and generated meaningful images. DCGAN can construct more reliable generative models than vanilla

GANs. However, the partial mode collapse problem still happened in DCGAN. Figure 4-23 demonstrated

a bunch of images generated by DCGAN, and only a few types of images were synthesised.

Figure 4-30. The JS divergences of the vanilla GANs and DCGAN in NLVR

Because of the full mode collapse problem, vanilla GANs got terrible FID at every training stage as shown

in Table 4-3. Furthermore, the generator did not make any progress along with the training progressing

because its FID did not change after 20,000 epochs. The performance of DCGAN was better than vanilla

GANs according to FID. However, its figure was also not good enough to fool human. In the subjective

evaluation, vanilla GANs and DCGAN gained 0.00% and 13.89% error rate respectively.

57

FID

 10,000 epochs 20,000 epochs 30,000 epochs

Vanilla GANS 346 314 314

DCGAN 269 294 242

Table 4-3. FID of vanilla GANs and DCGAN which were trained on NLVR

Figure 4-31 demonstrated the generated images of DGAN and the corresponding similar images of the

training dataset. Although some generated images looked like the real images, they did not match perfectly.

In terms of vanilla GANs, the similarity comparison was not presented because of the failure of the training.

Figure 4-31. The image similarity comparison of DCGAN in NLVR

Figure 4-32 presented the Wasserstein distance of WGAN and WGAN-GP. The figures for these two

models went down as the models experienced more training epochs. Table 4-4 illustrated the FID of the

generators in these two models. It was clear that their FID decreased along with the training progressing.

Form Figure 4-32 and Table 4-4, we also observed a positive correlation between the Wasserstein distance

and the images’ quality. The result of the questionnaire revealed that WGAN and WGAN-GP got 5.56%

and 19.44% error rate on discriminating synthesised geometric graphics. Hence, WGAN-GP had better

performance than WGAN.

Figure 4-32. The Wasserstein distances of WGAN and WGAN-GP in NLVR

58

FID

 10,000 epochs 20,000 epochs 30,000 epochs

WGAN 278 272 256

WGAN-GP 195 112 109

Table 4-4. FID of WGAN and WGAN-GP which were trained on NLVR

The similarity comparisons between the generated and real images were presented in Figure 4-33 and Figure

4-34. Both WGAN and WGAN-GP can synthesis new images which were different from the images of the

training dataset.

Figure 4-33. The image similarity comparison of WGAN in NLVR

Figure 4-34. The image similarity comparison of WGAN-GP in NLVR

The performance of WGAN-GP was the best based on FID and the questionnaire. Both WGAN and

WGAN-GP did not suffer from the mode collapse problem which occurred in vanilla GANs and DCGAN.

And then, the correlation between the Wasserstein distance and the quality of the images was better than

the one between the JS divergence and the quality of the images. Furthermore, WGAN and WGAN-GP

were more stable than vanilla GANs and DCGAN in the training by observing the changing of their

generator losses.

59

4.3 The 3rd Experiment: Generate Flower Images

This experiment employed Oxford-102 flowers as the training dataset to build generative models.

All models were trained with 64 batch size and 40,000 epochs.

4.3.1 Vanilla GANs on Oxford-102 Flowers

As presented in Figure 4-35, the loss of the generator declined in the beginning of the training and

started to explode after 7000 epochs. In the meantime, the loss of the discriminator slowly

decreased. From the observation, the discriminator cannot provide an effective guide to the

generator. Hence, the loss of the generator consistently grew when the model experienced more

training epochs.

Figure 4-35. The losses of vanilla GANs trained on Oxford-102 flowers

Figure 4-36 demonstrated synthesised flowers in different training stages from 10,000 to 40,000

epochs. Unfortunately, the results were not well, and the generator cannot capture the detail of the

training dataset. The generated images had very blur shape along with a tremendous amount of

noise. All in all, vanilla GANs learned a little knowledge in the beginning but the loss of generator

exploded too quickly to make further progress.

