
University of Strathclyde

Department of Computer and Information Sciences

Textual Analysis for Document
Forensics

Alice Oberacker

This dissertation was submitted in part fulfilment of requirements for the
degree of MSc Advanced Computer Science

August, 2017

ii

Declaration

This dissertation is submitted in part fulfilment of the requirements for the

degree of MSc of the University of Strathclyde.

I declare that this dissertation embodies the results of my own work and

that it has been composed by myself. Following normal academic conven-

tions, I have made due acknowledgement to the work of others.

I declare that I have sought, and received, ethics approval via the Depart-

mental Ethics Committee as appropriate to my research.

I give permission to the University of Strathclyde, Department of Computer

and Information Sciences, to provide copies of the dissertation, at cost, to

those who may in the future request a of the dissertation for private study

or research.

I give permission to the University of Strathclyde, Department of Com-

puter and Information Sciences, to place a copy of the dissertation in a

publicly available archive.

(please tick) Yes [] No []

I declare that the word count for this dissertation (excluding title page, dec-

laration, abstract, acknowledgements, table of contents, list of illustrations,

references and appendices is 19778.

I confirm that I wish this to be assessed as a Type

1 2 3 4 5 Dissertation (please circle)

Signature:

Date:

iii

iv

Abstract

In this dissertation text categorisation is applied to three datasets origi-

nating from the surface and dark web, two of which deal with extremism

and drug related texts, whereas the third contains texts with four distinct

contexts. Machine learning algorithms are applied to a numerical repre-

sentation of the texts generated by a tool called Posit. This tool develops

statistical data, such as average sentence length, and number of occurrences

of parts-of-speech types and tokens. In addition to those values, bi-gram

ratios are calculated from their frequency in the texts compared to their

prevalence in the natural language.

The goal of this dissertation is to assess how effective the limited number

of 30 features is for multiple classification algorithms. After conducting

several experiments covering a wide range of settings, the research showed

that on two of the three corpora the classifications based on the Posit and

bi-gram features were evaluated to be very accurate. The third dataset

demonstrated that classifying a text corpus with multiple contexts is diffi-

cult with the feature sets given.

This research showed that reducing a text corpus to its numerical infor-

mation given by Posit is a powerful way of efficiently classifying large

datasets.

v

vi

Acknowledgements

I would first like to thank my dissertation advisor Dr. George Weir who

is a lecturer at the University of Strathclyde. His continual guidance and

professional suggestions helped me complete my Master’s dissertation.

I would also like to thank Dr. Richard Frank who is Associate Director of

the International CyberCrime Research Centre at Simon Fraser University

in Canada. Dr. Frank supplied me with valuable data which made it pos-

sible to broaden my research perspective.

Finally, I want to express my gratitude to my parents who supported me

through my years of studying and Dr. Philip Oberacker and Andrew Noble

who constantly encouraged me through the process of researching and writ-

ing this thesis. This would not have been possible without them. Thank

you.

