

What	happens	in	Glasgow?		

Web	map	framework	comparison	from	dynamic		

data	visualisation	perspective	

Kornel	Kotan	

August	2016	

	

	

	

	

	

	

	

	

	

	

	

This	dissertation	was	submitted	in	part	fulfilment	of	requirements	for	the	degree	of	MSc	

Advanced	Software	Engineering	

	

	

DEPT.	OF	COMPUTER	AND	INFORMATION	SCIENCES		

UNIVERSITY	OF	STRATHCLYDE	

	

AUGUST	2016	

	

	

	

	 	

- ii -

DECLARATION		

	

This	dissertation	is	submitted	in	part	fulfilment	of	the	requirements	for	the	degree	of	MSc	

Advanced	Software	Engineering	of	the	University	of	Strathclyde.		

	

I	declare	that	this	dissertation	embodies	the	results	of	my	own	work	and	that	it	has	been	

composed	by	myself.	Following	normal	academic	conventions,	I	have	made	due	

acknowledgement	to	the	work	of	others.		

	

I	declare	that	I	have	sought,	and	received,	ethics	approval	via	the	Departmental	Ethics	

Committee	as	appropriate	to	my	research.		

	

I	give	permission	to	the	University	of	Strathclyde,	Department	of	Computer	and	Information	

Sciences,	to	provide	copies	of	the	dissertation,	at	cost,	to	those	who	may	in	the	future	

request	a	copy	of	the	dissertation	for	private	study	or	research.		

	

I	give	permission	to	the	University	of	Strathclyde,	Department	of	Computer	and	Information	

Sciences,	to	place	a	copy	of	the	dissertation	in	a	publicly	available	archive.		

(please	tick)	Yes	[✓]	No	[]		

	

I	declare	that	the	word	count	for	this	dissertation	(excluding	title	page,	declaration,	abstract,	

acknowledgements,	table	of	contents,	list	of	illustrations,	references	and	appendices)	is	

17,932	words.		

	

I	confirm	that	I	wish	this	to	be	assessed	as	a	Type		 1	 2	 ③	 4	 5	

Dissertation	(please	circle) 	

Signature:		

	

Date:	29/08/16	

 Kornel Kotan

- iii -

Abstract	

When	it	comes	to	web	mapping	it	is	always	a	pressing	challenge	to	decide	which	

mapping	technology	fits	best	the	requirements.	There	are	numerous	frameworks	on	the	

market	all	having	advantages	and	disadvantages	which	make	them	suitable	for	some	

purposes	better	than	for	the	others.	There	are	projects	comparing	frameworks,	but	no	

research	has	been	made	on	finding	the	best	framework	for	displaying	changing	data.	This	

research	focused	on	comparing	three	web	mapping	frameworks	from	dynamic	data	

visualisation	perspective:	Leaflet,	Openlayers	and	Google	Maps.	The	comparison	included	

both	developer’s	and	user’s	perspective.	

To	provide	a	platform	for	the	comparison	two	maps	were	built,	which	displayed	different	

dynamically	changing	data.	The	first	visualised	live	flight	traffic	data	above	Europe	while	the	

second	displayed	live	road	traffic	events	and	the	car	park	occupancy	levels	of	Glasgow.	The	

research	also	measured	the	effectiveness	of	the	dynamic	data	visualisation	techniques	

used.	The	maps	used	various	type	of	live	data,	for	which	different	techniques	were	used	

such	as	heatmaps,	moving	icons,	appearing	and	disappearing	icons.	Specific	constraints	

were	set	which	the	maps	needed	to	meet.	The	developer	side	comparison	was	based	on	

how	difficult	it	was	to	meet	the	constraints.	To	determine	which	map	is	the	best	from	the	

users’	perspective	a	questionnaire	was	used.	The	research	provided	detailed	comparisons	of	

the	frameworks	from	dynamic	data	visualisation	perspective	as	well	as	revealed	the	

advantages	and	disadvantages	of	the	frameworks.	As	an	output	of	the	research	the	

effectiveness	of	the	different	visualisations	was	worked	out.	Also	the	best	frameworks	from	

both	developer	and	user	perspectives	were	identified.	

	

	

	

- iv -

Acknowledgements	

I	would	like	to	thank	to	my	supervisor	Dr.	Marc	Roper	for	his	guidance	throughout	

researching	this	dissertation.	

Thank	you	also	to	my	friends	and	colleagues	for	providing	answers	to	the	questionnaire	

and	supporting	me	in	different	ways.	

Finally,	thanks	to	my	family,	for	backing	me	up	during	the	whole	year.	

	

- v -

Table	of	Contents	

Abstract	..	iii	

Acknowledgements	..	iv	

Table	of	Contents	..	v	

List	of	Figures	..	vii	

1	 Introduction	...	1	

1.1	 Background	and	Context	..	1	

1.2	 Scope	and	Objectives	...	1	

1.3	 Achievements	...	2	

1.4	 Overview	of	Dissertation	..	3	

2	 State	of	the	art	...	4	

2.1	 Online	maps	...	4	

2.2	 Spatio-temporal	data	..	4	

2.3	 Research	review	...	5	

2.4	 Related	Applications	Review	..	10	

3	 Methodology	..	11	

3.1	 Methodology	justification	..	11	

3.2	 Data	gathering	..	11	

3.3	 Overview	and	Planning	...	13	

3.4	 Development	approach	–	Development	strategy	...	16	

3.5	 Design	...	17	

3.5.1	 Server	side	architecture	..	17	

3.5.2	 Client	side	architecture	...	19	

3.6	 Methodology	of	comparison	..	19	

4	 System	documentation	..	21	

4.1	 Development	environment	..	21	

4.2	 System	implementation	..	22	

4.2.1	 Web	service	...	22	

4.2.2	 Data	collection	services	...	29	

4.2.3	 Maps	–	Client	Side	...	29	

4.2.3.1	 Google	Maps	..	30	

4.2.3.2	 Leaflet	..	34	

4.2.3.3	 Openlayers	...	38	

4.2.3.4	 User	comparison	maps	..	43	

- vi -

4.2.4	 Deployment	...	44	

5	 Framework	evaluation	and	comparison	...	45	

5.1	 Origin	and	license	...	45	

5.2	 API	and	support	..	46	

5.3	 Matching	the	constraints	..	48	

5.4	 Questionnaire	...	52	

6	 Results,	conclusion	and	recommendation	...	58	

6.1	 Summary	..	58	

6.2	 Key	Findings	..	58	

6.3	 Weaknesses	of	the	study	and	recommendations	...	60	

7	 Bibliography	...	62	

Appendix	1	–	Questionnaire	..	64	

	

	

- vii -

List	of	Figures	

List	of	Code	Snippets	

Code	Snippet	1	–	package.json	..	23	

Code	Snippet	2	–	Module	imports	...	24	

Code	Snippet	3	-	Application	configuration	...	24	

Code	Snippet	4	–	Application	routing	..	25	

Code	Snippet	5	-	Error	handling	..	25	

Code	Snippet	6	–	Error	handling	configuration	...	25	

Code	Snippet	7	–	Database	scheme	..	26	

Code	Snippet	8	–	Response	parsing	..	27	

Code	Snippet	9	-	GeoJSON	parsing	..	27	

Code	Snippet	10	-	Algorithm	...	28	

Code	Snippet	11	–	Framework	import	..	30	

Code	Snippet	12	–	Map	initialisation	..	30	

Code	Snippet	13	–	Heatmap	initialisation	...	31	

Code	Snippet	14	-	Filtering	negative	values	..	31	

Code	Snippet	15	-	Parameterised	endpoint	call	..	33	

Code	Snippet	16	-	Map	initialisation	...	35	

Code	Snippet	17	–	Tile	loading	..	35	

Code	Snippet	18	-	Popup	binding	..	36	

Code	Snippet	19	-	Updating	heatmap	...	37	

Code	Snippet	20	-	Map	initialisation	with	transformation	..	39	

Code	Snippet	21	-	Popup	listener	..	40	

Code	Snippet	22	-	Setting	plane	orientation	...	41	

	

List	of	Images	

Figure	1	-	Interactive	OD	map	...	8	

Figure	2	-	Geofabrik	map	compare	..	10	

Figure	3	-	System	architecture	...	16	

Figure	4	-	Web	service	structure	...	22	

Figure	5	–	Google	Maps	Car	park	heatmap	...	32	

Figure	6	–	Google	Maps	flight	map	...	33	

Figure	7	–	Google	Maps	Combined	car	park	heatmap	and	traffic	events	map	34	

- viii -

Figure	8	-	Leaflet	flight	map	...	36	

Figure	9	-	Leaflet	heatmap	..	37	

Figure	10	-	Leaflet	combined	car	park	heatmap	and	traffic	events	map	38	

Figure	11	-	Openlayers	heatmap	...	39	

Figure	12	-	Openlayers	flight	map	...	41	

Figure	13	-	Openlayers	combined	car	park	heatmap	and	traffic	events	map	42	

Figure	14	-	Glasgow	user	comparison	map	...	43	

Figure	15	-	Flights	user	comparison	map	..	44	

	

List	of	Questionnaire	Questions	

Question	1	...	53	

Question	2	...	53	

Question	3	...	54	

Question	4	...	54	

Question	5	...	55	

Question	6	...	56	

Question	7	...	56	

Question	8	...	57	

	

List	of	Tables	

Table	1-	API	and	support	comparison	...	48	

Table	2	-	Constraint	based	comparison	...	52	

	

	

- 1 -

1 Introduction	

1.1 Background	and	Context	

When	an	interactive	web	based	map	needs	to	be	created	it	is	always	a	pressing	challenge	

to	decide	which	mapping	framework	to	use.	There	are	numerous	technologies	available	on	

the	market	which	provide	slightly	different	features.	The	frameworks	all	have	different	

advantages	and	disadvantages	which	make	them	more	suitable	to	some	requirements	than	

others.	Research	has	been	made	on	the	comparison	of	different	mapping	frameworks	from	

numerous	perspectives,	such	as	API	compatibility	or	drawing	in	the	overlays.	However,	since	

the	technologies	are	quite	new	and	they	evolve	fast,	there	are	many	other	perspectives	to	be	

considered.		

The	evolution	of	networking	allowed	data	providers	to	continuously	update	their	data,	

providing	live	updates	of	the	underlying	information.	If	the	data	has	location	information	

attached,	it	is	called	spatio-temporal	data	which	can	be	visualised	on	maps	to	make	the	

interpretation	easier.	Visualising	spatio-temporal	data	is	a	relatively	new	field	of	research.	The	

aim	of	this	project	is	to	compare	map	frameworks	and	find	the	one	which	ultimately	provides	

the	best	and	most	straightforward	way	for	visualising	dynamically	changing	spatio-temporal	

data.			

	

1.2 Scope	and	Objectives	

The	project	will	focus	on	comparing	three	web	mapping	frameworks,	Leaflet,	Openlayers	

and	Google	Maps.	Each	framework	will	be	analysed	from	a	dynamic	visualisation	perspective	

to	determine	the	one	which	is	most	suitable	for	this	purpose.	To	provide	a	platform	for	the	

comparison,	two	maps	will	be	built	which	will	display	different	dynamically	changing	data,	the	

first	will	visualise	live	flight	traffic	data	above	Europe	while	the	second	will	display	live	road	

traffic	events	and	the	car	park	occupancy	level	of	Glasgow.	Both	maps	will	be	implemented	

with	all	three	frameworks	and	to	make	them	easier	to	review,	the	same	type	of	maps	will	be	

displayed	on	the	same	web	page.	The	research	will	also	try	to	measure	the	effectiveness	of	

the	dynamic	data	visualisation	techniques	used.	The	maps	will	use	different	types	of	live	data	

for	which	different	techniques	will	be	used,	such	as	heatmaps,	moving	icons,	appearing	and	

disappearing	icons.		

The	comparison	will	include	both	the	developer’s	and	the	user’s	perspective.	For	the	

developer	side,	each	framework	will	be	required	to	meet	certain	evaluation	constraints.	After	

- 2 -

the	development	the	developer	will	rank	how	difficult	it	was	to	write	the	code	to	meet	the	

constraints	based	on	the	results.	These	numbers	will	be	aggregated	with	general	features	of	

the	frameworks,	such	as	support	and	API	complexity,	to	find	the	final	winner.	The	user	

comparison	will	be	based	on	a	questionnaire	which	the	users	will	be	asked	to	complete	after	

they	have	spent	some	time	interacting	with	the	map.	The	questions	will	focus	on	collecting	

subjective	opinions	on	the	different	frameworks	and	the	effectiveness	of	the	visualisation	

methods.	The	users	will	be	asked	to	rank	the	map	implementations	by	how	much	they	liked	

them.	The	effectiveness	of	the	visualisation	techniques	will	be	measured	in	a	similar	way.	

Based	on	the	outcome	of	this	research,	one	framework	will	be	chosen	from	both	

developer	and	user	perspective	as	the	best	web	mapping	framework	for	dynamic	data	

visualisation.	The	visualisation	techniques	will	also	be	evaluated	based	on	the	questionnaire.	

With	regard	to	the	previous,	the	research	questions	of	the	project	are	as	follows:	

• Which	framework	is	the	best	for	dynamic	data	visualisation	from	the	developer’s	

perspective?	

• Which	framework	is	the	best	for	dynamic	data	visualisation	from	the	user’s	

perspective?	

• Which	methods	are	the	best	for	visualising	the	dynamically	changing	data?	

	

1.3 Achievements	

For	each	framework,	a	detailed	comparison	was	made	of	the	dynamic	data	visualisation	

from	the	perspective	of	both	user	and	developer.	The	comparison	was	based	on	different	

methodologies	which	helped	analyse	the	frameworks	on	different	levels.	It	included	the	

development	of	an	application	to	compare	the	frameworks	side	by	side	which	provided	the	

basis	of	the	developer	side	comparison	along	with	the	literature	reviews.	The	comparison	

from	the	user	point	of	view	was	based	on	a	questionnaire	which	was	filled	out	by	users	after	

their	interaction	with	the	map.	The	questionnaire	also	collected	some	feedback	on	the	

effectiveness	of	the	different	dynamically	changing	data	visualisations.	

The	research	revealed	the	strengths	and	weaknesses	of	each	framework,	demonstrated	

how	difficult	it	was	to	develop	the	various	features	which	are	required	for	dynamic	

visualisations	and	what	support	was	provided	by	each	framework.	The	questionnaire	

indicated	which	framework	was	preferred	by	the	users	and	which	visualisation	type	they	

- 3 -

considered	to	be	effective.	It	also	suggested	some	possible	improvements	and	ways	in	which	

the	application	can	be	developed	further.	

	

1.4 Overview	of	Dissertation	

After	the	introduction,	the	second	chapter	is	responsible	for	putting	the	reader	into	

context	with	a	high	level	introduction	to	the	topic,	followed	by	a	summary	of	some	reviewed	

literature	and	application.	

	The	third	chapter	deals	with	the	different	methodologies	which	are	used	during	the	

project.	The	visualised	data	is	introduced	among	the	development	strategies	as	well.	This	

chapter	also	includes	an	abstract	planning	phase,	which	defines	the	requirements	against	the	

system.	

The	methodology	chapter	is	followed	by	a	chapter	which	is	responsible	for	providing	a	

detailed	insight	into	the	actual	system	including	the	environment,	the	design	and	the	

implementation.	In	this	chapter	code	snippets	with	explanation	and	images	from	the	final	

application	can	be	seen	too.	

Chapter	five	details	the	actual	framework	comparison	by	going	through	all	the	previously	

defined	comparison	methodologies.	First	there	is	a	short	overview	of	the	frameworks	which	

is	followed	by	a	comparison	based	on	the	APIs	and	the	frameworks’	support.	The	final	two	

sections	compare	the	frameworks	by	the	developer	rating	and	the	users’	feedback	including	

some	details	about	the	questionnaire.	

The	final	chapter	is	responsible	for	summarising	the	research.	It	contains	an	overview	of	

the	whole	research	showing	the	key	findings	and	observations.	The	methodologies	are	

evaluated	in	this	chapter.	The	weaknesses	of	the	study	are	revealed	and	some	future	research	

possibilities	with	recommendations	are	described.	

After	the	final	chapter	the	bibliography	and	appendixes	can	be	found.	

	

- 4 -

2 State	of	the	art	

In	this	chapter	a	high	level	overview	of	the	theoretical	background	of	the	study	can	be	

read	which	introduces	the	topic,	and	the	researches	made	in	the	area.	The	chapter	begins	by	

describing	some	key	expressions	and	concepts	which	are	needed	to	understand	the	following	

research	review	subchapters.		

2.1 Online	maps	

Making	maps	used	to	be	a	demanding	task	requiring	a	broad	knowledge	in	cartography	

and	mapping	technologies	as	well.	By	today	thanks	to	the	revolution	of	the	Geographic	

Information	Systems	(GIS)	there	are	numerous	tools	on	the	market	which	have	simplified	the	

map-making	process	(Crickard).	A	GIS	is	a	system	for	capturing,	displaying	or	editing	location	

related	data	on	the	Earth’s	surface.	It	allows	the	users	to	see,	analyse	and	understand	the	

patterns	and	relationships	in	the	data	easier	(GIS	-	geographic	information	systems).		Today	

people	can	not	only	customise	already	existing	maps,	but	also	build	their	own	versions	much	

more	easily	than	ever	before.	The	web	GIS	systems	have	layered	architecture,	which	means	

that	the	applications	are	divided	into	different	levels	of	visualisation.	They	consist	of	a	base,	

tile	layer	displaying	the	actual	map	tiles,	and	one	or	more	overlay	layers	above	the	tile	layer	

displaying	additional	information.	