Figure 4-36. Flower images generated by vanilla GANs of the project

60

4.3.2 DCGAN on Oxford-102 Flowers

As shown in Figure 4-37, the loss of the discriminator declined. It meant that the distance between

the distribution of training dataset and the distribution of synthesised images was shortened

consistently. In contrast, the loss of the generator climbed gently along with the training

progressing.

Figure 4-37. The losses of DCGAN trained on Oxford-102 flowers

Comparing with vanilla GANs, DCGAN can produce more realistic flower images which were

shown in Figure 4-38. The boundaries of the synthesised images were sharper, and the images

presented various types of flower shapes. Some of them displayed more flower detail such as petals

and anthers. Furthermore, the depth of field can be observed in the images.

Figure 4-38. Flower images generated by DCGAN of the project

61

4.3.3 WGAN on Oxford-102 Flowers

Figure 4-39 showed the losses of WGAN. Both losses of the discriminator and the generator exploded

toward the negative direction. It was not a good phenomenon in the training process because it meant that

the losses did not converge.

Figure 4-39. The losses of WGAN trained on Oxford-102 flowers

The exploding losses reflected the awful quality of generated images which were shown in Figure 4-40.

Before 10,000 epochs, the model kept its variety. However, the models only generated one or two types of

images when the model was trained more times. The mode collapse problem occurred.

Figure 4-40. Flower images generated by WGAN of the project

62

4.3.4 WGAN-GP on Oxford-102 Flowers

The losses of WGAN-GP were illustrated in Figure 4-41. The loss of the discriminator increased rapidly

and vibrated in a small range. In the meanwhile, the figure for the generator went down quickly and reached

the lowest point. And then, it climbed slowly along with the vibration.

Figure 4-41. The losses of WGAN-GP trained on Oxford-102 flowers

The synthesised images of WGAN-GP were shown in Figure 4-42. We can find that the quality of the

synthesised images was improved consistently. As the results of DCGAN, the images presented variant

flower shapes and the detail of flowers.

Figure 4-42. Flower images generated by WGANG-GP of the project

63

4.3.5 Model Comparisons on Oxford-102 Flowers

Figure 4-43 illustrated the JS divergence of vanilla GANs and DCGAN. The JS divergence of these two

models went down consistently. In general, the quality of synthesised images was better if a GANs model

had a small JS divergence. However, the reducing of the JS divergence in vanilla GANs was not relevant

to the quality of its synthesised images positively. In fact, the quality of the images was getting worse. On

the other hand, the JS divergence of DCGAN had a positive correlation with the quality of the synthesised

images.

Figure 4-43. The JS divergences of vanilla GANs and DCGAN in Oxford-102 flowers

Table 4-5 demonstrated the objective evaluation of vanilla GANs and DCGAN. The figure for vanilla

GANs was getting bigger along with the training progressing. By contrast, FID of DCGAN declined along

with the training epoch increasing. In terms of the subjective evaluation, the images of vanilla GANs were

too terrible to fool the participants. Hence, it got 0.00% error rate on human judgment. On the other hand,

DCGAN can generate better flower images to mislead the participants and it yielded a 27.78% error rate.

FID

 10,000 epochs 20,000 epochs 30,000 epochs 40,000 epochs

Vanilla GANs 331 341 345 353

DCGAN 144 102 90 79

Table 4-5. FID of vanilla GANs and DCGAN which were trained on Oxfor-102 flowers

64

Figure 4-44 illustrated the similarity comparison of DCGAN. It showed that DCGAN can generate new

flower images. The similarity comparison of vanilla GANs was not presented because of the failure of the

training.

Figure 4-44. The image similarity comparison of DCGAN in Oxford-102 flowers

Figure 4-45 demonstrated the Wasserstein distance of WGAN and WGAN-GP. The figure for WGAN-GP

had large amplitude, but it tended to decrease on the whole. In contrast, the figure for WGAN increased

consistently. Form the observation, we can find that there was a high correlation between the Wasserstein

distance and the quality of the synthesised images. The performance of WGAN was getting worse along

with the increment of its Wasserstein distance and WGAN-GP can generate better flower images when its

Wasserstein distance declined.

