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Abstract 

Inheritance is a key component in object-oriented programming, providing many of the benefits 

that are available through this programming paradigm. These benefits include increased 

modularity and code reusability, and the freedom to make changes to a single base class and 

have those changes applied to all who inherit that class. Inheritance also comes with some 

disadvantages, including a loss of encapsulation when the state of a class is shared among 

multiple children, and an increase in code complexity. Knowing when to correctly and 

efficiently use inheritance, and when to consider an alternative, is a valuable skill that any 

developer should strive towards.  

By utilizing established software code metrics as a basis for analysis, this thesis aims to provide 

detailed observations on the use of inheritance in open source Java applications. These metrics 

help to reveal information about the depth of inheritance hierarchies, the risks associated with 

a class having many children and methods, the growth and complexity of complete inheritance 

hierarchies, and the effects of inheritance on methods implemented in both parent and child 

classes. This information can be helpful in comparing the ways different open source systems 

use inheritance. 

An analysis tool has been developed for the purpose of investigating inheritance use in open 

source systems. The metrics mentioned above are used by this tool to analyze different aspects 

of inheritance and provide data that is easily consumed through charts and graphs. With the 

help of this tool and the code metrics, examples of both decent and poor design practices 

regarding inheritance will be revealed. 
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Chapter 1: Introduction to Inheritance 

Inheritance plays a significant role in many aspects of software related technology today, such 

as artificial intelligence, object-oriented databases, and object-oriented programming 

(Thirunarayan, 2009). Taivalsaari claims that the ability of objects to inherit from one another in 

object-oriented programming is considered one of the main features that distinguishes this 

programming model from others. Many of the benefits achieved through object-oriented 

programming, such as improved conceptual modeling and reusability, are possible thanks to 

the concept of inheritance (Taivalsaari, 1996, p. 438). 

So what is inheritance? This feature will be explained in full detail shortly, but the basic concept 

is that inheritance supports the ability of new object definitions to be modeled after ones that 

have already been defined, and gives these new objects properties of the parent that can be 

used in the same manner, given additional functionality, or removed altogether (Taivalsaari, 

1996, p. 447). This promotes the reuse of code that has already been written, and provides 

additional benefits, such as the ability to interchangeably use objects that inherit from the 

same parent. 

The use of inheritance can effect objects in many different ways, some beneficial, and some 

that cause increased complexity and loss of freedom to make compatible changes to existing 

classes (Snyder, 1986, p. 39). These problems might not always be apparent to a developer, and 

they might often use inheritance simply because it is available and provides some advantages, 

while not considering the negative side effects that may follow later in an application’s lifetime. 

In order to better understand how inheritance might affect an application, there are certain 

code metrics and analysis methods that can be used to provide information on the impact 

inheritance has on related objects. The major questions to consider when doing this analysis 

are the following: 

 Is there any risk or additional complexity for objects that are deep in an inheritance 

hierarchy? 

 What is the correlation between an object that is inherited many times, and the 

methods that are implemented in that object? 
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 How does the hierarchy structure of one object change and grow as more separate 

objects inherit from the parent? 

 What happens to methods that are defined in a parent object, when they are also 

implemented in child objects? 

To help with the process of answering these analysis questions, a tool has been developed 

using the Java programming language and the Eclipse JDT. This application is designed to take 

Java software systems and parse the code into a tree-like structure that allows for inspecting 

the sections of code that relate to inheritance use. Then a number of calculations will be made 

that will provide data that can be analyzed to provide a deeper comprehension on the answer 

to the proposed questions. 

 The eleven systems that are to be analyzed are all open source Java 

projects. All but one of those systems come from the Qualitas Corpus 

(Tempero, 2013), which is a collection of software systems maintained 

by Ewan Tempero of the University of Auckland, and intended to be 

used for empirical studies of code artifacts. The final system is 

JHotDraw (Gamma & Eggenschwiler, 2007), which was developed by 

Erich Gamma and Thomas Eggenschwiler as a way of promoting well-

known design patterns, identifying new patterns, and to be an example 

of a well-designed and flexible framework (Gamma & Eggenschwiler, 

2007). The versions of each of these systems can be seen in Table 1.1. 

The remainder of this introductory chapter will establish the 

terminology used throughout this thesis and provide details on the history of inheritance in 

object-oriented programming along with the definition of what inheritance actually means. 

There will also be information regarding two different types of inheritance available in 

programming languages today, and explain how inheritance is used in the language chosen for 

the application supporting the research for this thesis. Finally, there will be a section on some 

precautions to consider when using inheritance in any application. 

System Version 

Ant 1.8.4 

ANTLR 4.0 

ArgoUML 0.34 

Azureus 4.8.1.2 

FreeCol 0.9.5 

Hibernate 4.2.2 

JHotDraw 6.0.1 

JUNG 2.0.1 

Junit 4.9 

Lucene 4.2.1 

Weka 3.7.9 
Table 1.1 Versions of 
analyzed systems 

http://qualitascorpus.com/
http://www.jhotdraw.org/
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1.1 Terminology 

Throughout the scope of this paper there are some terms that will be used to refer to certain 

aspects of programming. When referring to an item that inherits from another, the words 

subclass, child, and descendant may be used. When referring to an item that is being inherited 

by another, the words superclass, parent, and ancestor may be used. The term type is used to 

define what kind of generic object is being used in Java, be it a class or an interface. For 

example, a List<String> is a List of objects of the type String. 

Certain words and terms have been marked in order to recognize their type. When referencing 

a class or interface, the word is italicized, for example: java.lang.Object, or AbstractFigure. 

Method signatures or method names will also be in italics, for instance, moveBy(int, int) or 

draw. Reserved keywords in the Java programming language are in bold, such as extends or 

super. Applications or systems that were used for the purposes of the analysis are also in bold, 

like Hibernate or Inheritance Inquiry. 

For examples of an application that uses inheritance, the project JHotDraw will be used. 

JHotDraw is an open source project created by Erich Gamma and Thomas Eggenschwiler. This 

application provides many representations of well-known design patterns that were 

popularized by Gamma, along with Richard Helm, Ralph Johnson, and John Vlissides. There are 

also many uses of inheritance throughout the program that might be used to as examples. 

There are three design patterns that are mentioned throughout this thesis. These concepts are 

defined by Gamma et al. in their book Design Patterns: Elements of Reusable Object-Oriented 

Software (Gamma, et al., 1995, pp. 139, 175, 325, 331). In order to understand the patterns 

when they are used, the definitions are provided here. 

 Adapter – “Convert the interface of a class into another interface clients expect. 

Adapter lets classes work together that couldn’t otherwise because of incompatible 

interfaces.” 

 Decorator – “Attach additional responsibilities to an object dynamically. Decorators 

provide a flexible alternative to subclassing for extending functionality.” 

http://www.jhotdraw.org/
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 Template – “Define the skeleton of an algorithm in an operation, deferring some steps 

to subclasses. Template Method lets subclasses redefine certain steps of an algorithm 

without changing the algorithm’s structure.” 

 Visitor – “Represent an operation to be performed on the elements of an object 

structure. Visitor lets you define a new operation without changing the classes of the 

elements on which it operates.” 

1.2 Principles of Inheritance 

Inheritance is one of the fundamental concepts of object-oriented programming, alongside 

encapsulation and polymorphism. One of the earliest introductions to inheritance was in the 

programming language Simula, developed by Ole-Johan Dahl and Kristen Nygaard in the 1960s. 

This language introduced the concept of “classes” and “objects”, and can be seen as the first 

object-oriented programming language (Dahl, 2004). The technique of inheritance was defined 

by Dahl and Nygaard as concatenation, and could be described as the process of merging 

attributes from two different components (classes or objects), and the composition of their 

actions (Dahl, et al., 1972). By allowing new objects to be defined based on existing objects, 

only those properties that are not already declared in the existing class need to be declared in 

the new object. The properties of the base object will be available to the new object, and 

automatically included, without the need for redefinition (Taivalsaari, 1996). Based on this 

information, inheritance can be defined as the following: 

Inheritance is the process through which objects are able to reuse the properties and behavior of 

already existing objects, thereby limiting the amount of code that needs to be rewritten, and 

providing a more modular approach to development.  

Through the use of inheritance, a class will receive certain methods and properties from 

another class, allowing the inheriting class to have a similar state and structure as the parent 

class. Gamma, et al. note that “(w)hen a subclass inherits from a parent class, it includes the 

definition of all the data and operations that the parent class defines” (Gamma, et al., 1995). 

Methods and variables that are defined inside a parent class will be available to use in any 

subclasses, and objects that reference those subclasses can also call methods from the parent. 
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This is very useful in achieving code reuse throughout an application, as code can be defined in 

one class, and then simply inherited in others, avoiding multiple definitions of the same code. 

This type of code reuse is often recognized as “white-box reuse” (Gamma, et al., 1995, p. 31). 

As noted by Crnogorac et al, the main benefit received through the use of inheritance is the 

reduced amount of effort needed in implementation, as classes that are already developed and 

tested can be branched into new classes, and flexibility is obtained since code changes can be 

limited to only one class in certain circumstances (Crnogorac, et al., 1998, pp. 572-573).  

With inheritance now defined, it is important to understand another concept of OO 

programming: encapsulation. Alan Snyder defines encapsulation as “a technique for minimizing 

interdependencies among separately-written modules by defining strict external interfaces” 

(Snyder, 1986, p. 39). Using encapsulation allows a developer to update the implementation 

details of an object, without having to change the clients that use that object (Micallef, 1988, p. 

10). While inheritance can be seen as a white-box, in that the internal details of a class are 

known to its children, encapsulation can be seen as a black-box. The details of an object’s 

implementation are unknown to clients, all the client is aware of is the interface that is public 

from that object. 

In addition to the reusability benefits of inheritance, another important feature is type 

substitution. When one class inherits from another, the subclass is allowed to be used in the 

code in place of the superclass. The benefit afforded through type substitution is that the 

details of an object’s implementation can be hidden away, and the client that uses that object 

only needs to be aware that the object is of the desired type. The code also becomes more 

modular as many different types can be passed as a reference that is asking for one specific 

type of class. An example of type substitution can be seen in JHotDraw.  Consider a JHotDraw 

application that requires a tool which can only create Figures that are based on a rectangle. The 

details of how this would work are shown in Code Snippet 1.1 and explained in the following 

paragraph. 

First, a RectangleBasedTool can be created, which extends CreationTool, and accepts any object 

of the type RectangleFigure as a parameter for its constructor. The super constructor is called, 

passing in the RectangleFigure. CreationTool requires a Figure as the parameter, and because 



McNealy  
 

13 
 

RectangleFigure implements Figure, this is valid and the class is complete. Now in any JHotDraw 

app, the RectangleBasedTool can be used for figure creation. However, unlike a CreationTool 

which can be used with any Figure, this new tool will only accept a class that inherits from 

RectangleFigure. Any type of RectangleFigure can be substituted as a parameter for this tool, and 

because the tool is not restricted to one final class, it is possible to switch between those types 

at run-time. 

public class RectangleBasedTool extends CreationTool { 

  

  // Only accepts classes that inherit from RectangleFigure 

  public RectangleBasedTool(DrawingView view, RectangleFigure prototype) { 

    super(view, prototype); // super constructor accepts any Figure 

  } 

} 

 

public class CreationTool extends AbstractTool { 

  private Figure fPrototype; 

  

  public CreationTool(DrawingView view, Figure prototype) { 

    super(view); 

    fPrototype = prototype; 

  } 

} 

 

public class RecatangleExampleApp extends DrawingApplication { 

  // .... 

  @Override 

  protected void createTools(JPanel palette) { 

    Tool rectTool = new RectangleBasedTool(view(), new RectangleFigure()); 

    Tool diamondTool = new RectangleBasedTool(view(), new DiamondFigure()); 

    Tool triangleTool = new RectangleBasedTool(view(), new TriangleFigure()); 

    // Add tools... 

  } 

} 
 

Code Snippet 1.1 RectangeBasedTool.java example for JHotDraw 

In contrast to the benefits of inheritance mentioned above, there are also considerations to make 

regarding how to safely use inheritance. With inheritance, the implementation details of a 

subclasses are based on the parent class, forming a contract between the parent and any 

children. This contract will limit the rate at which a developer can safely make changes to the 

parent class, as those changes may have unintended side effects on the subclasses (Snyder, 1986, 

p. 39). Modifications to a parent class will often force the children classes to change as well 

(Gamma, et al., 1995, p. 31). Because classes using inheritance are defined at compile-time, 
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another restriction associated with its use is that the implementation details from a parent class 

are fixed and cannot be changed at run-time (Gamma, et al., 1995, p. 31).  

When studying classes in a system, is it important to consider the relationship between those 

classes. According to Bertrand Meyer, “inheritance represents the is relation, also known as is-

a” (Meyer, 1988, p. 498). Using JHotDraw as an example, there is a ConnectedTextTool class 

which extends TextTool, so it can be said that “every ConnectedTextTool is a TextTool”. This 

relationship is a contrast against the one provided by composition. Object composition is an 

alternative to inheritance, in which a class contains a reference to another object (preferably an 

interface), and any actions required by the containing class are delegated to the composition 

object. The relationship with composition is a has-a relation. Using this alternative provides a 

“more workable and flexible extension mechanism” where objects can be easily added or 

removed at run-time of an application (Gamma, et al., 1995, pp. 43-44). 

There are generally two types of inheritance: single inheritance and multiple inheritance.  

1.3 Single Inheritance 

With single inheritance, a class is only able to inherit information from one parent. That parent 

can then also inherit from another, and so on for each subsequent parent. In Java, this 

inheritance path can theoretically continue on an infinite amount of times, although in a study 

on the maximum depth of inheritance, Dr. Heinz Kabutz found that a StackOverflow error was 

thrown after compiling and running a class with 61 parents, and that a class with 1001 parents 

would not compile (Kabutz, 2006). 

In examination of JHotDraw, the figure classes can be used as an example on the use of 

inheritance in a Java application. Most of the visual components of a JHotDraw application will 

be based around some type of Figure. All of these classes will implement the Figure interface, 

which defines the contract for the basic methods needed to display, move, connect to, and 

modify the component. There is an abstract base class for figures available for use through 

inheritance, called AbstractFigure. This contains default implementations of many of the 

methods defined by the Figure interface, as well as some abstract methods that child classes 

will be expected to implement. Because AbstractFigure already implements the Figure 
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interface, any subclasses of AbstractFigure will naturally implement Figure as well, through 

inheritance. This causes any classes using this inheritance to also be of the Figure type, creating 

the possibility for type substitution of those classes wherever a Figure interface is required. 

