
i 
 

 

 

 

 

 

Object Oriented Framework design in JavaScript: A Pattern Oriented 

Approach 

 

 

Mayank Sinha 
 
 
 
 
 

This dissertation was submitted in part fulfilment of requirements for 
the degree of MSc Advanced Computer Science 

 
Department of Computer and Information Sciences 

 
University of Strathclyde 

 
August 2017 

 
 
 
 
 
 
 
 
 
 



ii 
 

Declaration  
This dissertation is submitted in part fulfilment of the requirements for the degree of MSc of the 

University of Strathclyde. 

I declare that this dissertation embodies the results of my own work and that it has been composed by 

myself. Following normal academic conventions, I have made due acknowledgement to the work of 

others. 

I declare that I have sought, and received, ethics approval via the Departmental Ethics Committee as 

appropriate to my research. 

I give permission to the University of Strathclyde, Department of Computer and Information Sciences, to 

provide copies of the dissertation, at cost, to those who may in the future request a copy of the 

dissertation for private study or research. 

I give permission to the University of Strathclyde, Department of Computer and Information Sciences, to 

place a copy of the dissertation in a publicly available archive. 

Yes [ ] No [ ] 

I declare that the word count for this dissertation (excluding title page, declaration, abstract, 

acknowledgements, table of contents, list of illustrations, references and appendices is . 

I confirm that I wish this to be assessed as a 

Type 1 2 3 4 5 dissertation (please circle) 

Signature: 

Date: 

 



iii 
 

 

 

 

 

 

 

Abstract 
Design Patterns are essentially a structured approach to Object Oriented Programming. They are the 

body of knowledge acquired from decades of collective experience of the programming community 

detailing a "general reusable solutions to commonly occurring problems" in object oriented application 

design. Patterns are not an exact solution, they must be adapted to the design problems they intend to 

solve.  

Patterns are intended to be language agnostic, but are almost always described and discussed in terms 

of statically typed languages and languages that support object oriented programming constructs. This 

dissertation will explore the application of object oriented design patterns and practices to web 

technologies, by prototyping a “Single Page Application” framework in JavaScript, a loosely typed, event 

driven programming language. 

 

 

 

 

 

 

 

 



iv 
 

Contents 
Abstract ........................................................................................................................................................ iii 

List of figures ................................................................................................................................................. v 

Code Listings ................................................................................................................................................. v 

Introduction .................................................................................................................................................. 1 

About JavaScript ....................................................................................................................................... 2 

Pattern-Oriented Approach ...................................................................................................................... 3 

Related Work ................................................................................................................................................ 6 

The Patterns .............................................................................................................................................. 8 

Foundational Patterns .............................................................................................................................. 8 

Pattern: Prototype .................................................................................................................................. 10 

Prototyping the base module ............................................................................................................. 10 

Pattern:  Factory Method ....................................................................................................................... 12 

Creating the xhr object ....................................................................................................................... 13 

Pattern: Proxy ......................................................................................................................................... 15 

Controlling access to the xhr object.................................................................................................... 15 

Pattern: Template Method ..................................................................................................................... 16 

Plugging in a progress indicator .......................................................................................................... 17 

Pattern: Façade ....................................................................................................................................... 18 

An Ajax Façade .................................................................................................................................... 18 

Pattern: Flyweight ................................................................................................................................... 19 

Creating a tag registry ......................................................................................................................... 20 

Creating a template registry ............................................................................................................... 21 

Pattern: Builder ....................................................................................................................................... 23 

Creating an SPA view .......................................................................................................................... 24 

Pattern: Composite ................................................................................................................................. 27 

Representing an SPA view in-memory ................................................................................................ 27 

Pattern: Iterator ...................................................................................................................................... 29 

Iterating the composite view .............................................................................................................. 29 

Pattern: Decorator .................................................................................................................................. 31 

Form Validation ....................................................................................................................................... 31 

Pattern: Chain of Responsibility .............................................................................................................. 34 

Tooltips for Forms ............................................................................................................................... 35 



v 
 

Pattern: Bridge ........................................................................................................................................ 36 

Bridging controller actions to browser events .................................................................................... 37 

Pattern: Observer.................................................................................................................................... 38 

Observing an SPA module ................................................................................................................... 39 

Pattern: Adapter ..................................................................................................................................... 43 

Building a database module ................................................................................................................ 43 

Pattern: Command .................................................................................................................................. 44 

Creating a database transaction ......................................................................................................... 44 

Pattern:  Singleton .................................................................................................................................. 45 

A database singleton ........................................................................................................................... 46 

Discussion.................................................................................................................................................... 48 

Summary ................................................................................................................................................. 48 

Critique .................................................................................................................................................... 49 

Conclusions ................................................................................................................................................. 52 

References .................................................................................................................................................. 53 

 

List of figures 

Figure 1 GoF Prototype Pattern (Vlissides, Johnson, Helm, & Gamma, Creational Patterns, 1994) .......... 11 

Figure 2 Blocks framework prototype pattern ........................................................................................... 12 

Figure 3 asynchronous proxy ...................................................................................................................... 16 

Figure 4 cache proxy ................................................................................................................................... 16 

Figure 5 Ajax Facade ................................................................................................................................... 19 

Figure 6 The Builder pattern (Vlissides, Johnson, Helm, & Gamma, Creational Patterns, 1994) ............... 23 

Figure 7 Templating (Source: www) ........................................................................................................... 24 

Figure 8 Builder pattern for “client-side” templating ................................................................................. 25 

Figure 9 Decorator pattern example (Helm, Johnson, Vlissides, & Gamma, Structural Patterns, 1994) ... 31 

Figure 10 Form Decorators ......................................................................................................................... 33 

Figure 11 Observer pattern for MVC (Vlissides, Johnson, Helm, & Gamma, Behavioral Patterns, 1994) .. 40 

Figure 12 Observer Pattern applied on the Block module ......................................................................... 40 

Figure 13 Article Browser with paging ........................................................................................................ 42 

 

Code Listings 

Code Listing 1 A JavaScript Object Literal ..................................................................................................... 9 

Code Listing 2 A JavaScript module .............................................................................................................. 9 

Code Listing 3 A revealing module with naming conventions .................................................................... 10 



vi 
 

Code Listing 4 An xhr Factory (Gross, 2006) ............................................................................................... 14 

Code Listing 5 Handling the onreadystatechange event with template methods (Gross, 2006) ............... 17 

Code Listing 6 Ajax Facade .......................................................................................................................... 19 

Code Listing 7 Flyweight for HTML tags ...................................................................................................... 21 

Code Listing 8 Express framework jade view template .............................................................................. 21 

Code Listing 9 Handlebars framework template ........................................................................................ 22 

Code Listing 10 templateFactory ................................................................................................................ 22 

Code Listing 11 JSON representation of a document index ....................................................................... 25 

Code Listing 12 Builder Pattern with recursive templating ........................................................................ 26 

Code Listing 13 http://handlebarsjs.com/ .................................................................................................. 27 

Code Listing 14 The Composite Pattern - ViewPart class ........................................................................... 28 

Code Listing 15 Builder Pattern for building a Composite view ................................................................. 29 

Code Listing 16 Depth first iterator for ViewPart ....................................................................................... 30 

Code Listing 17 FormViewPart for encapsulating forms ............................................................................ 32 

Code Listing 18 TextBox Form Decorator ................................................................................................... 33 

Code Listing 19 Decorator with prototype inheritance (Mammino & Casciaro, 2016) .............................. 34 

Code Listing 20 Delegating help up the chain (Vlissides, Johnson, Helm, & Gamma, Behavioral Patterns, 

1994) ........................................................................................................................................................... 36 

Code Listing 21 Tooltip Handler for ViewPart using parent references ..................................................... 36 

Code Listing 22 Bridging the event API ....................................................................................................... 38 

Code Listing 23 Observer Pattern (Helm, Johnson, Vlissides, & Gamma, Behavioral Patterns, 1994) ....... 39 

Code Listing 24 Block Observer example .................................................................................................... 41 

Code Listing 25 Article Browser without Paging ......................................................................................... 41 

Code Listing 26 Observer Pattern to implement paging ............................................................................. 42 

Code Listing 27 Adapting mongoose API .................................................................................................... 43 

Code Listing 28 Command Pattern Structure (Vlissides, Johnson, Helm, & Gamma, Behavioral Patterns, 

1994) ........................................................................................................................................................... 44 

Code Listing 29 Command Pattern to implement a database transaction ................................................. 45 

Code Listing 30 Singleton pattern applied to the database module .......................................................... 47 

 

 

 



1 
 

 

Introduction 

Object oriented programming emerged as way to achieve code reuse at a coarser granularity than 

subroutines. Design patterns then emerged as a formalized discussion of best practices in object 

oriented design, shifting focus from class or object level to module level reuse. Patterns are an abstract 

concept, they do not by themselves prescribe an actual implementation that can be reused. Before the 

appearance of pattern based literature, the concepts had already been applied to successful object-

oriented designs, that were reused in other projects, through object oriented application frameworks. 

An application framework is an abstraction that provides some generic functionality and allows 

programmers to extend and override its components to specialize them towards the requirements of 

their own applications. Frameworks are distinct from class libraries. The control flow of an application 

that calls class libraries is dictated by the calling code, in contrast the control flow of an application built 

on a framework is driven by the framework itself. Application frameworks can be considered partially 

complete applications, which can be completed by programmers by instantiating and extending the 

framework components. 

Patterns and frameworks have been described as "synergistic concepts", both as a "means to achieve 

large-scale (code)reuse by capturing successful software development strategies" (Fayad & Schmidt, 

1997). Patterns are a shared understanding of the structure and collaborations of a software component 

in a context, and the common vocabulary they provide allows framework design and architecture to be 

described and documented in terms of patterns. 

This dissertation explores the practical aspects of object oriented framework development and attempts 

to demonstrate a pattern-oriented approach to designing, constructing and documenting a framework 

for Single Page Web Applications (SPA) (Scott, 2015). Single page applications are web applications that 

are contained within a single HTML page. An SPA never requests a new page from a web server, only 

refreshing parts of its page depending upon user interaction. 

An SPA framework was chosen as the subject of this dissertation because the considerations in their 

design and architecture are the same as would be needed to design a typical GUI application for desktop 

and mobile platforms. The technologies that SPAs are based on are largely responsible for the fluid user 

experience that modern web applications provide. The traditional approach to building dynamic web 

applications has been using two distinct sets of technologies. Server-side technologies like JSP, ASP and 

PHP have been used to generate HTML content on the server, and to perform other resource intensive 

processing. Client-side technologies are responsible for scripting the UI and user interactions for the 

application on the web browser. Until Ajax (Garrett, 2005) was supported most of the widely available 

web browsers, most user interactions required a client-server-client round trip for the generation of an 

entirely new web page. An Ajax application does not require a full page reload every time new data is 

requested from or posted to the server, although it is not prohibited. 



2 
 

Single Page Applications are an evolutionary progression of Ajax based web applications. An SPA exists 

entirely within a single HTML page. This reduces the responsibility of the server to be simply be a source 

of data, while all other application concerns are handled on the client side. With more recent 

innovations it is now it’s even possible to eliminate the server altogether, allowing the development of 

standalone applications entirely using browser based technologies that can still have the same 

networking capabilities that a web application has. Thus, SPAs emulate the experience provided by 

desktop applications. 

About JavaScript 
Unlike traditional web applications that required two different platforms and programming languages to 

develop a single application, single page applications can be programmed entirely in JavaScript. SPAs 

have played a significant role in bringing JavaScript applications to the desktop, with the help of enabling 

technologies such as node.js.  

JavaScript today is one of the most popular programming languages, for developing web, mobile and 

desktop applications. Due to its accessibility on a wide range of platforms that support it, JavaScript has 

seen increased adoption in the programming community. The popularity of JavaScript has steadily risen 

during the last two decades in the programming community. It is popular despite some of its language 

features, or lack thereof, that could be considered deterrents to its use for development of large scale 

systems. For example, JavaScript has historically lacked language level support for modules and 

namespaces, and its mechanism for inheritance is uniquely different from other traditional object-

oriented programming languages. To a programmer who is unfamiliar with JavaScript, at first glance it 

may look like a procedural language with severe limitations. Experienced JavaScript programmers 

however appreciate it for being lightweight and extremely expressive (Crockford, 2008). JavaScript 

supports the principles of object-oriented programming like dynamic dispatch, inheritance, 

encapsulation and polymorphism in its own unique way.  