Figure 4-45. The Wasserstein distances of WGAN and WGAN-GP in Oxford-102 flowers

65

The result of the objective evaluation was positively relevant to the result of the questionnaire. No

participant did the wrong judgment on the images which were synthesised by WGAN. However, WGAN-

GP got 11.11% error rate on human judgment.

FID

 10,000 epochs 20,000 epochs 30,000 epochs 40,000 epochs

WGAN 272 364 386 363

WGAN-GP 139 120 115 104

Table 4-6. FID of WGAN and WGAN-GP which were trained on Oxfor-102 flowers

Figure 4-46 demonstrated the images which were synthesised by WGAN-GP were different from the

images of the training dataset.

Figure 4-46. The image similarity comparison of WGAN-GP in NLVR

In the third experiment, the synthesised images by DCGAN got the smallest FID and the most participants

selected wrong answers in the corresponding question. It was obvious that vanilla GANs which were built

by MLP was hard to be applied to the complicated training data. Vanilla GANs only learned a little part of

the target distribution as shown in section 4.3.1. WGAN also failed to capture the distribution of the training

data. Furthermore, a serious mode collapse happened in WGAN. Conversely, DCGAN and WGAN-GP

performed more stably.

66

Chapter 5: Conclusions and Recommendations

5.1 Conclusions

5.1.1 Problems of Vanilla GANs

Generative adversarial networks demonstrated advantages on synthesising images. One was that the

synthesised images were sharper than traditional generative models. The other was that the speed of

generating images was fast. However, the non-convergence problem and the mode collapse problem made

vanilla GANs hard to be trained.

From the experiment of generating handwritten digits, the result of vanilla GANs was acceptable and the

problems mentioned above were not observed. The reason for vanilla GANs’ success could be credited to

the dimension of MNIST was small. Hence, the model can capture a large portion of the training data’s

distribution. However, the problems of vanilla GANs happened when it was applied to more complex

training data including NLVR and Oxford-102 flowers. The full mode collapse problem occurred in NLVR.

The model only synthesised a type of images. In the experiment of synthesising flower images, non-

convergence was observed. From the analysis in section 4.3.1, the loss of vanilla GANs’ generator exploded

along with the training progressing.

5.1.2 The improvement in GANs training stability

To adopt the idea of GANs on higher dimensional data, the stability of GANs models needed to be

meliorated. In the 3rd experiments, DCGAN improved the stability of the training. The quality of the images

synthesised by DCGAN kept improving as the model experienced more training epochs. It also got the best

score both in the objective and the subjective evaluation. Nevertheless, the fractional mode collapse was

observed in DCGAN in the 2nd experiment.

5.1.3 The improvement in Estimating Method

From the experiments, we can find a high correlation between the Wasserstein distance and the performance

of the models. If the Wasserstein distance was reduced, the quality of synthesised images was improved.

By contrast, the performance of the model cannot be improved if the Wasserstein distance cannot be

diminished. The 3rd experiment demonstrated this point effectively. The Wasserstein distance of WGAN in

the 3rd experiment increased consistently rather than converging. Hence, the generator of WGAN cannot

produce compelling flower images. On the other hand, the JS divergence was not consistent with the

performance of the models.

67

In theatrically, WGAN can improve stability of the training process and alleviate the mode collapse problem.

However, WGAN failed to capture the distribution of Oxford-102 flowers in the 3rd experiment. The main

reason for WGAN’s unstable could be caused by the parameter 𝑐 in weight clipping. In the original paper

(Arjovsky et al., 2017), the author said that weight clipping was a temporary method to restrict the

discriminator. From the experiments conducted by Gulrajani et al. (2017), if 𝑐 was too big, it could cause

the loss of the generator to explode.

In contrast to the result of WGAN, WGAN-GP performed stably in every experiment. Wasserstein distance

of WGAN-GP decreased consistently in every experiment and it can synthesis better quality images. It

could be credited to the gradient penalty which restricts the discriminator to be a 1-Lipschitz function more

appropriately.

Comparing with the other three models, WGAN can accommodate different kinds of training dataset and

provides stability in the training process in overall.