There are additional abstract figures that extend the base AbstractFigure class, such as 

CompositeFigure and AttributeFigure, adding additional functionality while still being flexible 

for changes. Whenever a figure class needs to be developed, it should inherit from one of these 

classes. An additional interface for joining figures, ConnectionFigure, is also inheriting from the 

Figure interface. The hierarchy structure for Figure can be seen in Figure 1.1, with the Figure 

interface being the root node of the tree. In this diagram, interfaces are gray, and classes are 

blue. This hierarchy was generated through the use of services available with the tool 

developed for the purpose of this research, which will be discussed in further detail in Chapter 

3. Note that the labels for the selected 5 nodes were added after the graph’s creation, and only 

provided for the 5 objects mentioned here, ignoring the remaining Figure classes. 

 

Figure 1.1 Figure hierarchy from JHotDraw 
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1.4 Multiple Inheritance 

The definitive difference between single and multiple inheritance is 

simple: multiple inheritance allows a class to inherit from an 

arbitrary number of parents. In actual programming practice, the 

difference can be much more complicated, as are some special 

considerations that must be taken into account. One of the main 

problems that arises from allowing multiple inheritance is termed 

the “deadly diamond of death” by Robert Martin. This results from a 

situation in which a class A is the top-level of a hierarchy, with two 

classes B and C inheriting from A, and class D inheriting from B and 

C. When B and C override a method foo defined in A, and D does 

not provide an overridden implementation, then the version of foo that will be used is unclear 

(Martin, 1997). There are ways to resolve this issue, such as feature renaming (Meyer, 1988, pp. 

535-540), as well as individual solutions provided for those languages that do support multiple 

inheritance. 

1.5 Inheritance in Java 

Before inheritance in the Java programming language can be explained, access modifiers must 

also first be understood. An access modifier is the rule used by Java to declare how methods 

and variables can be given or denied access to other classes. When decorated with the private 

modifier, an item will be only available to the class that declares it. The public modifier is the 

opposite, as public items are available at a global scope. The protected modifier gives access of 

an item to a subclass, or to another class in the same package. When no modifier is given, a 

default known as package-private is used, which gives access of an item to other classes in the 

same package. Inheritance in Java relies heavily on the protected access modifier in order to 

allow subclasses to use methods and variables that are declared in the parent. 

In the Java programming language, inheritance of a class is declared using the extends 

keyword. By saying that class A extends class B, it can be inferred that class B is the parent 

class, and class A is the child class. A will now be able to make use of any properties from B, 

Figure 1.2 Deadly diamond of 
death 
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provided they are decorated with the protected or public keyword. Properties in the child class 

can override ones that are declared in the parent. This is achieved by using the same name or 

method signature as a variable or method in the parent. The @Override annotation can be used 

to ensure at compile-time that a method is in fact overriding another. Inheritance is the way 

that parents can share their state with any of their children. That state can be protected, and 

only available between the parent and its children, or public, and available to any client that 

uses either the parent or child. 

To access a property that is declared in a parent class, the child class can make use of the super 

keyword. When creating a constructor for a subclass, the super keyword can be used to first 

call the parent class constructor. This is required when a parent has a constructor with 

parameters and does not provide a no-argument constructor, or the no-argument constructor 

is private to the parent. A JHotDraw example of using super in a constructor can be seen in 

Code Snippet 1.2. When the RadiusHandle calls super(owner), the constructor in AbstractHandle 

is invoked. 

 

Code Snippet 1.2 RadiusHandle.java and AbstractHandle.java from JHotDraw 

Methods that are overridden by a subclass are the ones that will be accessed when that 

subclass is used as a reference in another class. To explain this further, the RadiusHandle class 
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from JHotDraw can again be examined. This class inherits from AbstractHandle, which provides 

a default implementation for the draw() method, used to display the handle on the GUI. The 

AbstractHandle class draws handles with a rectangular shape. The RadiusHandle is used to 

create handles who have a circular shape. Because of this, the default implementation of 

draw() cannot be used in RadiusHandle. Instead, this class will override the draw() method. 

Wherever a reference to a RadiusHandle is used, this overridden method will be used in place 

of the AbstractHandle draw() method. In JHotDraw, Handles are created within the drawing 

view by looping through each instance of Handle and calling the draw() method. The code in 

Code Snippet 1.3 shows the details of how this works. 
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public abstract class AbstractHandle implements Handle { 

  

  public AbstractHandle(Figure owner) { 

    // ... 

  } 

  

  //Default draw method Template method 

  @Override 

  public void draw(Graphics g) { 

    Rectangle r = displayBox(); // Gets the display bounds for the handle 

 

    g.setColor(Color.white); 

    g.fillRect(r.x, r.y, r.width, r.height); 

 

    g.setColor(Color.black); 

    g.drawRect(r.x, r.y, r.width, r.height); 

  } 

} 

 

public class RadiusHandle extends AbstractHandle { 

  

  public RadiusHandle(RoundRectangleFigure owner) { 

    super(owner); 

    // ... 

  } 

  

  @Override 

  public void draw(Graphics g) { 

    Rectangle r = displayBox(); // Gets the display bounds for the handle 

 

    g.setColor(Color.yellow); 

    g.fillOval(r.x, r.y, r.width, r.height); 

 

    g.setColor(Color.black); 

    g.drawOval(r.x, r.y, r.width, r.height); 

  } 

} 

 

public class StandardDrawingView extends // ... 

          { 

  /** 

   * Draws the currently active handles. 

   */ 

  @Override 

  public void drawHandles(Graphics g) { 

    // All the handles 

    // In this case, the handles we are using are RadiusHandles 

    Enumeration<Handle> k = selectionHandles(); 

    while (k.hasMoreElements()){ 

      // Calling the draw() method in RadiusHandle 

      (k.nextElement()).draw(g);    

    } 

}  
 

Code Snippet 1.3 Method overriding from JHotDraw 
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In addition to simply overriding a method, a subclass is able to extend a method from its 

superclass. For cases when a subclass wants to continue using a superclass’s method, but also 

needs to provide additional functionality, the subclass might extend the method functionality. 

The method will be overridden in the subclass, but still call the super implementation (Lorenz & 

Kidd, 1994, p. 69). This is similar to the way a subclass might include a call to the parent’s 

constructor when implementing its own constructor. However, the super call is not restricted 

to being the first statement in the extended method, and can be called at any time inside the 

method body. 

Code Snippet 1.4 shows an example of how method extending is accomplished. A 

BorderDecorator is a type of Figure that uses the Decorator design pattern to add a border 

around any other Figure. This is done by first rendering the actual Figure using the call to 

super.draw(g), which calls the draw() method in DecoratorFigure. After this, BorderDecorator 

continues with the extended functionality of rendering a border around the boundaries of the 

Figure to be decorated. 
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public class BorderDecorator extends DecoratorFigure { 

  

  public BorderDecorator(Figure figure) { 

    super(figure); 

  } 

 

   * Draws the figure and decorates it with a border. 

  @Override 

  public void draw(Graphics g) { 

    Rectangle r = displayBox(); 

    super.draw(g); 

    g.setColor(Color.white); 

    g.drawLine(r.x, r.y, r.x, r.y + r.height); 

    g.drawLine(r.x, r.y, r.x + r.width, r.y); 

    g.setColor(Color.gray); 

    g.drawLine(r.x + r.width, r.y, r.x + r.width, r.y + r.height); 

    g.drawLine(r.x , r.y + r.height, r.x + r.width, r.y + r.height); 

  } 

} 

 

public abstract class DecoratorFigure 

                extends AbstractFigure 

                implements FigureChangeListener { 

 

   * The decorated figure. 

  protected Figure fComponent; 

     

   * Constructs a DecoratorFigure and decorates the passed in figure. 

  public DecoratorFigure(Figure figure) { 

    // ...Sets figure = fComponent and sets up listeners 

  } 

   

   * Forwards draw to its contained figure. 

  @Override 

  public void draw(Graphics g) { 

    fComponent.draw(g); 

  } 

} 
 

Code Snippet 1.4 Method extending from JHotDraw 

All classes in Java have as their top level ancestor the java.lang.Object class. This class does not 

need to be explicitly declared; instead it is automatically assigned by Java. Object provides all 

classes in Java with some standard methods, such as equals() and toString(). While these 

methods have default functionality, it is usually helpful to override these methods and provide 

a custom implementation, with equals() determining if an object’s variables are the same as 

another, and toString() providing a more informative description of a class. The inheritance 

structure that is provided by Object to all classes in Java ensures that every class will have 

Object as the element at the very top level of their hierarchy. Because of this, the hierarchy 
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level for Object can be noted as 0, with all other classes starting with the hierarchy depth being 

at 1, unless they inherit from another class. 

Java does not allow for a class to use multiple inheritance, so this will not be a concern for the 

scope of this research. The closest that Java comes to multiple inheritance is through the design 

of interfaces. A class is allowed to implement more than one interface, which will create a 

contract on that class that expects the class to contain certain method signatures. Since 

interfaces only contain abstract contractual method signatures and cannot be initialized as an 

object, they do not typically contain the dangers associated with multiple inheritance. In Java 8, 

interfaces are allowed to contain default methods, which do provide an implementation in the 

interface. This can introduce a diamond problem, however classes with this problem will cause 

compiler errors in order to prevent this. 

1.6 Dangers of Inheritance 

While inheritance is beneficial to the structure of an OO system, there are also drawbacks that 

are included, and considerations that must be made towards the effects against other 

components of the system. Snyder explains that “(p)ermitting direct access to inherited 

instance variables weakens one of the major benefits of object-oriented programming, the 

freedom of the designer to change the representation of a class without impacting its clients” 

(Snyder, 1986). This means that because classes that inherit from another have access to 

properties and methods from their parent, and use them among their own local properties and 

methods, changes to the parent can result in unexpected changes to the children. For an 

example of this, consider an abstract class that is implementing a Template method. A 

Template method delegates part of an algorithm to subclasses. The work done in the delegated 

steps usually depends on the operations being performed in the skeleton, which is defined in 

the parent. If those parent operations are altered, the actions done by the children may have 

unintended side-effects. Developers need to consider this before making changes to the parent, 

and include tests that ensure the behavior is unchanged after the Template is altered. 

A problem with inheritance identified by Snyder is that “the instance variable operations 

defined on a class for the benefit of its descendants may not necessarily be appropriate for 
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users of instances of the class” (Snyder, 1986). In order to correct this problem, Java provides 

access modifiers that should be used in the appropriate situations. The use of “getters” and 

“setters” as operations to access instance variables from a class and its parent should be 

avoided when possible. Allen Holub explains that while the use of these operations is 

somewhat standard in many Java applications, it is in fact not quite a good object-oriented 

practice (Holub, 2003a). Inheritance must work alongside encapsulation in order for a system to 

follow OO guidelines. As the primary goal of encapsulation is to contain the scope of an object 

to solely that object, and prevent other objects from being aware of any details of the variables 

in a class, getters and setters should be used sparingly. According to Holub, “you should avoid 

getter and setter functions since they mostly provide access to implementation details” (Holub, 

2003a). In an article discussing the issues of getters and setters, Greg Jorgensen states that 

“getters and setters should be avoided because they break the encapsulation OOP offers” 

(Jorgensen, 2008).  

Snyder notes that, when using inheritance and a local instance variable and a variable inside a 

parent have the same name, then changing the name of the parent variable will potentially 

affect the behavior of the child. He also notes that raising an error at compile-time for instance 

variables in a child and parent with the same name would not be appropriate, as these 

variables should be separate instances (Snyder, 1986). In Java, this is avoided because access to 

variables in a parent class are only available when that variable has the protected or public 

access modifier, and unless the variable is accessed through the use of the super keyword, it is 

assumed that the variable is the local instance. 

Inheritance is often used to define a “base” class that contains functionality that is common 

among many classes. Those classes can then extend the base class to gain that functionality, 

avoiding the problem of rewriting code in multiple locations. However, this results in what is 

recognized as the “fragile base-class problem”, which means that modifications to a parent may 

seem to have no adverse effect on their children, but can cause problems in those classes. In 

the article “Extends is Evil” by Holub, he states that “(y)ou can't tell whether a base-class 

change is safe simply by examining the base class's methods in isolation; you must look at (and 

test) all derived classes as well” (Holub, 2003b). He also notes that you must examine other 



McNealy  
 

24 
 

classes that contain references to both the parent and the child classes that are being modified, 

since this coupling between classes can result in unintended side-effects in these classes as 

well. The solution to his proposal that “extends is evil” is to avoid inheritance through 

superclasses with the extends keyword, and instead prefer to use inheritance through 

interfaces, with the implements keyword. This is directly related to OO design principle of 

“program to an interface, not an implementation” (Gamma, et al., 1995). The advantages 

gained through the use of interface inheritance are the following, again provided by Gamma, et 

al.: 

 “Clients remain unaware of the specific types of objects they use, as long as the objects 

adhere to the interface that clients expect.” 

 Clients remain unaware of the classes that implement these objects. Clients only know 

about the abstract class(es) defining the interface.” 

One way to achieve this interface based inheritance is by using the Adapter design pattern. The 

Adapter will “convert the interface of a class into another interface clients expect” (Gamma, et 

al., 1995). Object composition can be used to delegate the actions of the Adapter to another 

class, circumventing the need for the Adapter to inherit from another class. In this way, the 

Adapter can still adhere to the interface that the client expects, without inheriting any extra 

properties through a parent class. 

1.7 Inheritance Summary 

Inheritance can be defined as a process through which objects are able to reuse the properties 

and behavior of already existing objects, which is also known as white-box reuse. Some of the 

features available through the use of single inheritance is the sharing of properties and 

behavior from one class with many children, and the ability to substitute one type of subclass 

with another, as long as they have the same parent. Inheritance use can also include 

inconvenient side effects. This includes restrictions on the changes that can be made to a 

parent class, as those changes can alter the behavior of any subclasses, and may require those 

subclasses to also be modified. There might also be conflicts with names of properties and 

methods in a child class that match ones defined in the parent. However, this can be handled 
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by the programming language used, such as Java’s use of the super keyword to distinguish 

between child and parent properties and methods.  
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Chapter 2: Software Code Metrics 

The software quality-measurement values that are used in this research will be described in this 

chapter. This will include the definition for each code metric, viewpoints that should be 

considered before making use of a metric, and information on how to interpret each metric. 