2.2 Spatio-temporal	data	

The	data	displayed	in	the	overlay	layers	can	be	split	into	two	main	groups	depending	on	

the	static	nature	of	the	information	which	it	carries.	The	first	group	contains	the	static	type	of	

data	which	doesn’t	change	neither	time	nor	location,	for	example	place	of	interest	locations	

or	static	routing	information.	The	second	group	consists	of	the	dynamic,	spatio-temporal	data	

which	can	again	be	split	into	three	subgroups	based	on	the	kind	of	changes	occurring	over	

time:	

• Data	which	changes	in	spatial	properties:	location,	shape	and/or	size,	orientation,	

altitude,	height,	gradient	and	volume.	

• Data	which	changes	in	thematic	properties,	values	of	attributes,	qualitative	changes	

and	changes	of	ordinal	or	numeric	characteristics	value.	

• Data	which	changes	in	existence	in	time	i.e.	appearance	and	disappearance.	

(Andrienko,	Andrienko,	&	Gatalsky,	2003)	

- 5 -

2.3 Research	review	

To	gain	deeper	understanding	of	the	related	topics,	this	chapter	delineates	and	reviews	a	

few	existing	research	articles	and	applications	in	the	fields	of	map	framework	comparison	and	

dynamic	data	visualisation.	Although	there	are	various	studies	focusing	on	comparing	a	few	

of	the	frameworks	which	are	used	in	this	research,	as	well	as	few	cursory	online	comparisons	

of	all	three	technologies,	to	the	best	of	my	knowledge,	this	is	the	first	deep	comparative	

study	focusing	on	the	comparison	of	Leaflet,	Openlayers	and	Google	Maps	from	a	dynamic	

data	visualisation	perspective.	

A	Comparison	of	Maps	Application	Programming	Interfaces	

Fernandes	et	al.	(Fernandes,	Goulão,	&	Rodrigues)	compared	the	Google	Maps	JavaScript	

API,	the	ArcGIS	API	for	JavaScript	and	the	Openlayers	API	from	a	usability	perspective.	Since	

two	of	these	frameworks	are	involved	in	this	dissertation	as	well	it	is	worthwhile	to	review	

their	results	focusing	on	the	Google	Maps	and	Openlayers	APIs.	Their	goal	with	the	

comparison	was	to	determine	how	complex	and	leveraged	these	map	supporting	Application	

Programming	Interfaces	(API)	are.	Since	the	APIs	have	a	high	effect	on	programmers’	

productivity	the	evaluation	indicates	how	easy	or	difficult	it	is	to	build	maps	with	the	above	

mentioned	frameworks.	Two	different	information	sources	were	used	to	analyse	the	APIs.		

They	built	three	map	prototypes	with	similar	capabilities	to	demonstrate	the	basic	

functionalities,	such	as	zoom,	pan,	controls	and	location	search,	and	then	measured	the	

complexity	of	the	implementations.	To	determine	the	values	for	each	map	they	created	their	

own	metrics	system	which	was	based	on	the	constructor,	function	and	property	calls.	During	

the	development	they	already	discovered	that	the	Openlayers	API	does	not	support	

geocoding	and	the	Google	API	does	not	provide	wide	support	for	layer	management	and	

manipulation.	The	latter	can	affect	this	project	as	well	since	I	want	to	visualise	dynamic	data	

in	the	overlay	layers.	

The	other	information	source	was	the	quantitative	evaluation	of	the	APIs.	They	measured	

the	size	of	the	APIs,	the	number	of	objects,	the	methods,	and	the	properties	contained	then	

counted	how	many	additions	or	deletions	were	made	between	the	different	versions	of	the	

frameworks.	The	analysis	of	the	dimensions	of	the	APIs	showed	that	Google	API	has	less	than	

half	of	the	object	of	the	Openlayers	API	and	is	much	smaller	in	terms	of	the	number	of	

methods	and	properties	as	well,	but	thanks	to	these	it	has	a	reduced	number	of	calls.	The	size	

of	the	Google	API	indicates	that	it	is	implemented	on	a	higher	abstraction	level	leading	to	

- 6 -

easier	usage	but	less	customisation	which	again	shows	that	it	can	be	more	difficult	to	display	

customized	overlay	data	within	the	framework.		

The	analysis	of	the	evolution	resulted	in	the	findings	that	both	APIs	are	growing	in	the	

number	of	added,	deleted	and	kept	objects	and	the	migration	of	applications	from	one	

version	to	another	remains	maintainable.	However,	the	Google	API	was	the	only	one	which	

did	not	have	removals	of	objects	between	the	analysed	versions.	This	means	that	it	

performed	the	best	in	terms	of	retro	compatibility.	Since	I	only	want	to	make	a	comparison	

on	a	single	version	of	the	frameworks	this	discovery	will	not	really	have	an	effect	on	my	work.	

Reviewing	this	research	paper	was	useful	for	getting	a	high	level	overview	of	two	of	the	

APIs	which	I	plan	to	work,	with	as	well	as	revealing	a	few	possible	difficulties	which	need	to	

be	dealt	with	relating	to	the	less	customisable	Google	Maps	JavaScript	API.	Some	information	

was	obtained	as	well	on	how	steep	the	learning	curve	will	be	when	working	with	the	

frameworks.	The	results	indicate	that	implementing	the	dynamic	visualisation	with	

Openlayers	can	take	more	time,	but	probably	it	can	easier	be	done	than	with	Google	Maps,	

where	there	is	a	chance	that	not	all	the	different	visualisations	can	be	implemented.	

Visualizing	the	Dynamics	of	London’s	Bicycle-Hire	Scheme		

Wood	et	al.	carried	out	a	research	on	visualising	traffic	flows	to	analyse	the	the	status	of	

docking-stations	and	the	movement	of	bicycles	in	the	London	Bicycle	Hire	scheme.	(Wood,	

Slingsby,	&	Dykes,	2011)	Transport	London	(Barclays	Cycle	Hire	Map)	provides	a	scheme	

which	is	similar	to	the	other	schemes	around	the	world,	where	the	users	are	able	to	pick	up	a	

bicycle	from	any	docking-station	in	London,	and	then	drop	it	off	at	any	other	station	after	

they	had	finished	using	it.	One	can	track	the	real-time	status	with	the	number	of	bikes	docked	

currently	via	the	Web	interface.	Wood	et	al	used	this	data	to	reach	their	goals,	which	were:		

a) to	allow	an	overview	for	managers	for	helping	to	keep	the	scheme	geographically	

balanced	

b) to	help	users	to	make	the	best	use	of	of	the	facilities	

c) to	provide	an	overview	of	urban	mobility	and	structure	of	the	city	

Two	datasources	were	used	to	generate	the	visualisations.	Firstly,	they	harvested	the	

station	status	data	every	five	minutes	which	indicated	the	flow	but	did	not	provide	exact	

information	about	the	journeys	or	individual	behaviour.	Secondly	they	acquired	540,000	

direct,	origin-destination	(OD)	journey	data	which	shows	where	and	where	the	bicycles	were	

picked	up	and	dropped	off.		

- 7 -

Since	in	the	paper	they	are	dealing	with	live	visualisation	of	data	which	is	dynamically	

changing	in	value	reviewing	this	paper	is	useful	to	identify	the	issues	and	techniques	of	

representing	this	type	of	data.	

With	regards	to	(Rae,	2009)	visualising	geographically	heterogeneous	origin	destination	

flows	can	result	in	a	less	meaningful	“hair	ball”	like	structure	because	of	the	line	overlapping	

and	path	sharing	in	big	datasets.	Following	the	guidance	of	Andrienko	et	al.,	Wood	et	al.	

identified	three	alternative	methods	of	visualising	flows:	

• Edge	bundling	tries	to	show	general	trends	by	combining	pathways	which	go	to	

adjacent	locations	into	smoothed	paths.	(Phan,	2005)	

• Density	mapping	to	reduce	visual	noise	creates	surfaces	from	the	separate	flow	lines.	

This	technique	can	be	misleading	in	cases	where	only	the	origin	and	the	destination	are	

known	since	the	modelled	line	can	be	interpreted	as	the	actual	route	between	the	points	

(Rae,	2009).	

• Origin	Destination	matrix	visualization	is	an	alternative	way	to	solve	the	occlusion	

problem	as	well	as	giving	equal	weight	to	short	and	long	flows	too.	Each	cell	in	an	origin	

destination	matrix	is	symbolized	with	a	colour	representing	the	magnitude	of	flows	between	

origin	and	destination	in	the	OD	pair	(Wilkinson	&	Friendly,	2009).	However,	user	studies	

made	by	Ghoniem	et.	al.	(Ghoniem,	Fekete,	&	Cstagliola,	2004)	showed	that	from	an	

interpretation	perspective,	matrix	visualisation	is	more	effective	than	the	previous	options.	

Origin	destination	matrix	visualisation	is	not	a	classic	mapping	technique	so	It	can	not	be	

used	in	this	project.	

The	previously	identified	techniques	used	to	visualise	the	flow	data,	all	use	the	origin	and	

destination	information	of	the	vehicles,	which	is	significantly	harder	to	acquire	than	data	

which	only	represents	information	about	the	number	of	vehicles	in	a	location.	These	

techniques	can	only	be	applied	if	there	is	access	to	data	which	not	only	offers	information	

about	the	current	value	of	a	location,	but	also	provides	details	about	the	origin	and	

destination.	

For	representing	the	fullness	of	the	stations	Wood	et	al.	used	the	geographic	small	

multiples	technique	to	create	a	gridded	spatial	tree	map.	They	displayed	the	saturation	of	all	

the	bicycle	stations	on	London’s	map	by	adding	squares	to	the	map	with	different	tones	of	

the	same	colour.	Then	the	geographical	background	was	gradually	removed	and	the	squares	

were	ordered	into	a	matrix	displaying	the	distribution	and	the	proportion	of	bikes	currently	

- 8 -

docked	at	stations	all	over	central	London.	The	final	result	is	extremely	similar	to	a	heatmap;	

the	only	difference	is	that	there	are	no	explicit	borders	of	the	fields	on	the	heatmaps	so	the	

adjacent	values	can	be	washed	together	on	different	zoom	levels.	The	gridded	spatial	tree	

map	shows	the	changes	in	the	number	of	bicycles	over	a	time	period	but	does	not	provide	

information	about	the	origin	or	destination	of	the	journey.	Therefore,	this	technique	could	be	

used	on	less	complex	data	without	origin	destination	information	as	well.		

	

Figure	1	-	Interactive	OD	map	

To	display	the	origin	destination	provided	by	the	flow	data	Wood	et	al.	extended	the	

gridded	spatial	tree	map	to	an	interactive	OD	map	(Wood,	Slingsby,	&	Dykes,	2011).		The	map	

shows	a	tree	map	for	all	the	cells	displaying	the	frequency	of	the	destination	locations	with	

different	colours	thus	representing	the	flows.	The	visualisation	helped	them	to	reveal	local	

patterns	and	source	stations	in	the	London	Bicycle	hire	scheme.	Although	this	technique	

proved	to	be	the	most	representative	way	to	visualise	the	flows	it	requires	some	

familiarization.	

Reviewing	this	research	paper	provided	information	about	techniques	to	visualise	data	

which	is	changing	dynamically	in	value,	focusing	on	a	specific	subtype	which	owns	origin	and	

destination	knowledge	as	well.	Knowledge	was	obtained	about	different	visualisations	with	

different	advantages	and	disadvantages.	This	will	be	useful	when	determining	which	

techniques	should	be	used	to	visualise	the	data	in	this	research	project.	

- 9 -

Testing	web	map	APIs	–	Google	vs	Openlayers	vs	Leaflet	

Robin	Lovelace	wrote	a	comparison	on	Google	Maps,	Openlayers	and	Leaflet	which	

included	a	high	level	overview	of	the	main	attributes	of	the	frameworks	and	some	basic	

coding	examples	as	well.	(Lovelace,	2014)	

	 With	regard	to	Google	Maps	he	highlighted	the	easy	and	quick	implementation	of	the	

basic	features	and	the	wide	range	of	functionalities	which	the	framework	provides,	although	

he	also	mentioned	the	disadvantages	caused	by	the	restrictions	of	the	private	source	code	

such	as	the	lack	of	customisation	in	the	background	map	tiles.	He	emphasized	the	great	level	

of	support	which	Google	provides,	along	with	the	vast	server	infrastructure,	the	programmer	

team	behind	the	software	and	the	improving	variety	of	static	and	dynamic	visualisations	in	

the	framework.	The	latter	suggests	great	promise	in	this	project’s	spatio-temporal	

visualisation	with	the	framework	as	well.	Some	other	Google	features	are	referenced	in	the	

paper	too,	such	as	the	Street	View	and	Google	Earth	integrations	but	these	are	not	closely	

related	to	this	research.	

	 The	second	framework	he	analysed	was	Openlayers,	which	he	defined	as	the	most	

mature	and	the	most	widely	used	open	source	client	side	web	mapping	tool	on	the	internet.	

When	discussing	the	advantages	of	the	framework	he	wrote	about	the	wide	range	of	

functionalities	in	the	framework.	On	the	other	hand,	it	was	indicated	that	the	size	of	his	

version	was	almost	one	megabyte	which	is	not	ideal	for	mobile	applications.	Although,	since	

his	review	the	size	of	the	framework	has	been	reduced	but	it	is	still	much	bigger	than	the	

other	two	frameworks.	In	addition,	he	highlighted	the	significant	differences	between	the	

version	changes	of	the	Openlayers	API	as	Fernandes	et	al.	(Fernandes,	Goulão,	&	Rodrigues)	

did.	

	 Finally,	he	described	Leaflet	as	fast	moving	and	lightweight,	aiming	to	allow	the	

developers	to	quickly	create	well	functioning	maps.	The	number	of	growing	plugins	and	the	

modular	base	of	the	framework	was	highlighted	which	can	be	useful	when	looking	for	

visualisation	solutions.	He	also	appreciated	the	GitHub	based	community	support	and	the	

mobile	compatibility	thanks	to	the	small	size	of	the	framework.	

	 He	concludes	by	saying	that	all	of	the	frameworks	can	most	likely	provide	80%	of	the	

required	basic	features	for	web	mapping,	therefore	personal	preferences	and	special	

requirements	should	decide	which	framework	to	use.	Finally,	he	returns	to	the	Google	Maps’	

license	disadvantages	but	summarized	it	as	a	good	“off	the	shelf”	quick	solution.	Although	he	

considered	Openlayers	as	a	mature,	big	and	good	framework	his	favourite	is	Leaflet	as	the	

- 10 -

latest	and	most	exciting	mapping	technology	not	only	for	desktop	browsers	but	for	mobile	

devices	as	well.	

	 Reviewing	this	paper	provided	a	good	high	level	overview	on	all	the	three	

frameworks	which	will	be	compared,	and	indicated	a	few	issues	and	possible	weaknesses	of	

the	frameworks	which	will	need	to	be	faced.		

2.4 Related	Applications	Review	

After	reviewing	the	theoretical	background	of	the	research	area	and	collecting	some	ideas	

on	the	goal	of	the	research	a	way	needed	to	be	found	to	implement	and	compare	the	

frameworks.	While	looking	for	applications	with	similar	goals	the	Map	Compare	application	of	

the	Geofabrik	company	was	found	(Figure	2	-	Geofabrik	map	compare).	The	main	purpose	of	

the	tool	is	to	compare	different	map	frameworks	by	displaying	them	side	into	side	which	is	

exactly	what	this	project	wants	to	reach.	The	screen	of	the	application	is	divided	by	four	equal	

sized	areas	which	contain	maps	implemented	with	different	technologies	showing	the	same	

location.	This	website	provided	useful	ideas	on	how	to	display	the	maps.	(Geofabrik)	

Figure	2	-	Geofabrik	map	compare	

- 11 -

3 Methodology	

3.1 Methodology	justification	

The	goal	of	the	research	is	to	compare	three	map	frameworks	based	on	their	effectiveness	

in	visualising	dynamically	changing	data.	The	project	will	include	a	comparison	from	both	the	

developer’s	and	the	end	users’	perspective.	Since	both	require	a	different	approach,	various	

research	methodologies	will	be	used	for	pushing	through	the	research.	To	compare	different	

technologies	from	a	usability	perspective,	the	most	straightforward	method	is	to	make	the	

developers	to	use	them.	So	the	developers	side	task	will	include	the	creation	of	a	software	

which	will	provide	the	platform	for	the	qualitative	research	which	will	be	based	on	a	

questionnaire.	The	application	will	visualise	dynamically	changing	data	using	different	

frameworks	and	techniques,	thus	allowing	the	users	to	test	and	compare	the	frameworks.		

The	first	part	of	this	chapter	is	about	the	methodologies	related	to	the	application	

development,	including	the	requirements	of	the	system,	the	data	which	will	be	used	for	the	

visualisations	and	the	strategy	with	the	process	models	of	the	development	itself.	

The	second	subchapter	presents	the	design	of	the	application,	highlighting	the	most	

important	design	decisions	and	describing	the	system’s	architecture.	

The	third	part	of	this	chapter	focuses	on	the	methodology	of	the	comparison.	After	the	

system	is	built,	it	will	be	evaluated	to	decide	how	it	will	work	with	each	framework,	and	how	

difficult	it	is	to	meet	the	requirements	with	each	framework	during	the	development.	The	

best	way	to	judge	whether	the	visualisations	and	the	maps	serve	their	purpose	is	to	expose	

the	application	for	user	testing	and	evaluation.	To	gather	feedback	from	the	users,	a	survey	

will	be	created	which	will	be	detailed	in	the	second	part	of	the	chapter	as	well.	