JavaScript started off as a rushed prototype for a scripting language that could be embedded into, and 

manipulate elements of a web page (Severance, 2012). Since then it has been parallelly developed by 

competing vendors and has gradually moved towards standardization (Champeon, 2001). With Ajax and 

Web 2.0, “Software as a Service” solutions moved to the web which created demand for skilled 

JavaScript developers. The development of the Node.js runtime environment in 2009 brought JavaScript 

out of the browser. Node.js for the first time brought added I/O capabilities to JavaScript, which has led 

to a new generation of cross platform applications that have the same capabilities as native applications 

on mobile devices and desktops. Nowadays, there are number of well-designed JavaScript frameworks 

and applications that support multiple platforms and it is starting to be taken more seriously. The 

exposure of the browser's drawing API has brought JavaScript more into the mainstream. It has made 

esoteric programming disciplines such as game programming accessible to JavaScript developers. With 

web based technologies being natively adopted by several platforms, JavaScript runtimes are set to be 

as widely available as Java. 

JavaScript has some characteristics that sets it apart from other programming languages. It belongs to a 

small set of languages that are natively prototype-based or "classless" (Stefanov, 2017). This means 



3 
 

objects are instantiated and inherited from other objects rather than classes. While the 'class' keyword 

has been added to JavaScript as part of its latest standard specification, it is merely syntactic sugar that 

has no effect on its underlying prototypical nature (MDN, 2017). Most object-oriented programming 

languages provide a way to declare classes as templates that their object instances must adhere to. 

Once instantiated an object’s behavior may not be modified or extended at run time. Objects in 

JavaScript however are completely mutable, every object in JavaScript, including those that are built-in, 

may be completely altered at run time (Recent version of the ECMAScript standard do provide a 

mechanism to protect objects from being mutable). It is a versatile language that fully supports multiple 

programming paradigms. At its core, it has more in common with functional languages than object 

oriented ones. 

JavaScript is not a “restrictionist” language, and the barrier to entry for JavaScript programming is very 

low. Anyone with a web browser may write a JavaScript program, it does not require any packages to be 

installed or any other run-time requirements. Its syntax does not necessarily encourage readable code. 

Static analyzers and strict type checking have desirable effect of limiting bad programming practices to 

some extent. JavaScript doesn’t have any such constraints on it. It is easy to fall into an imperative or 

procedural programming paradigm, which may be sufficient for relatively simple scripting tasks, but 

does not scale easily for development of non-trivial applications and systems. Even though it would 

seem to be relatively simple to write working programs in JavaScript, programmers that are used to 

class based languages find may find it difficult to implement simple object-oriented designs.  

The difficulties of understanding JavaScript code are both lexical and conceptual, especially so for 

programmers not used to dynamic or functional languages. ES6, the latest version of the standard that 

JavaScript is based on, introduces the class keyword to the language. This and related enhancements 

have arguably made JavaScript more approachable to OO programmers, and subsequent improvements 

may address more of its readability concerns. It still does not support access modifiers, even though 

“private”, “protected” and “public” are reserved words. 

JavaScript is the subject of this dissertation to evaluate its proclivity towards object oriented design and 

development in a hands-on manner, and discuss the findings objectively. Proper application of widely 

accepted and applied object-oriented design principles in JavaScript would lead to an enhanced 

understanding of the object-oriented programming paradigm. This is one of the research objectives of 

this dissertation. 

There have already been many applications developed entirely in JavaScript, but it is still a relative 

newcomer and adoption of JavaScript for native application development is low. Most successful 

JavaScript projects consist primarily of functional source code and substantial number of them are 

written in languages that transpile to JavaScript.  

Pattern-Oriented Approach 
Framework design is a non-trivial software engineering endeavor. A framework is the backbone of the 

applications that are developed on it, therefore it must be designed to be robust and extensible. An 

ideal framework should also be easy to comprehend and extend. This is not easy to accomplish. Lack of 

framework comprehension leads to its improper use and implementation issues during application 



4 
 

development. This dissertation is an attempt to examine an incremental, pattern-oriented self-

documenting approach to framework development and evaluate its impact on framework 

comprehension and extensibility. 

 

The main text of the dissertation is in the form of a narrative that walks the reader through the process 

of prototyping a single page application framework. and how object-oriented design patterns are used 

to solve the problems encountered during developing its components. It is a thorough discussion of 

object oriented design and development in JavaScript. We apply some of the most widely used patterns 

of object orient design to JavaScript in the context of designing a framework that provides support for 

common features of an SPA. The discussion also investigates the language agnostic nature of patterns, 

whether they can be implemented in a dynamic language without trying to emulate features of other 

programming languages. 

There is a lot of supporting literature that emphasizes the integral role of patterns in the design, 

development and documentation of a frameworks and application. Prior knowledge of design patterns 

makes the various phases of framework development more intuitive and the resulting framework easier 

to understand and use. It could be argued that the significance of design patterns is better explained 

through case studies of successful large-scale applications and systems. This dissertation however takes 

the opposite approach. 

This dissertation augments existing literature on pattern-based approaches on documenting 

frameworks, by detailing the design and construction of a single page application framework in 

JavaScript. It is a practical exercise in validating the ideas presented in related papers and theses. This 

dissertation may assist programmers to internalize the concept of design patterns as being fundamental 

to design and development of applications and frameworks. It is as much a study in patterns and 

frameworks as it is an investigation of how the application of patterns may vary depending upon the 

programming language they are being implemented in. Thus, it also addresses, to some extent, the 

language agnosticism of design patterns. The intent of the dissertation is not to reverse engineer 

existing JavaScript frameworks that support Single page applications, or to equal their capabilities by the 

one that will be created. Instead we walk through the process of constructing an SPA framework that is 

extensible enough, through appropriate application of design patterns, that more capabilities may be 

added to it incrementally. 

We will explore a self-documenting approach to object oriented framework development in JavaScript 

and evaluate whether object-oriented design patterns can appropriately describe the complexity of a 

framework written in a dynamic, functional programming language. This involves incrementally 

designing and implementing the primary components of the framework and documenting the structure 

and collaboration of framework components in terms of design patterns. Large JavaScript code bases 

consist primarily of functional code, usually difficult to understand for object oriented programmers. A 

pattern-oriented approach also attempts to address this problem by documenting the design of an 

object-oriented JavaScript framework in terms of the patterns that are used to build its core 

components. Such a design may be more easily absorbed by programmers that are already familiar with 



5 
 

the patterns and the context in which they are used in other, typical object-oriented programming 

languages. 

It can be asserted that a well-designed application or framework depends on appropriate use of 

patterns during its high and low-level design and implementation. Supporting and validating this 

assertion is one of the primary goals of this dissertation. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

 

Related Work 
The impact of pattern-oriented design and development on the architecture of frameworks and their 

documentation has extensively been studied and discussed in academic works. Some of them suggest 

Pattern Languages as a method to enhance the documentation of complex software (Züllighoven, 1994) 

(Kirk, 2005). Pattern languages are “design metaphors” that describe useful design practices in terms of 

multiple patterns and their collaborations. Patterns and pattern languages were initially proposed 

design concepts to be used in the architecture of cities and buildings (Alexander, 1977). His work was 

later adapted by programmers to object-oriented programming, by proposing 5 patterns to build GUI 

based application that comprises of “windows and panes” (Beck & Cunningham, 1987).  

The first formal academic work to discuss “design patterns” introduced them as a “mechanism for 

expressing object-oriented design experience” (Gamma, Helm, Johnson, & Vlissides, 1993). The findings 

of the paper pointed out the existence of “idiomatic class and object structures” that were often found 

in reusable designs. The pattern examples presented in the paper also focused on the concerns of 

building an extensible GUI based application. 

A seminal book by the same authors was responsible for growing the interest in object oriented design 

patterns and the associated body of literature (Vlissides, Johnson, Helm, & Gamma, Design Patterns: 

Elements of Reusable Object-Oriented Software, 1994). The 23 design patterns, popularly referred to as 

the Gang of Four patterns have since then been extensively studied, discussed and applied to software 

projects, to the extent that they have become an essential part of a programmer’s vocabulary and skill 

set. The patterns described in the book are the central focus of this dissertation as they can be 

considered the “base” patterns that other higher level architectural patterns are based on. There have 

even been several attempts to formalize and codify these patterns with limited success (Leeuwen, 2013; 

Baron, 2003).  

The series of books on “Pattern Oriented Software Architecture” (Buschmann, Stal, Sommerlad, 

Rohnert, & Meunier, 1996) (Schmidt, Rohnert, Stal, & Buschmann, 2000) (Jain & Kircher, 2004) (Douglas 

C. Schmidt, Pattern-Oriented Software Architecture: A Pattern Language for Distributed Computing, 4th 

Volume, 2007) (Douglas C. Schmidt, Pattern Oriented Software Architecture Volume 5: On Patterns and 

Pattern Languages, 2007) along with “Patterns of Enterprise Application Architecture” (Fowler, 2002), 

further explored the relationship between design patterns and software architectures. The patterns 

described in these books are usually describe higher level abstractions than the ones documented by 

the Gang of Four. The six books together are perhaps some of the most important and most widely 

circulated works on patterns and architecture. The patterns they document have found their way into 

many frameworks and internalized by the programming community.  Contemporary discourse on 

patterns has since shifted to discussions of patterns that are much more domain specific than the ones 

described in these books. 



7 
 

Dirk Riehle's dissertation (Riehle, 2000) on a role modeling approach for object oriented framework 

design discusses role-modeling as an extension to class based modeling of object oriented frameworks. 

While acknowledging that framework based development contributes to product success through higher 

productivity and code reuse, it also identifies certain problems associated with object oriented 

frameworks. The dissertation discusses the difficulties associated with understanding and using a 

framework due to its complexity. It asserts that as a system grows in size and scope, its architecture 

becomes increasingly more difficult to describe in terms of the classes and objects it comprises of. Role 

modelling is introduced as a way of reducing the complexity of designing and documenting an object-

oriented framework. A role is a higher-level abstraction than a class or a pattern, and multiple classes 

and objects may participate in fulfilling a particular role. The concept of a role is closely related to design 

patterns, some of the roles discussed in the case studies are pattern instances. The correlation between 

patterns and roles is especially high in the JHotDraw case study (Riehle, Case Study: The JHotDraw 

Framework, 2000), with all of the design patterns mapping to one or more roles. The dissertation 

presents the role modelling approach as a way to enhance the design documentation of JHotDraw, 

where a pattern based approach may not be sufficient to describe all object collaborations. Another one 

of his more recent papers points out that the dominant use of patterns in the software industry is in 

communication between software developers (Riehle, 2011). 

Patterns and frameworks and their interdependence are rarely discussed in the context of dynamic 

programming languages however. JavaScript has not been the subject of conversations about design 

patterns and object-oriented frameworks together. Bridging this gap is one of the primary motivations 

of this dissertation.                                                                                                                                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

 

 

 

The Patterns 
The following sections are discussions about specific design patterns, how they are relevant in JavaScript 

along with examples of framework components or services designed and implemented for the “Blocks” 

single page application framework. The examples are illustrated through figures and code listings. 

We will incrementally develop the framework, adding support for building features that a typical single 

page application would require. Each feature is discussed in the context of one or more design patterns 

that we might deem appropriate toward producing a reusable, extendible design for the components 

that support it. The framework has three high level modules. The first module is responsible for Ajax 

related functionality and any other HTTP related concerns. The second module is the view engine of the 

framework, responsible for generating and managing GUI related concerns of the application.  

The discussions will focus primarily on the Gang of Four design patterns proposed in the seminal book 

(Vlissides, Johnson, Helm, & Gamma, Design Patterns: Elements of Reusable Object-Oriented Software, 

1994). Since we are designing an object-oriented framework for single page applications with no domain 

specific concerns, the “recurring problems” and related patterns that we include in the discussion 

should be the ones related to the object-oriented design. Henceforth, a standard description of a 

pattern will simply be referred to as Gang of Four or abbreviated as GoF when comparing to the 

JavaScript framework specific implementation.  

It has been suggested that higher level architectural patterns must be considered before low level 

patterns when designing a system (Buschmann, Stal, Sommerlad, Rohnert, & Meunier, 1996). The high-

level architectural pattern of the SPA framework is Model-View-Controller. The core components of the 

framework will be prototyped in subsequent sections. Since we are applying a pattern-oriented 

approach to a specific technology and programming language, it makes sense to focus on low level 

patterns, because we also need to address the implementation details of the patterns in the that 

language. 

Foundational Patterns 

As mentioned earlier, JavaScript has historically lacked language level support for modules (Cho & Ryu, 

2014), which has been addressed to some extent with the introduction of classes in its latest standard. 