While interfaces in Java are able to use inheritance, and are even able to inherit from multiple 

parents, they are unable to have concrete definitions of methods, and cannot be initialized as 

an Object. Because they have no effect on the inheritance hierarchy of Objects, interfaces will 

not be considered in any of the code metrics used throughout the scope of this project. 

2.1 Overview on Established Metrics 

In order to measure the degrees to which a software system meets certain qualifications, code 

metrics can be used to extract information about the system. When inspecting an element in an 

application to determine the quality of design choices regarding the use of that element 

throughout the scope of the application, there are two important metrics that may be 

considered. These metrics are the depth of inheritance and the number of children. These 

metrics were conceptualized by Shyam Chidamber and Chris Kemerer, and are part of a 

software metrics suite consisting of four other metrics, for a total of six (Chidamber & Kemerer, 

1994). Another useful metric is the weighted methods per class, which will be helpful in this 

thesis by revealing information about how class inheritance impacts the amount of methods 

cascading down the inheritance tree. 

The Figure classes used in JHotDraw are good examples for showing the use of inheritance in 

an application. Since JHotDraw is a graphical-based application used for drawing diagrams and 

shapes, there are many instances of Figures that can be used. All Figures in JHotDraw extend 

the AbstractFigure class, making this class the top-level of their inheritance hierarchy. The 

AbstractFigure implements the Figure interface, which forms a contract that declares the 

methods that all Figure classes will be expected to implement. AbstractFigure will be useful in 

explaining the details on number of children. 
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In the same manner that Chidamber and Kemerer make assumptions about the distribution of 

properties for their metrics, there is a fact that is apparent in this thesis (Chidamber & Kemerer, 

1994). For each of the analyzed systems that are in use for the purposes of this research, we 

can be certain about the fact that the system does make some use of inheritance, and therefore 

is composed of both classes who have no parents (by making no use of inheritance at all, or by 

being at the root of the inheritance hierarchy tree) and classes that extend another class (using 

inheritance). 

2.2 Depth of Inheritance Tree 

A basic definition for the depth of inheritance tree (DIT) for an application that only allows for 

single inheritance would be the amount of elements that a single element is inheriting from, all 

the way to the root of the inheritance hierarchy tree. According to Chidamber and Kemerer, 

“(t)he depth of a node of a tree refers to the length of the maximal path from the node to the 

root of the tree” (Chidamber & Kemerer, 1994, p. 480). The DIT is a useful tool for measuring 

the complexity of a class and the application that class is a component of by providing a strong 

overview of the various levels of inheritance hierarchies in an application. 

When the depth of a class’s hierarchy tree is realized, a developer can determine how complex 

that class might be. With a deep hierarchy, there may be many classes that have to be 

navigated through before a property or method can be reached. Taking the TriangleFigure from 

JHotDraw as an example, we can inspect the amount of work necessary to trace a function for 

this class. A developer might be interested in seeing how this Figure is moved around the 

screen. Searching through TriangleFigure, there is no method having to do with movement, so 

the superclass RectangleFigure must then be inspected. This class contains a basicMoveBy(int, 
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int) method, but the name implies that there is more to this function. 

However, in the next superclass, AttributeFigure, there is again no 

definition for a method with behavior that would move a Figure. So one 

more superclass, AbstractFigure, must be examined. Here we can find the 

abstract definition for basicMoveBy(), as well as a method moveBy(int, 

int). In this method statement, the basicMoveBy() method is called. Taking 

one final step into the Figure interface will show that the moveBy(int, int) 

method is defined here, so the developer knows that the AbstractFigure 

implementation is where the method originates from. This process can be 

viewed in the UML diagram in Figure 2.1. Tracing a method through an 

inheritance hierarchy can be simplified in some ways, such as using 

breakpoints to step through code execution while debugging, or through 

the use of an IDE such as Eclipse, which allows for quickly jumping to an 

implementation. 

As the root of all classes, java.lang.Object has a depth of inheritance of 0. 

So in the case of a class that does not extend any other classes, the depth 

of inheritance would be 1. A subclass of that class would have a depth of 

inheritance of 2, and the number continues to increase by one for each 

subsequent child. Since we know that each system that is being analyzed for this project is 

using inheritance in some way, it can be recognized that there will be classes whose DIT is 

greater than 1. Since the inheritance trees will consist of branching nodes, it can also be 

realized that there will be at least two 

classes who share the same level of depth of 

inheritance. For example, in JHotDraw the 

AbstractTool is a base class that does not 

inherit from any other class, so its DIT is 1. 

Both CreationTool and SelectionTool inherit 

from AbstractTool, so they have a DIT of 2. 

Figure 2.1 TriangleFigure 
UML diagram 

Figure 2.2 DIT levels of tools from JHotDraw 
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There are three main viewpoints to consider in regards to depth of inheritance. According to 

Chidamber and Kemerer (Chidamber & Kemerer, 1994, p. 483) those viewpoints are: 

1) “The deeper a class is in the hierarchy, the greater the number of methods it is likely to 

inherit, making it more complex to predict its behavior.” 

2) “Deeper trees constitute greater design complexity, since more methods and classes are 

involved.” 

3) “The deeper a particular class is in the hierarchy, the greater the potential reuse of 

inherited methods.” 

Methods and variables declared in a base class will be available to any classes that extend the 

base, provided those methods or variables are protected, public, or package-private (and the 

inheriting class is in the same package). As a class becomes deeper in an inheritance hierarchy, 

it becomes more complex because of the additional methods and properties already defined in 

each of its parents, all the way to root class. This increased complexity is the trade-off that 

results from the white-box reuse that inheritance provides. 

In the analysis of the depth of inheritance levels in a project, the DIT number provides 

information about how well the project is making use of the OO fundamental concept of 

inheritance. A lower number implies that a class is less complex, but possibly not taking 

advantage of minimal code reuse through inheritance. A higher number implies that the project 

is exploiting the benefits of inheritance code reuse, but that there will most likely be an 

increase in complexity and possible code errors (Naboulsi, 2011). While there is no concrete 

ideal level for depth of inheritance, many suggestions are that the limit on the DIT should be no 

greater than 5. (Kabutz, 2006), (Tandon, 2010) A pilot study conducted by Harrison et al with 

the assistance of final year BSc. Computer Science students in the University of Southampton 

reached a similar conclusion. Their study on the effect of code changes to classes using 

inheritance found that between 3 and 5 levels of inheritance is ideal (Harrison, et al., 2000, p. 

6). 
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2.3 Number of Children 

The number of children (NOC) can be defined as the amount of elements that directly inherit 

from another single element, or the “(n)umber of immediate descendants of the class” 

(Chidamber & Kemerer, 1994). According to Radu Marinescu, the metric for number of children 

“represents the number of immediate subclasses subordinated to a class in the class hierarchy” 

(Marinescu, 1998, p. 3). Ramanath Subramanyam and M.S. Krishnan described the number of 

children as “a count of the number of immediate child classes that have inherited from a given 

class” (Subramanyam & Krishnan, 2003, p. 298). Every time that a class inherits from another 

class, the number of children for the superclass increases. In contrast to the depth of 

inheritance, which describes how deep a hierarchy tree travels from the root node (or the 

height of the hierarchy), the number of children measures the width of a hierarchy, or how far 

the branches of the tree will spread. 

Chidamber and Kemerer again give three viewpoints on the NOC metric (Chidamber & Kemerer, 

1994, p. 485): 

1) “Greater the number of children, greater the reuse, since inheritance is a form of 

reuse.” 

2) “Greater the number of children, the greater the likelihood of improper abstraction of 

the parent class. If a class has a large number of children, it may be a case of misuse of 

subclassing.” 

3) “The number of children gives an idea of the potential influence a class has on the 

design. If a class has a large number of children, it may require more testing of the 

methods in that class.” 

By allowing many classes to inherit from one parent, the amount of code needed can be 

reduced, as methods that are common between similar classes is contained in the parent. 

When the number of children for a class reaches a high amount, this can signify that more 

abstraction may be needed in the children classes, and perhaps more abstract classes are 

needed to bridge between the parent and the many children. Arti Chhikara and R.S Chhillar 

state that “if there are a large number of children of a class, then the abstraction level of that 
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parent class is reduced.” (Chhikara & Chhillar, 2012, p. 365) They recognize this as an indication 

of the misuse of inheritance. The high number of children will also have an impact on the 

effectiveness of testing against that class, as the scope that the methods reach is wider than the 

scope of those classes who have fewer descendants. 

The metric for the number of children only includes the immediate classes that inherit from a 

parent. This means that the graphs of the hierarchy trees for NOC will only extend two node 

levels deep. The width of these trees, or the number of branches extending from the root node, 

can be any number greater than 0 (meaning there will be at least 1 subclass). 

Through the analysis of the number of children for each class in a project, it can be determined 

if that project is making good use of the concept of inheritance. If there are many classes who 

have children, then it is obvious that there are many classes who are inheriting from another 

class. Marinescu notes that this metric is helpful in determining the misuses of subclassing, and 

that this may call for a restructuring of a class’s hierarchy. He determined that there are two 

situations in which a high NOC value may prompt a redesign (Marinescu, 1998, p. 3): 

 Insufficient exploitation of common characteristics – When there are multiple classes 

who share similar functionality, such as graphical-based classes, or repository classes 

that access a database, there is a high potential for reuse. If there is a pattern of classes 

with these characteristics who have a high number of children, then the system may 

need to be refactored to have some of the common functionality abstracted to another 

class to be placed higher in the hierarchy. 

 Root of the class hierarchy – When the root class in a hierarchy has a very large amount 

of children compared to other classes in the system, refactoring should be considered 

for that class. The hierarchy may currently be represented as a tree, where there is one 

class at the root, with many children branching off from that root. Instead, it may be 

wise to consider splitting this large tree into a forest, where there will be a number of 

trees with a smaller amount of branches. This could result in less complexity, as the 

trees are smaller and easier to navigate and test. 
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The studies done by Chidamber and Kemerer suggested that classes usually have only a small 

number of children, with a small deviation of classes who are inherited by many children. Two 

explanations given for this are that inheritance is not being considered during the planning and 

designing of new classes, and that there is a lack of communication between programmers of 

different classes, resulting in missed opportunities for code reuse (Chidamber & Kemerer, 1994, 

p. 486). 

2.4 Weighted Methods per Class 

The metric of weighted methods per class (WMC) for an object provides the number of 

methods defined in a class. Chidamber and Kemerer provide the following formula for 

determining the WMC: 

 “Consider a Class C1 with methods M1,…,Mn that are defined in the class. Let C1,…,Cn be 

the complexity of methods. Then: WMC = 


n

i 1

ic ” 

In addition to this formula, Chidamber and Kemerer provide 2 key viewpoints on the use of the 

WMC metric: 

 “The number of methods and the complexity of methods involved is a predictor of how 

much time and effort is required to develop and maintain the class”. 

 “The larger the number of methods in a class the greater the potential impact on 

children, since children will inherit all methods defined in the class”. 

o Note: In Java, and for the purposes of this research, this is not always the case, 

as methods can be declared as private, restricting access to any other class. 

 “Classes with large number of methods are likely to be more application specific, 

limiting the possibility of reuse”. 

Classes with a high method count become much more complicated, and require more time to 

work through. A developer who is unfamiliar with a class will need to spend time analyzing the 

methods in that class in order to understand how they relate to the application. As the method 

count grows, it is likely that those methods will only be useful within the scope of the 
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application they are defined, unless they are specifically designed to be a part of an external 

library or application programming interface (API). In a study on detecting design flaws 

detection in large scale systems, Marinescu notes that “classes with very high WMC values are 

critical in respect of the maintenance effort and they might be therefore redesigned in order to 

reduce the overall complexity level of the class” (Marinescu, 1998, p. 2). His study suggests that 

in order to reduce WMC, a class can be split into multiple classes.  

Most importantly for this research, methods in a class can have a direct influence on the 

complexity of any subclasses. When one class uses methods that are defined in another class, 

those classes form a relationship, or become coupled (Chidamber & Kemerer, 1994, p. 479). As 

more classes have access to an increasing number of methods, there will be more coupling 

between objects. This will reduce the modularity of an application and increase its complexity, 

as it may become difficult to trace the origin of method definitions. This might also discourage 

encapsulation, as objects are sharing their state and allowing access of methods to more 

objects. 

When calculating the WMC of a class, the value for the metric will increase by one for each 

method defined within that class. This includes any getter or setter methods that are used for 

accessing class variables. In addition to any method implementations specific to a class, the 

WMC also includes any overridden methods defined in a parent class. These methods count as 

ones unique to the implementing class. However, any methods that are defined in a superclass 

will not be included in this metric. The WMC is limited to only those methods in the class which 

is being analyzed. When creating hierarchies for each of the classes in a project, the method 

count will then be used to provide details on how those inherited methods affect subclasses.  

These guidelines for calculating the weighted method count are based on those used by the 

Project Analyzer developed by Aviosto (Aviosto, 1997).  

2.5 Code Metrics Summary 

Chidamber and Kemerer have defined a suite of metrics that can be helpful in providing 

information on the quality of software. The metrics that are important to the purpose of this 

http://www.aivosto.com/project/help/index.html
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thesis are the depth of inheritance tree, the number of children, and the weighted methods per 

class. 

As the DIT of a class increases, the behavior of that class can become more difficult to control, 

and indicates a higher number of methods and superclasses are involved. The potential reuse of 

the inherited methods increases as well, which can mean less code being written, as well as 

more coupling between classes.  

A high number of children indicates a large amount of reuse, but can also be an indication that 

classes are not being designed properly, as common characteristics of the children could 

possibly be refactored to another class higher in the hierarchy. In addition, classes with many 

children might require more testing of the methods defined in those classes. 

The WMC helps to keep track of the amount of methods that each class has defined, which 

becomes useful in determining how the method count will be affected by classes using 

inheritance. Coupling of methods between classes can have an impact on the complexity of 

those classes. 
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Chapter 3: Inheritance Inquiry Application 

This chapter will discuss the software used during the development process and the 

implementation details of the analysis program created for the purposes of this research. The 

application is developed as a library named Inheritance Inquiry. The code metric results 

described in the next chapter are obtained using this library, and most of the graphs used as 

examples in this research are generated by the services available in the library. 