3.2 Data	gathering	

In	order	to	test	and	demonstrate	the	various	abilities	of	the	different	map	frameworks	for	

dealing	with	dynamically	changing	inputs,	datasources	will	be	obtained	from	each	type	of	live	

data	described	in	section	2.2	and	they	will	be	visualised	on	the	maps.	The	three	data	types	

which	change	in	location,	value	or	existence	as	time	passes,	more	or	less	cover	all	the	use	

cases	which	a	typical	map	framework	needs	to	deal	with	in	connection	with	dynamically	

changing	data.	To	gather	dynamic	data,	third	party	data	sources	need	to	be	found	which	allow	

public	access	to	their	live	data.	In	addition,	since	the	project’s	title	is	“What	happens	in	

Glasgow”,	the	data	should	be	related	to	Glasgow	in	some	way.	

- 12 -

Data	changing	in	location	

In	the	original	plan	some	kind	of	traffic	data	for	example	GPS	locations	provided	by	taxi	

companies,	was	planned	to	be	used	as	the	data	which	changes	in	location.		

During	the	data	exploration	it	unfortunately	turned	out	that	there	is	no	company	in	

Glasgow	which	provides	publicly	available	car	location	data,	although,	a	web	API	which	

provides	live	flight	data	feed	was	found.	OpenSky	Network	is	a	community-based	receiver	

network	which	continuously	collects	air	traffic	data	above	Europe	and	the	east	coast	of	the	

United	states	to	share	it	with	developers	free	of	charge.	They	provide	their	data	through	

various	interfaces,	including	a	REST	API	with	a	simple	GET	request	which	allows	developers	to	

retrieve	all	the	tracked	flights’	details	in	JSON	format	such	as	flight	number,	origin	country,	

current	location	and	even	the	orientation	of	the	flight.	Although	there	is	a	time	restriction	on	

the	API,	registered	OpenSky	users	can	retrieve	data	with	a	time	resolution	of	five	seconds	

which	means	that	fresh	data	can	be	obtained	almost	in	real-time.	The	method	to	display	this	

type	of	data	on	the	maps	is	quite	trivial	since	the	location	of	the	flights	can	be	updated	quite	

often.	Icons	or	markers	can	be	placed	on	the	maps	and	moved	to	the	new	position	when	the	

coordinate	data	refreshes.	To	indicate	the	direction	of	the	planes	and	make	their	movement	

smoother,	animations	or	direction	vectors	could	be	used.	(The	OpenSky	Network	API)		

Data	changing	in	value	

For	the	data	changing	in	value	it	was	planned	to	use	a	datasource	which	significantly	

changes	its	value	during	a	day	and	represents	some	kind	of	behaviour	of	the	inhabitants	of	

the	city.	Bicycle	hire	docking	stations’	state	or	car	parks’	occupancy	information	is	perfect	for	

this	role.	Fortunately,	the	Glasgow	council	provides	access	to	around	four	hundred	datasets	

within	the	Open	Glasgow	project,	allowing	developers	and	researchers	to	work	with	local	

data.		

On	the	Glasgow	Open	Data	Portal	there	is	a	live	Glasgow	car	park	feed	which	provides	

information	about	the	car	parks’	location	with	the	name	as	well	as	description	and	their	

occupancy	in	Glasgow.	The	service	collects	information	from	sensors	installed	in	the	car	parks	

and	propagates	it	to	an	endpoint	in	JSON	and	XML	formats	every	five	minutes.	Based	on	the	

work	of	Fernandes	et	al.	I	decided	to	visualise	this	data	with	the	help	of	heatmaps	

representing	the	relative	occupancies	of	the	car	parks	with	different	colours.	This	way	the	

map	not	only	displays	how	many	cars	are	parked	in	the	parking	areas	but	also	indicates	how	

busy	the	various	parts	of	the	city	are	during	different	periods	of	the	day.	(Glasgow	Open	Data	

Portal	-	Datasets)	

- 13 -

Data	changing	in	existence	

Regarding	the	prior	plans,	the	twitter	API	could	have	been	used	to	get	the	location	of	the	

posts	to	display	on	the	maps	and	keep	them	there	for	a	few	seconds	before	making	them	

disappear.	But	while	looking	for	the	car	park	feed	a	road	traffic	events	datasource	provided	

by	the	city	council	was	found	which	not	only	correlates	better	with	the	car	park	data	but	

provides	more	Glasgow-specific	information	as	well.	The	data	follows	a	similar	structure	as	

the	car	park	feed.	It	provides	location	and	duration	information	with	a	description	od	specific	

road	traffic	events	in	real	time.	The	feed	is	refreshed	every	five	minutes	but	only	available	in	

XML	format.	From	a	data	structure	perspective	this	feed	is	even	more	useful	than	the	twitter	

posts	because	the	traffic	events	have	different	duration	in	time	which	presents	additional	

information.	

Mock	data	sources	

Except	of	the	previously	mentioned	feeds,	other	sources	will	be	used	during	the	different	

development	phases	either	to	prove	concepts	or	to	back	up	less	reliable	datasources.	To	test	

static	visualisations	on	the	maps,	GeoJSON	files	were	used	which	can	be	obtained	from	the	

government’s	open	data	site,	containing	reported	rodent	activities	in	Boston	(City	of	Boston).	

The	data	file	will	be	loaded	into	the	database	from	where	it	will	get	served	up	by	the	web	

service	to	the	browser.	For	testing	the	dynamic	data	concept,	a	website	designed	for	

developer	purposes	will	be	used.	It	returns	only	one	point	with	its	coordinates	in	GeoJSON	

format	and	on	each	request	the	point’s	coordinates	change.	This	endpoint	is	perfect	to	test	a	

simple	movement	visualisation	(Wanderdrone).	In	the	subsequent	phases	of	development,	in	

case	of	datasource	outages	or	just	to	display	more	changes	in	the	data	recorded,	data	will	be	

replayed	from	the	database	which	was	originally	produced	by	the	real	data	feeds.	

	

3.3 Overview	and	Planning	

Functional	system	requirements	

To	display	the	different	visualisations	not	only	the	maps	need	to	be	implemented	but	

numerous	other	hosting	and	data	gathering	infrastructures	have	to	be	developed	and	set	up.	

The	final	system	needs	to	be	able	to	collect	the	dynamically	changing	data	periodically	from	

different	data	sources	then	process	them	and	serve	them	to	the	clients	for	displaying	in	the	

required	format.	The	collected	data	also	needs	to	be	stored	for	testing	and	for	improving	the	

visual	experience	by	replaying	the	more	interesting	periods.	One	of	the	most	important	

requirements	of	the	system	is	to	provide	a	platform	to	display	the	visualisations	and	let	the	

- 14 -

users	interact	with	the	data.	This	means	that	the	infrastructure	has	to	be	able	to	render	the	

map	tiles	and	equip	them	with	all	the	functionalities	which	are	required	for	a	web	based	

geospatial	system.	To	satisfy	the	research	goals	the	system	needs	to	be	structured	in	a	form	

which	allows	the	users	to	make	a	comparison	between	the	different	map	frameworks	and	

visualisations.		

To	make	the	process	more	tangible	some	constraints	will	be	defined	before	starting	the	

development	which	will	provide	the	basis	of	the	comparison.	All	the	maps	need	to	meet	

these	constraints	and	it	will	be	tracked	how	difficult	and	time	consuming	it	was	to	implement	

the	code	passing	the	requirement.	The	constraints	will	require	the	frameworks	to	support	

commonly	used	features	and	protocols	for	visualisation	and	web	mapping	in	general.	

	

Constraints	

Nowadays	GeoJSON	is	a	widely	used	format	in	the	field	of	web	mapping.	The	protocol	

provides	support	for	encoding	a	variety	of	geographic	data	structures.	It	can	represent	

different	types	of	map	features	like	point,	polygon	or	line	and	contain	additional	property	

information	as	well.	Since	GeoJSON	is	gaining	more	and	more	territory	in	web	based	mapping	

nowadays,	all	the	maps	should	be	able	to	provide	some	kind	of	support	for	automatic	

GeoJSON	loading,	or	rendering	on	their	API	(The	GeoJSON	format	specification).	

The	map	which	will	be	created	for	visualising	the	flights	should	be	able	to	render	markers	

or	icons	on	the	locations	of	the	planes,	displaying	custom	icons.	In	addition,	the	icons	have	to	

be	able	to	display	the	heading	of	the	plane	either	by	rotating	the	icons	or	by	any	other	easily	

interpretable	solution.	The	plane	icons	should	be	clickable	and	should	display	the	flight	

number	as	well	as	the	origin	country	of	the	flight.	The	popup	should	also	move	with	the	plane	

as	the	icon’s	location	changes.	

The	other	two	data	types	will	be	combined	and	displayed	on	the	same	map.	The	car	park	

occupancy	data	is	displayed	as	a	heatmap	for	which	all	the	frameworks	have	to	provide	a	

heatmap	feature	with	the	ability	of	setting	different	weights	in	this	case	the	occupancy	values	

for	the	separate	heat	nodes.	The	heatmap	needs	to	be	able	to	follow	the	dynamic	value	

changes	as	well,	so	when	the	underlying	data	changes	the	heatmap	should	refresh	and	

display	the	new	data	without	showing	any	delays	to	the	users.	

Because	of	the	correlation	between	the	two	feeds,	the	road	traffic	events	are	displayed	on	

the	same	map.	The	requirements	with	this	data	type	are	that	they	need	to	be	clickable	and	

- 15 -

able	to	display	the	description	of	the	event.	Furthermore,	the	frameworks	should	provide	a	

loading	feature	for	the	GeoJSON	format	which	automatically	displays	the	events	on	the	map.	

Client-Server	model	

To	fulfil	the	previous	requirements,	the	application	will	be	based	on	the	traditional	client-

server	model.	This	is	a	distributed	application	structure	which	divides	the	responsibilities	

between	the	service	callers	and	the	provider.	In	the	case	of	a	web	application	there	is	a	

centralised	server	which	can	host	static	web	pages	and	provide	dynamic	services	as	well.	The	

server	runs	in	a	remotely	accessible	network	area	and	waits	for	a	request	which	comes	from	

the	other	participants	of	the	structure,	from	the	clients.	The	communication	is	always	started	

by	the	client,	but	a	server	can	host	resources	for	multiple	clients.	The	clients	in	web	

applications	are	usually	the	browsers	which	send	direct	requests	to	URL-s	or	to	other	

resources	with	the	help	of	the	code	running	in	the	client	applications.	This	type	of	

architecture	perfectly	fits	the	modern	web	application’s	and	online	interactive	map	system’s	

structure.	Based	on	the	research	reviews	and	my	previous	knowledge	in	this	area,	

responsibilities	will	be	distributed	between	the	server	and	the	client	to	fulfil	the	requirements	

as	follows.	

Server	responsibilities:	

• Collect,	process,	store	dynamically	changing	data	

• Host	collected	data	and	static	web	pages	

• Respond	to	HTTP	requests	

Client	responsibilities:	

• Query	and	render	map	tiles	

• Query	and	display	dynamic	data	

• Handle	user	interaction	

• Navigate	between	the	map	implementations	

The	system	architecture	based	on	the	distributed	responsibilities	can	be	seen	on	Figure	3	-	

System	architecture.	

	

- 16 -

	

Figure	3	-	System	architecture	

	

	

3.4 Development	approach	–	Development	strategy	

Technology	determination		

The	design	stage	of	the	project	started	sooner	than	the	actual	development.	During	my	

Personal	Studies	university	course	I	learnt	about	a	JavaScript	based	stack	including	NodeJS	

and	MongoDB.	NodeJS	is	a	JavaScript	runtime	environment	for	developing	server	side	Web	

applications	while	MongoDB	is	an	open	source,	document-oriented,	NoSQL	database	which	

allows	the	user	to	store	the	data	as	JSON	objects	instead	of	rows	(The	MongoDB	3.2	Manual).	

In	addition	to	that	they	were	convenient	to	work	with	and	perfect	for	creating	lightweight	

web	application	backend,	I	could	exploit	code	snippets	and	use	the	previously	obtained	

knowledge	as	well	so	I	decided	to	use	this	stack	as	the	server	side	technology	of	the	

dissertation	project	too.	

For	the	client	side	map	and	the	visualisations,	I	wanted	to	locate	the	three	most	frequently	

used	frameworks.	After	reviewing	some	research	papers	and	applications	in	the	area	and	

consulting	with	my	supervisor	and	colleagues,	the	final	decision	was	to	use	Openlayers	as	the	

most	popular,	Leaflet.js	as	the	fastest	evolving	open	source	framework,	and	the	Google	Maps	

JavaScript	API	as	the	biggest,	most	well	known	map	provider.	

	 	

- 17 -

Development	strategy	

At	the	start	of	the	development	process	there	wasn’t	an	exact	plan	as	to	how	the	final	

application	should	look.	To	accommodate	this	as	a	development	model	the	Prototyping	

model	was	chosen.	This	technique	is	usually	used	when	the	client	is	not	very	clear	about	the	

requirements	of	the	project.	The	developers	create	an	initial	prototype	which	is	

demonstrated	to	the	client.	Then	the	development	process	continues	with	refining	the	

prototypes	taking	into	account	the	clients’	feedback.	This	iteration	is	repeated	until	the	

prototype	outgrows	itself	as	the	final	product	(RNSInformatics).	In	the	case	of	this	project,	a	

basic	prototype	will	be	developed	with	all	of	the	three	frameworks,	then	they	will	be	

extended	by	new	features	and	additional	data	sources	until	reaching	the	final	state.	

Testing	

During	the	development	the	application	will	be	tested	manually.	Configurable	data	

sources	will	be	used	so	the	server	is	able	to	send	back	predefined	data	which	allows	the	

developer	to	validate	the	displayed	data.	

To	avoid	data	related	issues	mock	data	was	created	for	the	prototypes	during	all	phases	of	

the	development.	In	the	beginning	only	simple	data	was	used,	which	was	returned	from	the	

services	or	local	files,	then	the	database	helped	to	serve	up	a	real	data	like	structure,	and	

finally	live	data	was	recorded	from	the	original	sources	and	replayed	from	the	database.	Since	

two	of	the	datasources	are	too	static	and	do	not	change	fast	enough	for	demonstrating	the	

functionalities,	the	recorded	mock	data	was	used	for	the	final	maps	as	well	to	display	the	

features	of	the	visualisations.	Since	the	incoming	data	will	be	under	control	using	this	

method,	it	will	allow	the	developer	to	test	whether	the	application	displays	the	expected	

output	even	if	there	were	no	integration	tests	set	up	for	the	project.	

3.5 Design	

3.5.1 Server	side	architecture	

To	make	the	application	less	fragile	and	to	use	the	best	fitting	technologies	for	each	task,	

the	server	side	responsibilities	will	be	divided	into	different	components.	

Web	service	

A	web	service	will	be	the	core	of	the	server	side	application,	it	will	provide	endpoints	

where	the	clients	will	be	able	to	connect	to	and	query	data	from.	All	the	datasources	will	be	

reachable	on	different	endpoints	of	the	web	service	in	two	ways,	one	providing	live	while	the	

other	providing	recorded	data.	On	live	request	the	service	will	get	the	fresh	data	from	the	

dynamic	data	providers,	process	it	and	then	forward	it	in	a	converted	format	which	can	be	

- 18 -

handled	by	the	clients.	When	operating	in	live	mode,	the	server	will	behave	more	or	less	like	

a	proxy	with	data	translating	capabilities.	Depending	on	the	required	behaviour,	recorded	

data	can	be	queried	from	the	server	as	well,	since	the	web	service	will	be	able	to	serve	up	

data,	such	as	database	or	local	files,	from	different	sources	in	the	same	way.		

Database	

The	most	straightforward	solution	for	saving	and	reloading	data	is	a	database,	so	for	

satisfying	the	data	storing	requirements	a	database	server	will	be	implemented.	It	will	be	

responsible	for	permanently	storing	the	data	gathered	by	the	data	collection	services	which	

can	be	queried	by	the	web	service.	

Data	collection	services	

Since	the	local	datasources’	reliability	is	quite	low	the	data	will	be	recorded	from	them	for	

later	use.	The	recorded	data	will	not	only	be	good	in	case	of	system	outages	but	will	provide	

the	ability	to	replay	certain	situations	in	time	which	are	worth	visualising,	such	as	significant	

changes	in	car	park	occupancy	at	the	end	of	the	working	hours.	The	live	data	arriving	from	

the	Glasgow	data	does	not	really	display	the	advantages	of	the	dynamic	visualisation	because	

of	the	nearly	static	nature	of	the	car	park	and	traffic	events	datasources	so	the	data	collection	

functionality	will	be	broadened	and	the	maps	will	be	extended	with	a	feature	to	replay	the	

recorded	data.	To	make	the	architecture	less	coupled	the	data	collection	responsibility	will	be	

detached	from	the	main	web	service.	Separate	standalone	services	will	be	developed	for	each	

datasource	to	query	data	samples.	The	services	will	start	up	periodically	to	capture	the	status	

of	the	datasources	at	that	time	and	save	the	data	images	into	the	database	with	a	timestamp.	

With	this	method,	historical	data	can	be	retrieved	from	any	point	of	time	from	the	database	

and	can	be	sent	back	to	the	client	with	various	frequency	by	the	web	service.	For	the	client	

this	will	result	in	faster	changes	in	the	dynamic	data	which	basically	will	look	like	time	went	

faster.	

Web	application	container	

The	web	application	container	will	be	responsible	for	providing	a	platform	for	the	web	

service	to	run	in	and	for	making	its	port	accessible	on	the	network.	The	container	will	not	

only	contain	the	service	but	will	serve	up	all	the	static	HTML,	JavaScript	and	CSS	files	which	

will	be	downloaded	to	the	end	user’s	browser	for	executing	more	requests	towards	the	

service.	

	

- 19 -

3.5.2 Client	side	architecture	

The	client	in	this	application,	as	in	any	typical	web	application	is	the	code	living	in	the	web	

browser.	In	the	case	of	this	application	the	client	will	contain	different	web	based	mapping	

frameworks	which	will	provide	the	interface	for	the	users	to	interact	with	the	services	and	

with	the	data	placed	on	the	server.	