The problems associated with lack of support for namespaces remain however. Components of a 

JavaScript program can only interact in the global namespace. This permits entire JavaScript programs to 

be written with variables in the global namespace. This is clearly not a good practice as it might lead to 

variable name collisions and simple changes to global variables cause unexpected behavior in other 

parts of the application. 

JavaScript programmers have developed techniques to address the problem of global scope using 

modules as a way of localizing variable and function names. ES6 classes also belong inside such modules 



9 
 

to prevent naming conflicts. Since these techniques are not part of the language itself, they are also 

considered “patterns”. Any discussion of design and architecture in JavaScript must be preceded by a 

discussion of these foundational patterns. 

Objects in JavaScript are similar to associative arrays, a collection of key-value pairs, where values can 

be primitive types or other objects. Since functions are also objects in JavaScript, values can also be 

functions and closures. Thus, new objects can be created simply by declaring an associative array and 

assigning it to a variable. This is what is known as the Object-literal pattern in JavaScript (Murphey, 

2009). An Object literal is the simplest way to encapsulate data and behavior in JavaScript. Every key is 

an object literal is effectively a namespace, which may contain other object literals to achieve nested 

namespaces. 

 

Code Listing 1 A JavaScript Object Literal 

The Module pattern is an extension of the object literal pattern emulates the concept of classes by 

allowing public and private members for an object. It is another way of creating namespaces in 

JavaScript as a module may encapsulate other modules, object literals and classes. A module pattern 

allows programmers to hide parts some parts of the module from the global scope. The module pattern 

is implemented using a programming technique unique to JavaScript, known as an Immediately Invoked 

Function Expression (IIFE). An IIFE is essentially an anonymous function that is called as soon as it is 

declared (Osmani, Namespacing Fundamentals, 2012). In JavaScript, an Object or function is completely 

aware of the environment that it’s declared in. Variables and functions declared inside other functions 

however are not accessible from outside, thus IIFEs are an effective way to ensure privacy of 

encapsulated code. The module pattern is implemented by assigning the result of an IIFE to a variable. 

Unlike the object literal example in listing 1, listing 2 shows an equivalent implementation of the module 

pattern using an IIFE, to create an object with a private counter variable. This allows programmers to 

include members in the module that can only be consumed within it and are invisible to the outer scope.  

 

Code Listing 2 A JavaScript module 



10 
 

Finally, the revealing module pattern is a slight variation of the module pattern which makes designated 

private members public by “revealing” public pointers to them. The revealing module can be considered 

a more readable version of the module pattern and allows consistent naming scheme for members. In 

the example shown below, an ajax module exposes methods from an internal nested module.  

 

Code Listing 3 A revealing module with naming conventions 

Pattern: Prototype 

The prototype pattern allows a reduction of the total number of classes as well as the number of new 

objects that must be created in an application. The pattern is applicable when “instances of a class can 

have one of only a few different combinations of state” (Vlissides, Johnson, Helm, & Gamma, Creational 

Patterns, 1994). This is achieved by prototype objects supporting a Clone operation that returns a copy 

of the prototype. The prototype can allow certain properties to be set on it, to get it into a desired state 

before or after cloning. The key consequence of the prototype pattern is that allows creation of new 

“types” of objects without defining additional classes. 

Some critical discussions on design patterns emphasize the point that design patterns are an indication 

of missing language features or that some language features may make certain design patterns “invisible 

or simpler” (Norvig, 1996). Prototype is an example of a pattern that is truly invisible in JavaScript. Any 

discussion of the prototype pattern in JavaScript point out the prototypal inheritance mechanism of 

JavaScript (Timms, 2016) (Osmani, Prototype Pattern, 2012). 

The prototype pattern is invisible in JavaScript even if we ignore prototypical inheritance. Any new 

object creates in JavaScript inherits from the base JavaScript object – Object. This is similar to other 

Type based languages, such as java.lang.Object in Java and System.Object in C#. Any object created in 

JavaScript is mutable. The dynamic nature of JavaScript allows properties to be assigned to objects at 

run-time. These properties are owned by that particular instance and not shared by others even if they 

had the same base object at the time of instantiation. JavaScript allows complete modification of state 

and behavior on an object unless it is explicitly sealed. This kind of dynamic, run time modification of 

state and associated behavior is the crux of the prototype pattern. 

Prototyping the base module 

As an example of using the prototype pattern in JavaScript, we may consider the top-level module in our 

SPA framework to be a prototype. All the framework code is encapsulated in a module named “Block”. 

Each instance of the Block module is associated with an independently updateable section in the single 



11 
 

page application. The Object.create method in JavaScript corresponds to the clone method of the 

prototype pattern. Object.create takes an object as its argument, which becomes the prototype of the 

newly created returned by the function. Figures 1 and 2 compare the structure of the Prototype pattern 

as illustrated in GoF vs its application in the SPA framework. 

 

Figure 1 GoF Prototype Pattern (Vlissides, Johnson, Helm, & Gamma, Creational Patterns, 1994) 



12 
 

 

Figure 2 Blocks framework prototype pattern 

At the time of prototype initialization all blocks are the same. At the very least we would want the 

different sections of the single page application to have distinct views that may possibly represent 

distinct data models. These properties are set on the prototypes after initialization, they are passed 

different container elements for rendering the view by combining a model and a template to generate a 

dynamic view.  

This example gives us a first glance at what inheritance looks like in JavaScript. There are many 

syntactical variations to doing this, but the essence is the same. There is no real concept of classes in 

JavaScript. Properties and behaviors may be added to an object dynamically, and these properties and 

methods are owned by the that object alone. One way to make objects inherit from other objects is to 

utilize the “prototype chain” in JavaScript. Every object created in JavaScript has a “prototype” property 

which can be used to assign members to objects of that type. Any object that has its prototype property 

set to another object, also inherits all its members.  

There is one caveat to using the prototype pattern for inheritance in this way. The JavaScript runtime 

needs to look up the prototype chain for any invoked property or method, which has a performance 

impact. The deeper and invoked prototype is, the more iterations it takes to invoke it. However in this 

case the pattern is appropriate as we are expecting the prototype chain to be only one level deep. 

Pattern:  Factory Method 



13 
 

The factory method is the simplest GoF design pattern to implement and the most common. A factory 

method is used when a client cannot anticipate which one of the several sub-types of a given type needs 

to be instantiated. A factory method "encapsulates the knowledge" of which subclass to create and 

return. 

The crux of the Factory method is that it must create a new instance of a class and return the newly 

created instance to the client, which only knows about the interface of the received object. Since 

JavaScript does not have any notion of interfaces, the created object must support the properties and 

operations that the client expects. The factory method is so called because a method name createxyz is 

usually part of its implementation, where xyz corresponds to the name of the object being created. 

Creating the xhr object 

In the following example of the Factory method, the type of object that needs to be created is 

XmlHttpRequest (Gross, 2006). Any single page application must have the ability to make Ajax calls to 

request content from the server. This is done through the XmlHttpRequest Object. Because there are 

more than one JavaScript engines in distribution and the multiple (browser) vendors usually take time to 

completely converge on the standard, there is more than one way of instantiating the XmlHttpRequest 

object depending on the version of the browser. The latest versions of most browsers implement the 

standard XMLHttpRequest object, but on older versions of internet explorer the same functionality is 

available through an ActiveXObject 

Regardless of the browser for which it is instantiated, a common set of methods and properties is 

associated with XmlHttpRequest for all platforms. These common properties and methods constitute an 

invisible interface. The client of the Factory method only knows about the interface and would attempt 

to invoke one or more of these methods on whatever object it receives from the factory method. The 

factory method is implemented as a single function, the sole member of a JavaScript module named 

xhrFactory, as shown in the listing 4. 



14 
 

 

Code Listing 4 An xhr Factory (Gross, 2006) 

Many popular JavaScript frameworks make use of the factory method pattern to create the xhr object. It 

is a common way to shield JavaScript framework users from browser specific details. The AngularJS 

framework even exposes an xhrFactory as a service to be replaced or decorated to create custom xhr 

objects. 

The Gang of Four implementation emphasize that the factory method pattern “lets a class defer 

instantiation to sub classes” and that “Frameworks use abstract classes to define and maintain 

relationships between objects” (Vlissides, Johnson, Helm, & Gamma, Creational Patterns, 1994). 

Abstract classes are usually associated with inheritance hierarchies. In this framework specific example 

however, there is no evidence of classes or abstractions. This illustrates a key difference between 

JavaScript and other traditional object-oriented programming languages. Due to its prototypal, object-

based inheritance mechanism, parallel class hierarchies like the ones described in the book will rarely be 

found in JavaScript. This is a significant departure from hierarchical, class based inheritance that are 

evident in many object-oriented designs.   

Gang of Four discusses creational design patterns in terms of "Products" and "Creator" abstractions. 

Multiple subclasses called ConcreteCreator and ConcreteProduct participate in the structure of the 

various creational patterns. In the above example, ConcreteProduct is the XmlHttpRequest Object, and 

ConcreteCreator is the xhrFactory. Product and Creator are interfaces, a language feature that JavaScript 

does not support. Assuming a completely different object that supports making ajax requests is 

implemented in another browser engine. We will need to create another instance of the factory to 

create that object, but only if the ajax API provided by the new object is different from the xhr object. In 

that case the two factories will not share an invisible interface.  



15 
 

In a dynamic, loosely typed language like JavaScript, interfaces can only be implied, not enforced. This 

concept is also known as duck typing which is common in most dynamic programming languages. 

Pattern: Proxy 

A proxy is essentially a gatekeeper for another object by encapsulating it through composition. Thus, the 

proxy object acts as a surrogate for the contained object (the subject). Proxy is a commonly used pattern 

and can be applied in a variety of scenarios. Remote proxies are usually frameworks for web services 

where a client may refer to a proxy object that ultimately makes requests to the remote web service. 

Web service proxies act as local objects to the client and shield it from all the networking concerns that 

are managed by the proxy itself. In this case the subject of the proxy is the remote web service.  

The purpose of a proxy is to control access to the subject. A proxy may be used to defer initialization of a 

subject if its creation is expensive. This scenario is also common in web service proxies where 

initialization of network resources is usually time consuming. A protection proxy manages access rights 

to the subject and provides conditional access to the client. A proxy may also be used to perform 

additional tasks such as locking of the subject for thread synchronization, or loading the subject into 

memory from a persistent data store before granting access to it. These are some of the common use 

cases of the proxy pattern described in GoF (Vlissides, Johnson, Helm, & Gamma, Behavioral Patterns, 

1994). 

Later versions of the ECMAScript standard provide some language level support for the proxy pattern 

(Osmani, Introducing ES2015 Proxies, 2016). The Proxy object allows intercepting the operations on a 

target object by providing trap methods that may perform additional operations on the target. If a trap 

method is not provided to the Proxy, corresponding requests are forwarded directly to the target object. 

Controlling access to the xhr object 

The xhr object provides two methods for making Ajax requests, “open” and “send”. Using the xhr object 

to invoke these two methods makes a synchronous ajax request. The program must wait for the request 

to complete before moving on. This causes the browser to freeze while the request is in progress. For 

this reason, synchronous requests have been deprecated and making a synchronous ajax request 

generates a console warning in most browsers. To make an asynchronous request, the script must 

handle the onreadystatechange event of the xhr object. The event handler must provide a callback 

function that is invoked with the result of the completed request, usually an HTML page or a JSON 

object. While it may be acceptable to allow client code to handle the onreadystatechange event by 

itself, it makes better design sense to encapsulate the concerns of making the ajax request.  

We create a new module named “async” that controls access to the xhr object and implements an event 

handler that monitors the readystate of the ajax request with a switch statement. It exposes a simplified 

request API to the client that only needs to call the async module with the url of the request and a 

callback function. The callback is invoked inside the event handler in the async module when the ajax 

request is complete. 



16 
 

 

Figure 3 asynchronous proxy 

This implementation of an asynchronous proxy does not simply mirror the requests on the subject, but 

combines them into a single request, shielding the client from the details of the xhr object altogether. 

This is a key point to consider when considering the appropriateness of applying a design pattern to 

solve a problem. The solution may not strictly adhere to the structure described through UML diagrams 

and code samples in pattern literature. In almost all cases a particular pattern implementation will 

deviate slightly from implementation other contexts. Design patterns must be adapted to problems 

without forcing their application through over design. 

Let us consider another implementation of the proxy pattern for the SPA framework. This time it is a 

proxy that controls access to the asynchronous proxy itself. Web application frameworks often have 

support for caching the results of an HTTP request. There are many approaches to caching in web 

application. Server-side caching enables caching the http out in a process on the web application server. 