3.1 Main Application Software 

The Inheritance Inquiry application was developed using the Java programming language. The 

latest release version of Java, Java 8, was chosen in order to provide the most current Java APIs, 

to gain experience working with the new lambda expressions feature, and to ensure that any 

external libraries were compatible. The Eclipse IDE was used for writing the code for the 

application. In order to easily include dependencies on the open source projects that were used 

for support in the tool, the Maven nature was enabled on the project. Any libraries available in 

the Maven Repository could simply be added to a pom.xml file in the project, and were then 

available for use in the application. 

The tool is based on the analysis of software systems, so there needs to be support for 

analyzing lines of source code as nodes in a stack and viewing the relationships between 

different nodes in all sections of the system. This is the same functionality that is utilized by 

IDEs to provide features such as advanced searching of type usages, jumping between 

declarations and implementations of classes and methods, and class outlines, among other 

features. One such open source project that supports this process is JavaParser (Viswanadha & 

Gesser, 2016). This project was originally considered for this research, and was used in the early 

stages of development. However, the Eclipse JDT (The Eclipse Foundation, 2016) was eventually 

chosen to replace JavaParser, as Eclipse JDT contains more advanced features and offers better 

support in the long term, for any future use of the Inheritance Inquiry tool. Since the two 

libraries are similar in some ways, much of the code used in the development process using 

JavaParser was able to be converted for use with Eclipse JDT. 

http://javaparser.org/
https://www.eclipse.org/jdt/
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3.2 Eclipse JDT 

The Eclipse Java development tools (JDT) is an open source set of tool plug-ins that assist in 

building the Eclipse IDE. These tools are what allow Eclipse to have a Java project nature and a 

development perspective focused towards Java applications. The many different views, editors, 

and wizards are all built with the Eclipse JDT. With these tools, any developer can create a 

plugin for Eclipse that can aid in their development process, and that can be shared with other 

users of Eclipse. Thanks to these tools, Eclipse is able to speed up the development process of 

an application, through the use of helpful functions such as advanced searching, jumping 

between code definitions and implementations, easy project building, and code refactoring. 

According to Fuhrer et al, Eclipse was one of the first IDEs that popularized the use of 

refactoring during development of an application (Fuhrer, et al., 2007, p. 31). 

The Eclipse JDT consists of four main components: the APT, Core, Debug, and UI. Core is the 

component that will be focused on for this project. The JDT Core provides the basic 

infrastructure necessary to support a Java application in an IDE. This includes the APIs that are 

used to inspect and to manipulate Java source code, which are the Java Model and the Java 

Document Model, respectively. 

When developing a Java project in Eclipse, there are features available in the IDE that assist 

with quickly navigating between resources in the project and with viewing details of the classes 

in the program. The Java Model contains the hierarchal information needed to represent these 

details to the user of the IDE. These elements are all inheriting from the IJavaElement interface, 

and include (among others): 

 IJavaProject: Representation of a single Java application, containing all the resources in 

that app. 

 ICompilationUnit: A Java source file containing the code for an application, which is in a 

file with the .java extension 

 IMethod: A declaration of a method or constructor inside of a Java type. 

 IClassFile: The .class file of a compiled Java type. 



McNealy  
 

37 
 

By using these elements, the Package view of the Eclipse IDE can display a graphical 

representation of a Java project, which assists with keeping track of and accessing all the 

resources in a program, as well as allowing for creating new resources. Figure 3.1 shows the 

details provided by the Java Model in a standard Java development environment within Eclipse. 

 

Figure 3.1 Use of Java Model in Eclipse 

In order to use the elements of the Java Model, access to an Eclipse workspace is required. 

There are internal methods in the JDT API that build the elements, and in order to use them 

they must be accesses through the interface methods of an IWorkspaceRoot. Because of this, 

the Java Model elements can only be used through an Eclipse plug-in. The Java Model is not 

needed as part of the Inheritance Inquiry tool, and is only described to provide background 

information regarding the Eclipse JDT. 

The Java Document Model is used to manipulate the source files for a Java project. This 

includes refactoring properties in a class, creating classes and interfaces, and adding new 

methods or properties. These modifications are accomplished be manipulating a 
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CompilationUnit, and the elements contained within the CompilationUnit. This is the root node 

of an Abstract Syntax Tree. 

3.2.1 Abstract Syntax Tree 

In the same manner that an XML file contains many different nodes that make up a tree 

structure, the Abstract Syntax Tree (AST) represents the nodes of a Java source file as a tree 

model. Changes made to the AST will be reflected as modifications to the Java code (Kuhn & 

Thomann, 2006), such as removing or updating a property in a class or moving the declaration 

of some property. The AST also provides essential information about how each node is being 

referenced within the scope of the entire Java project. This information is referred to as 

“bindings”. A binding can be used to determine if one node is the same instance as another 

node. This can be useful in distinguishing between variable references, and methods declared 

and used in various classes. 

There is a standard workflow for generating and using an AST. This usually involves 5 steps: 

1. Provide the source code that will be represented by the AST, which can be in one of two 

forms: a .java file or Java source code in a char[]. 

2. Parse the source code using the ASTParser provided by the JDT. 

3. Retrieve the AST from the parsed source, along with any bindings, if they are requested 

in options specified to the ASTParser. 

4. Make any modifications to the AST, such as renaming properties or moving declarations. 

5. Apply those modifications and save the changes to the source code. 

The details of this process can be viewed in 

Figure 3.2. For the purposes of this 

research, the Inheritance Inquiry tool only 

makes use of steps 1-3. This is because the 

app has no need for modifying the source 

code of its analyzed systems, only studying 

the ways in which inheritance is being used. Figure 3.2 Standard AST workflow process (Kuhn & Thomann, 
2006) 
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Every node within the AST is using inheritance by being a subclass of the type ASTNode. These 

subclasses are all designed to represent a specific element in Java, and provide methods that 

help to access information about the functionality of their respective element. Any binding 

generated in the AST inherits from the IBinding interface. This interface provides information 

on the kind of binding (package, type, variable, method, annotation, or member-value pair), 

and provides the contract for the methods necessary for an IBinding, such as the name, the 

modifiers, or the type. The details of the ASTNode subclasses and the IBinding interfaces that 

were utilized for the Inheritance Inquiry tool are displayed in Table 3.1. For the 

Documentation, anything underlined is taken from the JavaDoc comments for that type. 

Type Name Documentation 

SimpleType Type node for a named class type, a named interface type, or a type variable. 

TypeParameter Type parameter node (added in JLS3 API). 

TypeDeclaration Type declaration AST node type.  

PackageDeclaration Package declaration AST node type. Node where the package of a class or 
interface is declared. 

ImportDeclaration Import declaration AST node type. Node where a separate package is imported 
inside a class or interface. 

MethodDeclaration Method declaration AST node type. Node where a method is declared inside a 
class or interface. 

SuperMethodDeclaration Simple or qualified "super" method invocation expression AST node type. 

MethodInvocation Method invocation expression AST node type. Node where a method is 
invoked by an object. 

IMethodBinding A method binding represents a method or constructor of a class or interface. 

ITypeBinding A type binding represents fully-resolved type. 

Expression Abstract base class of AST nodes that represent expressions. 

Table 3.1 ASTNodes and IBindings used for Inheritance Inquiry 

3.2.2 Visitors 

The Visitor design pattern is an essential component for analyzing an object structure that 

contains many different types of elements. This design pattern allows for performing 

operations on various objects, based on the concrete implementation of those objects. The 

basic intention of the Visitor design pattern, according to Gamma et al (Gamma, et al., 1995, p. 

331), is the following: 

Represent an operation to be performed on the elements of an object structure. Visitor lets you 

define a new operation without changing the classes of the elements on which it operates. 
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Each node in the AST represents a Java element that has unique behavior and properties. There 

are specific operations that must be performed on each node for the Inheritance Inquiry tool, 

and these operations are dependent on the concrete type of the node. They cannot rely simply 

on an interface, as these concrete types may not all implement the same interface. It would not 

be practical to have these operations defined inside of the class, as they may be distinct and 

unrelated to the behavior of the class, and they will pollute that class with unnecessary 

complications (Gamma, et al., 1995, p. 333). The Visitor will help to circumvent this problem. 

There are two key components in the Visitor pattern: the Visitor and the Element. In this 

application, the Element will be the abstract ASTNode class. Every node is able to “accept” a 

Visitor, which means that the Element is allowing the Visitor to perform operations on that 

Element. This is handled through the accept(ASTVisitor) method in ASTNode. This method takes 

as a parameter a subclass of the abstract type ASTVisitor, performs some initial setup (if 

implemented by the subclass), accepts the Visitor subclass (which is where the main operation 

is performed), and then performs a final conclusive method (if implemented by the subclass). 

This is further explained by Code Snippet 3.1. 

public abstract class ASTNode { 

 

   * Accepts the given visitor on a visit of the current node. 

  public final void accept(ASTVisitor visitor) { 

    if (visitor == null) { 

      throw new IllegalArgumentException(); 

    } 

    // begin with the generic pre-visit 

    if (visitor.preVisit2(this)) { 

    // dynamic dispatch to internal method for type-specific visit/endVisit 

      accept0(visitor); 

    } 

    // end with the generic post-visit 

    visitor.postVisit(this); 

  } 

    /** 

     * Accepts the given visitor on type-specific visit of the current node. 

     * This method must be implemented in all concrete AST node types. 

     */ 

    abstract void accept0(ASTVisitor visitor); 

} 

 

Code Snippet 3.1 ASTNode.java from Eclipse JDT 
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The ASTVisitor contains all of the 

default method implementations 

for visiting the ASTNode Elements, 

all named visit() and doing nothing 

but return true as a default, and 

taking as a parameter a concrete 

type of ASTNode, for example, 

visit(SimpleType), 

visit(TypeDeclaration), 

visit(MethodInvocation). This is 

shown in a small sample of the code 

for the ASTVisitor in Code Snippet 

3.2. When there is a need for 

certain operations against a type of node, a new Visitor can be created, inheriting from 

ASTVisitor, and then overriding any of the visit() methods for the ASTNodes that are needed for 

those operations. In the context of the Inheritance Inquiry application, the ClassVisitor can be 

previewed as a prime example. Visitors in the Inheritance Inquiry tool will be a subclass of 

either JavaProjectVisitor or JavaElementVisitor. These abstract base classes inherit from 

ASTVisitor and simply store a reference to the JavaProject or the JavaElement that is being 

visited. Shown in Code Snippet 3.3, the ClassVisitor is used at the top level of the class or 

interface hierarchy (the CompilationUnit) to create and setup a JavaElement (which will be 

discussed in the following section), and then delegate more nodes in the class to be visited. 

These nodes are: the type parameters that may be declared as part of this type’s declaration, 

the superclasses (the most important part for this research!), the interfaces, and the method 

declarations in the type.   

Code Snippet 3.2 ASTVisitor.java from Eclipse JDT 
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/** 

 * A Visitor for inspecting a Java type, creating a JavaElement, and adding 

it to the correct JavaPackage. 

 */ 

public class ClassVisitor extends JavaProjectVisitor { 

  // Visitors used within this Visitor 

  private ClassOrInterfaceVisitor mClassOrInterfaceVisitor; 

  private MethodVisitor mMethodVisitor; 

  private TypeParameterVisitor mTypeParameterVisitor;        

     

  public ClassVisitor(JavaProject project, String elementName) { 

    super(project); 

    // ... 

  } 

   

  @Override 

  public boolean visit(TypeDeclaration node) { 

    // ... 

    // Visit all the interfaces 

    List<ASTNode> interfaces = node.superInterfaceTypes(); 

    for (ASTNode inter : interfaces) { 

      mClassOrInterfaceVisitor.setIsInterface(true); 

      inter.accept(mClassOrInterfaceVisitor); 

    } 

     

    // Visit the super class 

    Type superClassType = node.getSuperclassType(); 

    if (superClassType != null) { 

      // If this node is an interface, then it's "extends" will be as well 

      mClassOrInterfaceVisitor.setIsInterface(node.isInterface()); 

      superClassType.accept(mClassOrInterfaceVisitor); 

    } 

     

    // Visit the methods 

    for (Object declaration : node.bodyDeclarations()) { 

      if (declaration instanceof MethodDeclaration) { 

        ((MethodDeclaration) declaration).accept(mMethodVisitor); 

      } 

    } 

}  

Code Snippet 3.3 ClassVisitor.java from Inheritance Inquiry 

In Code Snippet 3.3, the ClassVisitor contains 3 additional visitors: ClassOrInterfaceVisitor for 

visiting classes that are being inherited and interfaces being implemented, MethodVisitor for 

visiting method statements, and TypeParameterVisitor for visiting generic type parameters of a 

class (this one is not shown being used in this example). In the visit(TypeDeclaration) method, 

first all the interfaces are visited, then the superclass, then any statements in the class 

declaration that are a method. After visiting each of these nodes in the AST, the JavaElement 

that represents the class will be composed. 
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3.3 Implementation Details 

The purpose of the Inheritance Inquiry library is to analyze a number of Java applications to 

extract information on the ways that they make use of inheritance. The library is designed to be 

able to process a single Java project, a system containing multiple versions of a single Java 

project, or one project for each of many different systems. This is accomplished by using the 

ASTParser from Eclipse JDT to create CompilationUnits for every .java file in an application, 

then visiting those CompilationUnits and inspecting the nodes for inheritance use, and finally 

calculating the code metrics for the application. Once this process is complete, additional 

services can be utilized to provide further analysis and visual representations of the data. There 

are a few distinct components that work together as a part of this build process: 

 Elements 

 Builders 

 Tasks 

 Services 

3.3.1 Elements 

The Elements are the way that the Inheritance Inquiry tool represents aspects of the Java 

programming language, much in the same manner as the Java Models of Eclipse JDT does. 

However, instead of being used to help build plugins for Eclipse, the sole purpose of the 

Elements are to store information about the Java objects for later use in analysis. 

3.3.1.1 JavaProject 

The JavaProject is used as the root of all other Elements, with the same hierarchal structure as 

a standard Java application. This contains the name of the project, the path to the project on 

the file system, the name of the system which the project is a part of, and the version of the 

project. In addition to this, all of the JavaPackages in the project are kept as a reference here. 