Map	frameworks	

When	talking	about	interactive	maps,	the	interface	for	user	interaction	is	the	map	

framework	itself,	on	which	the	users	can	perform	different	actions	such	as	panning	or	

zooming	to	manipulate	the	underlying	map	tiles	and	data.	To	be	able	to	display	the	map	the	

frameworks	need	to	display	the	map	tile	layer	first	which	can	be	implemented	in	different	

ways.	For	example,	the	map	features	can	be	rendered	from	the	coordinates	in	the	browser,	

but	the	most	popular	and	probably	the	most	efficient	way	is	to	download	the	pre-rendered	

map	tiles	on	demand	from	a	server.	This	application	will	follow	the	latter	approach	as	well	

and	will	connect	to	publicly	available	map	tile	servers	to	download	and	then	assemble	the	

map	tile	layer.		

Once	the	base	layer	is	ready,	each	framework	will	provide	ways	to	extend	the	maps	with	

additional	information	such	as	text,	markers	or	additional	feature	layers.	These	functionalities	

will	be	used	to	visualise	the	dynamically	changing	data	coming	from	the	web	service.	

3.6 Methodology	of	comparison	

Developer	perspective	

The	comparison	will	start	with	an	overall	high	level	framework	overview	listing	all	the	

advantages	and	disadvantages	of	the	frameworks	based	on	the	literature	reviews	and	on	the	

developer’s	experience	during	the	development	phase.	At	the	end	of	the	section	the	

frameworks	will	be	ranked	by	the	the	basic	attributes	related	to	the	API	complexity	and	

technological	support.	

The	overall	comparison	will	be	followed	by	a	more	detailed	one,	related	to	the	

visualisation	of	dynamically	changing	data,	based	on	the	concrete	application	development.	

To	set	the	standards	for	the	comparison,	above	the	basic	map	features	such	as	panning	and	

zooming	some	custom	constraints	were	defined	related	to	the	visualisations	which	should	be	

accomplished	by	all	the	three	map	frameworks.	The	comparison	will	be	based	on	how	easy	or	

difficult	it	was	to	write	the	code	meeting	these	constraints.	

	

- 20 -

User	perspective	-	Questionnaire	

In	addition	to	the	technology	comparison,	to	analyse	the	application	from	a	user	interface	

perspective	the	application	will	be	exposed	to	a	user	testing	stage.	The	final	version	of	the	

website	will	be	deployed	to	a	publicly	accessible	server	thus	allowing	the	users	to	access	it	by	

only	typing	the	IP	address	into	the	browser.	A	questionnaire	will	be	created	and	handed	out	

to	twenty	people	for	completion.	Since	the	users	will	be	asked	to	interact	with	the	maps	in	

different	ways	such	as	panning,	zooming	and	clicking	on	objects,	the	questionnaire	will	imply	

the	beta	testing	of	the	application	as	well.	After	the	testing	they	will	be	able	to	leave	bug	

notes	and	provide	suggestions	on	additional	required	features	for	the	maps	too.	In	the	

questionnaire	users	can	provide	subjective	feedback	on	the	maps	and	they	are	asked	to	order	

the	different	frameworks	by	different	perspectives	such	as	usability	and	look	and	feel.	The	

results	of	the	questionnaire	are	processed	and	combined	with	the	results	of	the	technology	

comparison	allowing	me	to	write	a	deductive	conclusion	and	final	ranking	of	the	maps.	

- 21 -

4 System	documentation	

This	chapter	contains	the	documentation	of	the	final	application.	It	starts	with	the	

introduction	of	the	development	environment	which	includes	some	technology	description	as	

well.	The	last	subsection	is	a	detailed	overview	of	the	implementation,	highlighting	the	most	

challenging	or	important	coding	structures.	

4.1 Development	environment	

Before	starting	the	project,	the	development	environment	needed	to	be	set	up	which	

included	getting	the	licenses,	as	well	as	installing	and	configuring	the	required	applications.	

As	a	development	machine	a	Macbook	Pro	laptop	with	an	Intel	Core	i5	processor	operating	

on	2.7	GHz	with	8	GB	ram	memory	was	used.	The	OSX	operating	system	was	a	

straightforward	solution	because	almost	all	the	technologies	which	were	used,	have	satisfying	

support	and	numerous	tutorials	for	the	Apple’s	system.		

The	server	side	technology	stack	which	was	used	does	not	require	too	much	prerequisites	

or	preparation	the	installers	could	be	downloaded	from	the	official	websites	and	installed	

directly	on	the	operating	system.	The	3.2	version	of	MongoDB	Community	Edition	for	OS	X	

was	used	as	a	database	server.	The	release	came	with	a	command	line	database	client	which	

was	integrated	with	the	terminal	for	the	easier	usage	by	adding	it	to	the	PATH	variables.	On	

the	top	of	the	database	a	NodeJS	v4.2.6	based	service	was	responsible	for	providing	the	

business	logic.	The	technology	uses	the	Googles	v8	JavaScript	engine	for	compiling	the	source	

code.	NodeJS	provides	an	integrated	HTTP	server	as	well	so	there	was	no	need	to	use	a	third	

party	web	server	such	as	Apache	Tomcat	or	Jetty.		

In	the	beginning	Sublime	text	2	text	editor	was	used	for	manipulating	the	code	then	it	got	

compiled	and	ran	with	the	help	of	the	node	command	line	tool.	For	debugging	purposes,	the	

NodeJS	v8	Inspector	Google	Chrome	extension	was	chosen	but	soon	I	needed	to	realise	that	

this	toolkit	is	not	effective	enough	for	me	as	a	NodeJS	newbie.	To	gain	more	support	for	the	

development	the	JetBrains	Webstorm	2016.1.1	Integrated	Development	Environment	(IDE)	

got	installed	which	not	only	provides	all	the	previous	functionalities	but	includes	useful	

JavaScript	tools	for	the	more	effective	development	such	as	refactor	and	autocomplete.	The	

software	originally	is	not	free	but	JetBrains	provides	a	complimentary	student	license	for	one	

year.	However,	this	IDE	was	used	for	editing	the	client	side	JavaScript	and	HTML	code,	the	

testing	and	debugging	took	place	in	the	browser	for	which	the	Google	Chrome’s	51.0	version	

with	integrated	developer	tools	was	applied.		

- 22 -

To	version	control	the	source	code	the	GitHub,	web-based	Git	repository	was	used.	Since	

this	was	my	first	time	using	Git,	instead	of	working	with	the	command	line	tool	I	found	easier	

to	run	the	official	GitHub	Desktop	client	application.	The	application	was	connected	to	the	

project’s	remote	repository	and	provided	a	graphical	user	interface	to	maintain	the	code	

versions.		

4.2 System	implementation	

In	this	subchapter	a	detailed	description	of	the	implementation	can	be	read.	The	chapter	

is	divided	to	subchapters	based	on	the	different	components	of	the	architecture.	For	each	

subchapter	the	key	technologies,	achievements	and	design	decisions	are	listed.	The	

explanation	is	supported	with	code	snippets	which	describe	any	code	that	is	particularly	

interesting	or	was	challenging	to	develop.		

4.2.1 Web	service	

To	create	the	basic	structure	of	the	web	application	backend	Express.js	was	used	which	is	

a	minimal	and	flexible	Node.js	framework	providing	features	for	creating	web	applications.	

The	framework	comes	with	a	tool	called	express-generator	which	is	responsible	for	quickly	

creating	web	application	skeletons	by	creating	the	

default	folder	structure	and	including	the	additional	

node	packages	which	are	needed	to	set	up	a	well	

designed	server	(Express	JS	Documentation).	The	

generator	was	used	to	create	the	application	structure	

which	can	be	seen	on	Figure	4	-	Web	service	structure.	

After	scaffolding	out	the	skeleton	and	setting	some	

configurations,	basically	the	web	application	container	

is	ready	to	start	up.	

	

	

The	package.json	file	is	responsible	for	the	

dependency	handling.	The	name	and	version	of	the	

required	packages	for	the	application	can	be	written	in	

the	file	along	with	the	location	and	name	of	the	start	script	and	the	version	of	the	application.	

The	Node	Package	Manager	(npm)	is	used	in	JavaScript	to	share	and	reuse	the	packages	

between	the	developers.	If	an	“npm	install”	is	ran	in	the	projects	root	directory	the	node	

Figure	4	-	Web	service	structure	

- 23 -

package	manager	will	look	for	the	package.json	(Code	Snippet	1	–	package.json)	file	and	

install	the	named	dependencies	into	the	node_modules	folder.	The	packages	can	be	

referenced	from	there	in	the	application.	If	an	“npm	start”	command	is	run	to	start	up	the	

application	in	the	root	directory	of	the	server,	on	default	the	node	package	manager	will	read	

the	location	and	name	of	the	start	up	script	from	this	file	as	well.		

The	bin	is	the	folder	where	the	start	up	scripts	are	defined.	The	start	command	points	to	a	

file	called	www	in	the	bin	folder.	This	script	is	the	entry	point	of	the	web	server.	It	contains	

configuration	information	about	the	

web	server	container	such	as,	which	

file	to	load,	which	file	to	include	and	

which	port	to	use	on	the	start	of	web	

applications.	The	scripts	also	initialise	

basic	logging	settings	and	set	how	to	

handle	invalid	request	and	server	

errors.	

The	www	script	will	load	the	app.js	

file	as	the	main	file	of	the	application	

which	is	responsible	for	loading	the	

resources,	dependencies	and	the	

other	files	of	the	application.	

	

	

External	Imports	

The	“require”	keyword	is	used	to	import	the	components	into	variables	which	can	be	used	

later	(Code	Snippet	2).	The	description	of	the	more	important	ones	can	be	read	below.	

{
 "name": "whathappensinglasgow",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },
 "dependencies": {
 "body-parser": "^1.13.3",
 "concat-stream": "^1.5.1",
 "cookie-parser": "~1.3.5",
 "debug": "~2.2.0",
 "express": "~4.13.1",
 "geojson": "^0.3.0",
 "jade": "~1.11.0",
 "method-override": "^2.3.6",
 "mongodb": "^2.2.5",
 "mongoose": "^4.5.0",
 "mongoose-geojson-schema": "^2.1.1",
 "morgan": "~1.6.1",
 "request": "^2.72.0",
 "serve-favicon": "~2.3.0",
 "xml2json": "^0.9.1"
 }
}
	

Code	Snippet	1	–	package.json	

- 24 -

Express	–	Imports	the	

express.js	framework	

Path	–	A	core	node	module	

which	is	responsible	for	path	

handling.	It	helps	to	create	a	

path	from	strings	both	statically	

and	dynamically.	

Morgan	–	This	module	is	

responsible	for	logging	the	

incoming	requests	and	the	responses.	Useful	during	the	development	phase.	

Body-parser	–	Is	an	express	middleware	to	support	POST	HTTP	request.	It	adds	a	body	

object	to	the	incoming	inquiry	thus	allowing	the	developer	to	access	the	request	parameters	

(Soeters,	2016).	

The	remaining	imports	reference	local	files	which	responsibilities	are	described	in	the	next	

sections.	

Application	configuration	

After	the	require	section	there	are	the	application	configurations	which	are	set	by	using	

the	“app.use()”	function	(Code	Snippet	3	-	Application	configuration).	This	function	tells	the	

application	to	use	the	parameter	which	is	passed	as	global	configuration.	The	most	important	

ones	can	be	seen	below.	

app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: false }));
app.use(express.static(path.join(__dirname, 'public')));

	

Code	Snippet	3	-	Application	configuration		

		

Logger(‘dev’)	–	Defines	the	logging	framework.	The	dev	parameter	indicates	that	the	

application	logs	debug	information	about	the	arriving	requests,	such	as	the	method,	status	

code	and	response	time.		

bodyParser.json()	–	Allows	the	application	to	parse	JSON	files.	

bodyParser.urlencoded({	extended:	false})	–	Allows	the	application	to	automatically	read	

and	parse	data	from	URLs	with	GET	requests.	

var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
var db = require('./model/db');
var feature = require('./model/features');
var routes = require('./routes/index');
var features = require('./routes/features');
var flights = require('./routes/flights');
var carparks = require('./routes/carparks');
var trafficevents = require('./routes/trafficevents');
	

Code	Snippet	2	–	Module	imports	

- 25 -

Express.static(path.join(__dirname,	‘public’))	–	Configures	the	public	folder	as	a	static	

directory		where	the	client	side	files	and	resources	can	be	stored.	

The	next	four	lines	on	Code	Snippet	4	–	Application	routing	are	the	routing	methods,	

helping	to	redirect	the	arriving	requests	(Code	Snippet	4	–	Application	routing).	The	first	

parameter	is	the	name	of	the	endpoint	while	the	second	is	the	file	where	the	request	will	be	

redirected	to.		Basically	these	are	the	

registered	endpoints	of	the	application.	

The	purpose	of	the	redirection	is	to	

keep	the	code	clean,	and	sort	out	the	

sub	routing	in	different	files	from	the	

application	configuration.	

In	order	to	handle	the	wrong	HTTP	requests	the	following	function	was	written,	where	the	

error	message	and	code	is	configured	as	well	(Code	Snippet	5	-	Error	handling).	

The	next	two	functions	are	

responsible	for	the	general	error	

handling.	The	difference	between	

them	is	that	in	the	development	

environment	the	error	message	is	

sent	back	with	the	error	code	while	

in	production	the	stack	traces	should	not	be	leaked	to	the	users	(Code	Snippet	6	–	Error	

handling	configuration).		

// development error handler
// will print stacktrace
if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

// production error handler
// no stacktraces leaked to user
app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
}); 	

Code	Snippet	6	–	Error	handling	configuration	

// catch 404 and forward to error handler
app.use(function(req, res, next) {
 var err = new Error('Not Found');
 err.status = 404;
 next(err);
});

	

app.use('/features', features);
app.use('/flights', flights);
app.use('/carparks', carparks);
app.use('/trafficevents', trafficevents);

Code	Snippet	4	–	Application	routing		

Code	Snippet	5	-	Error	handling	

- 26 -

Model	Folder	

In	the	model	folder	the	

mongoose	database	

scheme	files	can	be	found	

(Code	Snippet	7	–	Database	

scheme).	These	are	

responsible	for	adding	

scheme	restrictions	to	the	

noSQL	scheme	less	

database.	The	model	

schemes	help	in	writing	the	

database	queries	by	using	

the	exported	scheme.	

	

	

	

The	view	folder	contains	the	template	files	of	the	application.		There	are	different	

template	engines	compatible	with	express.js	from	which	jade	is	used	by	the	application.	It	can	

replace	variables	in	the	template	files	to	actual	values	during	runtime	and	create	a	view	by	

translating	the	templates	to	HTML	(Express).	This	feature	is	only	used	for	creating	the	error	

page	in	this	software.	

As	mentioned	previously	the	incoming	HTTP	requests	will	be	redirected	to	the	

corresponding	files	of	the	routes	folder.	For	example,	if	the	application	receives	a	GET	

request	to	the	flights	endpoint,	regarding	to	the	mapping,	it	will	be	forwarded	to	the	flights.js	

file.	Which	will	handle,	process	the	request	and	send	the	response	back.		

As	the	configuration	showed	above,	the	public	folder	takes	care	of	hosting	the	static	

content	of	the	server.	Basically	everything	what	is	in	this	folder	can	be	accessed	by	

concatenating	the	folder’s	or	file's	name	to	the	end	of	the	base	URL	of	the	server.		

	

	

	

var	mongoose	=	require('mongoose');	

var	schema	=	new	mongoose.Schema({	

				icao24:	mongoose.Schema.Types.String,	

				callsign:	mongoose.Schema.Types.String,	

				origin_country:	mongoose.Schema.Types.String,	

				time_position:	mongoose.Schema.Types.float,	

				time_velocity:	mongoose.Schema.Types.float,	

				longitude:	mongoose.Schema.Types.float,	

				latitude:	mongoose.Schema.Types.float,	

				altitude:	mongoose.Schema.Types.float,	

				on_ground:	mongoose.Schema.Types.GeometryCollection,	

				feature:	mongoose.Schema.Types.Feature,	

				featurecollection:	mongoose.Schema.Types.FeatureCollection	

});	

var	Features	=	mongoose.model('Feature',	schema);	

module.exports	=	Features;	

Code	Snippet	7	–	Database	scheme	

- 27 -

Endpoints	

In	the	final	application	there	are	four	endpoints	from	which	three	are	used.	

The	/rodents	endpoint	which	is	responsible	for	providing	static	data	about	the	reported	

rodents	activities	in	Boston.	The	data	was	recorded	from	the	Boston	city	council’s	page	and	

then	replayed	from	the	database	in	order	to	test	the	frameworks’	capabilities	to	display	

GeoJSON	files.	

The	/flights	endpoint	is	responsible	for	serving	real	time	flight	data	to	the	clients.	When	a	

query	arrives	to	the	flight	data	endpoint	it	will	send	a	HTTP	get	request	to	the	flight	data	

provider’s	API	which	sends	back	the	response.	The	response	then	is	piped	into	a	function	

which	is	responsible	to	process	the	data.	To	send	the	request,	the	request	module	is	used	

which	is	a	simplified	HTTP	request	client	for	node.js	(Simo).	Since	the	queried	data	arrives	

back	in	a	bite	array,	as	a	first	step	it	needs	to	be	translated	to	String	with	the	help	of	a	custom	

function.	The	transformed	file	can	be	parsed	and	processed	as	JSON	which	contains	only	an	

array	of	strings	and	numbers	without	the	object	keys.	For	the	easier	usage	the	array	data	is	

looped	through	and	with	the	help	of	the	API	documentation,	the	data	which	is	used,	such	as	

the	flight	Id,	coordinates	and	the	origin	country	are	copied	into	a	structured	object	with	the	

proper	field	names	(Code	Snippet	8	–	Response	parsing).	