5.2 Recommendations

After conducting the project, there were five recommendations for further research. First, GANs models

can be applied on more complex training data such as LSUN (Yu et al., 2015), CelebA (Liu et al., 2015)

and ImageNet (Russakovsky et al., 2015). These datasets contain more training data and were full of variety.

Next, the training iterations can be increased if the computation power was enough. In general, the model

can be improved by increasing the training iterations. It was possible to increase computation power by

training the models in a multi-GPU environment. Then, the image size of the training data can be enlarged.

In the project, we restricted the size of the images to 64×64 pixels. For instance, the image size of the

training can be resized to 128×128 pixels to producing more compelling images. Finally, the standard

questionnaire was not efficiency enough because it was hard to gather numerous effective responses. The

suggested way was posting the questions on Amazon Mechanical Turk (MTurk) to get more responses.

68

Bibliography

ARJOVSKY, M., CHINTALA, S. & BOTTOU, L. (2017) Wasserstein gan. arXiv. Avaliable at:

https://arxiv.org/pdf/1701.07875.pdf (Accessed: 27 June 2019).

BANTUM, E. O. C. et al. (2017) ‘Machine learning for identifying emotional expression in text: Improving

the accuracy of established methods’. Journal of Technology in Behavioral Science, 2 (1), pp.21-27.

BARRATT, S. & SHARMA, R. (2018) A note on the inception score. arXiv. Avaliable at:

https://arxiv.org/pdf/1801.01973.pdf (Accessed: 3 June 2019).

BODNAR, C. (2018) Text to image synthesis using generative adversarial networks. arXiv. Avaliable at:

https://arxiv.org/pdf/1805.00676.pdf (Accessed: 15 June 2019).

BOURLARD, H. & KAMP, Y. (1988) ‘Auto-association by multilayer perceptrons and singular value

decomposition’. Biological cybernetics, 59 (4-5), pp.291-294.

CHOLLET, F. (2015). Keras. Avaliable at: https://github.com/fchollet/keras (Accessed: 28 May 2019).

CIREŞAN, D., MEIER, U. & SCHMIDHUBER, J. (2012) Multi-column deep neural networks for image

classification. arXiv. Avaliable at: https://arxiv.org/pdf/1202.2745.pdf (Accessed: 12 June 2019).

DENG, L. (2012) ‘The MNIST database of handwritten digit images for machine learning research [best

of the web]’. IEEE Signal Processing Magazine, 29 (6), pp.141-142.

DOWSON, D. C. & LANDAU, B. V. (1982) ‘The Fréchet distance between multivariate normal

distributions’. Journal of multivariate analysis, 12 (3), pp.450-455.

DUCHI, J., HAZAN, E. & SINGER, Y. (2011) ‘Adaptive subgradient methods for online learning and

stochastic optimization’. Journal of Machine Learning Research, 12(Jul), pp.2121-2159.

FREY, B. J., HINTON, G. E. & DAYAN, P. (1996) ‘Does the wake-sleep algorithm produce good density

estimators?’. In NIPS, pp.661-667.

GOODFELLOW, I. (2016) NIPS 2016 tutorial: Generative adversarial networks. arXiv. Avaliable at:

https://arxiv.org/pdf/1701.00160.pdf (Accessed: 27 May 2019).

GOODFELLOW, I. et al. (2014) ‘Generative adversarial nets’. In NIPS, pp.2672-2680.

GRAVES, A. & SCHMIDHUBER, J. (2009) ‘Offline handwriting recognition with multidimensional

recurrent neural networks’. In NIPS, pp.545-552.

GULRAJANI, I. et al. (2017) ‘Improved training of wasserstein gans’. In NIPS, pp.5767-5777.

HEUSEL, M. et al. (2017) ‘Gans trained by a two time-scale update rule converge to a local nash

equilibrium’. In NIPS, pp.6626-6637.

69

HINTON, G. E. & SALAKHUTDINOV, R. R. (2006) ‘Reducing the dimensionality of data with neural

networks’. science, 313 (5786), pp.504-507.