There are some helpful methods within the JavaProject that are used throughout the tool. The 

most important of these methods are: 

 find(String): Searches the project for an existing Java class or interface 
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 findPackage(String): Searches the project for an existing Java package 

 findOrCreateElement(String, String, boolean): Returns an existing Java class or interface, 

or creates one and adds it to the appropriate package if it does not exist 

 findNumberOfChildrenFor(JavaElement): Creates a list of all the immediate subclasses of 

a Java class or interface 

 getClasses(): Finds and caches a list of all the Java classes and interfaces in the project 

3.3.1.2 JavaPackage 

The JavaPackage contains a list of all the Java classes and interfaces that are declared in a 

specific Java package. It also contains an important method for use in the searching for 

JavaElements: 

 find(String): Searches the package for an existing Java class or interface 

3.3.1.3 JavaElement 

A JavaElement is the representation of a Java type, either a class or interface. This includes the 

name, the JavaPackage it is contained in, a list of all packages the type is importing, and a flag to 

determine if the type is an interface or not. There is also a list of all the other JavaElements that 

the type makes use of, either as a parent, or an implemented interface, and finally, there is a list 

of all the JavaMethods that the type declares. The JavaElement also contains cached lists of both 

the interfaces and superclasses that it uses, since these are accessed often in the analysis 

component of the tool. 

3.3.1.4 JavaSolution 

The JavaSolution contains the analyzed results of the code metrics and hierarchy tree 

generations from the tool. The name of the project, name of the system that the project is a 

part of, and the version of the project are all kept in the JavaSolution. In addition to this, lists of 

the DIT, NOC, and WMC metrics are available in the form of their respective Java 

representation. These metrics simply contain the value for the metric and the name of the Java 

object they are generated from. Finally, there are lists of the hierarchy trees for DIT, NOC, and 

the entire object tree structure of an element.  
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3.3.2 Builders 

The Inheritance Inquiry tool contains different processes by which a project can be built and 

analyzed. These processes are controlled through the Builders. There is a base class named 

Builder, which contains some helper methods used in the Build task. For every Java project that 

needs to be analyzed, a concurrent task is started and ran in a separate thread. The Builder 

contains the methods for managing these tasks. Each Builder that inherits from this class simply 

needs to provide an implementation for where to find the project files, then submit tasks for 

each of those files. Code Snippet 3.4 (explained below) shows the SystemBuilder, which is used 

to build and analyze all versions of one project in a system. In addition to this Builder, there is 

the abstract QCBuilder, designed for building systems from the Qualitas Corpus. The Builders 

that inherit from this are the GraphBuilder and the MetricAnalysisBuilder, used for building 

graphs and building Excel charts, respectively. The QCBuilder contains an additional method 

that must be implemented, handleSolutions(List<JavaSolution>), which can be used to perform 

additional work against a set of JavaSolutions. This is helpful in comparing how different 

systems might be using inheritance. 

public final class SystemBuilder extends Builder { 

  

  public SystemBuilder() { 

    super(); 

  } 

  

  @Override 

  protected void buildProcess() throws TaskBuildException { 

    // Create a File[] for all the projects in a system 

    // ... 

    for (File projectFile : projects) { 

      submit(new StandardBuildTask(projectFile, system.getName())); 

    } 

    waitForTasks(); 

  } 

} 
 

Code Snippet 3.4 SystemBuilder.java from Inheritance Inquiry 

In the SystemBuilder, all that is required is to override the buildProcess() method. In this 

method, the location for a system with multiple versions is given, and then for each File in that 

system, a new StandardBuildTask (defined in the next section), is submitted, using the 

submit(Job) method. Finally, the waitForTasks() method is called, which is defined in the base 
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Builder class. This method will just pause the method execution until all of the 

StandardBuildTasks have completed. Once they are all complete, the entire build and analysis 

process will be complete, and any graphs, charts, or other analysis information will be 

produced. 

3.3.3 Tasks 

The tasks for the Inheritance Inquiry tool all inherit from the parent IIJob class, which 

implements java.util.concurrent.Callable through the Job interface. This class contains 

references to each of the Services that are needed throughout the building and analysis 

process. The JavaProject is built by this class, and then analyzed and converted to a 

JavaSolution. The concrete implementations of IIJob are then responsible for determining what 

type of analysis to run on that solution. These concrete classes include the StandardBuildTask, 

which runs through all the processes and services, and Tasks aimed towards only processing 

solutions for graphs and Excel charts.  

The code shown in Code Snippet 3.5 explains how this process works in the StandardBuildTask. 

The call() method is from java.util.concurrent.Callable, and this calls the 

buildProjectAndAnalyzeForSolution() method. Inside this method, the ProjectService builds the 

JavaProject, and then the AnalyzerService analyzes that project. Once this is finished, the 

abstract processSolution(JavaSolution) method is called, which is implemented in each concrete 

IIJob class. This can be seen in the StandardBuildTask, which calls both the MetricService and 

the GraphService to produce the Excel data and the graphs for the hierarchies. 
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public abstract class IIJob<T> implements Job<T> { 

  private ProjectService mProjectService; 

  private AnalyzerService mAnalyzerService; 

  private MetricService mMetricService; 

  private GraphService mGraphService; 

  // ... 

  @Override 

  public T call() { 

    JavaSolution solution = buildProjectAndAnalyzeForSolution(); 

    T result = processSolution(solution); 

    // ... 

    return result; 

  } 

   

  private JavaSolution buildProjectAndAnalyzeForSolution() { 

    JavaProject project = mProjectService.build(mProjectFile, mSystemName, mListener); 

    return analyze(project); 

  } 

   

  protected abstract T processSolution(JavaSolution solution) throws // ... 

  

  protected JavaSolution analyze(JavaProject project) { 

    return mAnalyzerService.analyze(project); 

  } 

} 

 

public class StandardBuildTask extends IIJob<Void> { 

  @Override 

  public Void processSolution(JavaSolution solution) throws GraphBuildException { 

    metricService().buildMetrics(solution); 

    graphService().buildGraphs(solution); 

    return null; 

  } 

} 

 

Code Snippet 3.5 IIJob.java and StandardBuildTask.java from Inheritance Inquiry 

3.3.4 Services 

Services are used as the main area of work for each of the steps in the build and analysis 

process. There are four main Services: ProjectService, AnalyzerService, GraphService, and 

MetricService. A Service is also available for downloading projects from remote Git repositories, 

though this Service is not currently being utilized in the tool. 

3.3.4.1 ProjectService 

The ProjectService contains three methods for building a project, based on the different options 

that might be used, such as passing a String as the file path, or using an actual java.io.File object 

instead. This Service is where Eclipse JDT is needed, as the JavaProject is built here. The 

ASTParser is setup for each project that needs to be built, and CompilationUnits are generated 

from the parser. Once these are created, the required nodes are then visited, using the 
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appropriate Visitors to create JavaElements for each CompilationUnit. The result of each of the 

three public methods in this Service is a complete JavaProject. 

3.3.4.2 AnalyzerService 

The AnalyzerService is used to calculate all of the metrics and hierarchy structures for each 

JavaProject, and return a JavaSolution with that information. This is done through one of the 

following methods: 

 analyze(JavaProject): Calculates everything; all metrics and the hierarchy structures for 

both DIT and NOC. This also provides additional information about how methods are 

used in the JavaElements. 

 analyzeMetrics(JavaProject): Calculates just the metrics and hierarchy structures. 

 analyzeForDIT(JavaProject): Calculates just the metrics and hierarchy structures for DIT. 

 analyzeForNOC(JavaProject): Calculates just the metrics and hierarchy structures for 

NOC. 

 analyzeForFullHierarchy(JavaProject): Calculates just the complete hierarchy structures. 

This is mainly used for generating graphs of the complete hierarchy of objects. 

This Service calculates the metrics for DIT and NOC by building Java objects to represent the 

inheritance hierarchy of a class. All of the subclasses in the hierarchy are stored in a Stack, and 

the metric can be found by examining the size of that Stack. This is also used for building the 

graphs and charts in the GraphService and MetricService. 
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Code Snippet 3.6 Method for building DIT hierarchies 

The code shown above in Code Snippet 3.6 is the recursive method that is responsible for 

building the hierarchy for a DIT metric. The JavaElement that is passed into the method is the 

class or interface that this hierarchy will be built for. A List<JavaElement> is retrieved, which 

contains the superclasses for that JavaElement. This is a List only because an interface may have 

multiple parents; since this thesis is only concerned with class inheritance, this List will only 

have one element in it during the analysis. Next, a new hierarchy (the DitHierarchy object) will 

be initialized using the superclass, and then the superclass will also be traversed recursively for 

more hierarchies. This continues until all the classes in the hierarchy have been added, and the 

DIT can then be found as the size of the hierarchy tree stack (the tree variable in the code 

snippet). 

3.3.4.3 GraphService 

The GraphService generates a graph that displays the hierarchy structure of either the DIT or 

NOC metrics. This Service is also able to create graphs for entire object hierarchy trees, and 

graphs that show the effects of overriding or extending methods. The images for the graphs are 

created using the Java Universal Network/Graph Framework, or JUNG (SourceForge, 2010). 

This library generates graphs and network structures based on a set of nodes and edges that 

are defined by the user of the library. JUNG utilizes some components of the javax.swing 

http://jung.sourceforge.net/
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framework for creating the visual aspects of the graphs. Once the graphs have been defined 

and plotted, an image of the graphs can be copied and saved. The JHotDraw Figure hierarchy 

structure graph shown in Chapter 1 in Figure 1.1 was created by first using the 

analyzeForFullHierarchy(JavaProject) method from the AnalyzerService, then using the resulting 

JavaSolution in the buildFullHierarchyTreeGraph(JavaSolution, String) method from the 

GraphService. The diagram in Figure 3.3, showing the hierarchy of the Assert class from the 

JUnit system was also generated by the GraphService. 

  

Figure 3.3 Assert.java hierarchy from JUnit 

3.3.4.4 MetricService 
The purpose of the MetricService is to generate files that can be read by Excel to display tables 

of data that might be converted into charts. This Service has a main function where it is able to 

accept a JavaSolution, then build valid Excel files containing information on each of the metrics 

of every JavaElement in that solution. An example of this is shown in Table 3.2 for the NOC 

metrics in the ArgoUML system. 
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ArgoUML - Number of Children 

Class or Interface  Number of Children 
org.argouml.application.api.AbstractArgoJPanel 12 
org.argouml.application.api.org.argouml.application.api.AbstractArgoJPanel 1 
java.lang.Exception 9 
java.lang.RuntimeException 6 
org.tigris.swidgets.Dialog 1 
org.tigris.swidgets.PopupButton 1 
javax.swing.JPanel 37 
org.argouml.util.ArgoDialog 17 
org.argouml.ui.UndoableAction 77 

Table 3.2 ArgoUML NOC metric from MetricService 

The MetricService also contains methods that will build an 

Excel acceptable file for the DIT, NOC, and WMC metrics 

of all the JavaElements in a List<JavaSolution>. The data 

for these files consists of a count of the number of 

JavaElements that have a value for certain metric. For 

example, Table 3.3 shows the results of the DIT metrics in 

the different systems from the Qualitas Corpus and 

JHotDraw. Taking the Ant system as an example, we can 

see the differing values for depth of inheritance 

throughout this system. The Java types that are analyzed 

for these metrics are just the classes; interfaces are 

ignored. There are 666 classes who have a DIT of 1 

(meaning those classes have no parent except for 

java.lang.Object), 261 who have a DIT of 2, and so on up 

to 3 classes with a DIT of 7. By looking at Figure 3.4, we 

can see one of those classes that has a DIT level of 7. 

 

 

 

Figure 3.4 Taskdef.java from Ant system in 
Qualitas Corpus 
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System 1 2 3 4 5 6 7 8 9 Total Elements 

Ant 666 261 387 139 44 10 3 0 0 1510 

ANTLR 395 110 53 44 17 12 1 0 0 632 

ArgoUML 1161 515 476 283 72 13 2 0 0 2522 

Azureus 2894 514 294 56 19 6 0 0 0 3783 

FreeCol 744 139 164 100 26 0 0 0 0 1173 

Hibernate 4695 899 1019 268 78 37 32 5 4 7037 

JHotDraw 96 58 44 9 0 0 0 0 0 207 

JUNG 669 128 36 15 2 0 0 0 0 850 

JUnit 179 56 8 7 0 0 0 0 0 250 

Lucene 2159 717 865 562 38 5 3 0 0 4349 

Weka 853 494 308 61 5 3 0 0 0 1724 
Table 3.3 DIT levels for Qualitas Corpus systems and JHotDraw 

3.4 Inheritance Inquiry Summary 

The Inheritance Inquiry library utilizes the Eclipse JDT in order to parse Java source code and 

visit the nodes in the Abstract Syntax Tree of the Java object. The code metrics discussed in 

Chapter 2 can then be calculated and processed through the use of different Services available 

from the library. This results in graphs displaying the hierarchy trees of different metrics and 

Excel readable files that can be used to visualize the data. The build and analysis process of the 

Inheritance Inquiry tool completes the workflow shown in Figure 3.5, explained as: 

 The Builder locates the files for the projects to process 

 A Task is submitted for each of the projects 

 Within those tasks, the Services are used to complete the work necessary for the 

processing of the building and analyzing the Elements 

o ProjectService parses and visits the .java files and creates a JavaProject. 

o AnalyzerService calculates the code metrics and hierarchy trees for every 

JavaElement in the JavaProject, and creates a JavaSolution for further processing 

o GraphService creates the JUNG graphs for visualizing hierarchies and the effects 

of inheritance on methods. 

o MetricService creates Excel readable files for analyzing the data from the 

JavaSolution metrics. 
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Figure 3.5 Inheritance Inquiry build workflow 
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Chapter 4: Analysis 

In Chapter 1, four questions were raised, that are intended to be answered through the analysis 

provided by this thesis. Those questions are:  

 Is there any risk or additional complexity for objects that are deep in an inheritance 

hierarchy? 

 What is the correlation between an object that is inherited many times, and the 

methods that are implemented in that object? 

 How does the hierarchy structure of one object change and grow as more separate 

objects inherit from the parent? 

 What happens to methods that are defined in a parent object, when they are also 

implemented in child objects? 

Each of the eleven proposed systems has been investigated to gather data in order to find the 

answers to these questions. For the systems coming from the Qualitas Corpus, the latest 

versions available are being used. For JHotDraw, the version being used is 5.1. The following 

sections will first examine the details on inheritance use in these systems, including the metrics 

discussed in Chapter 2, the inheritance hierarchy structure, and how methods are effected by 

the use of inheritance. Finally, there will be a quick overview on each individual system, with 

deeper investigation being provided for a few of the systems with more interesting results. 