As	a	final	step	

the	structured	

object	is	parsed	

into	GeoJSON	

format	with	the	

helps	of	the	

GeoJSON	module.	

The	module	can	

convert	any	object	with	location	information	into	GeoJSON	format	which	is	the	agreed	

communication	protocol	format	between	the	server	and	the	client.	The	response	is	sent	back	

as	an	object,	containing	the	GeoJSON	files	with	the	additional	fields	included	in	the	

properties	field	of	the	converted	object	(Code	Snippet	9	-	GeoJSON	parsing).	

response	=	GeoJSON.parse(structured,	{Point:	['latitude',	'longitude']});	

	

Code	Snippet	9	-	GeoJSON	parsing	

	

var str = Utf8ArrayToStr(response);

var incominDataInJSON = JSON.parse(str);
var arr = [];

for (var i in incominDataInJSON.states) {
 var structured = {
 "icao": incominDataInJSON.states[i][0],
 "originCountry": incominDataInJSON.states[i][2],
 "longitude": incominDataInJSON.states[i][5],
 "latitude": incominDataInJSON.states[i][6],
 "heading": incominDataInJSON.states[i][10],
 };
	 Code	Snippet	8	–	Response	parsing	

- 28 -

The	flight	datasource	usually	returns	more	than	one	thousand	planes	and	to	maintain	the	

continuous	movement	the	endpoint	needs	to	be	queried	every	five	seconds.	If	we	multiply	

this	with	the	three	maps,	it	not	only	results	in	massive	network	traffic	but	easily	overloads	

the	computers	memory	and	CPU	as	well,	since	the	computer	needs	to	maintain	and	move	all	

the	planes	on	the	maps.	Resolving	this	issue,	the	/flights	endpoint	can	be	parameterised	with	

a	southwest	and	a	northeast	point.	If	the	clients	call	this	endpoint	with	the	bottom	left	and	

top	right	coordinates	of	their	current	view,	the	service	will	filter	out	all	the	flight	which	can	

not	be	seen	on	the	current	screen	thus	reducing	the	resource	usage	and	the	network	traffic	

as	well.	

	

Car	parks,	Traffic	events	

The	/carparks	and	/trafficevents	endpoints’	structure	is	really	similar	to	the	flight	

endpoint’s.	Of	course	they	use	distinct	services	to	acquire	the	data,	and	the	object	parsing	is	

slightly	different	as	well.	The	traffic	event	data	arrives	in	XML	so	as	an	extra	step	an	XML	to	

JSON	translation	is	added	to	the	process,	using	the	xml2Json	module.	

The	more	significant	difference	is	that	these	router	files	are	responsible	for	handling	

another	endpoint	which	is	the	/{endpoint-name}/recorded.	On	this	endpoint	the	historical	

data	can	be	accessed	for	replaying	purposes.	When	a	request	arrives	to	the	endpoint	the	

router	connects	to	the	database	and	queries	all	the	objects	from	the	specific	collection.	The	

retrieved	objects	contain	a	timestamp	and	information	about	all	the	car	parks	or	traffic	

events	at	the	recording’s	time.	An	algorithm	was	written	to	replay	all	the	records	from	the	

database	within	one	minute,	not	depending	on	the	number	of	records.	The	length	of	the	

retrieved	array	is	divided	by	sixty	then	multiplied	with	the	current	second	of	the	minute.	The	

result	of	the	previous	calculation	is	used	to	determine	from	which	position	of	the	array	

should	the	record	be	sent	back	(Code	Snippet	10	-	Algorithm).	By	adding	the	current	second	

of	the	minute	into	the	algorithm	instead	of	using	counters	keeps	the	service	completely	

stateless.	Since	there	is	no	state	stored	on	the	backend	side,	even	if	there	are	more	clients	

querying	the	data,	it	will	not	cause	any	interference.	

	

var secondOfMinute = new Date().getSeconds();
var unit = trafficEventList.length/60;
var numberOfImage = Math.round(secondOfMinute * unit);

res.json(trafficEventList[numberOfImage]);
	 	
Code	Snippet	10	-	Algorithm	

	

- 29 -

With	this	method	from	the	client’s	perspective	receiving	data	from	the	live	or	from	the	

recorded	endpoint	is	entirely	transient,	so	no	client	side	changes	were	needed	to	allow	the	

clients	displaying	historical	data.	

4.2.2 Data	collection	services	

To	collect	and	record	data	from	the	car	park	occupancy	and	traffic	events	datasources,	two	

standalone	services	were	developed.	These	services	continuously	ran	for	a	week	on	the	cloud	

based	server	to	collect	and	save	the	data	to	the	database.	The	structure	of	the	applications	is	

really	simple.	A	scheduled	task	wakes	them	up	in	every	15	minutes	when	they	connect	to	the	

datasources	on	the	same	way	as	the	web	service	does.	But	instead	of	hosting	the	data	on	an	

endpoint,	it	will	just	get	saved	into	the	database	with	a	timestamp,	using	a	simple	database	

insert	method.	This	data	will	be	used	later	by	the	/recorded	endpoints	of	the	server.	

4.2.3 Maps	–	Client	Side	

This	subsection	contains	the	detailed	description	of	the	client	side	components.	The	section	

starts	with	the	structure	of	the	client	side	then	one	can	read	about	the	different	map	

framework	implementations.	The	

JavaScript	and	HTML	components	

The	runtime	environment	for	the	map	frameworks	is	provided	by	JavaScript	components	

which	are	embedded	into	static	HTML	pages	supplemented	with	CSS	styling	in	some	cases.	

When	the	user	types	the	web	page’s	address	in	the	browser	it	sends	an	HTTP	get	request	

to	the	web	server	which	will	result	in	downloading	the	index	HTML	site.	The	main	page	

provides	access	to	the	different	maps	by	redirecting	the	users	to	the	other	areas	of	the	server.	

In	the	map	subdirectories	there	are	other	HTML	pages	which	are	responsible	for	loading	the	

map	frameworks	and	other	libraries.	Once	the	whole	system	is	loaded,	the	JavaScript	

components	query	the	data	from	the	web	service	and	pass	it	to	the	map	framework	via	its	

application	programming	interface.	

Subdirectories	

In	the	final	application	there	are	four	subdirectories	in	the	public	folder.	Three	of	them	are	

for	the	different	map	frameworks	and	the	fourth	contains	the	comparison	map	just	by	

referencing	the	JavaScript	files	from	the	other	folders.	All	the	technology	folders	consist	of	

four	subfolders	containing	the	maps	for	the	flights,	car	parks,	traffic	events	and	one	for	the	

combined	Glasgow	car	park	and	traffic	event	map.	In	the	following	sections	detailed	

- 30 -

documentation	can	be	read	about	all	the	twelve	maps	which	demonstrate	the	behaviour	of	

the	frameworks	as	well.	

4.2.3.1 Google	Maps	

Car	park	Map	

When	the	folder	got	referenced,	the	index.html	gets	loaded	first	which	is	responsible	for	

creating	the	div	HTML	element	in	which	the	map	will	be	initialised.	This	file	does	the	loading	

of	all	the	JavaScript	files	including	the	custom	map	files	and	the	Google	Maps	framework	

itself	too.	The	loading	

of	the	Google	Maps	

framework	can	be	

seen	on	Code	Snippet	

11.	It	is	loaded	in	an	

asynchronous	way	

with	the	initMap	

callback	function.	The	key	variable	defines	the	application’s	private	key,	which	needed	to	be	

generated	on	the	Google’s	API	key	creation	site.	This	is	the	way	how	Google	and	the	

developers	can	monitor	the	applications'	usage.		If	the	usage	reaches	a	limit,	the	key	might	

need	to	be	upgraded	by	buying	a	business	license	(Google,	Google	Maps	APIs).	For	

implementing	the	car	park	occupancy	visualisation,	heatmap	technology	was	used.	The	

library,	which	is	responsible	for	the	visualisation,	is	contained	by	the	geometry	and	

visualisation	Google	Maps	libraries.	These	libraries	are	not	part	of	the	main	framework	so	the	

explicit	import	is	passed	to	the	API	as	the	last	parameter	of	the	framework	import	call.	

When	the	framework	is	loaded	it	will	call	the	initMap	callback	function	which	is	in	the	

carparkmap.js	file.	The	script	starts	with	loading	the	map	into	the	div	which	can	be	seen	on	

Code	Snippet	12.	On	initialisation	

the	zoom	level	and	the	starting	

coordinates	are	set	as	well.	

	

	 	

<script async defer
 src="https://maps.googleapis.com/maps/api/js
?key=AIzaSyBl8Rjx-k57khpDrH4iRwozQTH1zjObLYI
&callback=initMap
&libraries=geometry,visualization">
</script>

var mapDiv = document.getElementById('map');
var map = new google.maps.Map(mapDiv, {
 center: {lat: 55.8642, lng: -4.2518},
 zoom: 13
});

Code	Snippet	11	–	Framework	import	

Code	Snippet	12	–	Map	initialisation	

- 31 -

The	next	step	is	the	heatmap	initialisation,	which	is	demonstrated	on	Code	Snippet	13.	It	is	

quite	simple	with	the	integrated	support,	only	the	datasource	and	a	few	configuration	

settings	are	needed.	

var heatmap = new google.maps.visualization.HeatmapLayer({
 data: heatmapData,
 dissipating: true,
 radius: 20,
 map: map
}); 	

Code	Snippet	13	–	Heatmap	initialisation	

		

The	datasource	of	the	heatmap	is	a	special	MVCArray	which	fires	events	on	change,	so	the	

heatmap	layer	will	be	notified	when	the	underlying	data	changes.	After	the	layers	are	

initialised	the	setInterval	JavaScript	function	is	used	to	execute	the	requestLatestData	

function	once	in	every	minute.	The	function	sends	an	Ajax	call	to	the	web	service’s	car	park	

endpoint	to	query	the	car	park	information.	If	the	call	was	successful,	the	data	will	be	passed	

to	the	refreshMapData	function	which	first	clears	the	datasource	of	the	heatmap	layer	then	

iterates	through	the	received	data,	parses	and	adds	it	as	the	new	datasource.	For	reaching	

the	different	colours	on	the	map	the	weight	property	of	each	datasource	object	needs	to	be	

set	to	the	car	parks’	occupancy	level.	During	this	some	filtering	needs	to	be	done,	because	

some	car	parks	has	negative	occupancies	in	the	data	which	resulted	in	an	error	on	the	display	

(Code	Snippet	14	-	Filtering	negative	values).		

function refreshHeatmapData(results) {
 heatmapData.clear();
 for (var i = 0; i < results.features.length; i++) {
 var coords = results.features[i].geometry.coordinates;
 var latLng = new google.maps.LatLng(coords[1], coords[0]);
 var occupancy = results.features[i].properties.occupancy;
 var weightedLoc = {
 location: latLng,
 weight: occupancy
 };
 if (occupancy > 0)
 heatmapData.push(weightedLoc);
 }
} 	

Code	Snippet	14	-	Filtering	negative	values	

		

	 	

- 32 -

As	a	result,	a	Google	Maps	based	map	appeared	with	the	live	Glasgow	carparks’	

occupancy	data	displayed	on	the	overlays	as	a	heatmap	(Figure	5).	

	

Figure	5	–	Google	Maps	Car	park	heatmap		

Flight	map	

The	index.html	of	the	flight	map	is	really	similar	to	the	car	park’s	index	file	but	instead	of	

loading	the	visualisation	libraries,	there	are	three	other	JavaScript	files:	Slidingmarker.js,	

markerAnimate.js	and	jquery.easing.1.3.js.	These	files	are	the	part	of	SlidingMarker	GitHub	

plugin	for	Google	Maps.	The	script	enables	the	Google	Maps	markers	to	move	from	its	

original	position	to	a	destination	in	an	animated	way	(Viskin).			

When	the	flightmap.js	is	loaded	the	initialisation	starts	with	the	SlidingMarker’s	global	

initialisation	which	overrides	the	original	markers	and	enables	them	to	behave	as	animated	

ones.	The	map	itself	is	initialised	in	the	same	way	as	it	was	seen	at	the	car	park	map	and	the	

data	loading	works	in	a	similar	way	as	well.	The	icon	which	represents	the	planes	is	loaded	on	

initialisation	as	well.	The	Google	Maps	framework	is	not	able	to	rotate	images	as	icons,	so	an	

SVG	vector	image	needed	to	be	created	instead	of	a	normal	image	file.	

Originally	the	application	used	to	query	all	the	flight	data	information	in	every	request	

which	leads	to	high	network	traffic	and	long	rendering	time.	To	optimise	the	solution,	the	

flight	endpoint	was	made	parameterised.	The	URL	for	getting	the	flight	data	can	accept	two	

points,	the	bottom	left	and	top	right	coordinates	of	the	currently	displayed	map	thus	

returning	only	those	flights	which	can	currently	be	seen	on	the	map.	This	change	reduced	the	

loading	time	and	increased	the	rendering	speed	significantly	(Code	Snippet	15	-	

Parameterised	endpoint	call).	

- 33 -

function requestLatestData() {
 var bounds = map.getBounds();
 $.ajax({
 url: '../../flights?swlat=' + bounds.f.f + '&swlon=' + bounds.b.b
+ '&nelat=' + bounds.f.b + '&nelon=' + bounds.b.f,
 async: true,
 success: processData
 });
} 	

Code	Snippet	15	-	Parameterised	endpoint	call	

When	the	data	arrives	the	icon’s	rotation	will	be	set	to	the	direction	of	the	plane’s	

heading.	Then	it	is	tested	if	it	is	a	new	flight	or	the	map	already	contains	the	plane	for	the	

incoming	data.	If	the	plane	is	not	on	the	display	a	new	Marker	is	created	with	the	properties	

of	the	flight	and	the	icon.	On	creation	not	only	the	duration	of	the	animation	is	set	but	a	

listener	is	added	to	the	marker	as	well	which	is	responsible	for	showing	an	info	window	on	

the	click	event	of	the	icon,	displaying	the	flight	number	and	the	origin	country.	

If	the	map	contains	a	plane	with	the	same	flight	number,	the	marker	for	the	specific	

identifier	is	queried	from	the	map	then	the	icon	and	the	location	get	overridden	with	the	new	

data.	Therefore,	the	plane	will	move	to	the	new	location	with	the	new	rotation	in	an	

animated	way.	The	map	queries	the	new	data	in	every	five	seconds	and	since	the	length	of	

the	animation	is	set	to	the	same	duration	it	results	in	am	almost	continuous	movement	of	the	

planes.	

	

Figure	6	–	Google	Maps	flight	map	

	

- 34 -

Combined	

The	last	Google	Maps	map	is	responsible	for	showing	the	car	park	and	the	traffic	events	

data	on	the	same	map.		It	connects	to	both	endpoints	in	an	asynchronous	way	and	loads	the	

data	into	the	same	map	object.	However,	the	map	uses	the	aggregated	codebase	of	the	

previous	two	maps,	there	are	some	configuration	changes	in	the	data	loading	frequency	and	

URLs.	The	combined	map	uses	the	recorded	data	provided	by	the	web	service	and	to	display	

the	faster	changing	data,	the	time	between	two	queries	is	reduced	to	one	second.	This	way	

the	map	displays	the	changes	in	the	car	park	occupancy	in	a	smooth,	gradient	way.		

	

Figure	7	–	Google	Maps	Combined	car	park	heatmap	and	traffic	events	map	

4.2.3.2 Leaflet	

Flight	map	

When	navigating	to	the	Leaflet	flightmap	folder	the	index.html	will	be	loaded	first.	It	is	not	

only	responsible	for	loading	the	stylesheets	and	the	leaflet	framework	but	for	importing	all	

the	plugins	from	the	plugins	subfolder	as	well.		

The	Leaflet	Realtime	is	a	library	which	helps	to	put	realtime	data	on	a	Leaflet	map	by	

reading	and	displaying	GeoJSON	from	a	provided	source	(Perliedman)	while	the	Leaflet	

Rotated	Marker	enables	the	rotation	of	marker	icons	in	leaflet	(Bbecquet).	Once	the	

flightmap.js	file	is	loaded,	the	initialisation	process	starts	similarly	to	the	Google	Maps’	

structure.	As	a	first	step	the	map	object	is	created	with	centre	and	zoom	level	settings	(Code	

Snippet	16	-	Map	initialisation).		

- 35 -

var leafletMap = L.map('leafletmap', {
 center: [51.505, -0.09],
 zoom: 9
 })

	

Code	Snippet	16	-	Map	initialisation	

	

The	icon	uses	a	.png	image	as	the	datasource	because	not	like	Google	Maps,	Leaflet	is	able	

to	rotate	images	as	icons	as	well.	The	framework	does	not	use	an	integrated	map	tile	source,	

so	it	needs	to	set	to	an	external	provider	manually.	For	all	the	Leaflet	maps	the	

OpenStreetMap	based	Wikimedia	map	server	is	used.	OpenStreetMap	is	an	initiative	to	

create	and	provide	geographic	data	such	as	maps	to	anyone	for	free	(OpenStreetMap	

Foundation).	The	x,	y,	z	variables	on	Code	Snippet	17in	the	URL	path	are	the	coordinates	and	

the	zoom	level	to	load	the	proper	tiles.		

L.tileLayer(' https://maps.wikimedia.org/osm-intl/{z}/{x}/{y}.png', {
 attribution: '© OpenStreetMap
 contributors'
}).addTo(leafletMap); 	

Code	Snippet	17	–	Tile	loading	

	

When	the	map	layer	is	ready,	the	Leaflet	Realtime	starts	to	operate.	The	plugin’s	reqwest	

function	is	called	with	the	parameterised	URL	to	the	/flights	endpoint.	This	function	enables	

the	developer	to	load	data	from	GeoJSON	format	to	the	map	automatically.	Some	

configuration	parameters	are	set	such	as	the	querying	interval	and	the	name	of	the	featureId	

field	from	the	response	data.	Thus	the	framework	can	maintain	which	flights	are	new,	and	

which	were	there	before	already.	The	new	ones	are	added	to	the	map	layer,	and	those	which	

were	there	already	only	need	to	be	moved	to	their	updated	location.	