HTTP caching is a mechanism that is built into the protocol itself, controlled by properties included in 

HTTP headers. With some of the new HTML5 APIs for local storage on the client side, even more caching 

strategies are possible. Thus, we can implement a cache proxy that can do a cache lookup before routing 

the request to the asynchronous proxy.   

 

Figure 4 cache proxy 

Caching is not a trivial concern and cache invalidation is considered one of the most difficult 

programming tasks. Therefore, the actual cache must be implemented in a completely different module, 

delegating caching responsibilities to external libraries that are built for that purpose. The cache proxy 

simply looks up the cache for a cached response for the current url that is not yet invalidated. If such a 

result exists, the cache proxy invokes the callback function with the stored result, otherwise the request 

is routed to the asynchronous proxy. This is another non- typical example of smart reference that 

performs some meaningful task before granting access to the subject. 

Pattern: Template Method 

The template method pattern is a way to achieve runtime polymorphism, by allowing certain sections of 

an algorithm to be “farmed out” and fulfilled externally. A standard implementation of the template 

method pattern involves defining the structure of an algorithm in an abstract class with overridable 



17 
 

template methods acting as placeholders for the portions of the algorithm that must be implemented by 

subclasses. Thus, all the subclasses implement a variation of the same algorithm and each concrete sub 

class contains a complete algorithm implementation.  

Template method pattern essentially plugs in function into an algorithm skeleton. In JavaScript, there 

are multiple ways to solve the problem of defining a partial algorithm. JavaScript supports first-class 

functions, which means functions are treated as regular objects and they may be passed to other 

functions as arguments. The template methods can thus be fulfilled by function parameters instead of 

subclasses. This approach is even applicable if the template methods need access to the private state of 

the module that declares the algorithm skeleton, as the injected functions will be invoked from within 

its scope. The appropriateness of either approach to solve a problem depends upon its context. 

Plugging in a progress indicator 

HTTP requests take time to complete, even on high bandwidth networks HTTP responses will rarely be 

instant, especially if the server must perform expensive disk based I/O. To provide a fluid user 

experience, the SPA framework needs to support a progress indicator while a section of the page is 

waiting for an ajax response. To accomplish this, we need to modify the onreadystatechange event 

handler in the asynchronous class by inserting template methods to show and hide a progress indicator 

at appropriate points in the switch statement. We discard the functions as arguments approach for this 

case, because it will require changing the signature of the get method. The template methods must 

therefore be fulfilled by an external object.  

 

Code Listing 5 Handling the onreadystatechange event with template methods (Gross, 2006) 

Now we could use prototypal inheritance to create a “sub-object” of the async module that implements 

the methods to show and hide a progress indicator. However, creating a subtype of an ajax related 

module simply for handling a GUI concern is isn’t appropriate or necessary. Another approach is to 

employ the mutability of JavaScript’s objects are reset the public pointers to the template methods 

directly on an instance of the async module. This however would require the async module to be 



18 
 

accessible from outside the scope of the ajax module, which is bad design and violates the modularity of 

the framework. Another rather inventive way to inject the behavior of template methods is to pass the 

implementation functions as parameters to the ajax module’s IIFE itself. 

 

This technique is often used to effectively incorporate external libraries into a module. For example, the 

following example shows the jQuery library being passed as a parameter to the domUtil module, to 

simplify DOM related operations for the framework.  

Pattern: Façade 

The Façade pattern is an object that combines “sub-systems” and provides a simple, unified interface to 

access their functionality. The purpose of the Façade pattern is to simplify a set of granular APIs. Façade 

objects shield the client from the complexity of their subsystems, while also decoupling subsystems 

from the rest of the application, increasing their portability. Facades may compose subsystems 

hierarchically, thereby layering them and simplifying their interdependence. Facades also serve the 

purpose of preventing their subsystems to be used in an unexpected manner. The ability to 

independently build and deploy components is crucial to large scale software systems. For compiled 

languages, facades provide the added benefit of reducing compilation dependencies (Vlissides, Johnson, 

Helm, & Gamma, Behavioral Patterns, 1994). The Façade pattern has no specific structure, and a typical 

way to implement it is by object composition. 

Facades are simpler and more intuitive to implement in JavaScript that in other class based languages. 

The façade pattern is central to almost all JavaScript libraries and modules. The jQuery library itself is a 

fitting example of a façade. The jQuery library was initially written to simplify working with the DOM API 

and handle ajax requests. These are two interdependent subsystems on their own. It provides a single 

method to replace many DOM API calls to select elements on an HTML page. jQuery’s selector routes 

the request to the appropriate DOM API method depending upon the arguments that are passed to it. 

Since its initial release jQuery has added many other subsystems to add support for animations and 

HTML templating. Beyond the subsystems already part of it, jQuery also supports additional features to 

be plugged in, and all of this is exposed through a single façade, the jQuery object itself. 

An Ajax Façade 

To more closely evaluate the application of the façade pattern in JavaScript, we may revisit the ajax 

related functionality that has been incrementally designed and implemented during previous pattern 

discussions. We briefly discussed the ajax module previously during the application of the template 

method pattern. The first ajax related module developed was the xhrFactory, followed by the async 

proxy that encapsulates it. The async proxy was further encapsulated with the cacheproxy. The 

cacheproxy needs to perform lookups against a local cache store, it makes sense to have a cache module 

dedicated to caching ajax responses. The cache module may be kept as a placeholder for future caching 

functionality, only exposing high-level APIs and exposing stub operations that the cacheproxy can use. 

Until a true cache is actually implemented, get requests will simply fall through to the async module to 

no adverse effect. These four modules (xhrFactory, async, cacheproxy and cache) are interdependent 



19 
 

and they work together to provide functionality related to one high level concern of the Blocks SPA 

framework, making ajax requests. The rest of the modules in the framework do not need to be directly 

coupled to the all the four ajax modules, only the cacheproxy and async modules provide APIs that 

would be required by other components, and framework users. Thus, they could be enclosed into 

another module that exposes a simplified API to the “external-world”. Figure 5 and listing 6 illustrate the 

ajax façade and the API it exposes

 

 

Figure 5 Ajax Facade 

 

Code Listing 6 Ajax Facade 

There is a one-way dependency between any two sub-modules and the complexity of the inner modules 

is hidden away from the client. The Façade this provides a smaller interface to the client, consisting of 

two methods, to perform get and post http requests. A post request gets routed directly to async proxy 

while a get request gets routed through the cache proxy to check for cached results first.  

Pattern: Flyweight 

The Flyweight pattern encapsulates a set of lightweight, primitive, "fine-grained" objects called 

"flyweights", that are widely used in an application. It allows design flexibility in the application at a 

granular level if appropriately applied. Flyweights are mostly shared objects, which allows the same 

instance of a flyweight to be used in a variety of contexts. When used appropriately the pattern results 

in cost saving for the application in terms of memory usage. The Cost savings increase with the number 

flyweight objects, and the number of times a flyweight is used within an application. Access to the 

flyweights is managed through a flyweight factory, which is responsible for storing and creating 



20 
 

flyweight instances. This ensures that new instances of flyweights are not created directly by the client, 

they can only be accessed through the factory. The pattern enables run time addition and modification 

of “extrinsic state” on the flyweight depending upon the context in which it is being used. 

Creating a tag registry 

A framework for single page applications will need the ability to generate a UI dynamically. A view in an 

SPA will comprise of HTML markup, which in turn comprises of various HTML tags and the set of styles & 

event handlers associated with them. The tags also need to be converted into a DOM element for 

additional (extrinsic) state (styles, events) to be attached to and removed from the respective HTML 

elements at run time. 

As the number of views in an SPA grows, so does the number of dynamically generated HTML elements. 

Creating a new element for each tag from scratch every time it is needed will become cost prohibitive as 

the application scales. Composing many programmatically created nodes can also become cumbersome 

and difficult to understand and maintain. We need to come up with a design that allows a cost-efficient 

way to generate dynamic DOM elements and compose them in a view, while also allowing granular 

control over the markup it consists of. 

JavaScript does not provide a way to create an HTML element from text markup in its DOM API. The only 

DOM method that creates an HTML node takes a single argument, the tag name, and returns a DOM 

Node. Creating a single node using this method is more efficient than creating one using markup text, 

which requires some additional steps. However, the advantage in efficiency dissipates as the element to 

be dynamically generated becomes more complex, with multiple nested and sibling nodes. Also, not all 

elements in the page need to be dynamically generated, only the ones that require extrinsic state to be 

manipulated. 

Code listing 7 shows an implementation of Flyweight pattern for creating markup dynamically. 



21 
 

 

Code Listing 7 Flyweight for HTML tags 

Complex markup can be generated using the above module by nesting calls to createTag method, which 

is another example of a factory method that creates new flyweight objects depending upon its 

arguments. The flyweight objects in this case a simply a string template for a tag. It could be argued that 

creating a new string every time it is needed is not very expensive. However, HTML has over 50 tags for 

sectioning, formatting, input and semantics. It could be rewarding from a design perspective to have a 

central module for generating markup dynamically. 

Creating a template registry 

Another feature that an SPA framework must support is HTML templates. All JavaScript MV* 

frameworks define their views as declarative HTML templates, that have place holders for properties 

that will be replaced by corresponding properties in the model. 

 

Code Listing 8 Express framework jade view template 



22 
 

                               

Code Listing 9 Handlebars framework template 

On traditional client server MVC based web applications, the process of replacing placeholders with 

actual data occurs on the server side, with the resulting HTML being sent to the browser as part of an 

HTTP response. This however does not preclude the need for using templates in the browser. Most 

modern web applications use HTML templates both on the client and the server. A Single page 

application may request all relevant code and resources from the server in a single request, or on 

demand. If the templates reside in separate files, they will need to be compiled into an in-memory 

representation before they can be used by the application. 

Whether the templates reside on the client or the server, an application will need a way to easily access 

a view template through an identifier. The flyweight pattern example implemented for HTML tags can 

be adapted with a few modifications to act as a registry for HTML templates. Code listing 10 shows the 

implementation of a templateFactory object that manages access to a template registry. Its structure is 

very similar to the elementFactory implemented above, with a minor difference. The templateFactory 

does not have a way to automatically create a requested template if it does not already exist. zthe 

conditional expression to check for the existence of a tag is no longer required. Instead, an additional 

method is added to the factory to explicitly register new templates. 

 

Code Listing 10 templateFactory 

The purpose of the flyweight pattern as explained in this section is simply to act as a central repository 

for all view templates that will be used in the application.  It enables the controllers in the application  to 

find view templates by name instead of maintaining a reference to the template string itself. Also, the 

templatefactory has the potential to provide more cost savings than the elementFactory. A template will 



23 
 

usually consist of markup containing multiple HTML tags, and as stated earlier, the cost penalty of 

creating an HTML element from markup dissipates as the size of the markup increases. 

Pattern: Builder 

The motivation for the Builder pattern is to allow a complex object to be converted into different 

representations, where the number of possible representations an object might have is open ended. A 

complex representation of the object may be constructed one part at a time, while the client is unaware 

of the construction process. 

The Builder pattern can be thought of to convert an Object from one representation into another. The 

participants in the pattern are 1) A Builder - a class encapsulating the creation of one representation of 

an object and 2) A Director class- a class responsible for encapsulating and parsing the original object (or 

data), and an instance of the builder class.  The Builder is responsible for constructing one 

representation of the object one part at a time. The Director class traverses through the original object 

and sends parts of it to the builder for construction. The example for the Builder pattern discussed in the 

Gang of Four book converts an RTF document into other formats such as ASCII and TeX. In this case the 

Director is the RTFReader class, which parses the RTF document one token at a time. Each of the target 

conversion formats have their own builder class called ASCIIConverter and TeXConverter, which convert 

the RTF tokens into their respective formats, handing characters, fonts and paragraphs and storing the 

result. 

 

Figure 6 The Builder pattern (Vlissides, Johnson, Helm, & Gamma, Creational Patterns, 1994) 

In the context of web applications there are some common representations of data that are frequently 

encountered, namely JSON, XML, HTML, Markdown etc. In web applications, data may be requested 

from servers in multiple formats. JSON (JavaScript Object Notation) is a popular data-interchange format 

for the web, consisting of name-value pairs and arrays. Converting JSON into an HTML representation is 

a very common use case in ajax based web applications. Data received in JSON needs to be converted 

into an HTML representation before it can be displayed on a web page. This is a good enough context to 

explore the application of the builder pattern to design a solution, especially if the JSON data needs to 

be iterated through to “hydrate” an HTML template incrementally or recursively. 