vii

viii

Contents

1 Introduction 1

2 Background and Literature Review 3

2.1 Machine Learning . 3

2.1.1 Data Scaling . 5

2.1.2 Feature Selection . 6

2.1.3 Validation . 9

2.1.4 Evaluation . 11

2.2 Text categorisation . 14

2.3 Quantitative Text Analysis 17

3 Research Methods 21

3.1 Approach . 22

3.1.1 Hypotheses . 23

3.1.2 Experimental Set-Up 24

3.2 Implementation . 26

3.2.1 Data Preparation . 26

3.2.2 Data Processing . 34

4 Analysis 49

4.1 Results . 50

4.1.1 Hypothesis 1 . 51

4.1.2 Hypothesis 2 . 53

4.1.3 Hypothesis 3 . 55

4.1.4 Hypothesis 4 . 58

4.1.5 Hypothesis 5 . 63

4.2 Discussion . 67

4.2.1 Hypothesis 1 . 67

4.2.2 Hypothesis 2 . 69

ix

CONTENTS

4.2.3 Hypothesis 3 . 70

4.2.4 Hypothesis 4 . 71

4.2.5 Hypothesis 5 . 72

4.2.6 Further Comments 73

5 Conclusion and Future Work 77

5.1 Conclusion . 77

5.2 Future Work . 78

Appendix A Statistics 81

Appendix B Implementation 85

B.1 Posit Changes . 85

B.2 Applying Posit . 86

B.3 Applying Weka . 109

Bibliography 127

x

List of Figures

2.1 Over- ,under- and optimal fitting 4

2.2 Dimensionality Reduction with PCA 7

3.1 Distribution of number of words for all datasets. 36

3.2 Distribution of number of sentences for all datasets. 37

3.3 Distribution of average sentence length for all datasets. . . . 38

3.4 Correlation maps for all datasets. 39

xi

xii

List of Tables

2.1 Confusion Matrix 2× 2 . 11

2.2 Aggregated Confusion Matrix over n classes 13

3.1 Posit numeric output. 27

3.2 Extract of Posit n-gram output. 28

3.3 Calculation of expected value. 29

3.4 Statistics of datasets compared 38

4.1 Attributes with their ID . 49

4.2 Filter Methods. 50

4.3 Classification results for normalised and standardised DB-

pedia data for Posit and Posit + 2-gram attributes. 51

4.4 Classification results for normalised and standardised Ex-

tremism data for Posit and Posit + 2-gram attributes. . . . 52

4.5 Classification results for normalised and standardised Drug

data for Posit and Posit + 2-gram attributes. 53

4.6 Classification results for normalised and standardised DB-

pedia data for Posit + low frequency 2-gram ratio and Posit

+ high frequency 2-gram attributes. 54

4.7 Classification results for normalised and standardised Ex-

tremism data for Posit + low frequency 2-gram ratio and

Posit + high frequency 2-gram attributes. 55

4.8 Classification results for normalised and standardised Drug

data for Posit + low frequency 2-gram ratio and Posit +

high frequency 2-gram attributes. 56

4.9 Classification results for normalised and standardised DB-

pedia data only with the 2-gram features. 56

4.10 Classification results for normalised and standardised Ex-

tremism data only with the 2-gram features. 57

xiii

LIST OF TABLES

4.11 Classification results for normalised and standardised Drug

data only with the 2-gram features. 58

4.12 Subset results for normalised and standardised DBpedia data 59

4.13 Classifier results for normalised and standardised DBpedia

data; for normalised and standardised data S2 and S4 are

equal. 60

4.14 Subset results for normalised and standardised Extremism

data. 61

4.15 Classifier results for normalised and standardised Extremism

data; S4 is equivalent to S3 for normalised data and S6 is

equivalent to S5 for standardised data. 62

4.16 Subset results for normalised and standardised Drug data. . 63

4.17 Classifier results for normalised and standardised Drug data;

S5 is equivalent to S6 for normalised and standardised data. 64

4.18 PCA classification results for normalised and standardised

DBpedia data. 65

4.19 PCA classification results for normalised and standardised

Extremism data. 66

4.20 PCA classification results for normalised and standardised

Drug data. 67

4.21 Overall classification results for Hypothesis 1. 68

4.22 Overall classification results for Hypothesis 2. 69

4.23 Overall classification results for Hypothesis 3. 70

4.24 Overall classification results for Hypothesis 4. 71

4.25 Overall classification results for Hypothesis 5. 72

A.1 Drug Feature Statistics. 82

A.2 DBpedia Feature Statistics. 83

A.3 Extremism Feature Statistics. 84

xiv

Chapter 1

Introduction

Analysis of text data is a research topic going back more than 30 years. The

task of classifying text documents to predefined categories has already been

addressed in the 1980s using knowledge engineering techniques (Sebastiani,

2002; Jolliffe, 1972). This method requires the manual development of

disjunctive normal forms to decide which category a certain text belongs

to. Obviously, this approach can only be conducted with an expert of the

domain and with the knowledge of an engineer who develops the algorithm.

Even though the techniques showed positive results they are not quite

applicable for the large amounts of data seen nowadays, as the development

of such algorithms is expensive and inflexible towards expanding sets of

documents. To give an example of how much data is circulating today

one can take a look at the worldwide SMS traffic volume: between the

years 2000 and 2012 the volume increased from 1.46 billion to 7.9 trillion

(Informatica LLC, 2017). For this size of data more sophisticated methods

must be used.