In the following analysis of the 11 systems, it is important to note that the average values for 

DIT do not consider classes with a DIT of 1. This means that the averages provided are only 

calculated for those classes that inherit from a class other than java.lang.Object. As mentioned 

at the start of Chapter 2, interfaces are not being considered for their inheritance use in any of 

the analysis provided by this thesis. The amount of classes with a DIT of 1 account for more 

than 60% of all classes for 6 systems, and more than 44% for the other 5. As this is a study on 

inheritance use, and having a DIT of 1 means no inheritance, those classes do not need to be 

considered.  

This adjustment does not need to be considered for NOC, since this metric is applied to any 

class that uses the extends keyword to inherit from another class, and Java classes do not 
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inherit from Object in this way. In the same manner, when inheritance use is mentioned, Object 

is also not taken into account. Only those classes that explicitly inherit from another by using 

the extends keyword are considered. 

4.1 Multi System Analysis 

 To begin the analysis on each of these systems as 

a group, the overall usage of inheritance will be 

examined. Table 4.1 shows this information, with 

first the total amount of classes defined for each 

system, and then the percentage of those classes 

that are using inheritance. More than half of the 

systems have a lower percentage, with the ranges 

varying from 21% to 37%. The other 5 systems use 

inheritance in over half of their classes, but never 

reaching higher than 56%. 

The system JUnit uses inheritance among its class 

only 28% of the time. Since JUnit is a testing framework, this may actually be preferred. In an 

article on the reasons against the use of inheritance in tests, Petri Kainulainen claims that 

inheritance can have negative performance side-effects on a test suite, as well as causing tests 

to become harder to understand. He examines how JUnit handles class hierarchies for each test 

in the suite. The entire hierarchy must be walked through, by using reflection, to find all 

methods with specific annotations, and then invoking those methods. This traversal must occur 

before and after a test class is ran, and then before and after every test in that class. 

(Kainulainen, 2014) In order to reduce the strain on processing tests, and to keep the 

complexity of a test suite low, JUnit has kept the usage of inheritance to a minimum. 

In contrast to the low usage of JUnit, JHotDraw has one of the highest percentages of 

inheritance use out of the analyzed systems. One of the purposes of JHotDraw is to promote 

well-known design patterns, many of which were authored in part by Erich Gamma, who was 

also one of the main developers of JHotDraw. As many of those design patterns rely heavily on 

System Classes % of Inheritance 
Usage 

Ant 1510 55.89% 

ANTLR 632 37.50% 

ArgoUML 2522 53.97% 

Azureus 3783 23.50% 

FreeCol 1173 36.57% 

Hibernate 7037 33.28% 

JHotDraw 207 53.62% 

JUNG 850 21.29% 

JUnit 250 28.40% 

Lucene 4349 50.36% 

Weka 1724 50.52% 

Table 4.1 Total classes and percentage of inheritance 
usage for analyzed systems 
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inheritance, it makes sense that the usage of inheritance in this system would be high. For 

instance, all of the figures that JHotDraw renders to the display are inheriting from 

AbstractFigure. Many other components also have a base parent class, such as the locators with 

AbstractLocator, handles with AbstractHandle, and tools with AbstractTool. All of these 

instances are good examples on the use of inheritance. They promote code reusability by 

declaring common behavior in parent classes. The system is designed with the intent for using 

type substitution to allow any concrete class to be switched for another, making the application 

very flexible in terms of creating new types of objects and being able to use them immediately. 

4.1.1 DIT Ranges 

By reviewing the ranges of the levels of the depth of inheritance trees for each of the analyzed 

systems, some patterns in design choices are shown. Each of the systems contain a large 

amount of classes whose DIT is 1, meaning that they do not inherit from any other concrete 

class (besides java.lang.Object, which is disregarded in this study). The chart in Figure 4.1 shows 

the variance in DIT levels. The bars in gray represent those classes who do not use inheritance, 

the bars in blue represent those classes who are extending one class for a DIT of 2, the orange 

bars shows the classes that have a DIT of 3, and so on for every DIT level in the system. The 

standalone classes are a majority for 5 out of the 11 systems. For the other 6, they still 

represent a large portion of the classes. However, those 6 have a better range for the DIT levels 

present, as can be most easily recognized for Ant, ArgoUML, and Lucene, whose chart bars 

have a diverse spread of colors representing their DIT levels. 
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Figure 4.1 DIT Variance in analyzed systems 

As was noted in Chapter 2, at the end of Section 2 on the Depth of Inheritance Tree, there is no 

set definitive level for DIT, but some suggestions are that the depth should be within the range 

of 3 and 5. Lower DIT values are not indicative of any sort of problems, but as the depth 

increases, it can possibly signify added complexity and higher defects (Subramanyam & 

Krishnan, 2003, p. 307). In order to gain an overview on how deep inheritance hierarchies range 

for each system, the standard depth of classes can be found. This will only include those classes 

that inherit from another, or those whose DIT is greater than 1. This can be referred to as the 

DIT Standard for a system. 

Before the DIT Standard can be found, it must be noted that in order to create an inheritance 

tree, a class must be inherited at least once, meaning that there will always be a class whose 

DIT level is at least 2. The DIT level will always increment by one, and can never skip a level. 

What this means is that for a system that has a max DIT of 6, there will be at least one class 

whose DIT level is in the range of 2 – 6, and it is impossible to have, for example, no classes 

with a DIT of 4. 

The DIT Standard is different from a simple average. Instead, to calculate this, one must first 

find the summation of the amount of classes at a certain DIT level (2 or greater) multiplied by 

their DIT level. That value is then divided by the total amount of all classes with a DIT of 2 or 

0

1000

2000

3000

4000

5000

6000

7000

8000

DIT Variance

1 2 3 4 5 6 7 8 9



McNealy  
 

58 
 

greater, and the result is the DIT Standard. This calculation can be 

represented using the following formula: 

 For a system with DIT levels in the range of 2,...,n 

 Let a be the number of classes at the current DIT level in the 

range 

 Let x be the sum of all classes with a DIT of 2 or more 

 DIT Standard = 
x

ia
n

i


2

*

 

Using this formula, we can see the DIT Standard for each of the 

analyzed systems in Table 4.2. If these values were to be rounded up to the nearest whole 

number, there would be 9 of the 11 systems who have a DIT Standard of 3. Thinking back on 

the suggestions for DIT values being no higher than 3-5, it seems that all of the systems are able 

to maintain lower depths, for the most part. A few systems do have values higher than this, and 

while that is not necessarily an immediate problem, those classes that have these lower DIT 

levels will be easier to maintain and understand. This might also suggest that these systems are 

making good use of inheritance, while keeping the complexity of a majority of their classes to a 

minimum. 

Because there is no accepted number for a “bad” DIT, the analysis for this thesis will simply use 

a value of 4 as an “acceptable” DIT. This was chosen as it is the middle number from the 3-5 

range suggested during Chapter 2 Section 2. This value can be scaled to fit any other systems 

based on the discretion of the researcher. With that in mind, a DIT greater than 4 can be 

considered to be dangerous because of the increased complexity and a possibility for more 

defects. This was shown in the results of an empirical analysis by Subramanyam and Krishnan 

on how the Chidamber and Kemerer metrics relate to the number of defects in any given 

system. Their results confirmed their hypothesis that classes with a higher DIT are associated 

with higher defects (Subramanyam & Krishnan, 2003, p. 307). To determine how dangerous our 

analyzed systems are, we will take the percentage of classes with an acceptable DIT (less than 

System Version 

Ant 1.8.4 

ANTLR 4.0 

ArgoUML 0.34 

Azureus 4.8.1.2 

FreeCol 0.9.5 

Hibernate 4.2.2 

JHotDraw 6.0.1 

JUNG 2.0.1 

Junit 4.9 

Lucene 4.2.1 

Weka 3.7.9 

Table 4.2 DIT Standard for 
analyzed systems 
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or equal to 4), and compare that to the percentage of classes with a dangerous level of DIT (5 or 

more). These results are shown in Table 4.3. 

System % of Acceptable 
DIT 

% of Dangerous 
DIT 

Classes 

Ant 96.23% 3.77% 1510 

ANTLR 95.25% 4.75% 632 

ArgoUML 96.55% 3.45% 2522 

Azureus 99.34% 0.66% 3783 

FreeCol 97.78% 2.22% 1173 

Hibernate 97.78% 2.22% 7037 

JHotDraw 100.00% 0.00% 207 

JUNG 99.76% 0.24% 850 

JUnit 100.00% 0.00% 250 

Lucene 98.94% 1.06% 4349 

Weka 99.54% 0.46% 1724 
Table 4.3 Acceptable and dangerous DIT levels 

Each of the 11 systems were able to maintain acceptable DIT levels for over 95% of all their 

classes. Based solely on this information, it would appear that these systems should have a low 

number of defects. Many of the systems were able to contain a high number of classes and still 

maintain a very high percentage of acceptable DIT levels, such as Azureus with 99% of 3,783, 

Lucene with almost 99% of 4,349, and even Hibernate with the most amount of classes and 

almost 98% of those classes being acceptable. 

In contrast to this, there is ANTLR, who has the third lowest amount of classes at 632, but the 

highest percentage of dangerous DIT levels at 4.75%. This would suggest that ANTLR is creating 

hierarchy trees that are much too deep, and perhaps they should consider refactoring some of 

the subclasses in these trees into separate classes. Doing so would result in higher ranges for 

the number of children, so this must also be considered before any major restructuring of code. 

Only 2 of the systems had a 100% acceptable rate in their DIT levels: JHotDraw and Junit. 

Looking back to Table 4, JUnit only has a 28% of inheritance use from its classes. On the other 

hand, JHotDraw makes much greater use of inheritance, at 53% of its classes taking advantage 

of inheritance, making JHotDraw among the top 3 of 11 inheritance using systems. This 

solidifies the fact that JHotDraw is a prime example to use for examining inheritance use. 
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To end the analysis on DIT ranges for the systems, Figure 4.2 shows the number of classes at a 

specific DIT value for each system. As mentioned in the introduction to this chapter, each 

system has at least 44% of its classes that have a DIT of 1 (no inheritance). Because of that, 

those classes without inheritance are not included in this chart.  

 

Figure 4.2 DIT ranges for inheritance use 

4.1.2 NOC and WMC 

The number of children and the weighted method count for a class, when reviewed together, 

can provide an interesting synopsis on the complexity of that class. According to Marinescu, 

high values for NOC and WMC together in a class indicate high complexity, and he claims that 

they are “potentially influencing all the classes derived from them and therefore it is not at all 

desirable to have such classes in a project” (Marinescu, 1998). If at all possible, these classes 

should be restructured to fit better design practices. Analysis on the 11 proposed system was 

done to determine how many classes should potentially be refactored based on their NOC and 

WMC values. This will be referred to as the Inherited Method Risk. To find this, a value must 

first be selected to use as the limit for NOC, as well as one for the limit on WMC. 

The selected value for WMC is found by comparing values for WMC in the 11 proposed systems 

against values found in the research by Marinescu (Marinescu, 1998, p. 2). It should be noted 

that Marinescu is using McCabe’s Cyclomatic Complexity Metric (McCabe, 1976), in addition to 
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just finding the number of methods in a class, which is the way the Inheritance Inquiry tool 

finds the WMC. The average of the values from these 2 datasets was found, and then those 2 

averages were again averaged. These values and their averages are seen in Table 4.4 and Table 

4.5. From these WMC values, our limit for WMC is 21. 

System WMC Average 

Ant 17.5 

ANTLR 6 

ArgoUML 24 

Azureus 20.5 

FreeCol 9.3 

Hibernate 53.8 

JHotDraw 4.6 

JUNG 10.4 

JUnit 4.7 

Lucene 45.9 

Weka 15.3 

Total Average 19.3 
 Table 4.4 WMC average for McNealy research 

 There is no definitive value to use in determining a “best” 

amount for NOC. While having classes with a large number 

of children is indicative of high reuse of a class (Chhikara & 

Chhillar, 2012, p. 365; Chidamber & Kemerer, 1994, p. 485), 

it may also be a sign that the complexity of that class and 

its children is too great, and should be restructured 

(Marinescu, 1998, p. 3; Aviosto, 1997) . Because there is no 

standard for NOC, the average number of children for each 

of the proposed systems will be taken and used as the limit 

for the Inherited Method Risk. This average is 10.3, as 

shown by the values in Table 4.6. 

With the values select for limits on NOC and WMC, the Inheritance Inquiry tool can be run for 

analysis on the systems, and when the AnalyzerService is calculating the NOC with the 

analyzeForNoc(JavaProject) method, any calculated hierarchy trees that have 10 children and 

Table 4.5 WMC average for Marinescu research 

Site 
Complexity 
Definition 

WMC 
Average 

Site A McCabe 21 

Site A Unitary 13 

Site B McCabe 21 

Site B Unitary 10 

Site C McCabe 56 

Site C Unitary 16 

Total Average 22.8 

System NOC Average 

Ant 8.1 

ANTLR 8.3 

ArgoUML 13.2 

Azureus 11.6 

FreeCol 26.3 

Hibernate 5.6 

JHotDraw 3.7 

JUNG 7.5 

JUnit 5.3 

Lucene 13.9 

Weka 10.3 

Total Average 10.3 

Table 4.6 NOC Averages for analyzed systems 
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21 inheritable methods (methods that are not private), will be flagged as a risk. The results of 

this can be seen in Table 4.7 and Figure 4.3. 

  

Figure 4.3 Inherited Method Risk 

As a side note, it is important to realize that these values are not indicative of an absolute 

standard to be used for all research purposes. The Inheritance Inquiry tool is designed to be 

flexible with the values for NOC and WMC when calculating the Inherited Method Risk, and 

these values can be adjusted based on the judgement of the user in regards to the scale of 

whatever system is being analyzed. 

JHotDraw, JUNG, and Junit are the only systems who seem to have no risk of increased 

complexity through the inherited methods of their classes. These systems also had the highest 

percentage of acceptable DIT ranges, with JHotDraw and Junit at 100% and JUNG at 99.76%.  

FreeCol has the highest amount of risky classes, even though it has a low percentage of 

inheritance use throughout the entire system, at only 36.57% of classes using inheritance. Upon 

closer inspection of one of the offending classes, FreeColObject, more details will be revealed 

about how there may be a risk to any classes that are inheriting from FreeColObject, either by 

directly extending the class, or by inheriting from further down the hierarchy. Table 4.8 shows 

the immediate subclasses of FreeColObject, along with information on their method counts. 