24 
 

Creating an SPA view 

As mentioned in the previous pattern discussion for the flyweight pattern, HTML templates are an 

essential part of any ajax based single page application.  Before a template can be used in a web page 

however, the property placeholders contained in it must be replaced by properties from actual data, 

usually contained in a JSON object. This is known as hydrating a template, and the entire process of 

creating a view from JSON and templates is known as client-side templating. A variation of this is server-

side templating, where server-side code may be intermingled with HTML markup before generating an 

HTML response that is sent to the client. In most SPA frameworks, templating concerns are usually 

handled on the client side. There many JavaScript frameworks that provide templating support and a 

few of them solely focus on it. We could always use an external library to handle the templating 

concerns for our SPA framework, but we do not currently need all the additional functionality and its 

associated weight. We would like to keep our design open enough so that it does not prevent us from 

using external templating libraries at a later point if we want to. 

Figure 7 illustrates the of application a simple JSON object to a template to produce the resulting HTML. 

 

Figure 7 Templating (Source: www) 

This example seems simple enough that it could be implemented in a single function. However, in real 

world scenarios 

Let's consider an index of HTML documents, like the table of contents of this dissertation. An index with 

multiple nested headings and hypertext references to the corresponding articles on the server as shown 

in the code listing 11. 



25 
 

 

Code Listing 11 JSON representation of a document index 

In the following example, we use the builder pattern to create an html index with anchor tags and 

appropriate indentation. We create the ModelDirector and TemplateBuilder classes. Note that we are 

referring to the two constructs as classes and not objects. This is because objects of these two types 

require explicit initialization using the “new” keyword, and maintain private fields. The Director class 

takes two arguments as it's constructor parameters, the JSON to iterate through, and an instance of the 

Builder class. The "construct" method of the director class iterates through the JSON array and passes 

index items to the builder instance to do the bulk of the work. Figure 8 illustrates the structure and 

collaboration of this builder pattern implementation. 

 

Figure 8 Builder pattern for “client-side” templating 

The separation of the Director and the Builder into two different classes makes sense as their 

responsibilities are different. The two classes provide two separate points for customizing the template 

building process. The director controls how parts of the JSON model are passed to the builder, and the 



26 
 

Builder controls the combining a part of the model to a given template. Different scenarios with varying 

JSON and template structures and view requirements will need to be handled accordingly. We may note 

here that certain variables are being invoked as methods, which is possible in JavaScript because 

functions are treated as regular objects. This is another example of employing the functional strengths 

of JavaScript to produce an extendible design. Figure 12 demonstrates the application of the builder 

pattern to build a view recursively, by iterating through the indexModel JSON data shown in Code listing 

11 

 

Code Listing 12 Builder Pattern with recursive templating 

New behaviors may be added to the Director and Builder classes simply by passing different iterator and 

builder functions to them. We may even implement recursively building a template by passing a 

recursive function. This it allows us to handle multi-dimensional arrays and nested objects using the 

same class without having to extend it. Listing 13 shows an API of Handlebars which allows registration 

of a function to handle a list in the data model. This function is invoked whenever the templating engine 

encounters a list property in the JSON its parsing. 



27 
 

 

Code Listing 13 http://handlebarsjs.com/ 

Once again, The Director and Builder “interfaces” are only implied. For a different Builder 

implementation to be used with the same director it must conform to the same interface to avoid 

modifying the director. The above implementation of the builder pattern creates a view recursively and 

the two classes involved are central to the framework’s view component. Templating is not the only 

responsibility of the builder pattern in the SPA framework, it may also convert the hydrated html 

templates into elements, attach events to them, and append the elements to the container of the SPA 

section, thus rendering the view. Another responsibility of the Director-Builder component is to 

construct an in-memory representation of the view, as discussed in the next section. 

Pattern: Composite 

The key feature of the Composite pattern is that it allows clients to ignore the difference between 

individual components and compositions. In statically typed languages this is achieved by creating 

objects that implement both composite and component interfaces. Composites are tree-like structures, 

it is not clear from the discussion of the pattern in GoF if a composite may allow multiple root level 

nodes. Because a Composite and Component implement the same interface and operations, in a typical 

application of the composite pattern, invoking an operation on a non-leaf component invokes the same 

operation on all its children as well. Thus, Composite pattern allows invoking a command on a group of 

related objects recursively. 

The Composite pattern is often described in the context of a GUI. In fact, graphical user interfaces are 

one of the primary reasons for the proliferation of object oriented frameworks (Fayad & Schmidt, 1997). 

The GoF discusses the case study of a text editor, the graphical primitives for which are represented in 

the form of a composite. Any GUI is primarily composed of graphical primitives such as lines, curves, text 

& images and they are composed into containers such as rows, columns, tabs and windows. Complex 

GUI applications such as a text editor or a drawing application must have an object structure to 

represent the graphical objects in memory while it is being edited. The GUI of a web page is declarative, 

comprising of HTML elements and CSS styles. Before the arrival of the HTML5, tags and css were the 

only GUI related primitives in a web page. 

Representing an SPA view in-memory 

We need the GUI composite because before a view can be rendered on a browser, it needs to be in 

HTML form, which is text based. HTML by itself does not allow dynamic updates, which is the reason 

JavaScript exists in the first place. A dynamic single page application requires a view, the components of 

which can be manipulated in memory and converted to text before being rendered to the browser. To 



28 
 

provide a rich user interface, CSS classes and events need to be applied to html elements dynamically. It 

would be a bad design choice to consider doing this by editing the text of the HTML itself. It would lead 

to cluttered markup and poor performance. 

HTML elements in JavaScript are represented in memory as Nodes, as part of its Document Object 

Model (DOM). JavaScript's DOM API allows dynamic addition, removal and manipulation of HTML 

elements, which is reflected on the GUI. Aside from the visual manipulation of GUI elements, Nodes are 

also used to attach and detach event handlers to them at run-time, apply and remove CSS classes. By 

setting the contenteditable property on an HTML element, we can make the content inside that element 

editable by the user. This is the basis for most browser based text editors, WYSIWYG editors and wikis. 

Code listing 14 shows the implementation of the ViewPart class which is an application of the Composite 

pattern. There are no Composite or Component interfaces, the same object is both the composite and 

the component. There is no distinction between leaf and non-leaf properties. The ViewPart 

encapsulates an HTML element, and provides additional fields and methods to support child 

components and parent references. Finally, there’s the semi-abstract render method that simply 

renders the elements to the view recursively. The render method can be customized and extended by 

subclasses and decorators to achieve more interesting behaviors.  

 

Code Listing 14 The Composite Pattern - ViewPart class 

One could question the need for an in-memory representation of the view, as the builder pattern 

implemented in the last section is completely capable of attaching dynamic events and properties to 



29 
 

elements as well as rendering them. However not all updates to the view of an SPA application require 

fresh data and a new template. For example, a web form may need to be validated before its data is 

posted to the server. If the validation fails, the view needs to be updated with visual cues about errors, 

and tooltips to be shown with helpful information. 

The Gang of Four suggest that the builder and composite patterns are related, and that builders are 

often used to build composites. That is precisely how the two patterns are used in this SPA framework 

specific implementation. Code listing 15 shows how the builder pattern is being used to construct the 

view for the application.  

 

Code Listing 15 Builder Pattern for building a Composite view 

The ViewPart is a central component of the view engine of the SPA framework. It encapsulates the 

entire view of an independently updateable SPA section. All dynamic functionality and user interactions 

on will involve an instance of this object.                                                                                               

Pattern: Iterator 

Most object-oriented programming frameworks provide their own collection classes and iterators to 

navigate them. Such iterators are typically used to iterate through collections that are sequential. The 

design significance of iterators becomes apparent when non-sequential collections need to be iterated 

upon, such as tree and graph based data structures. Native implementations of such structures in 

languages and frameworks is rare. A system may need more than one way traversing an aggregate 

structure, for example pre-order and in-order traversal of trees. Even though a programmer may not 

anticipate an immediate need for multiple traversal methods, it makes design sense to separate the 

iteration/traversal mechanism from a complex collection object that has other responsibilities to ensure 

separating the two concerns.  

The Gang of Four describe the concept "polymorphic iteration" to decouple an iterator from the object 

it traverses, which is based creating the Iterator and Iterable abstractions and their parallel class 

hierarchies. But as we have already seen, the existence of object hierarchies is not a prerequisite for the 

application of design patterns, though their often design significance becomes more apparent when 

they do. 

Iterating the composite view 

The composite "View Model" developed in the previous section seems an useful design choice, but it 

doesn't do anything so far besides producing a string representation of itself. Subsequent discussions 

will demonstrate that the composite is a crucial part of the View component of this framework. It needs 

to support a lot more functionality and we should be sure we do not end up with a bloated structure as 

we continue adding features to it. The toString method of the composite iterates the composite 

recursively. As we add more methods to it, variations of that recursive logic will need to be repeated, 

thus violating the DRY programming principle. Also, this does not allow external classes to iterate over 



30 
 

the ViewPart components, the recursive lteration is owned by the composite object itself. The purpose 

of the iterator pattern is external the traversal of an object, allowing its clients to iterate over it. 

The composite view is not a sequential data structure, it is a tree and therefore, requires tree traversal 

methods to iterate through it. It is central to multiple aspects in the View module of the SPA framework, 

and will be accessed and manipulated by other components. The framework needs a way to sort and 

filter the parts that comprise the view. Recursive traversal may be appropriate for getting a text 

representation but may not be sufficient in other cases. There needs to be a way to address the 

competing concerns without making too many changes to the view composites. We need to separate 

the traversal logic for the composite into a separate module, so that they can vary independently. 

A tree may be traversed in a couple of ways, breadth first or depth first. Breadth first traversal is easier 

to implement as it traverses a tree one level at a time, although it may require more memory. A breadth 

first iterator needs to maintain references to each child array found at each level of the composite. Code 

listing 16 shows a more involved implementation of an iterator that traverses the ViewPart composite 

depth-first, simulating recursion. It is implemented by using a JavaScript array as a stack, the API for 

which is built into the language itself. 

 

Code Listing 16 Depth first iterator for ViewPart 



31 
 

The latest standard for JavaScript provides some language support for creating iterators. For an object 

to be iterable, it must implement an iterator function that uses the yield keyword to return the next 

object in the sequence. The use of native JavaScript iterators is not appropriate to traverse a tree based 

structure however. 

Pattern: Decorator 

The Decorator pattern allows adding functionality to an object dynamically. It is useful when we want to 

add responsibilities to an individual object but not to other objects of the same type. Another use case 

for the decorator pattern is to assign behavior to objects that may later be withdrawn. In class based 

languages, the decorator pattern provides an alternative to sub classing to extend the behavior or 

objects. Decorator is an example of dynamic inheritance, in contrast to static inheritance achieved by 

creating subclasses. The standard implementation of the decorator pattern involves a class to inherit 

from another base class as well as contain an instance of it. 

The key aspect of the decorator pattern is that it enables inheritance through composition. Figure 9 

shows the structure of an implementation of the decorator pattern. It illustrates how a visual 

component that may be adorned with a border and a scrolling functionality.  

 

Figure 9 Decorator pattern example (Helm, Johnson, Vlissides, & Gamma, Structural Patterns, 1994) 

The decorator has an instance of the component as one of its fields. The BorderDecorator works by first 

calling the Draw method on its component and then draws a border on it. The ScrollDecorator scrolls to 

a position on the visual component after drawing it first. 

Form Validation 
HTML input elements are used to collect data from the application user. Validation of the data provided 

by the user is a usual concern of web applications. The HTML input tags provide support for validation 

without scripting, by setting the required attribute for a mandatory input field and by setting the pattern 

attribute to validate its text by matching it to a regular expression. The submit event of the form 

element checks the validity of form elements by invoking the checkValidity method on all its input fields. 

If an input field is invalid, the browser adds some default styles to the element to indicate an error, 



32 
 

usually a red border. Most framework users would seek to override default browser behaviour form 

validation to provide a more uniform experience across all browsers. As the framework constructs an in-

memory representation of the view, it makes sense that the responsibility of validating a form based 

view be part of the composite itself. Code listing 17 shows the addition a validate function to a ViewPart 

object. The validation augmented object is referred to as FormViewPart. The validation works by first 

checking if the component is a leaf level part of the view, therefore an input field. If it is, the 

checkValidity method is invoked on the enclosed element, otherwise the validation methods all of the 

components children for validity through recursion. 