HINTON, G. E. & ZEMEL, R. S. (1994) ‘Autoencoders, minimum description length and Helmholtz free

energy’. In NIPS, pp.3-10.

HOCHREITER, S. & SCHMIDHUBER, J. (1997) ‘Long short-term memory’. Neural computation, 9 (8),

pp.1735-1780.

HU, J., SHEN, L. & SUN, G. (2018) ‘Squeeze-and-excitation networks’. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp.7132-7141.

HUANG, H., YU, P. S. & WANG, C. (2018) An introduction to image synthesis with generative adversarial

nets. arXiv. Avaliable at: https://arxiv.org/pdf/1803.04469.pdf (Accessed: 27 June 2019).

JAIN, A. K., MAO, J. & MOHIUDDIN, K. M. (1996) ‘Artificial neural networks: A tutorial’. Computer,

3, pp.31-44.

KARRAS, T., AILA, T., LAINE, S. & LEHTINEN, J. (2017) Progressive growing of gans for improved

quality, stability, and variation. arXiv. Avaliable at: https://arxiv.org/pdf/1710.10196.pdf

(Accessed: 27 May 2019).

KINGMA, D. P. & BA, J. (2014) Adam: A method for stochastic optimization. arXiv. Avaliable at:

https://arxiv.org/pdf/1412.6980.pdf (Accessed: 27 June 2019).

KINGMA, D. P. et al. (2016) Improved variational inference with inverse autoregressive flow. In NIPS,

pp.4743-4751.

KINGMA, D. P. & WELLING, M. (2013) Auto-encoding variational bayes. arXiv. Avaliable at:

https://arxiv.org/pdf/1312.6114.pdf (Accessed: 29 May 2019).

LECUN, Y. & BENGIO, Y. (1995) ‘Convolutional networks for images, speech, and time series’. The

handbook of brain theory and neural networks, 3361 (10).

LECUN, Y., BENGIO, Y. & HINTON, G. (2015) ‘Deep learning’. nature, 521 (7553), pp.436.

LECUN, Y., BOTTOU, L., BENGIO, Y. & HAFFNER, P. (1998) ‘Gradient-based learning applied to

document recognition’. Proceedings of the IEEE, 86 (11), pp.2278-2324.

LEE, H. Y. (2017) Generative Adversarial Network (GAN). [PowerPoint presentation to Machine Learning].

Available at:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2017/Lecture/GAN%20(v11).pdf (Accessed:

22 May 2019).

LEE, H. Y. (2018) Tips for Improving GAN. [PowerPoint presentation to Machine learning]. Available at:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2018/Lecture/WGAN%20(v2).pdf (Accessed:

27 May 2019).

LISON, P. (2015) An introduction to machine learning. Language Technology Group (LTG), 1 (35).

70

LIU, Z., LUO, P., WANG, X. & TANG, X. (2015) ‘Deep learning face attributes in the wild’.

In Proceedings of the IEEE International Conference on Computer Vision, pp.3730-3738.

MAALØE, L., SØNDERBY, C. K., SØNDERBY, S. K. & WINTHER, O. (2016) Auxiliary deep

generative models. arXiv. Avaliable at: https://arxiv.org/pdf/1602.05473.pdf (Accessed: 22 June

2019).

MAAS, A. L., HANNUN, A. Y. & NG, A. Y. (2013) ‘Rectifier nonlinearities improve neural network

acoustic models’. In Proc. icml, 30 (1), pp.3.

MIRZA, M. & OSINDERO, S. (2014) Conditional generative adversarial nets. arXiv. Avaliable at:

https://arxiv.org/pdf/1411.1784.pdf (Accessed: 10 June 2019).

NAIR, V. & HINTON, G. E. (2010) ‘Rectified linear units improve restricted boltzmann machines’. In

Proceedings of the 27th international conference on machine learning (ICML-10), pp.807-814.

NILSBACK, M.-E. & ZISSERMAN, A. (2008) ‘Automated flower classification over a large number of

classes’. In Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp.722-

729.