FreeColObject contains 50 inheritable methods, meaning those methods are either protected or 
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Inherited 
Method 

Risk 

Ant 4 

ANTLR 1 

ArgoUML 4 

Azureus 4 

FreeCol 6 

Hibernate 4 

JHotDraw 0 

JUNG 0 

JUnit 0 

Lucene 5 

Weka 3 

Table 4.7 Inherited Method Risk 
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public, and therefore accessible by any 

instance of an object that inherits from 

FreeColObject. The WMC column shows 

the count of methods that are defined in 

the child class. The WMC + Inheritable 

Methods column displays the count of 

those methods plus the count of the 

methods inherited from FreeColObject. Of 

the 18 direct subclasses of FreeColObject, 

8 of those classes have a WMC higher 

than the WMC limit of 21 that was used 

to find the Inherited Method Risk. 

The developers of FreeCol might need to 

consider restructuring this class into more 

abstract subclasses, or find methods that 

could be refactored into only those 

classes that rely on them, or removed altogether. However, the name for FreeColObject implies 

that this class has a similar purpose as java.lang.Object, in that many objects in the FreeCol 

system should be an instance of FreColObject, by inheriting from it in some way. After 

examining the full hierarchy tree, shown in Figure 4.4, it is apparent that many other objects in 

the FreeCol system do inherit from this class. While the graph is skewed because of the large 

size, the depth and width of the tree are both large in size. This only increases the amount of 

methods that each subsequent child inherits, further increasing the complexity of each 

subclass. 

FreeColObject 

Children WMC WMC + Inheritable 
Methods 

AIObject 7 57 
AIMain 19 69 
AbstractOption 7 57 
AbstractUnit 10 60 
NationOptions 13 63 
ExportData 11 61 
ModelMessage 21 71 
HistoryEvent 10 60 
Feature 20 70 
MarketData 24 74 
FreeColGameObjectType 16 66 
Scope 20 70 
UnitTypeChange 12 62 
AbstractGoods 8 58 
HighScore 30 80 
TradeItem 11 61 
FreeColGameObject 30 80 
DiplomaticTrade 20 70 

Table 4.8 FreeColObject.java immediate subclasses and their WMC 
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Figure 4.4 FreeCol.java inheritance hierarchy 

4.1.3 Inheritance Hierarchy 

The width of the inheritance hierarchies in a system can be examined to provide insight into 

how often a system practiced code reusability. The number of a children at a certain level in the 

hierarchy are used to determine the width of that level. As each level in the hierarchy advances 

deeper, the width of those levels tends to grow. This is because a higher number of children 

provides more opportunities for subclassing of those children. The data for the inheritance 

hierarchies of each of the analyzed systems is presented in Table 4.9. Also included in this table 

is the NOC average and max for each of these systems.  

System 
NOC 

Average 
Average 
Width 

Max 
NOC 

Max 
Width 

Max width class 

Ant 8.1 11 157 175 junit.framework.TestCase 

ANTLR 8.3 8 33 35 org.antlr.v4.codegen.model.OutputModelObject 

ArgoUML 13.2 10 91 91 java.util.Observable 

Azureus 11.6 9 172 172 com.aelitis.azureus.ui.common.table.impl.TableColumnImpl 

FreeCol 26.3 11 49 52 net.sf.freecol.common.model.FreeColObject 

Hibernate 5.6 4 394 501 org.hibernate.testing.junit4.BaseUnitTestCase 

JHotDraw 3.7 3 12 14 CH.ifa.draw.handle.AbstractHandle 

JUNG 7.5 2 28 28 javax.swing.JApplet 

JUnit 5.3 2 7 7 org.junit.runners.model.RunnerBuilder 

Lucene 13.9 8 437 437 org.apache.lucene.util.LuceneTestCase 

Weka 10.3 5 113 163 junit.framework.TestCase 

Table 4.9 Inheritance width ranges for analyzed systems 

The NOC average and average width are similar only for 3 systems: ANTLR, Hibernate, and 

JHotDraw. Around half of the max NOC values are the same as the max hierarchy width: 
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ArgoUML, Azureus, JUNG, JUnit, and Lucene. At first thought, it may seem suspicious that the 

NOC and width do not match more closely. However, it must be remembered that the NOC 

calculates only the immediate subclasses of an element, while the width will take the entire 

class hierarchy structure into account when determining the size. This means that the width can 

be a sum of all the subclasses at a certain level in the hierarchy, thus allowing the width to 

occasionally be higher than the NOC. The range of values for the NOC will also be much 

broader, as there will be more instances of low counts of subclasses. This explains why the NOC 

has a higher average than the hierarchy width. 

The distinction between the NOC and width can be further visualized by the graphs displayed in 

Figure 4.5. On the left, the hierarchy tree for the class AbstractHandle from JHotDraw is 

displayed, and the right side shows the hierarchy tree for LocatorHandle. The max width of 

AbstractHandle is 14, because it includes the subclasses of both LocatorHandle and 

ChangeConnectionHandle. However, the NOC of AbstractHandle is only 7, as that is the number 

of immediate subclasses. LocatorHandle has a lower hierarchy width, at 12, but its NOC is 

higher, with a value of 12. This explains why a system is able to have a very wide hierarchy tree 

when its max NOC may not be quite as high (see Hibernate in Table 4.9). 

 

Figure 4.5 AbstractHandle.java and LocatorHandle.java widths 

Two of the systems, Ant and Weka, have junit.framework.TestCase as the class which has the 

highest hierarchy tree width. This class comes from the JUnit system. Looking again at Table 

4.9, JUnit only has a max width of 7, while Ant has 175 and Weka has 163. The reason that the 
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width is so high in Ant and Weka, and low in JUnit, is that the class TestCase is an abstract class 

that is meant to be subclassed in an application’s test suite and used as the base class for any 

tests. Ant and Weka must therefore both have a very large test suite of classes that inherit 

from TestCase. This is an instance when having a large number of children with a deep 

inheritance tree is acceptable, as much of the code in a test suite is repeatable, and so having a 

significant amount of reusability is preferable. 

In the same way that Ant and Weka have a class from an external library as the one with the 

largest hierarchy tree, ArgoUML and JUNG also inherit from another system’s class at the top 

level of their highest hierarchy. The classes that these systems inherit are both from official Java 

APIs, with ArgoUML inheriting from java.util.Observable, and JUNG making use of 

javax.swing.JApplet. This might suggest that the most efficient class to use is already available 

to an application from the programming language that is used for development. The 

programmer of that system can take advantage of this through inheritance, and avoid having to 

write code for a feature that is already being widely used. 

4.1.4 Effects on Methods 

When a class inherits from another, certain methods defined in the parent class become 

available to the child. The subclass can choose to leave these methods as they are defined in 

the parent, or they can override the methods to provide a new implementation. Overriding can 

be helpful when a developer needs to have a class of a certain type, but unique behavior for a 

method that already has been defined. Looking back on Section 1.5 in the discussion on 

Inheritance in Java, the draw() method for a RadiusHandle in the JHotDraw system is overriding 

the default draw() method from AbstractHandle in order to give RadiusHandle its unique 

circular shape. This is an example of when overriding an already implemented method is 

necessary. 
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System Overridden 
Method 
Average 

Overridden 
Method Max 

Class with Max Overridden Methods 

Ant 1 29 org.apache.tools.ant.taskdefs.Delete 

ANTLR 2 11 org.antlr.v4.automata.LexerATNFactory 

ArgoUML 2 95 org.argouml.model.mdr.UndoCoreHelperDecorator 

Azureus 2 38 
com.aelitis.azureus.core.networkmanager 
.admin.impl.NetworkAdminImpl 

FreeCol 2 17 net.sf.freecol.server.ai.ColonialAIPlayer 

Hibernate 2 51 org.hibernate.dialect.PostgreSQL81Dialect 

JHotDraw 3 20 CH.ifa.draw.figure.DecoratorFigure 

JUNG 2 6 edu.uci.ics.jung.visualization.control.EditingModalGraphMouse 

Junit 1 5 org.junit.experimental.theories.Theories 

Lucene 2 28 org.apache.lucene.index.IndexWriterConfig 

Weka 3 16 weka.experiment.RemoteExperiment 

Table 4.10 Overridden Methods for analyzed systems 

Information about how each analyzed system overrides methods in classes using inheritance is 

shown in Table 4.10. The max amount of times that methods are overridden varies greatly 

between each system, with no real pattern emerging. However, when examining the average, 

64% of the systems had an average of 2 overridden methods for each class. The reason for this is 

most likely explained as those classes overriding the same 2 methods: equals() and hashCode(), 

both from java.util.Object. As noted by William Pugh and David Hovemeyer, when overriding the 

equals() method, it is important to also override the hashCode() method. This is because the two 

methods together form a contract that determines whether objects in Java have equal values, 

and objects that violate this contract will not work in hash-based collections (Pugh & Hovemeyer, 

2004). And since these methods are defined in java.lang.Object, even those classes who have a 

DIT of 1 (only inheriting from Object) will often be required to override them. 

DecoratorFigure will be further examined to provide more insight into the ways a class might 

override methods from its parent. DecoratorFigure is an abstract class that inherits from 

AbstractFigure, and has a total of 29 methods, with 20 overridden methods. Of those 20 

methods, 17 are overriding existing implementations defined in AbstractFigure, and the 

remaining 3 are concrete implementations for abstract methods from AbstractFigure. The reason 

that DecoratorFigure has such a high count for overriding methods is because this object is 

employing the Decorator design pattern. This pattern is used to dynamically add extra features 
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to an object, and to “provide a flexible alternative to subclassing for extending functionality” 

(Gamma, et al., 1995, p. 175). Figures that inherit from DecoratorFigure will take a separate 

concrete Figure, and delegate the execution of the AbstractFigure overridden methods to the 

Figure that is to be decorated. As shown by Code Snippet 4.1, the fComponent is the Figure to be 

decorated, and DecoratorFigure delegates the overridden displayBox() method to the 

implementation provided by whatever the concrete class of fComponent happens to be. 

public abstract class DecoratorFigure 

      extends AbstractFigure 

                implements FigureChangeListener { 

  

 /** 

  * The decorated figure. 

  */ 

 protected Figure fComponent; 

 

 /** 

  * Forwards displayBox to its contained figure. 

  */ 

 @Override 

 public Rectangle displayBox() { 

     return fComponent.displayBox(); 

 } 

} 
 

Code Snippet 4.1 DecoratorFigure.java in JHotDraw 

The ways in which the analyzed systems are extending methods is also examined in this thesis. 

Extending a method is when a subclass overrides a method from its superclass in order to provide 

a new implementation, but also still calls the superclass method through the use of the super 

keyword. This is beneficial by allowing the subclass to provide additional functionality to a 

method, while still using the default base class implementation. Table 4.11 shows the details of 

how extended methods are used in the analyzed systems. 
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System Extended 
Method 
Average 

Extended 
Method 

Max 

Class with Max Extended Methods 

Ant 2 29 org.apache.tools.ant.taskdefs.Delete 

ANTLR 1 2 org.antlr.v4.runtime.atn.NotSetTransition 

ArgoUML 1 75 org.argouml.model.mdr.UndoCoreHelperDecorator 

Azureus 1 14 org.gudy.azureus2.ui.swt.views.table.impl.TableViewSWTImpl 

FreeCol 1 4 net.sf.freecol.common.model.Modifier 

Hibernate 1 51 org.hibernate.mapping.Subclass 

JHotDraw 2 5 CH.ifa.draw.figure.connection.LineConnection 

JUNG 1 4 edu.uci.ics.jung.graph.ObservableGraph 

Junit 1 3 junit.extensions.RepeatedTest 

Lucene 2 16 org.apache.lucene.store.BaseDirectoryWrapper 

Weka 2 19 weka.experiment.RemoteExperiment 

Table 4.11 Extended Methods for analyzed systems 

The average for extended method use is less than the average for overriding methods, showing 

that extending methods is not quite as necessary for inheritance as overriding. This is mainly due 

to the fact that overridden methods do not need to include a call to the super method, but to 

extend a method, the class must override the method and call the parent implementation. Many 

classes need to override equals() and hashCode(), and while these methods can be extended by 

making use of the superclass implementation to include attributes from the parent, they are not 

always required to do so. 

To further examine how one of these systems is extending methods, the final class Modifier from 

the FreeCol system is shown in Code Snippet 4.2. In the writeAttribues() method, the super 

implementation is first called, and then additional operations are performed on the 

XMLStreamWriter in order to write out attributes that are unique to the Modifier class. 
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public final class Modifier extends Feature { 

 

 public void writeAttributes(XMLStreamWriter out) throws XMLStreamException { 

    super.writeAttributes(out); 

    out.writeAttribute("value", String.valueOf(value)); 

    out.writeAttribute("type", type.toString()); 

    if (incrementType != null) { 

      out.writeAttribute("incrementType", incrementType.toString()); 

      out.writeAttribute("increment", String.valueOf(increment)); 

    } 

  } 

} 
 

Code Snippet 4.2 Modifier.java in FreeCol 

Figure 4.6 gives an overview of how often methods are overridden in each of the analyzed 

systems, on average. According to Mark Lorenz and Jeff Kidd, “(a) large number of overridden 

methods indicates a design problem.” (Lorenz & Kidd, 1994, p. 67) They suggest that subclasses 

should be used as a specialized type of the superclass, and that these subclasses should 

implement methods that are unique to the intended purpose of that class. In order to 

determine if subclass method overrides are being used safely in a system, Lorenz and Kidd have 

proposed a threshold for the amount of times this should be acceptable. For those methods 

that are not meant to be overridden (for Java applications, this means methods that are not 

declared as abstract in the superclass) the tolerable number of times for overrides in a subclass 

is three or less (Lorenz & Kidd, 1994, p. 68). For any subclass with a high DIT, this amount 

should be even fewer.  As can be seen in Figure 4.6, almost all of the systems acknowledge this 

rule. JUnit is just over the edge of the acceptable amount, with an average of 3.47, but ANTLR 

and JUNG both exceed this threshold by 2, with averages of 5.18 and 5.78, respectively. Both of 

these systems should inspect their code for overridden methods, and consider refactoring 

instances that might be unnecessary, or better suited to a separate, unique method. 
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4.2 Individual System Investigation 

This section will provide a brief overview for each of the individual systems that were analyzed. 

This mostly includes the values for the DIT and NOC, with graphs to detail those metrics. A few 

of the systems contained more interesting results than the others, and will therefore be given a 

closer inspection. 