The	Leaflet’s	pointToLayer	parameter	is	set	to	override	the	default	marker	icon	to	the	

plane	icon.	To	set	the	rotation	of	the	icon	the	Leaflet	Marker	Rotation	plugin’s	

setRotationAngle	method	is	used.	The	popup	window	creation	happens	in	a	similar	simple	

way	with	the	help	of	the	Leaflet	Marker’s	bindPopup	feature	with	the	required	details	on	

Code	Snippet	18	-	Popup	binding	

- 36 -

interval: 5 * 1000,
getFeatureId: function (f) {
 return f.properties.icao;
},
pointToLayer: function (feature, latLng) {
 return L.marker(latLng,
 {icon: plane},
 {title: feature.properties.icao})
 .setRotationAngle(feature.properties.heading)
 .bindPopup('Flight: ' + feature.properties.icao + ' from '
+ feature.properties.originCountry);
}, 	

Code	Snippet	18	-	Popup	binding	

	

The	Realtime	handles	the	location	updates	of	the	flights	but	does	not	update	the	rotation	

on	default,	to	enable	this	feature	the	Realtime’s	updateFeature	function	is	used	where	the	

old	layer’s	rotation	is	updated.		

The	animation	of	the	marker’s	movement	was	solved	with	the	help	of	a	CSS	transition	

code	snippet	which	was	provided	by	the	Realtime	plugin	as	well.	

The	final	result	can	be	seen	on	the	Figure	8	-	Leaflet	flight	map	below.	

	

Figure	8	-	Leaflet	flight	map	

	 	

- 37 -

Car	park	

The	index	file	of	the	car	park	map	is	really	similar	to	the	flight	map	but	here	besides	the	

Realtime,	the	Leaflet	Heat	and	the	Leaflet	divHeatmap	Layer	plugins	are	loaded	which	are	

responsible	for	creating	the	heatmap.	

After	loading	the	carparkmap.js,	in	addition	to	the	standard	map	initialisation	a	heat	layer	

is	created	by	the	Leaflet	Heat	plugin	with	a	datasource	and	a	radius	parameter.	

When	the	data	arrives	back	from	the	Realtime	reqwest	it	is	passed	to	the	geoJsonToheat	

function	which	transforms	the	data	into	an	array	containing	the	coordinates	and	the	

occupancy	of	the	car	park.	This	array	is	set	as	the	datasource	of	the	heatmap	layer	during	

every	iteration.	

.then(function (data) {
 for (var i in data.features) {
 heatData = geoJson2heat(data);
 }
 heatmap.setLatLngs(heatData);
})

	

Code	Snippet	19	-	Updating	heatmap	

The	car	park	map	can	be	seen	on	the	Figure	9	-	Leaflet	heatmap.	

	

Figure	9	-	Leaflet	heatmap	

	 	

- 38 -

Combined	

The	Leaflet	combined	map	has	the	same	responsibility	as	the	Google	Maps	one.	It	displays	

together	the	car	park	occupancy	and	the	traffic	events	data	from	the	recorded	endpoints	with	

a	higher	querying	frequency	by	using	the	codebase	of	the	separate	maps.	Figure	10	-	Leaflet	

combined	car	park	heatmap	and	traffic	events	map	

	

Figure	10	-	Leaflet	combined	car	park	heatmap	and	traffic	events	map	

	

4.2.3.3 Openlayers		

Car	park	

As	it	could	be	seen	at	the	previous	frameworks,	when	navigating	to	the	map’s	folder,	the	

index.html	is	loaded	first.	The	file	imports	the	Openlayers	framework	and	the	carpark.js	

JavaScript	file	as	usually.	This	framework	does	not	require	any	extra	import	for	the	heatmap	

visualisation.	

The	structure	of	the	carpark.js	file	is	similar	to	the	Google	Maps'	one	although	the	

initialisation	here	starts	with	the	heatmap	loading.	As	a	first	step	a	Vector	type	datasource	is	

defined	which	is	passed	to	the	integrated	Openlayers	heatmap	layer	as	a	source	parameter.		

On	initialisation	the	Openlayers	map	takes	the	layers	as	parameters.	In	this	case	the	

heatmap	layer	and	a	tile	layer	with	the	OpenStreetMap	datasource	are	passed.	These	layers	

are	rendered	on	the	top	of	each	other	in	the	order	of	the	parameters.	

The	Openlayers	framework	uses	a	different	type	of	projection	from	the	previous	systems	

(EPSG:4326).	Since	the	project's	data	is	collected	from	a	system	with	the	Mercator	Projection	

- 39 -

(EPSG:3857)	all	the	coordinates	need	to	go	through	a	transformation	before	adding	them	to	

the	map	(Web	Mercator).	The	transformation	takes	place	in	the	initialisation	function	of	the	

map	(Code	Snippet	20	-	Map	initialisation	with	transformation)	

var map = new ol.Map({
 layers:
[new ol.layer.Tile({source: new ol.source.OSM()}), heatmapLayer],
 target: document.getElementById('map'),
 view: new ol.View({
 center:
 ol.proj.transform([-4.2518, 55.8642], 'EPSG:4326', 'EPSG:3857'),
 zoom: 13
 })
}); 	

Code	Snippet	20	-	Map	initialisation	with	transformation	

	

After	the	layers	are	initialised	the	script	uses	an	Ajax	request	to	query	the	data	from	the	

car	park	endpoint.	The	response	data	goes	through	the	projection	transformation	then	it	gets	

loaded	into	an	array	with	the	help	of	the	integrated	Openlayers	GeoJSON	readfeatures	

function.	After	the	vector	source	gets	emptied,	the	feature	objects’	weight	property	is	set	to	

the	car	park	occupancy	value.	Finally,	they	are	added	as	features	to	the	vector	source.	At	the	

end	of	the	process	a	layer	changed	event	is	fired	on	the	heatmap	for	notifying	the	map	to	

redraw	the	layer.	The	process	is	scheduled	with	the	help	of	the	setInterval	function	as	in	the	

Google	Maps.	The	final	result	can	be	seen	on	Figure	11	-	Openlayers	heatmap.	

	

Figure	11	-	Openlayers	heatmap	

	

	

- 40 -

Flight	map	

The	index.html	of	the	flight	map	is	the	same	as	the	car	park	map’s	except	of	that	the	

previous	contains	a	div	element	and	a	css	include	for	a	popup	window.	Since	the	Openlayers	

framework	does	not	have	a	built	in	solution	for	displaying	popups,	a	custom	div	element	is	

moved	on	the	screen	and	populated	with	information	as	the	flight	details	popup.	

The	flightmap.js	after	initialising	the	sources	and	the	map,	creates	a	vector	layer	which	is	

responsible	for	displaying	the	planes	and	an	overlay	layer	which	contains	the	popup	div	as	an	

element.	To	handle	the	click	events	on	the	layer	and	on	the	map	a	few	event	listeners	are	

registered.	If	a	click	event	fires	on	the	map	all	the	features	on	the	map	are	iterated	through	

and	checked	if	any	of	them	contains	the	pixel	which	was	clicked.	If	the	result	is	true,	the	

popup	will	be	moved	to	the	positon	and	displayed	with	the	required	data.	The	popup	will	be	

hidden	if	the	evaluation’s	result	is	false	so	the	click	was	a	random	click	on	the	map.	(Code	

Snippet	21	-	Popup	listener)		

map.on('click', function (evt) {
 var feature = map.forEachFeatureAtPixel(evt.pixel,
 function (feature, layer) {
 return feature;
 });
 if (feature) {
 var geometry = feature.getGeometry();
 var coord = geometry.getCoordinates();
 popup.setPosition(coord);
 content.innerHTML = 'Flight: ' + feature.attributes.name +
 ' from: ' + feature.attributes.origin;
 $(element).popover('show');
 } else {
 $(element).popover('destroy');
 }
});

	

Code	Snippet	21	-	Popup	listener	

	

To	change	the	mouse	icon	to	a	pointer	when	it	is	hovered	over	an	icon,	a	mouse	move	

register	is	added	in	a	similar	way.	The	last	listener	is	registered	on	the	close	icon	of	the	popup	

window	allowing	the	users	to	close	the	window	with	the	red	X	in	the	corner.		

Once	the	initialisation	and	the	registers	are	ready	an	Ajax	call	is	sent	to	the	parameterised	

flights	URL.	The	map	boundaries	are	calculated	and	translated	to	the	right	projection	before	

passed	as	parameters	to	the	request.	The	logic	for	moving	and	adding	the	planes	to	the	map	

is	similar	to	the	Google	Maps	implementation.	If	a	flight	is	new	it	will	be	added	to	the	vector	

- 41 -

layer	as	an	Openlayers	Feature	object,	if	it	is	not	the	position	and	the	style	of	the	object	will	

be	updated.	

To	display	the	icons	as	planes	a	new	Style	object	needs	to	be	created	with	and	Icon	object	

as	its	image	attribute.	For	changing	the	planes’	orientation,	the	rotation	property	needs	to	be	

set	in	radians	(Code	Snippet	22	-	Setting	plane	orientation).	The	style’s	rotation	is	updated	

with	every	response	then	it	is	added	to	the	right	feature.		

var planeStyle = new ol.style.Style({
 image: new ol.style.Icon(({
 anchor: [0.5, 0.5],
 scale: 0.9,
 opacity: 1,
 src: 'icon.png',
 rotation: results.features[i].properties.heading *
0.0174532925,//converting the angle to radian

 }))
});

	

Code	Snippet	22	-	Setting	plane	orientation	

	When	the	data	processing	is	finished	a	changed	event	is	called	on	the	vector	layer	to	

indicate	to	the	map	that	the	layers	need	to	be	redrawn.	For	animating	the	movement	of	the	

features	there	was	not	any	integrated	support	or	library	provided	by	the	Openlayers	

framework	so	the	planes’	location	change	is	solved	by	moving	them	from	one	place	to	the	

other	without	any	animation.	The	final	result	can	be	seen	on					Figure	12	-	Openlayers	flight	

map.	

	

				Figure	12	-	Openlayers	flight	map	

- 42 -

Combined	

The	Openlayers	combined	map	displays	the	car	park	occupancy	and	the	traffic	events	data	

on	the	same	map.	It	uses	the	same	codebase	as	the	separate	maps,	except	of	that	this	map	

queries	the	recorded	endpoints	with	a	higher	frequency.	(Figure	13	-	Openlayers	combined	

car	park	heatmap	and	traffic	events	map)	

	

Figure	13	-	Openlayers	combined	car	park	heatmap	and	traffic	events	map	

	 	

- 43 -

4.2.3.4 	User	comparison	maps	

two	comparison	maps	were	created	to	display	the	same	data	thus	allowing	the	easier	

comparison	for	the	users.	These	maps	show	a	slice	from	the	maps	created	with	all	the	three	

technologies.	It	is	crucial	that	all	the	maps	have	to	have	the	same	configurations	such	as	the	

initial	view	coordinates,	the	zoom	level	and	the	data	querying	frequency.	The	different	map	

framework	implementations	are	imported	with	all	their	dependencies	to	three	div	elements	

under	each	other	in	a	HTML	file.	The	users	are	allowed	to	interact	separately	with	each	of	

them.		

Obviously	the	flight	map	(Figure	15	-	Flights	user	comparison	map)		uses	the	three	flight	

map	implementations	while	the	Glasgow	map	(Figure	14	-	Glasgow	user	comparison	

map)	imports	the	combined	car	park	and	traffic	event	maps.	Since	the	Glasgow	map	uses	the	

recorded	datasource,	a	label	was	added	to	show	the	time	and	date	of	the	data	which	is	

currently	displayed	by	the	map.		

	

								Figure	14	-	Glasgow	user	comparison	map	

- 44 -

	

			Figure	15	-	Flights	user	comparison	map	

	

4.2.4 Deployment	

• Deployment	

During	the	development	phase	the	application	mostly	ran	on	the	local	development	

environment	but	for	enabling	the	users	to	test	the	product	it	needed	to	be	installed	on	a	

remotely	accessible	server.	As	a	first	approach	the	application	was	installed	to	a	CentOS	Linux	

system	in	the	Amazon	EC2	cloud	which	is	a	pay	as	you	go	based	cloud	server	platform.	But	as	

the	development	pushed	forward	it	needed	to	be	realised	that	the	platform	is	not	

appropriate	for	the	project’s	purposes.	The	bundle	which	was	used,	charged	the	fee	after	the	

number	of	requests	which	was	not	the	best	option	for	the	polling	based	application,	making	

numerous	requests	every	minute.	At	the	end	the	application	was	deployed	to	a	Windows	

server	in	the	CenturyLink	cloud	which	provided	fix	monthly	billing.		

	

- 45 -

5 Framework	evaluation	and	comparison		

This	chapter	provides	a	detailed	framework	comparison	by	going	through	o	all	the	

previously	defined	comparison	methodologies.	First	there	is	a	short	overview	of	the	

frameworks	which	is	followed	by	a	comparison	based	on	the	APIs’	and	the	frameworks’	

support.	At	the	end	of	the	second	subchapter	the	frameworks	are	ranked	by	the	the	basic	

attributes	related	to	the	API	complexity	and	technological	support.	The	overall	comparison	is	

followed	by	a	more	detailed	one,	related	to	the	visualisation	of	dynamically	changing	data,	

based	on	the	concrete	application	development.	The	last	section	compares	the	frameworks	

by	the	users’	feedback	including	describing	some	details	about	the	questionnaire.	

5.1 Origin	and	license	

This	subchapter	summarises	the	background	of	the	frameworks	and	describes	the	type	of	

license	with	which	the	technology	is	released.	

Google	Maps	

The	Google	Maps	application	released	in	2005	was	the	first	from	the	three	frameworks	in	

2005.	Soon	after,	Google	created	their	publicly	available	Google	Maps	JavaScript	API	which	

has	been	extended	by	other	platforms	since	then	such	as	Flash	and	Android	(Google,	Our	

history	in	details).	The	API	comes	under	Google’s	license	with	different	billing	plans.	Contrary	

to	the	common	belief,	the	product	usage	is	free	within	the	framework	of	the	standard	usage	

plan.	This	includes	twenty-five	thousand	map	loads	per	twenty-four	hours	which	is	a	

reasonable	number	for	smaller	applications	like	this.	The	other	Google	services	such	as	street	

view	and	the	Directions	API	are	not	included	in	this	plan	(Google,	Google	Maps	JavaScript	API	

Usage	Limits).		The	usage	is	monitored	with	a	unique	API	key	which	can	be	obtained	from	

Google’s	website	for	each	application.		

Openlayers	

The	Google	Maps	was	followed	by	the	Openlayers	framework’s	first	edition	in	2006.	It	was	

originally	developed	by	MetaCarta,	but	since	November	2007	it	has	been	an	Open	Source	

Geospatial	Foundation	project	(Gratier,	Spencer,	&	Hazzard,	2015).	The	current	version	of	the	

API	is	the	OpenLayers3.	

	 	

- 46 -

Leaflet	

In	2011	Leaflet	was	the	last,	as	an	open	source	project.	The	library	was	originally	

developed	by	Vladimir	Agafonkin	but	currently	it	is	an	open	source	GitHub	project	with	over	

hundred	contributors.	

5.2 API	and	support	

This	subchapter	is	responsible	for	comparing	the	frameworks	based	on	general	features	and	

the	complexity	of	the	APIs.	It	also	includes	the	summary	and	the	comparison	of	the	support	

of	the	frameworks.	

Leaflet	

As	Fernandes	et	al.	(Fernandes,	Goulão,	&	Rodrigues)	indicated	the	structure	and	the	

concept	behind	the	API-s	are	slightly	different.	Since	being	the	most	recent	framework	Leaflet	

uses	the	latest	JavaScript	and	HTML	features	to	implement	the	different	functionalities.	The	

API	itself	is	a	very	simple	to	use,	tiny,	65Kb	sized	JavaScript	file.	However,	the	core	framework	

only	meets	the	basic	mapping	requirements	as	built-in	features,	the	system	does	not	lack	any	

functionalities.	The	architecture	is	based	on	decoupled	components	instead	of	a	massive	

core.	On	the	official	Leaflet	website	currently	there	are	more	than	two	hundred	different	

plugins	available	providing	wide	variety	of	functionalities,	and	this	number	is	growing	fast.	

This	modular	based	architecture	allows	different	developers	to	focus	on	one	particular	

feature	and	make	it	as	good	as	it	is	possible.	The	community	support	of	the	framework	is	

outstanding.	On	average,	two	to	three	different	plugins	can	be	found	for	every	functionality	

which	was	required	for	the	project.	The	documentation	and	the	quality	of	the	plugins	are	

adequate.	The	heatmap	plugin	which	is	used	for	displaying	the	car	park	occupancy	was	

written	by	Agafonkin	himself.	(Ortega,	2015)	

The	Leaflet	official	website	contains	around	ten	simple	tutorials	to	understand	and	

implement	the	most	used	features	of	the	framework.	The	core	documentation	is	structured	

thematically	and	provides	usage	examples	in	quite	a	high	number	of	the	cases.		

The	plugins	which	can	be	chosen	from	the	catalogue	are	accessible	through	the	official	

site	too.	After	choosing	the	required	plugin	the	developer	is	redirected	to	the	GitHub	

directory	of	the	feature,	where	the	documentation	and	usually	a	live	demo	can	be	found.	

Although	the	plugins	which	were	used	during	the	project	were	appropriate,	since	they	are	

maintained	by	different	developers	they	might	not	kept	up	to	date	with	the	new	versions	of	

the	core	framework.	