 

Code Listing 17 FormViewPart for encapsulating forms 

Now,  different types of input fields will indicate invalid input with custom styles. Some input fields may 

be highlighted with a different background color, others may have colored borders, or by resizing the 

element. Any combination of the three styles may be used to indicate errors. Figure 10 and code listing 

18 illustrate the decorator pattern as implemented for form validation. Two different types of input 

elements indicate errors in two different ways by composing the same type of FormViewPart object 



33 
 

 

Figure 10 Form Decorators 

 

Code Listing 18 TextBox Form Decorator 

The component, a FormViewPart object is enclosed within a leaf level form view part. The leaf level form 

components call the render method of part they enclose, attributes are added to the corresponding 



34 
 

input element to indicate the type of input, and finally the validity is checked to conditionally add styles 

to indicate an error appropriately. 

This implementation of the decorator pattern uses a technique called functional inheritance as opposed 

to prototypal inheritance described during the discussion of the prototype pattern. Functional 

inheritance is implemented through object composition, and does not involve a prototype chain. 

Therefore, functional inheritance is considered preferable to prototypal inheritance because it provides 

slightly better performance. 

An implementation of the decorator pattern is possible even through prototype based inheritance. Code 

listing 19 shows how a component may be enclosed and extended by a Decorator object. The syntax for 

doing so is clearly more verbose and difficult to comprehend. This, and the associated performance 

penalty of looking up the prototype chain make the decorator pattern the preferred way of object 

inheritance in JavaScript. The rule of thumb is, whenever we need to extend a type of object, use 

prototype pattern and prototypal inheritance. And if we simply need to extend an object instance, use 

decorator pattern and functional inheritance. 

 

Code Listing 19 Decorator with prototype inheritance (Mammino & Casciaro, 2016) 

Pattern: Chain of Responsibility 

The “Chain” in Chain of responsibility pattern refers to a chain of objects refers to a chain of objects. It 

might be a linear chain like a linked list, or a tree like structure, like a composite. The pattern allows a 

request to be propagated up or down a chain till one of the part handles it and stops further 

propagation. This requires the nodes in the chain references to their successor, the next node in the 

chain that may handle a request if the current one cannot. Chain of responsibility is most often used 



35 
 

along with the Composite pattern. The primary benefit of using the pattern is that it lets components in 

a Composite data structure to selectively handle events. Even though, the reference to the next item in 

the chain is termed successor, in case of a composite the successor would be the parent of a node.  

Event bubbling is an example of the Chain of Responsibility pattern. An event invoked on a nested 

element is passed on to its parent if the element itself cannot handle it. In web browsers, event bubbling 

is implemented such that even if a nested element handles an event, it will be propagated up the chain 

unless it is explicitly prevented. The prototype chain in the JavaScript language itself is another example 

of Chain of Responsibility, if a property or method that does not exist in an object is invoked, the 

JavaScript runtime will continue to look for that member up the object’s prototype chain.  

GUIs in object oriented frameworks are almost always examples of the Composite pattern. One of the 

benefits of the Composite is that there is no need for a client to differentiate between a component and 

its container. A Composite view in the SPA framework, may need the ability to selectively handle an 

event, for example to provide contextual information about certain elements of the view. Not all 

components of the view may have contextual information associated with them. The event may be 

triggered by clicking on an icon rendered as part of a component, in which case the links in the chain 

that can handle an event can be visually identified. The chain of responsibility in this case will determine 

the specific handlers before rendering the view. In other cases, the events may be triggered simply by 

mouse/pointer movement, in which case the event needs to be captured by the element being pointed 

to, and either handled or propagated upwards, depending on one or more of its properties 

Tooltips for Forms 

An HTML Form is a group of different input elements used to gather information from the user, which 

can then be posted to the server. A form can be created with our existing SPA framework, using a 

Builder and ViewPart composite, support for which has already been added. The FormViewPart 

composite adds support for validating form elements. We now need to embellish our forms with 

“Tooltip” functionality to provide users with helpful information about certain parts of the form. The 

Tooltip may appear on an input field or a section of the form containing multiple input fields. The Tooltip 

text on an input field may be used to show information like password rules or validation messages. 

Tooltips on sections of the form may display text about the purpose of information collected from the 

various fields in it. Parts of the Composite object representing a multi-section form may have a tooltip 

message property associated with them, we need a mechanism to generate tooltips selectively on 

components that have this property. 

The Gang of Four version of the Chain of Responsibility works by setting successor nodes on an object if 

the current one cannot handle a request. A key aspect of the implementation is the following 

conditional block which checks the current node for an appropriate help item, and passing on the 

request to the successor if it doesn’t. Listing 20 shows a simple if-else statement that accomplishes this 

in C++. 



36 
 

 

Code Listing 20 Delegating help up the chain (Vlissides, Johnson, Helm, & Gamma, Behavioral Patterns, 1994) 

To implement the chain of responsibility pattern for tooltips, the pattern will make use of the parent 

references in the ViewPart composite. We need to implement a tooltip handler, that takes a ViewPart as 

parameter. The handler is responsible for looking up the tooltip message on the viewPart and attach 

relevant events to it if the property exists, or delegate the handling to its parent. 

 

Code Listing 21 Tooltip Handler for ViewPart using parent references 

An implementation detail to note here is that the tooltip message property and its getter may be added 

to any component in the composite view, but the Tooltip class only needs to be associated only with leaf 

components. This makes sense for forms, as in case of validation errors, we would like to indicate the 

errors in leaf level elements first. This also allows us to selectively ignore branches of the composite that 

we know in advance will not have associated tooltips, by not associating the Tooltip class with the leaf 

components of that branch. 

Pattern: Bridge 

The intent of the Bridge design pattern is to “decouple an abstraction from its implementation so the 

two can vary independently” (Vlissides, Johnson, Helm, & Gamma, Behavioral Patterns, 1994). The 

bridge pattern accomplishes this decoupling by containment and delegation. It is useful when there may 

be cases of different sets APIs that perform the same service to the application. Gang of Four discuss the 

motivation for the Bridge pattern through the example of a multi-platform application that needs to 

abstract away the details of the windowing systems of different platforms. Since the native APIs for 

managing windows and other GUI components for different operating systems are likely to be very 

different, it would be difficult to find commonalities between them to represent them with the same 

abstract class or interface. 

The Bridge pattern decouples a component in an application or framework from the specific details of 

the platforms that it needs to support. This implies “parallel” objects, where framework specific 



37 
 

functionality in one of the objects is implemented in terms of platform specific functionality in another. 

This effectively decouples an interface (the framework) from its implementation (the platform). 

Bridging controller actions to browser events 

The bridge pattern is especially relevant to applications the need to support GUI events. GUI based 

application frameworks will need to support GUI related objects and view components. Some of the 

previous pattern discussions in this text have already described the design and construction of some 

such objects. The ViewPart component represent the GUI of the Blocks application framework in 

memory. The frameworks GUI components will need to be coupled with browser specific APIs for 

triggering events by capturing mouse clicks or key strokes.  

For creating a custom object structure that abstracts away the details of the browser, it makes sense to 

implement the framework’s own API for event handling. Any event handling code for managing 

interactions with the ViewPart needs to be abstracted away from browser specific event handling. GUI 

objects are designed with framework specific needs in mind and as such need to be decoupled from 

platform specific details, even though an SPA framework will certainly need to run on a browser engine. 

It is still a good design decision that some components of the framework are kept independent from the 

browser. Even though we may not expect to port the application to other non-browser platforms, it still 

makes sense to shield the framework user from browser specific details. 

Listing 22 is an example of the Bridge pattern being used to encapsulate the API to attach an event to an 

HTML node, with the BrowserEventDispatcher as the platform specific implementation. The framework 

users however only need to work with the ViewPartEventDispatcher which contains an instance of the 

platform specific implementation and invokes the relevant API when requested. 

 



38 
 

 

Code Listing 22 Bridging the event API 

A key detail of GUI applications based on the Model View Controller architectural framework is that user 

interactions on the view such as navigation and form submission are routed to the controller to be 

handled. This is on contrast to how user interactions are handled by the browser itself, by attaching 

event handlers to DOM elements. Thus, the framework user handles interactions with its GUI objects by 

routing them to controller actions, while unaware of the browser specific plumbing happening “under 

the hood”. 

Pattern: Observer 

The observer pattern, also sometimes referred to as “publish-subscribe”, is a way to decouple modules 

when there may cases of one to many dependencies between them. Many application frameworks that 

include a GUI toolkit also provide an API for handling events. This is the most common application of the 

Observer pattern, allowing programmers to write event handlers to respond to events dispatched by 

GUI objects, thus allowing any application specific logic contained in the handler to be decoupled from 

the GUI. Figure 23 shows the structure of a typical application of the Observer pattern 



39 
 

 

Code Listing 23 Observer Pattern (Helm, Johnson, Vlissides, & Gamma, Behavioral Patterns, 1994) 

 

 

 

Observing an SPA module 

Single page applications provide a richer interaction model than traditional web applications. A typical 

single page application allows a number of sections to display views that can be rendered and updated 

independently from the rest of the page. Each of these independent sections can be treated as separate 

modules, where each module can have its own data model and is responsible for rendering the view and 

handling user interactions on it. Each module is an object instance that responds to the events in its own 

view, dispatching the requests to its own controller which modifies its own data model before re-

rendering the view. However, in some cases two module instances may share a data model, when 

updates to one section of the page requires an update to another. This is similar to the use case 

described in Gang of Four, where a bar chart, a pie graph must respond to changes in a spreadsheet 

displayed in the same window as the graphs.  



40 
 

 

Figure 11 Observer pattern for MVC (Vlissides, Johnson, Helm, & Gamma, Behavioral Patterns, 1994) 

Communicating such changes would be trivial if the same module handled all three view components, 

which is impossible to do with the architecture our SPA framework. Each Block component is associated 

with each independently updateable section of the view. 

The first issue we need to address is that any Block instance may act as an Observer and an Observable. 

Code listing 12 illustrates a Block class implementing both Observer and Observable interfaces, to 

establish two-way communication between them. 

 

Figure 12 Observer Pattern applied on the Block module 

The key here is that the notify and update functions are not tied to the specifics of any Block instance. 

This is easy to accomplish due to the dynamic nature of JavaScript. Even if the Block class provides a 

default implementation for the notify and update functions, they can always be redefined overridden by 

any instance of it. Listing 13 shows how: 



41 
 

 

Code Listing 24 Block Observer example 

This allows the publish subscribe mechanism to be completely independent of the specifics of an 

observable instance, or the type of data an instance may update its observers with. Each observer 

instance may also define completely different functions deal with the data received from the observable 

instance. To solve the problem of creating a pager module, the notify function on the main module must 

query its private data to find the currently loaded article, find the previous and next articles from its 

model and update the pager module with this data. The notify function must be triggered whenever an 

article loads in the main module, and the pager module would be updated accordingly.  

Revisiting the example of the article “index” demonstrated in the discussion of the builder pattern. The 

index itself is contained within a single Block instance, and clicking on an index item renders the article 

within the same container as the index. But once an article is rendered, the GUI does not yet provide us 

with a way navigate any further, either by returning to the index or providing clickable links to navigate 

to the previous or next article. It is worth pointing out that the article itself is requested from the server 

in HTML form, not JSON, and therefore it does not require a template, or a custom view to be built for it. 

 

Code Listing 25 Article Browser without Paging 



42 
 

We need another section in the page to contain navigation links to previous and next articles from the 

index, along with a link to navigate back to the index itself. The section must also allow updating the link 

targets for previous and next articles each time the user navigates to a new one. Also, this section must 

be hidden when the complete index is displayed in the main section. Thus, along with a main module, 

we need another “pager” module to provide navigational functionality for our application, and we need 

our framework to support event-driven communication between them. As mentioned earlier, each 

module in our SPA framework is encapsulated in a class named “Block”. Each instance of Block is 

associated with an HTML element which acts as its container. The framework needs to support 

communication of private data between these instances on demand. Listing 26 and Figure 13 illustrate 

how we establish this communication while keeping the two Block instances completely independent 

using the Observer pattern. The notify method of the “main”  Block is invoked whenever an item is 

clicked on the index, with the urls of the previous and next articles to the one requested. The pager 

module then starts itself with the paging functionality to navigate the articles. 

 

Code Listing 26 Observer Pattern to implement paging 

 

Figure 13 Article Browser with paging 

It could be argued that the paging functionality belongs inside the same SPA module as the one that 

contains the article and the index. Even so, this implementation of the Observer pattern illustrates how 



43 
 

two separate views can share a data model, and how changes to the model through interaction in one 

view allows another to be updated without introducing any direct coupling between the two. 

 

Pattern: Adapter 

The Adapter pattern, also known as wrapper, reconciles incompatible interfaces. It allows an object to 

be used by client that is expecting a different interface that the object already supports. The most 

common use case of applying the adapter pattern is incorporating “off the shelf” third party libraries 

into an application framework. It is very unlikely that the APIs provided by external libraries will be 

aligned with the API of an existing framework. To reconcile the APIs, it is usually preferable to adapt the 

external library to the framework’s API rather than the other way around. 