4.2.1 Ant 

Of all the analyzed systems, Ant has the highest percentage of inheritance use, with 55.89% of 

the 1510 classes inheriting from another class. The average DIT value is 3.01, and the deepest 

inheritance tree is 7, for 3 different classes. The average value for NOC is 8.3, with the highest 

NOC being 157 for the class BuildFileTest. According to the JavaDocs for this class, the main 

purpose of this class is to provide utility methods to all subclasses that inherit from the class. As 

was mentioned with JUnit, this is not a very efficient way of building tests, so using inheritance 

in this way is not ideal. The recent developers of Ant seem to agree with this. The version of 

Ant that was analyzed for this thesis is 1.8.4, and BuildFileTest has been deprecated as of 

version 1.9.4, and replaced with a new class and annotations for current testing uses. 

Ant seems to be a very good example of inheritance use, as it has the highest overall 

percentage of use, and the ranges of depth and number of children are spread evenly 

throughout the system. And compared to some other inheritance heavy systems, the number 
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Figure 4.6 Average overridden methods in analyzed systems 
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of overridden and extended methods is not excessive, and seems to be within a reaonable 

amount. 

4.2.2 ANTLR 

ANTLR has an average percentage of inheritance use, with 37.5% of its 632 classes using 

inheritance in some way. The average value for DIT is 3.03, and the class with the highest DIT is 

LL1OptionalBlock with a DIT of 7. For NOC, the average is 8.1, with the class BaseTest having the 

highest number of children at 33. ANTLR has one of the second lowest usage of method 

overrides at 122, and the lowest amount of extended methods at 12. 

4.2.3 ArgoUML 

At 53.97% of 2522 classes using inheritance, ArgoUML is the second most inheritance heavy 

system.  With an average DIT of 2.97, most of the inheritance hierarchies stay below 3, with 

only 2 classes having a maximum depth of 7. For the NOC, the ranges are spread out more than 

the previous 2 systems, with ArgoUML having an average NOC value of 13.2, and CrUML having 

the most children at 91. 

4.2.4 Azureus 

The Azureus system has the second lowest percentage of inheritance use, at only 23.5% of its 

3783 classes. The DIT average is 2.55, and this system manages to keep the hierarchy depths 

below 7, with the maximum being 6 for 6 classes. The NOC is leaning towards a high value when 

compared with other systems, with an average of 11.6 and a maximum of 91 for the class 

CoreTableColumn. 

Considering that this system has the third highest number of classes, this may be an indication 

that the developers of Azureus are not taking full advantage of the benefits provided by 

inheritance. This system also has a very high amount of method overrides at 1221 and 

extensions at 288, being among the median for inherited method usage in the analyzed 

systems. This is questionable when accounting for the low average inheritance usage, as this 

means that many of these method overrides and extensions are occurring in within a small 

subset of the system’s classes. However, while the version of Azureus that was analyzed is the 

latest available from the Qualitas Corpus (4.8.1.2), the system Azureus is now available under a 
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new name, Vuze (Azureus Software, Inc, 2016), and is on version 5.7.1.0. The current version 

may have included refactoring, and hierarchy restructuring during the upgrade process. 

4.2.5 FreeCol 

FreeCol is near the average percentage for the systems in terms of inheritance use, at 36.57% 

of the 1173 classes using inheritance. Along with ANTLR, FreeCol has the highest average for 

DIT at 3.03. This system also manages to avoid creating hierarchies that are unnecessarily deep, 

with 26 classes having the max DIT of 5. The average number of children for FreeCol is also on 

the low side, at only 5.6, and the highest NOC being 49 for the class FreeColTestCase. 

4.2.6 Hibernate 

Hibernate is by far the largest system that was analyzed, with 7037 classes, and 2342 of those 

classes using inheritance. Despite this, the percentage of overall inheritance use is only 33.28%, 

given this system a low ratio of class to inheritance usage when compared to the other systems. 

While the average range for DIT values was just barely under three, at 2.92, Hibernate has the 

deepest hierarchy trees of any system, being the only one to have a DIT of 8 (with 5 classes) and 

a DIT of 9 (with 4). The average NOC was also the largest for Hibernate at 26.3, which is almost 

double the second highest average of 13.9 for Lucene. The class BaseCoreFunctionalTestCase 

has a very high number of children, at 394; however, this is not the system with the highest 

NOC, which will be mentioned shortly.  

Hibernate is an object-relational mapping (ORM) framework, which means it is used to 

generate and manage Java objects based off of many different SQL dialects. Because of this, the 

configurations for each of the different dialects can be quite extensive, and thus span multiple 

classes, building a large inheritance hierarchy as those configurations grow in scope. These 

dialects are all based of the Dialect class, which is an abstract class with a DIT of 1. While this 

class does not have an overly excessive number of children, at only 22, it was flagged as an 

Inherited Method Risk by the Inheritance Inquiry tool. As mentioned in Section 4.1.3, for the 

purposes of this thesis an Inherited Method Risk is when a class has 10 children and 21 

inheritable methods, and means that there is a high risk of complexity for any children that 

inherit from Dialect. As seen in Figure 4.7, there are many subclasses of Dialect, and the depth 

of the hierarchy is deep, reaching 6 in one class. 

http://www.vuze.com/
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Figure 4.7 Dialect.java inheritance hierarchy from Hibernate 

The version of Hibernate that was analyzed here is the latest available in the Qualitas Corpus, 

at 4.2.2, and the latest stable release is version 5.2.1. Unless updates have been made to the 

structure of this hierarchy in the time between these releases, this version’s method of 

handling the dialects may be the most efficient way possible, and in that case would be 

acceptable. 

4.2.7 JHotDraw 

Of all the analyzed systems, JHotDraw has the lowest amount of classes, at 207. However, with 

a percentage rate of 53.62%, it is one of the most inheritance heavy systems. JHotDraw 

manages to keep the depth of all of its inheritance trees under 5, with 9 classes having a DIT of 

4, and an average range of 2.56. The average NOC is lowest in JHotDraw, at 3.7, and the 

maximum child count is 12 for LocatorHandle (which was examined in Section 4.1.4). As 

previously mentioned in Section 4.1.1, JHotDraw is an excellent illustration of how inheritance 

should be used, and this is the reason many of the examples in earlier chapters are based off 

this system. 
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4.2.8 JUNG 

With only 21.29% of its 850 classes, JUNG has the 

lowest percentage of inheritance use out of all of the 

analyzed systems. The DIT average is 2.4, and the 

maximum level of depth is 5, for 2 classes. The average 

NOC is 7.5, with the highest number of children being 

28. However, the class that has the highest number of 

children is from a Java API, javax.swing.JApplet. 

Considering that this system such a low use of 

inheritance, it would possibly make more sense for the 

subclasses of JApplet to be placed into separate 

hierarchies. Looking at the list of these subclasses in 

Table 4.12, a possibility for this could be one abstract 

class for LayoutDemo, one for ShaperDemo, and 

maybe another for any standard Demo sample 

4.2.9 JUnit 

JUnit also has a low amount of classes at 250, as well 

as a low percentage of inheritance use, with only 

28.4% of those 250 classes being subclasses. The 

average for the depth of inheritance tree in JUnit is 

2.31. Of the 11 analyzed systems, JUnit and JHotDraw 

are the only ones whose DIT levels remained under 5 for all classes; JUnit has 7 classes with a 

DIT of 4. The NOC average for this system is 5.3, and the maximum NOC of 7 is the lowest for a 

max NOC compared to the other systems. As was discussed in Section 4.1.1, the metrics for 

inheritance use in JUnit are acceptable, as this system is a testing framework, and should 

therefore keep inheritance to a minimum. 

4.2.10 Lucene 

The Lucene system is one that makes extensive use of inheritance throughout its classes. This 

system has the second highest amount of classes at 4349, and uses inheritance in over half of 

Table 4.12 Subclasses of JApplet.java in JUNG 
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those classes (50.36%). Like most other systems, the DIT average for Lucene was almost 3, at 

2.98. The highest value for depth was 7 for 3 classes. Lucene has the second highest average for 

NOC, at 13.9. The class with the highest number of children is LuceneTestCase, with 437, which 

is higher than the max NOC for Hibernate. 

4.2.11 Weka 

The final system, Weka, is among the middle range for class count and inheritance use, with 

50.52% of 1724 classes using inheritance. Weka has an average DIT of 2.52, and manages to 

keep the depth below 7 for all classes, with only 3 having a DIT of 6. The average for NOC in this 

system is 10.3. Like JUNG, the maximum for NOC comes from a Java API class, 

javax.swing.JPanel, which is inherited from 113 times. The same suggestion that was given for 

JUNG can apply here: each GUI element that is a subclass of JPanel should be reevaluated to 

determine if there is a more efficient class that could hold the common behavior and properties 

of these classes. 
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Chapter 5: Conclusion and Future Developments 

As inheritance is such a significant aspect of object-oriented programming, it is important that a 

developer programs with both the benefits and side effects of inheritance in mind. The benefits 

that come from the use of inheritance include increased code reusability, type substitution 

between classes that share a parent, and advanced relationship models for classes with similar 

behavior. While these are important features that aid the development process and can 

contribute to better code, a developer should not use inheritance simply because it is available. 

They should consider the effects it may have on existing code, such as how complex the code 

will be to understand, and if it will become harder to maintain. 

Alternatives to inheritance can also be considered, such as using object composition to pass a 

reference to a class (or interface) of a certain type, and then delegate actions to that class. This 

would also promote a more interface-based approach, as developers could program their 

classes around a certain interface instead of a parent class, allowing the composite object to be 

of any type, as long as that type implements the required interface. This is known as 

programming to an interface, and requires that clients do not need to have any knowledge of 

specific types being used, as long as those classes implement the correct interface (Gamma, et 

al., 1995). 

This chapter will review the conclusions gained from the results of using the Inheritance Inquiry 

tool to analysis the Qualitas Corpus and JHotDraw systems. The future of this tool, including 

improvements that might be made and further development plans, will also be discussed. 

5.1 Analysis Results 

After completing the analysis on each of the proposed systems, some conclusions may be 

drawn on how inheritance was used throughout those applications. As proposed in Chapter 1, 

there were four main questions to consider: 

 Is there any risk or additional complexity for objects that are deep in an inheritance 

hierarchy? 
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 What is the correlation between an object that is inherited many times, and the 

methods that are implemented in that object? 

 How does the hierarchy structure of one object change and grow as more separate 

objects inherit from the parent? 

 What happens to methods that are defined in a parent object, when they are also 

implemented in child objects? 

There is no defined “best” value for DIT, only suggestions that can be given based off the scale 

of the classes that make up the inheritance hierarchy. As was found through the analysis of this 

thesis, most of the classes in each of the systems maintained a DIT around 3, with the highest 

DIT Standard being 3.03, and the lowest 2.31. For about a third of the systems, the maximum 

DIT for their classes stopped at 7, with only Hibernate going above that, to 9. 

To determine the dangers that might be associated between classes that have a high NOC and 

WMC, the Inherited Method Risk was calculated. This metric can be used to tell a developer 

that they should perhaps consider refactoring a class to move common behavior between 

certain subclasses into more appropriate classes. The analysis by the Inheritance Inquiry tool 

showed that more than half of the systems had four or more classes that could be seen as a 

complex risk, and that are candidates for refactoring. 

As more classes inherit from one parent class, the hierarchy structure for that parent grows. 

With each new subclass, there is a chance that those subclasses will also be inherited from, 

which expands the hierarchy tree of the parent. This tree includes not only the immediate 

children of the parent, but also any subclasses of those children. The results that were provided 

by the analysis of this system show that the class with the largest hierarchy is sometimes a class 

from a separate library or API, as was the case with Ant and Weka having large hierarchies 

spanning from a JUnit test class, and ArgoUML and JUNG using Java APIs. This suggests that a 

more convenient class to inherit from might already be developed, and programmers should 

take advantage of that existing code. 

The final section of analysis was performed on inherited methods, and how subclasses might 

override or extend methods that are defined in their parent class. Methods can be overridden 
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for a number of reasons, such as when the default implementation is not quite right for a 

certain subclass, or when a particular design pattern needs to be employed (as was the case for 

DecoratorFigure in JHotDraw). Methods can also be extended to provide additional 

functionality, while still calling the parent’s implementation. Having a large amount of method 

overrides can reveal design issues with an inheritance hierarchy, and may demonstrate that a 

class hierarchy should be restructured. The analysis done on the 11 proposed systems found 

that all but 2 systems were within an acceptable threshold regarding their method overrides. 

This indicates that the majority of these systems were defining proper methods for their 

subclasses, and using overrides sparingly. 

5.2 Future Developments 

There are a few improvements that might be made to increase the efficiency and appeal in 

using the Inheritance Inquiry tool. At the time of the research for this thesis, the tool is possibly 

more complex than was necessary for the project. There are a number of different Tasks in the 

tool that were deprecated by the time a majority of the analysis was being performed. Some of 

the Tasks that were not used include a Task that targets different versions of a system, and 

tasks that were intended to only calculate the metrics or to build graphs. These Tasks were 

ignored in favor of either a Task that analyzed everything from all systems at once, or a Task 

that built only a single system for analysis. There was also a service that could be used for 

download projects through Git, and this was ignored in favor of simply focusing on the Qualitas 

Corpus systems and JHotDraw. 

Initially, the tool was developed with the intention of being published to a website, where any 

developer would be able to upload their project and have it analyzed. While some development 

time was spent on this, the website was eventually scaled down to the code base that is the 

current state of the Inheritance Inquiry tool. The tool is now a library that can be imported into 

any application and used in conjunction with the existing code of that program. There are some 

improvements needed on the API for the library, and that refactoring will be the next step in 

the development process of the tool. The API is already open to include listeners and multiple 

services that will allow for easy integration with a graphical based application, and 
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development on a more user friendly application for the Inheritance Inquiry tool has already 

been started. 

5.3 Closing Thoughts 

Inheritance is a powerful feature of object-oriented programming that can be used to develop 

flexible and reusable code. There are many benefits to be gained from utilizing this concept, but 

developers have to be mindful of the proper times to use inheritance, and when they should 

consider alternatives. There are instances when a large class hierarchy is necessary for a feature 

to function properly, and the architecture of an application can be designed around the concept 

of inheritance, as is the case with many graphical based applications that have similar 

components. Inheritance is fundamentally designed around the concept of allowing existing 

programs to be expanded and improved without the need to modify existing code (Taivalsaari, 

1996, p. 474). By remaining mindful of this fact and the benefits and dangers of its use, 

inheritance can be used in conjunction with other programming concepts and design practices 

to produce more efficient code. 
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