- 47 -

Openlayers	

Openlayers	uses	a	significantly	different	architectural	concept	than	Leaflet,	it	tries	to	

include	all	the	features	which	a	developer	might	require.	The	core	application	contains	a	wide	

range	of	built	in	features	and	functions	which	increases	the	size.	Openlayers2	was	almost	a	

megabyte	but	the	developers	managed	to	reduce	the	size	in	order	to	increase	the	mobile	

usability.	The	minified	version	of	the	current,	core	Openlayers3	library	is	495Kb	which	is	still	

more	than	ten	times	larger	than	Leaflet.	Because	of	this	change	in	the	size,	the	API	has	

changed	a	lot	too,	and	not	only	between	Openlayers2	and	Openlayers3	but	between	the	

smaller	version	changes	as	well.	Fernandes	et	al.	revealed	that	the	compatibility	between	the	

different	versions	can	be	low,	but	it	was	not	suspected	at	that	time	that	it	would	effect	this	

project.		However,	it	was	not	the	case,	because	many	of	the	example	codes	and	the	demos	

which	can	be	found	for	Openlayers	are	not	compatible	with	the	current	version.	Even	though	

there	are	149	examples	on	the	official	site,	not	all	of	them	are	useful.	Not	to	mention	the	

community	based	support	websites	such	as	Stackoverflow	or	the	GIS	Stackexchange	where	

the	features	which	are	mentioned	in	the	few	years	old	examples	are	not	even	part	of	the	API	

anymore.	Because	of	this	it	is	crucial	to	use	the	API	documentation.	The	official	

documentation	is	good	quality,	containing	a	few	examples	too,	but	since	the	whole	

architecture	is	more	complex,	the	Openlayers’	documentation	requires	deeper	knowledge	of	

the	area	than	Leaflet	does.	

Google	Maps	

Google’s	core	architecture	provides	many	different	functionalities,	and	is	very	extensible,	

more	like	Openlayers.	Since	Google	Maps	is	the	most	widely	used	mapping	framework,	it	is	

robustly	tested	and	supported	too.		On	the	official	website	there	are	plenty	of	well	designed,	

working	tutorials	which	explain	and	demonstrate	the	usage	of	the	framework.	As	Fernandes	

et	al.	indicated	the	API	changes	between	the	different	versions	of	Google	Maps	are	negligible	

so	the	older	examples	provided	by	the	community	largely	worked	well.	The	API	provides	a	

higher	level	of	abstraction	which	makes	the	use	of	the	even	more	complex	features	relatively	

simple,	but	on	the	other	hand,	it	allows	less	customisation.	

Even	though	Google’s	API	is	publicly	available	the	source	code	is	not,	so	the	flexibility	is	

much	lower	compared	to	the	open	source	frameworks.		This	also	affected	this	project	work.	

The	original	plan	was	to	make	all	three	maps	look	exactly	the	same	by	using	the	same	map	

tile	server	for	all	of	them.	Unfortunately,	this	feature	is	not	configurable	in	the	Google	Maps	

API,	and	since	the	source	is	not	open,	it	is	not	even	editable.	

- 48 -

Marking	

Finally,	the	different	attributes	of	the	frameworks	based	on	the	previous	discoveries	were	

marked	on	a	scale	between	1-3	for	easier	comparison.	Number	1	is	the	weakest	mark	

showing	that	the	framework	has	weaknesses	in	the	measured	aspect,	while	number	3	

indicates	that	the	attribute	is	a	strong	point	of	the	framework.	This	is	a	clearer	way	to	

represent	the	results	and	more	tangible	to	compare	the	frameworks.	

Table	1-	API	and	support	comparison	

	 Leaflet	 Openlayers	 Google	Maps	

API	Documentation	 3	 3	 3	

Tutorials	 2	 1	 3	

Community	support	 3	 1	 3	

License	 3	 3	 2	

Total	 11	 8	 11	

	

The	results	clearly	indicate	the	disadvantages	of	each	framework.	In	the	end	Google	Maps	

and	Leaflet	got	the	same	score	by	losing	only	one	point	in	slightly	different	areas.	These	two	

frameworks	won	this	comparison	with	the	good	support	and	flexible	API.	Leaflet	did	not	get	

the	maximum	point	because	of	the	lack	of	tutorials	while	Google	Maps	lost	a	point	because	

of	the	less	flexible	license.	As	was	indicated	earlier,	because	of	the	weak	community	support	

and	the	significant	differences	between	the	API	version,	it	was	much	more	difficult	to	work	

with	Openlayers	than	with	the	other	two	frameworks.	That’s	why	it	only	collected	eight	

points.	

	

5.3 Matching	the	constraints	

In	this	subchapter	the	developer	side	comparison	can	be	read.	The	main	focus	of	this	

subchapter	is	to	describe	how	the	constraints	were	met	with	all	the	frameworks.	To	help	the	

comparison,	evaluation	comments	and	explanations	are	added	to	the	description.	At	the	end	

of	the	section	a	comparison	table	can	be	seen	displaying	how	many	points	the	frameworks	

got	on	each	constraint.	

	 	

- 49 -

Leaflet	

Thanks	to	the	custom	plugins,	Leaflet	provided	some	really	simple	implementations	to	

meet	all	the	constraints	which	were	set.	It	was	relatively	straightforward	to	find	the	right	

plugins	through	the	official	Leaflet	website.	

The	car	park	map’s	code	was	relatively	simple.	The	Realtime	plugin	takes	care	of	the	data	

loading,	only	a	few	configuration	fields	are	needed	to	be	set.	To	make	the	heatmap	feature	

look	similar	to	the	others,	two	different	plugins	were	tried.	To	swap	between	the	

implementations,	only	another	import	statements	and	small	changes	to	the	datasource	were	

needed.	This	demonstrates	well	the	simplicity	and	flexibility	of	the	framework.	The	heatmap	

plugin	takes	three	inputs,	the	coordinates	and	the	weight	of	the	point	by	default.	The	

heatlayer’s	datasource	is	overridden	on	every	data	refresh	which	implies	the	redrawing	of	the	

layer	automatically.	

Similar	high	level	functionality	was	provided	for	the	flight	tracking	as	well.	The	Realtime	

plugin	can	maintain,	add,	remove	and	move	the	objects	arriving	from	the	endpoints	

automatically.	The	only	configuration	which	was	needed	to	set	was	the	name	of	the	identifier	

field,	to	let	the	plugin	know	which	property	identifies	the	objects.	It	solved	the	data	loading	

and	object	displaying	constraints.	The	icons	were	clickable	by	default.	To	find	a	solution	for	

implementing	the	icon	changes	with	the	popup	window,	only	the	official	Leaflet	

documentation	needed	to	be	looked	up.	The	popup	window	is	a	built	in	feature	in	Leaflet	

which	is	bound	to	the	object,	so	it	moves	together	with	the	icon	if	its	location	changes.	To	

enable	the	icon	rotation	on	update,	was	slightly	more	complicated	task	but	there	were	useful	

comments	in	the	Realtime	plugin’s	GitHub	repository	which	helped	to	satisfy	the	constraint.	

The	Realtime	plugin	accepts	inputs	in	GeoJSON	format	as	well,	so	the	automatic	loading	of	

this	format	was	solved	as	well,	without	the	need	of	writing	custom	code.	

Openlayers		

To	work	with	the	Openlayers	framework	was	not	as	straightforward	as	with	Leaflet	even	

though	finally,	almost	all	the	constraints	were	met.	

Despite	there	not	being	an	integrated	feature	like	the	Leaflet	Realtime	for	loading	data	

periodically	from	an	endpoint,	the	final	car	park	heatmap	solution	ended	up	being	fairly	

simple.	Openlayers	contains	a	built	in	heatmap	feature	which	was	convenient	to	use.	It	only	

requires	a	vector	as	a	datasource	with	the	weight	attributes	set	to	display	the	different	

- 50 -

occupancies.	To	pick	up	the	changes	and	redraw	the	layer,	the	changed	event	needed	to	be	

called	manually.		

The	flight	map’s	code	is	much	longer	and	more	complicated	than	the	car	park	map’s	or	the	

flight	map’s	written	with	the	other	two	frameworks.	There	is	no	built	in	feature	for	creating	

markers	in	Openlayers.	To	add	a	marker	like	object	to	the	map,	a	Point	object	needs	to	be	

created,	obviously	with	the	transformed	coordinates.	Then	this	Point	has	to	be	passed	as	a	

parameter	to	a	Feature	object,	and	then	the	feature	object	gets	a	Style	object	which	will	

behave	as	the	Openlayers’	marker.	Although	this	process	has	the	same	result	as	adding	a	

Marker	object,	it	is	more	complicated	than	with	the	other	frameworks.	

Openlayers	currently	did	not	provide	a	popup	feature	either,	so	a	custom	solution	needed	

to	be	created.	The	popup	is	simply	a	positioned	HTML	element	which	is	added	to	the	map	as	

an	overlay.	Then	all	the	listeners	needed	to	be	written	manually	allowing	the	icons	to	be	

clickable	and	for	showing	and	destroying	the	popups.	Since	the	popups	are	not	bound	directly	

to	the	map	object	they	do	not	follow	them	while	their	location	changes	so	this	constraint	is	

not	met.		

No	reasonable	way	was	found	to	add	animation	to	the	moving	flight	features	either	so	the	

map	is	not	animated	which	fails	another	constraint.	

To	change	the	icons	and	make	them	rotated	with	the	orientation	of	the	planes	a	new	Style	

object	has	to	be	created	for	every	data	response	and	either	update	the	already	existing	

planes	or	set	it	as	the	style	of	a	new	Feature.	

Since	Openlayers	uses	a	different	projection	than	the	general	standard,	issues	needed	to	

be	overcome	repeatedly	during	the	development	by	translating	the	coordinates	from	one	

projection	into	the	other.	Even	the	rotation	angle	needed	to	be	changed	to	radians	from	

degrees.	The	other	main	problem	was	the	out	of	date	tutorials	and	community	references.	

Only	every	fourth	or	fifth	example	was	compatible	with	the	used	version.	Openlayers	

provided	basic	support	for	all	the	required	features,	but	with	quite	low	abstraction	and	

weaker	support.		

Google	maps		

There	is	a	built	in	feature	in	Google	Maps	which	is	responsible	for	loading	GeoJSON	files	

from	a	remote	URL	and	adding	the	received	data	to	the	map	as	markers,	although	it	was	not	

used	at	the	end	because	of	customisation	issues.	The	heatmap	is	not	included	in	the	core	

Google	Maps	library	but	only	by	adding	the	“visualisation”	keyword	to	the	end	of	the	import	

- 51 -

URL,	another	framework	extension	will	be	loaded	which	contains	some	extra	features	

supporting	the	visualisations.	It	was	fairly	simple	to	implement	the	heatmap	thanks	to	the	

tutorials	on	the	Google’s	site.	The	framework	provides	an	MVC	object	which	automatically	

sends	change	events	every	time	the	underlying	data	refreshes	so	the	heatmap	layer	knows	

when	it	needs	to	be	redrawn.	For	adding	different	intensity	only,	the	weight	property	needed	

to	be	set	on	the	heatmap	layers	input.	

For	adding	the	planes,	the	Google	Maps	integrated	Marker	class	was	used.	On	creation	the	

icon	can	be	configured	and	listeners	can	be	added.	A	click	listener	needed	to	be	added	which	

opens	an	info	window.	The	Infowindow	is	a	built-in	feature	too,	and	since	it	is	bound	to	its	

marker,	it	moves	if	the	marker	changes	its	location.		

The	icon	rotation	caused	some	issues	since	the	Google	Maps	framework	is	not	able	to	

rotate	images	as	the	other	two	frameworks.	Scalable	Vector	Graphic	(SVG)	needed	to	be	

created	from	the	image	which	was	used,	to	make	the	rotation	property	work	on	the	markers.	

To	animate	the	movement	of	the	markers	a	third	party	Google	Maps	extensions	was	used.	

The	MarkerAnimate	and	the	SlidingMarker	are	two	small	JavaScript	files	which	helped	to	

change	the	global	behaviour	of	the	markers.	By	importing	the	scripts	and	adding	an	extra	

duration	property	to	the	creation	of	the	markers,	the	animation	constraint	was	easily	met.		

It	was	not	expected	that	external	plugins	would	be	used	for	the	Google	Maps	framework,	

but	there	are	quite	a	few	which	provide	higher	abstraction	level	solutions	for	those	few	

common	problems	to	which	Google	has	not	yet	given	a	solution.	

Comparison	Table	

To	compare	the	results	from	development	perspective	a	table	was	created	where	the	

different	requirements	are	listed	which	the	maps	needed	to	fulfil.	In	the	table	it	is	compared	

how	difficult	it	was	to	satisfy	the	constraints.	For	this	the	time	taken	to	find	guidance	for	the	

solution,	the	time	taken	to	implement	the	solution,	the	complexity	of	the	code	and	the	

quality	of	the	solution	were	taken	into	account.	At	the	end	these	values	were	aggregated	and	

displayed	on	a	list	from	0-3	where	0	means	that	the	requirement	is	not	met	while	3	means	

that	it	was	easy	to	find	guidance	and	during	a	short	time	a	good	quality	but	simple	solution	

could	be	developed.	

	 	

- 52 -

Table	2	-	Constraint	based	comparison	

	 Leaflet	 Openlayers	 Google	Maps	

Automatic	GeoJSON	loading	 3	 2	 3	

Heatmap	API	 3	 3	 3	

Heatmap	node	weighting	 3	 2	 3	

Heatmap	dynamic	update	 3	 3	 3	

Custom	icon	display	 3	 2	 3	

Icon	rotation	 2	 2	 1	

Clickable	icons	 3	 1	 3	

Popups	 3	 1	 3	

Popups	moving	with	icons	 3	 0	 3	

Animated	movement	 3	 0	 2	

Total	 29	 16	 27	

	

Openlayers	ended	up	in	the	last	position	again.	This	was	due	mostly	to	the	lack	of	

integrated	marker	and	popup	support,	along	with	everything	taking	much	longer	with	this	

framework.	Openlayers	definitely	lost	the	competition	in	this	comparison,	since	in	the	last	

two	contstraints,	most	complex	functionalities	could	not	even	be	implemented.	Leaflet	and	

the	Google	Maps	finished	quite	close	to	each	other.	Both	lost	points	on	the	icon	rotation	and	

since	Google	Maps	can	not	rotate	images	just	vector	graphics,	which	makes	the	animation	

speed	slower,	it	only	came	second.	Both	frameworks	provided	sufficient	support	for	meeting	

the	constraints	and	there	were	no	big	difficulties	during	the	development	either.	It	can	be	

said	that	neither	of	the	last	two	frameworks	is	a	bad	option	for	dynamic	data	visualisation	

purposes.	

	

5.4 Questionnaire	

The	questionnaire	is	responsible	for	helping	the	map	evaluation	from	user	perspective.	

The	questions	were	mostly	focused	on	getting	subjective	user	feedback	on	both	the	

framework	comparison	and	the	effectiveness	of	the	visualisations	as	well.	The	maps	were	not	

- 53 -

named	after	the	frameworks	but	were	called	only	Top	Map,	Middle	Map	and	Bottom	Map	

thus	trying	to	avoid	any	preconceptions.	During	the	questionnaire	evaluation	the	same	names	

will	be	used,	the	corresponding	frameworks	are:	Leaflet,	Openlayers	and	Google	Maps	in	

order.	

The	questionnaire	was	completed	by	twenty	people,	from	which	a	significant	number	has	

previously	worked	with	maps.	This	was	not	a	prerequisite	but	helped	to	get	useful	feedback	

and	suggestions	on	the	maps.	The	questionnaire	directs	the	tester	to	the	main	page	of	the	

website	and	provides	basic	information	about	what	they	need	to	do.		

Flight	map	

The	first	six	questions	of	the	questionnaire	are	related	to	the	flight	map	after	directing	the	

users	to	make	some	basic	interactions	with	the	maps	such	as	finding	flights.	

	

Although	85%	of	the	testers	experienced	difference	in	speed	between	the	maps,	the	

ranking	results	are	not	that	obvious	(Question	1).	Leaflet	was	said	to	be	slower	than	the	other	

two	maps	by	six	people	but	at	the	same	time	five	tester	felt	like	it	was	faster	than	the	others.		

Question	2	

Question	1	

- 54 -

As	it	can	be	seen	on	Question	2,	Openlayers	received	thirteen	average	votes	which	is	the	

most	uniform	result.	Finally,	it	seems	to	be	the	most	number	of	users	felt	Google	Maps	is	

faster	than	the	others,	since	it	got	eleven	polls	in	the	“faster”	row.		

The	results	show	that	Google	Maps	performed	slightly	better	while	Leaflet	produced	

slightly	worse	results	in	the	speed	comparison,	although	as	it	can	be	seen	this	test	provided	

quite	scattered	results.	

The	answers	for	the	Question	3	were	more	unanimous.	It	shows	that	95%	of	the	testers	

think	that	the	moving	plane	icons	are	a	good	way	to	visualise	air	traffic.	Based	on	the	

comments	the	users	were	fond	of	the	real	time	behaviour	and	the	simplicity	of	the	map	both	

from	understanding	and	from	usage	perspective.	

	

Question	3	

	

In	the	last	question	(Question	4)	the	users	needed	to	choose	a	favourite	map,	where	

Google	Maps	seemed	to	be	the	most	popular	with	half	of	the	votes.	While	Leaflet	got	

respectable	35%,	Openlayers	was	not	too	popular	between	the	testers.	Only	two	people	

responded	that	they	liked	the	Middle	Map	the	most.		

Question	4	

- 55 -

Glasgow	map	

The	second	part	of	the	questionnaire	focused	on	the	recorded	Glasgow	car	park	

occupancy	and	traffic	events	map	asking	similar	questions	as	in	the	first	part.	