Building a database module 
A single page application may require access to a local data store, especially in standalone versions of 

the application that are expected to work even without networking. Modern browser engines provide 

APIs that can be used to store data into the browser’s local storage. Although this data persists across 

browser restarts, it is a simple key value store not suitable to store large amounts of data. 

Thus, we need to add another module to our SPA module that provides support of database I/O. This is 

a typical case for using an adapter, as its unlikely that we would implement a non-trivial feature like a 

database engine from scratch. We want the framework’s data access API to be “RESTful”, mirroring the 

API provided by HTTP, in order for the application to work the same in connected and disconnected 

states. Code listing 27 shows the mongoose API for the popular document database engine mongodb 

being adapted to the framework’s API. The highlighted section is the adapted interface while the 

function that encloses it is the adapter. 

 

Code Listing 27 Adapting mongoose API 

At first glance, this example may look similar to the use case in which the Bridge pattern was applied. 

However, as the Gang of Four have noted, adapters are significant during the implementation phase, 

while the bridge pattern is mostly applied during the early design of a framework. Choosing a new 



44 
 

database API is a late design decision. Choosing which platforms to support is an early design decision, 

while support for additional databases may be added after the framework is implemented. 

The database module is also an example of the Repository Pattern (Fowler, 2002). The repository allows 

communication with the data access layer by querying business entities, instead of querying the 

persistent data store directly. 

Pattern: Command 

The intent of the Command pattern is to support queueable requests and undoable operations. This is 

accomplished by treating requests and operations as objects that can be stored and enqueued in 

relevant data structures. Standard command pattern structure requires the queueable requests to 

encapsulated in an implementation of the Command interface.  

  

Code Listing 28 Command Pattern Structure (Vlissides, Johnson, Helm, & Gamma, Behavioral Patterns, 1994) 

Figure 28 illustrates the use of the Command pattern for queuing requests. The Command interface 

specifies a single method Execute. The MacroCommand class stores a sequence of commands in an 

iterable collection, and invokes the Execute operation of each of them. To support an undoable request, 

the interface would need to specify an additional method to reverse the effects of any processing the 

corresponding Execute method may perform. 

Creating a database transaction 
Code listing 29 is a simplistic implementation of the Command pattern in JavaScript, to implement 

transactional database operations that could be rolled back if any of the commands within it fail. A client 

may run multiple save commands in the context of the dbTransaction class, they can be rolled back or 

finalized at any point by calling the rollback or commit methods respectively. The rollback method works 

by simply deleting the uncommitted saves from the database. This pattern also illustrates an inventive 

way to use first class functions in JavaScript 



45 
 

 

Code Listing 29 Command Pattern to implement a database transaction 

Pattern:  Singleton 

A Singleton pattern is implemented when there needs to be a single instance of a particular class 

throughout the application, all references to a Singleton must point to the same object in memory. A 

Singleton class therefore creates (the first time it's called) and maintains an instance of itself and returns 

it to all clients. 

Even though Singleton is one of the most commonly used patterns, its usefulness is frequently debated 

in the programming community. Some programmers consider the existence of Singletons in an 

application a design flaw, citing global state and testability as some of the arguments against their use. 

Regardless of its drawbacks, the Singleton pattern a pragmatic solution in certain situations. Due to the 

classless nature of JavaScript, Singletons are far more common in practice than in other statically typed 

languages. Also, the distinction between static classes and Singletons that applies to a lot of statically 

typed languages does not hold in JavaScript. 

We may revisit the Object Literal and the Module patterns in JavaScript to find that they do not require 

the 'new' keyword for object creation. In both cases, only a single object is ever instantiated, a reference 

to which is held in the variable used when creating the Object Literal or Module. This is easily 

demonstrated by the following code segment. 

As a relevant example of a Singleton in JavaScript, we may revisit the XHRFactory created for the Factory 

method discussion. A single page application needs to support multiple asynchronous http requests 

concurrently, so that multiple parts of the page may request updates at the same time. Thus, it needs 

multiple distinct copies of the XmlHttpRequest object. There is no apparent drawback however, to 



46 
 

making the XHRFactory itself a Singleton. The following code shows the XHRFactory as a singleton 

module. 

It is worth noting at this point most statically typed languages make a distinction between a static class 

and a singleton. The difference being that singletons can implement interfaces, can be sub-classed and 

can be passed around as parameters. These differences are not relevant in JavaScript as it has no classes 

or interfaces, and singleton Object Literals and modules can be passed as function parameters. 

Finally, a true Singleton shouldn't allow cloning However there is no way to prevent cloning of objects in 

JavaScript preventing it in JavaScript. Therefore, truly limiting a class to a single instance isn't possible in 

JavaScript. An object may be sealed from extension but this does not prevent it from being used as a 

prototype for another object. 

The Singleton design pattern, as described in the GoF book, is significant in JavaScript only when more 

control over access to the single instance is required or a class needs to permit a limited number of 

instances of itself instead of just one. 

A database singleton 
One use case for a traditional singleton in JavaScript is when we would like to defer the initialization of a 

module that is expensive to create. As mentioned in the discussion of the Façade pattern, modules are 

usually nested with other modules that are its subsystems. Most modules written for the SPA 

framework are based on the JavaScript module pattern that uses an immediately invoked function 

expression for initialization. It is not required for a façade object to encapsulate its components, it 

simply needs to combine their APIs in a manner that makes sense for the application. If we do choose to 

encapsulate the components, as we have for this SPA framework, there may be an associated 

initialization cost. A façade that exposes all its sub components in their entirety is not really a façade. 

But this is precisely what we must do with our top-level module, “Block”. 

The Blocks framework itself is a module, and it has a number of subsystems to manage views, 

databases, files, logging and ajax with and an open-ended number of new modules may need to be 

added in the future. Thus, initializing Blocks is potentially a very expensive operation. This is a valid use 

case for the application of the Singleton pattern. The actual initialization of an expensive to create 

module may hide behind a method that is called when the functionality of the module is actually 

needed. Listing 30 illustrates deferring the initialization of the “db” module by applying the Singleton 

pattern.  



47 
 

 

Code Listing 30 Singleton pattern applied to the database module 

Thus, the singleton pattern may be used to defer the initialization of a module that requires expensive 

initialization. The database module would involve establishing a connection to a database. Even though 

connection is an asynchronous operation, it would still require some I/O to be performed and take up 

CPU cycles. By deferring the initialization of the module, the connection is established the first time the 

db module is used. Clients that need to access the db functionality now must call the getInstance 

method on the db singleton to access its functionality. 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

Discussion 

Summary 
The dissertation narrative detailed the process of developing a single page application framework from 

the ground up. We incrementally designed and prototyped a framework that provides support for a 

range of concerns of typical rich internet applications, like ajax, templating and database I/O. Each 

feature or component added to the framework was discussed in terms of the design patterns that 

supported it. The synergy between design patterns and frameworks was explored as we designed the 

framework. Several components involved a collaborative application of multiple design patterns.  

The pattern-oriented approach discussed design patterns in terms of the “real-world” problems that 

they solve, and provided some insights into what these solutions would look like in a dynamic, non-

traditional object-oriented programming language like JavaScript. !6 out of the 23 Gang of Four patterns 

were discussed in detail with brief nods to the overall architecture of the framework, Model View 

Controller, and another architectural pattern specific to data access APIs, the Repository pattern. 

The prototype pattern described how object types may be inherited and extended in JavaScript, the 

prototype property associated with each object, the prototype chain and prototypal inheritance. The 

pattern also indicated the demerits of prototypes and their performance impact on deep inheritance 

hierarchies. The factory method, another creational pattern was used to demonstrate the concept of 

implied interfaces and duck typing, and how distinctly unrelated objects may be used in the same 

context if they have the same semantics. Proper use of JavaScript modules and techniques to control 

access to them were discussed through the application of Proxy and Façade patterns. The Façade 

pattern also demonstrated a higher-level module simplifying access to the functionality of it’s sub 

modules, an approach that is used to create a layered architecture in a language that does not support 

interfaces. 

The template method pattern showed how the functional strengths of JavaScript can be used to 

implement an object-oriented pattern in multiple non-standard ways. The related discussion showed 

how a polymorphic algorithm is easier to implement in a dynamic, functional language than a typical 

object oriented one. Template method and builder patterns both used functional polymorphism to 

extend classes rather that inheritance or composition. 

The substantial part of the pattern narrative was dedicated to building an appropriate GUI object model 

and handle other View related concerns of the Model View Controller architecture. The flyweight 

pattern encapsulated the GUI primitives of a web application, tags and templates. The builder pattern 

implementation was central to the templating needs of the framework, providing two distinct points of 

customizing templating behavior, one for processing the data model and the other for view generation. 

The GUI object model and behavior was built along with a contextual discussion of Composite, Iterator, 

Decorator and Chain of Responsibility patterns. The ViewPart class is the central GUI construct in the 

framework, that represents and composes the entire GUI of a view in the single page application. The 

VIewPart and related classes effectively demonstrated the concepts of encapsulation and dynamic 

dispatch in JavaScript. The ViewPart class encapsulates GUI primitives as well as entire GUIs using the 



49 
 

Composite pattern. The iterator pattern externalized view traversal responsibilities. The Decorator 

pattern was used to create the first inheritance hierarchy in the SPA framework, through object 

composition. The Chain of Responsibility demonstrated an upwards traversal of the ViewPart composite. 

The Bridge pattern was then used to abstract the ViewParts from browser specific event handling 

concerns, bringing the framework closer to a fully realized MVC architecture. 

The pattern narrative concluded with prototyping a database module for the framework. The adapter 

pattern was exemplified with a typical use case of adapting third party libraries. The Command Pattern 

employed the use of first class functions in JavaScript to create and database transaction that can 

contain multiple commands, and allows rolling them back in case any of the queued commands fail. 

Critique  
It is a common scenario for programmers to work on extending software that has already been partially 

or wholly designed. There has been a lot of literature supporting the value of describing the core 

components and building blocks of the software design in terms of patterns that they are composed of. 

This familiarizes experienced programmers with the core architecture of the system or application that 

they must extend. Appropriate use of design patterns allows programmers to use their own knowledge 

of them to easily spot the points of extension where polymorphic behavior may be inserted. All 

frameworks have an associated learning curve, and it is the application programmer’s burden to 

understand the overall design and architecture of the framework, above and beyond the API it exposes, 

to be able to properly use and customize it to fulfill the requirements of their own applications. A self-

documenting, pattern based design helps programmers understand the internals of the framework 

without having to go through framework and API documentation in detail. 

Partially due to the proliferation of frameworks, object-oriented or otherwise, the significance of 

documenting design in terms of patterns has diminished somewhat. All major programming languages 

are accompanied by their own software development kits and frameworks for application development. 

Whenever a language or technology gains widespread platform support, several application frameworks 

emerge into the market in a relatively brief time period. It could be said the frameworks have abstracted 

away the concept of design patterns allowing programmers to focus on domain specific issues instead.  

Even though JavaScript is not a new programming language, its adoption for multi-platform application 

development has been recent. Still, there are several JavaScript frameworks already in circulation to 

assist programmers to build applications with it. JavaScript supports the object-oriented programming 

paradigm, but a survey of open source JavaScript frameworks will reveal that none of them are strictly 

object oriented. This is an indication that JavaScript is more suited to functional programming, than to 

produce purely object-oriented designs. 

Thus, going against the current industry trends to some extent, this dissertation attempted to design 

and partially implement a purely object-oriented design by applying design patterns that have been 

widely accepted to be the foundations of object-oriented programming. The design and implementation 

of the framework was accompanied by a literature review of object oriented programming and design 

patterns in JavaScript. The findings of the literatures review and the framework development exercise 



50 
 

indicate that object-oriented programming in JavaScript requires a lot of additional work and 

improvisation due to lack of classes and other OO constructs that are found in other languages. 

Arguably, any of the design problems discussed in the pattern narrative above can be solved entirely 

using functional JavaScript code without the need to create complex object based structures like the 

ViewPart.  Also, the functional nature of JavaScript, allowed application of certain patterns in unique 

ways that would not be possible in programming languages like C++ and Java. The existence of first class 

functions gives the programmer the freedom to solve the design problems addressed by the template-

method and command patterns without creating new objects or trying to coerce functions to look like 

objects. A family of builder objects for converting a source representation into different target 

representations can be accomplished entirely by appropriately using functors (Khot, 2015). The 

Singleton pattern was perhaps the weakest example on OO design practice applied to JavaScript. The 

problem that it solved was not very significant in the first place. 