OORD, A. V. D., KALCHBRENNER, N. & KAVUKCUOGLU, K. (2016) Pixel recurrent neural networks.

arXiv. Avaliable at: https://arxiv.org/pdf/1601.06759.pdf (Accessed: 30 May 2019).

RADFORD, A., METZ, L. & CHINTALA, S. (2015) Unsupervised representation learning with deep

convolutional generative adversarial networks. arXiv. Avaliable at:

https://arxiv.org/pdf/1511.06434.pdf (Accessed: 12 June 2019).

REED, S., AKATA, Z., YAN, X., LOGESWARAN, L., SCHIELE, B. & LEE, H. (2016) Generative

adversarial text to image synthesis. arXiv. Avaliable at:

http://proceedings.mlr.press/v48/reed16.pdf (Accessed: 29 May 2019).

REZENDE, D. J., MOHAMED, S. & WIERSTRA, D. (2014) Stochastic backpropagation and approximate

inference in deep generative models. arXiv. Avaliable at: https://arxiv.org/pdf/1401.4082.pdf

(Accessed: 22 June 2019).

RUMELHART, D. E., HINTON, G. E. & WILLIAMS, R. J. (1988) ‘Learning representations by back-

propagating errors’. Cognitive modeling, 5 (3), pp.1.

RUSSAKOVSKY, O. et al. (2015) ‘Imagenet large scale visual recognition challenge’. International

journal of computer vision, 115 (3), pp.211-252.

SALIMANS, T. et al. (2016) ‘Improved techniques for training gans’. In NIPS, pp.2234-2242.

SPRINGENBERG, J. T., DOSOVITSKIY, A., BROX, T. & RIEDMILLER, M. (2014) Striving for

simplicity: The all convolutional net. arXiv. Avaliable at: https://arxiv.org/pdf/1412.6806.pdf

(Accessed: 28 May 2019).

SUHR, A., LEWIS, M., YEH, J. & ARTZI, Y. (2017) ‘A corpus of natural language for visual reasoning’.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2,

pp.217-223.

71

SZEGEDY, C. et al. (2016) ‘Rethinking the inception architecture for computer vision’. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pp.2818-2826.

TIELEMAN, T. & HINTON, G. (2012) Lecture 6.5-rmsprop: Divide the gradient by a running average of

its recent magnitude. [PowerPoint presentation to Neural networks for machine learning]. Available

at: https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf (Accessed: 22 June

2019).

Vincent, J. (2017) This app uses neural networks to put a smile on anybody’s face. Available at:

https://www.theverge.com/tldr/2017/1/27/14412814/faceapp-neural-networks-ai-smile-image-

manipulation (Accessed: 2 August 2019).

YU, F. et al. (2015) Lsun: Construction of a large-scale image dataset using deep learning with humans in

the loop. arXiv. Avaliable at: https://arxiv.org/pdf/1506.03365.pdf (Accessed: 27 June 2019).

ZHANG, H. et al. (2017) ‘Stackgan: Text to photo-realistic image synthesis with stacked generative

adversarial networks’. In Proceedings of the IEEE International Conference on Computer Vision,

pp.5907-5915.

ZHU, J.-Y., PARK, T., ISOLA, P. & EFROS, A. A. (2017) ‘Unpaired image-to-image translation using

cycle-consistent adversarial networks’. In Proceedings of the IEEE International Conference on

Computer Vision, pp.2223-2232.

72

Appendix A

The following images demonstrated the full questionnaire used for evaluating GANs models.

Figure A-1. Instruction of the questionnaire

73

Figure A-2. Inviting participants to join the questionnaire

74

Figure A-3. The questions for choosing synthesised digit images of GANs and DCGAN

75

Figure A-4. The questions for choosing synthesised digit images of WGAN and WGAN-GP

76

Figure A-5. The questions for choosing synthesised geometric graphics of GANs and DCGAN

77

Figure A-6. The questions for choosing generated geometric graphics of WGAN and WGAN-GP

78

Figure A-7. The questions for choosing generated flower images of GANs and DCGAN

79

Figure A-8. The questions for choosing generated flower images of WGAN and WGAN-GP