	

The	heatmaps	got	the	lowest	effectiveness	score	from	the	visualisation	techniques.	Only	

75%	of	the	responders	think	that	the	heatmaps	are	a	good	way	to	visualise	car	park	

occupancy	data	(Question	5).	

Based	on	the	user	feedbacks	such	as:”	It	is	difficult	to	make	a	quantitative	decision	based	

on	a	colour	at	a	single	point	in	time.	Would	have	been	more	useful	if	there	was	also	a	

percentage	occupancy	too.”	It	can	be	said	that	in	general	the	users	liked	the	idea	of	displaying	

the	busier	parts	of	the	city	but,	the	exact	locations	with	the	exact	number	of	free	spaces	or	

occupancy	percentages	were	missed	from	the	maps.	The	testing	indicated	as	well,	that	the	

car	parks	close	to	each	other	on	higher	zoom	level	can	dilute	or	pollute	each	other’s	data,	

making	their	individual	occupancy	levels	look	inaccurate.	

	 	

Question	5	

- 56 -

Markers	

The	markers	for	visualising	road	traffic	events	were	more	coherent	according	to	the	users,	

since	90%	agreed	with	this	technique	being	good	for	the	purpose,	as	can	be	seen	in	Question	

6.	Although	a	few	comments	arrived	indicating	that	without	clicking	them	it	is	difficult	to	

figure	out	what	the	markers’	goal	is.	“It's	not	the	most	obvious	what	they	are	until	you	click	

them”.		

As	a	part	of	Question	7	the	users	needed	to	rank	the	maps	by	look	and	feel.	This	

comparison	resulted	in	a	clearer	answer.	Openlayers	became	quite	average	with	almost	the	

same	amount	of	people	voting	it	worse	as	normal	or	better.	While	Leaflet	got	a	little	more	

“worse”	votes	than	the	Openlayers,	it	received	half	as	many	“better”	ones	so	it	finished	on	

the	third	place.	Google	Maps	got	the	best	results	in	this	comparison	with	only	one	“worse”	

vote	and	with	more	“better”	ones	than	the	two	other	frameworks	together.	

	

Question	7	

	

Question	6	

- 57 -

The	previous	results	more	or	less	reflect	the	outcome	of	the	last	question,	Question	8.	

Only	two	people	chose	Leaflet	as	the	favourite	map	while	Google	Maps	shared	the	remaining	

votes	equally	with	Openlayers.		

	

In	general,	the	results	indicated	that	Google	Maps	was	the	most	popular	from	the	client’s	

perspective.	It	finished	in	first	place	in	almost	every	question	which	can	be	related	to	that	the	

fact	that	users	probably	are	familiar	with	the	Google	Maps	map	tiles.	Leaflet	was	the	least	

popular	from	the	Glasgow	maps.	Based	on	the	user	feedback	such	as	“I	like	the	base	map,	but	

think	the	colours	on	the	heatmap	would	be	better	going	from	green	to	red”	the	Leaflet	was	

not	that	successful.	The	different,	less	intense	heatmap	colours	which	were	used,	were	not	

appreciated	on	the	Leaflet	map.	This	could	be	the	reason	why	it	received	“worse”	votes	from	

the	testers.		

Question	8	

- 58 -

6 Results,	conclusion	and	recommendation		

6.1 Summary	

During	the	research	a	detailed	comparison	was	made	on	the	Leaflet,	Openlayers	and	

Google	Maps	frameworks	from	a	dynamic	data	visualisation	perspective	for	both	the	

developer	and	user.	The	comparison	was	based	on	different	methodologies	which	helped	

analyse	the	frameworks	on	different	levels.	It	included	the	development	of	an	application	to	

compare	the	frameworks	side	by	side	which	provided	the	basis	of	the	developer	side	

comparison	along	with	the	literature	reviews.	The	comparison	from	the	user	point	of	view	

was	based	on	a	questionnaire	which	was	filled	in	after	interacting	with	the	map.	The	

questionnaire	also	collected	some	feedback	on	the	effectiveness	of	the	different	dynamically	

changing	data	visualisations.	

The	research	revealed	the	strengths	and	the	weaknesses	of	each	framework	and	

demonstrated	how	difficult	it	was	to	develop	the	various	features	which	were	needed	for	the	

dynamic	visualisations	and	what	support	was	provided	by	the	frameworks.	The	questionnaire	

indicated	which	framework	was	preferred	by	the	users	and	which	visualisation	type	they	

considered	to	be	effective.	It	also	suggested	some	possible	improvements	and	ways	in	which	

the	application	can	be	developed	further.	

	

6.2 Key	Findings	

This	subchapter	highlights	the	strengths	and	the	weaknesses	of	each	framework,	evokes	the	

key	findings	during	the	research	and	states	a	general	outcome	of	the	comparison.	The	

framework	also	summarises	the	evaluation	of	the	different	visualisation	effectiveness.	

Openlayers	

Openlayers	is	the	most	used	open	source	mapping	framework	with	a	wide	range	of	

integrated	features.	Although	it	provides	support	for	almost	all	the	requirements	which	are	

needed	for	visualising	dynamically	changing	data,	there	were	some	features	which	could	not	

be	implemented	with	Openlayers.	On	the	other	hand,	the	size	of	the	framework	is	bigger	

than	the	other	two,	including	the	API’s	and	it	is	more	complex	as	well.		Moreover,	Fernandes	

et	al.	(Fernandes,	Goulão,	&	Rodrigues)	in	the	reviewed	research	and	the	application	

development	revealed	that	the	developers	can	face	difficulties	with	the	Openlayers	

framework	because	of	the	weak	support	and	the	significant	API	changes	between	the	

- 59 -

different	versions.	These	findings	can	be	considered	as	primary	data	which	proved	the	

conclusion	of	Fernandes	et	al.	Since	the	framework	uses	different	projections	than	the	other	

two	frameworks,	transforming	the	coordinates	slowed	down	the	development	process	as	

well.	Even	taking	into	account	that	the	framework	finished	in	the	second	place	on	the	client	

side	popularity	comparison,	when	aggregating	all	of	the	results,	Openlayers	is	the	least	

recommended	from	the	three	frameworks	for	dynamic	data	visualisations.	

Leaflet	

Leaflet	is	the	fastest	evolving	open	source	mapping	framework	with	a	lightweight	

framework.	Although	the	core	framework	has	limited	functionality	it	is	easily	extendable	with	

any	required	features	by	the	wide	plugin	system.	It	was	straightforward,	easy	to	find,	and	

easy	to	use	plugins	for	implementing	the	constraints.	For	the	developer	side	evaluation,	it	

received	the	best	results	out	of	all	three	frameworks	thanks	to	the	good	community	support	

and	the	flexible	architecture.	Although	the	framework	got	satisfying	results	on	the	flight	map	

comparison,	it	was	the	least	popular	Glasgow	map	because	the	users	didn’t	like	that	the	

heatmap	didn’t	use	the	standard	colours.	In	general,	if	one	prefers	to	work	with	an	open	

source	technology	for	dynamic	data	visualisation	the	Leaflet	framework	is	definitely	a	good	

choice.	

Google	Maps	

Google	Maps	as	the	biggest	and	most	widely	used	map	framework	provides	a	decent	sized	

framework	with	high	abstraction	and	low	complexity	API.	At	the	developer	side	comparison	

Google	Maps	finished	with	good	results,	just	missing	first	place	because	of	the	lack	of	image	

rotation.	Working	with	the	framework	is	pretty	fast	thanks	to	the	good	API	documentation	

and	the	tutorials.	From	the	client	side,	people	liked	Google	Maps	the	most.	Unlike	what	was	

deducted	from	the	work	of	Fernandes	et	al.	(Fernandes,	Goulão,	&	Rodrigues)	the	framework	

is	flexible	enough	for	implementing	the	visualisations.	In	general,	if	someone	doesn’t	mind	

working,	or	above	a	certain	usage	even	paying	for	the	licensed	framework	Google	Maps	with	

Google	behind	it	is	probably	one	of	the	best	options.	

	

Effectiveness	of	visualisations	

The	other	question	which	the	research	aimed	to	answer	is	related	to	the	effectiveness	of	

the	different	dynamic	data	visualisations.	The	questionnaire	tried	to	find	an	answer	to	the	

previous	as	well.		

- 60 -

Based	on	the	feedbacks	the	moving	icons	are	a	good	way	to	visualise	moving	traffic	such	

as	flights.	The	movement	can	be	tracked	in	real	time	and	if	the	icons	are	clickable	they	can	

provide	additional	information	about	traffic	participants.	To	display	the	more	static	traffic	

events,	the	data	which	is	changing	in	existence,	appearing	and	disappearing	icons	seem	to	be	

a	satisfying	solution	as	well.	Unlike	the	previous	two	the	car	park	occupancy	visualisation	as	

heatmaps	wasn’t	that	successful.	The	users	missed	the	more	accurate	information,	although	

most	of	them	liked	the	basic,	colouring	concept	which	was	based	on	the	work	of	Wood	et	al	

(Wood,	Slingsby,	&	Dykes,	2011).	Most	likely	the	technique	could	be	improved	with	clickable	

locations	or	a	layer	which	can	be	switched	on	and	off	to	display	more	details.	

	

6.3 Weaknesses	of	the	study	and	recommendations	

Since	this	research	is	the	first	in	the	area	of	web	mapping	framework	comparison	from	a	

dynamic	visualisation	perspective,	it	is	likely	that	the	project’s	methodology	could	be	

improved	as	there	are	plenty	of	other	ways	to	approach	the	analysis	differently.	

The	comparison	based	on	the	development	of	the	application	revealed	the	main	strengths	

and	weaknesses	of	the	frameworks	but	since	it	was	done	only	by	one	developer,	it	doesn’t	

provide	wide	coverage.	To	validate	the	results,	similar	testing	could	be	done	by	multiple	

developers.		

	

Application	improvements	

In	general,	the	comparison	could	be	made	easier	if	all	the	maps	moved	together	just	by	

interacting	with	one.	For	example,	if	a	user	zooms	or	pans	on	the	top	map	all	the	three	would	

do	the	same.	

The	users	who	tested	the	application	could	leave	feedback	and	suggestions	on	how	the	

maps	could	be	improved.	The	feedback	is	processed	here	as	well,	providing	ideas	for	the	

possible	improvements.	

	The	users	were	more	or	less	satisfied	with	the	flight	map	but	there	were	few	features	

which	could	be	added	to	widen	the	functionality.	A	useful	improvement	would	be	to	add	a	

search	field,	similar	to	the	search	field	of	standard	street	maps.	The	field	could	be	used	for	

tracking	the	flights	by	their	flight	number	or	other	properties.	

- 61 -

Regarding	the	Glasgow	map,	a	feature	could	be	added	to	indicate	more	specific	

information	about	the	car	parks	and	the	occupancy,	such	as	location	and	occupancy	

percentage	or	the	number	of	free	spaces.	As	another	direction,	the	heatmap	technology	

could	be	replaced	with	something	similar.	For	example,	different	coloured	or	sized	objects	

such	as	circles	could	indicate	the	occupancy	levels	of	the	car	parks.	

Moreover,	as	the	original	plan	was,	real	time	car	traffic	data	could	be	displayed	to	increase	

the	usability	of	the	maps.	It	not	only	would	provide	useful	information	but	would	correlate	

better	with	the	car	park	occupancy	and	with	the	traffic	events	information	as	well.	

In	general,	the	application	could	be	enhanced	with	other	types	of	live	data,	showing	

different	types	of	visualisations	too.	Another	area	of	future	development	could	be	to	extend	

the	whole	research	by	adding	new	frameworks	to	the	comparison,	since	there	are	plenty	

other	web	mapping	frameworks	out	on	the	market.	

	

Questionnaire	improvements	

Even	if	it	can	be	said	that	the	right	questions	were	asked	in	the	questionnaire,	there	are	

possible	improvements	from	the	user	side	evaluation	perspective.	It	is	possible	that	the	

testers	voted	on	the	Google	Maps	implementations	as	a	favourite	map	because	the	tile	layers	

were	more	familiar	than	the	other	two.	To	eliminate	all	the	differences	between	the	maps	the	

same	map	tile	layers	could	be	used.	In	this	case	the	users	would	only	evaluate	the	framework	

differences	not	the	framework	and	map	tile	differences	together.		

Although	85%	of	the	responders	indicated	that	they	noticed	speed	difference	between	the	

maps,	the	results	didn’t	show	a	clear	order	between	them.	It	is	most	likely	that	the	maps	have	

performance	effects	on	each	other,	so	a	better,	automated	method	could	be	developed	to	

test	the	speed	differences.	This	could	be	used	on	the	separate	maps	to	produce	exact	

numbers	for	the	loading	and	using	speed	of	the	maps.	

- 62 -

7 Bibliography	

Andrienko, G. e. (2008). Geovisualization of dynamics, movement and change: key issues

and developing approaches in visualization research. Information Visualization 7.3-4 , 173.
Andrienko, N., Andrienko, G., & Gatalsky, P. (2003). Exploratory spatio-temporal

visualization: an analytical review. Journal of Visual Languages and Computing .

Barclays Cycle Hire Map. (n.d.). Retrieved from Transport London:

https://web.barclayscyclehire.tfl.gov.uk/maps

Bbecquet. (n.d.). Leaflet Rotated Marker. Retrieved 2016, from Github:

https://github.com/bbecquet/Leaflet.RotatedMarker

City of Boston. (n.d.). Retrieved from Data Boston: https://data.cityofboston.gov/City-

Services/Rodent-Activity-open-cases-9-4-13/ynt4-n6g9

Crickard, P. Leaflet.js Essentials. Packt publishing.

Express. (n.d.). Retrieved 2016, from Using template engines with Express:

https://expressjs.com/en/guide/using-template-engines.html

Express JS Documentation. (n.d.). Retrieved 2016, from https://expressjs.com/

Fernandes, A. I., Goulão, M., & Rodrigues, A. (n.d.). A Comparison of Maps Application

Programming Interfaces.

Geofabrik. (n.d.). Map Compare. Retrieved 2016, from GEOFABRIK tools:

http://tools.geofabrik.de/mc

Ghoniem, M., Fekete, J.-D., & Cstagliola, P. (2004). A comparison of the readability of

graphs using node-link and matrix-based representations. INFOVIS.

GIS - geographic information systems. (n.d.). Retrieved from

http://nationalgeographic.org/encyclopedia/geographic-information-system-gis/

Glasgow Open Data Portal - Datasets. (n.d.). Retrieved from Glasgow Open Data Portal:

https://data.glasgow.gov.uk/dataset

Google. (n.d.). Google Maps APIs. Retrieved 2016, from

https://developers.google.com/maps/documentation/javascript/get-api-key#key

Google. (n.d.). Google Maps JavaScript API Usage Limits. Retrieved 2016, from Google

Maps API: https://developers.google.com/maps/documentation/javascript/usage

Google. (n.d.). Our history in details. Retrieved 2016, from Google :

https://www.google.co.uk/about/company/history/#2005

Gratier, T., Spencer, P., & Hazzard, E. (2015). OpenLayers 3 : Beginner's Guide.

Birmingham: Packt Publishing Ltd.

Lovelace, R. (2014, March 4). Testing web map APIs - Google vs Openlayers vs Leaflet.

Retrieved 2016, from http://robinlovelace.net/software/2014/03/05/webmap-test.html

- 63 -

OpenStreetMap Foundation. (n.d.). Retrieved 2016, from

https://wiki.osmfoundation.org/wiki/Main_Page

Ortega, I. S. (2015). Leaflet vs Openlayers: which is the best for our indoor maps?

FOSS4G 2015 Seoul. Seoul.

Perliedman. (n.d.). Leaflet Realtime. Retrieved 2016, from Github:

https://github.com/perliedman/leaflet-realtime

Phan, D. e. (2005). Flow map layout. IEEE Symposium on Information Visualization (pp.

219-224). IEEE.

Rae, A. (2009). From spatial interaction data to spatial interaction information?

Geovisualisation and spatial structures of migration from the 2001 UK census. Computers,

Environment and Urban Systems 33.3 , 161-178.

RNSInformatics. (n.d.). Development Models. Retrieved 2016, from

http://www.rnsinformatics.com/development-models.shtml

Simo, V. (n.d.). Request - Github. Retrieved from https://github.com/request/request

Soeters, J. (2016). JavaScript, AngularJS, React, Node, Express and all things web.

Retrieved from Understanding the Express app.js: http://jilles.me/getting-the-express-app-js/

The GeoJSON format specification. (n.d.). Retrieved 2016, from GeoJSON:

http://geojson.org/geojson-spec.html

The MongoDB 3.2 Manual. (n.d.). Retrieved 2016, from MongoB Documentation:

https://docs.mongodb.com/manual/

The OpenSky Network API. (n.d.). Retrieved 2016, from OpenSky Network:

https://opensky-network.org/apidoc/rest.html

Viskin. (n.d.). marker-animate-unobtrusive. Retrieved 2016, from Github:

https://github.com/terikon/marker-animate-unobtrusive

Wanderdrone. (n.d.). Retrieved 2016, from https://wanderdrone.appspot.com/

Web Mercator. (n.d.). Retrieved 2016, from Wikipedia:

https://en.wikipedia.org/wiki/Web_Mercator

Wilkinson, L., & Friendly, M. (2009). The history of the cluster heat map. The American

Statistician , 179-84.

Wood, J., Slingsby, A., & Dykes, J. (2011). Visualizing the Dynamics of London’s

Bicycle-Hire Scheme. In Cartographica (pp. 239–251).

	

	

	

- 64 -

Appendix	1	–	Questionnaire	

	

	

	

	

- 65 -

	

	

- 66 -

	

- 67 -

	

- 68 -

	

	

- 69 -

	

	

- 70 -

	

	

- 71 -

	

	

- 72 -

	

	

- 73 -

	

- 74 -

	

	

	