The reader may have noted that that we have often pointed out that JavaScript is classless, and 

Inheritance in JavaScript happens at object level. Yet during the pattern narrative we used the term 

“class” to refer to structures used in multiple pattern implementations. This contradiction can be 

resolved by considering the following statement. A function declaration in JavaScript can be considered 

a class, an invoked function like an IIFE, is an object. So why would we use classes at all in an object-

based language? Because often we would like multiple objects to adhere to a certain “type”, a common 

ancestor, and we want to be able to initialize that by passing it some parameters. 

Many design patterns require the use of class and interface inheritance. Inheritance is uniquely different 

in JavaScript. In fact, JavaScript does not support the traditional concept of object oriented inheritance 

at all. “Prefer composition over inheritance” is a common object-oriented programming idiom, but 

JavaScript supports inheritance through composition. Large inheritance hierarchies are generally not a 

recommended design practice, but it is an especially bad idea in JavaScript due to its underlying 

prototypal nature. If hierarchy must exist, it is preferable to have it deep rather than wide (Johnson & 

Foote, 1988). Creating deep inheritance hierarchies by extending the prototype chain has a negative 

performance impact, as the JavaScript runtime must look up an invoked property or member up the 

prototype chain one level at a time. Attempting to access properties that do not exist will traverse the 

complete prototype chain every time. 

The ViewPart Composite and related patterns were used in contexts very similar to how other GUI 

application frameworks may use them. The GUI is often represented as a Composite in other 

frameworks as well. Iterators are used to traverse the view structure, Builders are used to construct the 

composite and Decorators are used to add “one-off” responsibilities to various ViewParts. The Chain of 

Responsibility is also often used to handle event cascading and bubbling. A relatively small construct like 

the ViewPart class being used to encapsulate all the GUI elements can be considered a good example of 

a reusable design.  

This leads to another relevant finding of the research project, that traditional object-oriented design 

patterns could be more effective in documenting and communicating the design of a framework, to 

programmers experienced in object oriented design, who would arguably find functional designs 



51 
 

difficult to comprehend. While the motivations for applying the patterns in object oriented JavaScript 

are largely the same as any other language, the pattern implementations do not strictly adhere to the 

class based structures described in pattern related literature. 

Some design patterns are very typical in their contexts, for example the use of State pattern for handling 

the state of a database connection. It could be difficult to find such use cases in JavaScript due to it 

being completely asynchronous. In general, due to its object based, prototypal nature, design patterns 

that are based on object composition, such as Proxy and Decorator are more relevant to JavaScript than 

patterns that rely on inheritance, such as Bridge and Builder. Patterns that are intended to support 

parallel class hierarchies are almost completely irrelevant in JavaScript which allows objects to be 

created from prototypes or ex-nihilo. 

The discussion of the pattern-based approach may conclude by making the following point. Using 

JavaScript for implementing object oriented application frameworks is neither impractical nor 

unrealistic. GUI related abstractions have been successfully applied to many existing and obsolete 

application frameworks in other languages, and the same concepts can be applied to JavaScript with 

equal effect. If an object-oriented approach is being used for architecting a JavaScript framework, it is 

preferable that it be pattern oriented as well, because the absence of design patterns is a Big Ball of 

Mud (Foote & Yoder, 2000), a design without structure, very difficult to manage and extend. As it sees 

increased adoption for development of native applications, domain relevant object-oriented application 

frameworks might well be the way forward for JavaScript in the future. 

 

 

 

 

 

 

 

 

 

 

 



52 
 

Conclusions 

Proper use of design patterns to develop applications and frameworks makes their design easier to 

communicate and understand. This is true for frameworks written in most languages and equally so in 

JavaScript. Functional programming is not as closely related to the concept of design patterns as object-

oriented programming is. The foundation of object-oriented design is mutable state which contrasts 

with functional programming languages which tend to distance themselves with the ceremony 

associated with mutable data and consider it a bad “side-effect”. In functional programming, design 

considerations are limited to creating modules with fixed responsibilities. 

Object-oriented programming is a way of thinking about computation. This statement applies to other 

programming paradigms as well. It takes years for programmers to develop expertise with a 

programming paradigm. As we have touched upon earlier, JavaScript at its core has more in common 

with functional programming languages than object-oriented ones. We have also stated that most open 

source JavaScript projects comprise primarily comprise of functional code. 

As part of the research this dissertation covers, we applied object oriented design patterns and 

principles to a dynamic, functional programming language and prototyped an application framework. 

This resulted in a type of source code that would be difficult to find in other large-scale JavaScript 

projects. A majority of Gang of Four patterns found their way into the design into overall architecture of 

the framework. Even though some patterns have a larger impact on the framework architecture, all 

patterns form an integral part of the framework, the contexts they are used in are not contrived. This is 

at least one indication in favor of JavaScript's suitability as a language that can be used for development 

of complex systems. Some of the patterns may be more significant when working with legacy code, but 

all of them are important during the initial design of the system. 

Lastly, any discussion of good design practices must be put into perspective by evaluating them in the 

terms of the needs of a software project, and the technology and language that it is based on. Most 

long-lived software projects involved rotating sets of teams, with team members being replaced and 

teams being resized depending on prevailing project requirements. A number of projects that have large 

code bases and several major components, will have entire software teams dedicated to working on a 

particular part of a system, with little knowledge about other sub-systems. Software teams today have 

come to accept testability as a prerequisite of good design. It is widely accepted that purely functional 

code is more testable through unit tests than an object-oriented design, which involves private 

members and contextual existence of objects. Design Patterns address some if the testability concerns 

of object oriented design, but unit testing an object-oriented application will always require more effort. 

The designs proposed in this dissertation do not prohibit this use of functional code, often supporting 

functional programming techniques where appropriate. If the high-level components of a system must 

be described in terms of objects, the strengths of one or more functional SPA frameworks could still be 

utilized by applying an object-oriented veneer over them. 

 

 



53 
 

References 
Alexander, C. (1977). A Pattern Language. Oxford University Press. 

Baron, A. L. (2003). Design Patterns Formalization. Technical Report, École des Mines de Nantes. 

Beck, K., & Cunningham, W. (1987). Using Pattern Languages for Object-Oriented Programs. Oxford 

University Press. 

Buschmann, F., Stal, M., Sommerlad, P., Rohnert, H., & Meunier, R. (1996). Pattern-Oriented Software 

Architecture, Volume 1, A System of Patterns. John Wiley & Sons. 

Champeon, S. (2001). JavaScript: How Did We Get Here? Retrieved from orielly.com: 

http://archive.oreilly.com/pub/a/javascript/2001/04/06/js_history.html 

Cho, J., & Ryu, S. (2014). JavaScript module system: exploring the design space. Proceedings of the 13th 

international conference on Modularity, 229-240. 

Crockford, D. (2008). Analyzing JavaScript. In D. Crockford, JavaScript, The Good Parts. O'Reilly Media, 

Inc. 

Douglas C. Schmidt, K. H. (2007). Pattern Oriented Software Architecture Volume 5: On Patterns and 

Pattern Languages. John Wiley & Sons. 

Douglas C. Schmidt, K. H. (2007). Pattern-Oriented Software Architecture: A Pattern Language for 

Distributed Computing, 4th Volume. John Wiley & Sons. 

Fayad, M., & Schmidt, D. C. (1997). Object-Oriented Application Frameworks. Communications of the 

ACM, Special Issue on Object-Oriented Application Frameworks, Vol. 40, No. 10. 

Foote, B., & Yoder, J. (2000). “Big Ball of Mud.”. In In Pattern Languages of Program Design IV, eds. Neil 

Harrison, Brian Foote, and Hans Rohnert. Boston. Addison-Wesley. 

Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison-Wesley Professional. 

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design Patterns: Abstraction and Reuse of 

Object-Oriented Design. Department of Computer Science, University of Illinois at Urbana 

Champaign. 

Garrett, J. J. (2005, February 18). Ajax: A New Approach to Web Applications. Retrieved from Web 

archive: 

https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/ar

chives/000385.php 

Gross, C. (2006). The Nuts and Bolts of Ajax. In C. Gross, Ajax Patterns and Best Practices. Apress. 

Helm, R., Johnson, R., Vlissides, J., & Gamma, E. (1994). Behavioral Patterns. In R. Helm, R. Johnson, J. 

Vlissides, & E. Gamma, Design Patterns: Elements of Reusable Object-Oriented Software. 

Addison-Wesley Professional. 



54 
 

Helm, R., Johnson, R., Vlissides, J., & Gamma, E. (1994). Structural Patterns. In R. Helm, R. Johnson, J. 

Vlissides, & E. Gamma, Design Patterns: Elements of Reusable Object-Oriented Software. 

Addison-Wesley Professional. 

Jain, P., & Kircher, M. (2004). Pattern-Oriented Software Architecture Volume 3: Patterns for Resource 

Management. John Wiley & Sons. 

Johnson, R. E., & Foote, B. (1988). Designing Reusable Classes. Journal of Object Oriented Programming, 

Department of Computer Science, University of Illinois, Urbana-Champaign. 

Khot, A. S. (2015). Functors. In A. S. Khot, Scala Functional Programming Patterns. Packt Publishing. 

Kirk, D. S. (2005). Understanding Object-Oriented Frameworks, Doctoral Thesis, Unpublised. 

Leeuwen, A. (2013). Implementing a Reusable Design Pattern Library in C#. MSc Dissertation, 

Unpublished. 

Lott, S. (2015). Functional Python Programming. Packt Publishing. 

Mammino, L., & Casciaro, M. (2016). Prototype Pattern. In L. Mammino, & M. Casciaro, Node.js Design 

Patterns - Second Edition. Pack Publishing. 

MDN. (2017, July 9). Class-JavaScript. Retrieved from mozilla.org: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Classes 

Murphey, R. (2009, October 15). Using objects to organize your code. Retrieved from 

http://rmurphey.com: http://rmurphey.com/blog/2009/10/15/using-objects-to-organize-your-

code 

Norvig, P. (1996). Design Patterns in Dynamic Languages. Retrieved from 

http://www.norvig.com/design-patterns/design-patterns.pdf 

Osmani, A. (2012). Namespacing Fundamentals. In A. Osmani, Learning JavaScript Patterns. O'Reilly 

Media, Inc. 

Osmani, A. (2012). Prototype Pattern. In A. Osmani, Learning JavaScript design patterns. O'Reilly Media, 

Inc. 

Osmani, A. (2016). Introducing ES2015 Proxies. Retrieved from Google Developers: 

https://developers.google.com/web/updates/2016/02/es2015-proxies 

Riehle, D. (2000). Case Study: The JHotDraw Framework. In D. Riehle, Framework Design: A Role 

Modeling Approach (p. Chapter 8). Doctoral thesis, Unpublished. 

Riehle, D. (2000). Framework Design: A Role Modeling Approach. Doctoral Thesis, Unpublished. 

Retrieved from http://dirkriehle.com/computer-science/research/dissertation/ 

Riehle, D. (2011). Lessons Learned from Using. 

Schmidt, D. C., Rohnert, H., Stal, M., & Buschmann, F. (2000). Pattern-Oriented Software Architecture, 

Volume 2, Patterns for Concurrent and Networked Objects. John Wiley & Sons. 



55 
 

Scott, E. A. (2015). What is a single-page application? In E. A. Scott, SPA Design and Architecture: 

Understanding single-page web applications. Manning Publications. 

Severance, C. (2012). JavaScript: Designing a language in 10 days. IEEE Computer Society. 

Stefanov, S. (2017). Object-Oriented JavaScript. In S. Stefanov, Object-Oriented JavaScript. Pack 

Publishing. 

Timms, S. (2016). Prototype. In S. Timms, Mastering JavaScript Design Patterns. Packt Publishing. 

Vlissides, J. J. (1994). Structural Patterns. In J. J. Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley Professional. 

Vlissides, J., Johnson, R., Helm, R., & Gamma, E. (1994). Behavioral Patterns. In J. Vlissides, R. Johnson, R. 

Helm, & E. Gamma, Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley Professional. 

Vlissides, J., Johnson, R., Helm, R., & Gamma, E. (1994). Creational Patterns. In J. Vlissides, R. Johnson, R. 

Helm, & E. Gamma, Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley Professional. 

Vlissides, J., Johnson, R., Helm, R., & Gamma, E. (1994). Design Patterns: Elements of Reusable Object-

Oriented Software. Addison Wesley Professional. 

Züllighoven, D. R. (1994). In: Pattern Languages of Program Design. Edited by James O. Coplien and 

Douglas Schmidt. 

 

 