Machine learning, as it is known today, emerged in the early 1990s. One

of the basic methods has not changed since: manually classified documents

are used to train classifiers and to evaluate the results on a testing set.

In this dissertation three text corpora are going to be explored and anal-

ysed. Two of these datasets were created with web crawlers at the Interna-

tional CyberCrime Research Center (ICCRC) at Simon Fraser University

in Burnaby, British Columbia. They cover themes such as extremism and

drugs.

An example of a drug related text contained in the corpus is the following:

1

CHAPTER 1. INTRODUCTION

NL Growers − Coffee Shop grade Cannabis from the Netherlands − Weed,

Hash, Marijuana, Cannabis for Bitcoins Products Login Register FAQs

Coffee Shop grade Cannabis Finest organic cannabis grown by

proffessional growers in the netherlands. We double seal all packages for

odor less delivery. Shipping within 24 hours! Product Price Quantity 1g

Original Haze 15 EUR = 0.027 � X 5g Original Haze 65 EUR = 0.117 �

X 1g Bubblegum 10 EUR = 0.018 � X 5g Bubblegum 45 EUR = 0.081 �

X 1g Jack Herer 14 EUR = 0.025 � X 5g Jack Herer 60 EUR = 0.108 �;

X 1g Chronic 9 EUR = 0.016 � X 5g Chronic 40 EUR = 0.072 � X 1g

Banana Kush 11 EUR = 0.020 � X 5g Banana Kush 45 EUR = 0.081 � X

1g Blue Cheese 9 EUR = 0.016 � X 5g Blue Cheese 40 EUR = 0.072 � X

1g Ice−O−Lator Hash, finest quality 35 EUR = 0.063 � X

The other text corpus contains 14 non-overlapping classes extracted from

DBpedia 2014 (Lehmann et al., 2015), of these 14 categories four are going

to be further appropriated for classification experiments.

In order to use machine learning algorithms to categorise texts one needs

to find an appropriate representation. In most research the text corpora

have an internal representation of large vector spaces, describing unique

occurrences of words (Dumais et al., 1998; Sebastiani, 2005; Harish et al.,

2012). A new interpretation of text documents was utilised by Weir (2007,

2009): The Posit tool. This tool extracts quantitative data from the text

using parts-of-speech analysis and is going to be the main focus of this

dissertation. The additional information extracted from these values, such

as ratios between the number of word sequences appearing in the text and

their frequency in the natural languages, operates as an enrichment to the

data. This numeric data serves as the input for machine learning algorithms

which try to determine a certain category the text belongs to.

The research aims at showing whether the quantitative approach is suffi-

cient to categorise documents accurately. Furthermore, it will be analysed

if there are features in the quantitative data more valuable than others.

The importance of those word sequence features compared the Posit fea-

tures will be evaluated. Additionally, the Posit features will be examined

in order to make assumptions about the most important features, which

could make it possible to further simplify the text representation. Different

approaches to feature selection are going to be implemented and compared

on the datasets.

2

Chapter 2

Background and Literature

Review

This dissertation is based on a long-established research field which has

grown to be of great importance when analysing large amounts of data. To

set a common ground knowledge of this topic this chapter discusses several

concepts of the field of machine learning. Furthermore, related research is

going to be examined to place this thesis into context.

As the focus of this dissertation is on analysing texts in the context of a

predefined set of topics, the following discussion will be centred around the

problem of categorisation.

2.1 Machine Learning

Machine Learning focuses on bringing one part of a set of information in

relation with the rest of the data. In our example this means to learn how

a text relates to its theme, but it can also be used for other predictions, e.g.

how customer behaviour is related to sales figures. The principle of machine

learning lies in modelling of mathematical formulas that can represent the

structure and information of the given data as closely as possible in order

to apply the model to new data and predict the variable of interest.

There are two main types of machine learning algorithms: supervised and

unsupervised learning (Sebastiani, 2002; Suthaharan, 2015). For the lat-

ter, the learning algorithm itself develops a set of categories suitable for

the given data, whereas for supervised learning a pre-classified (labelled)

dataset is necessary. Such data includes information about its categories

3

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

and the resulting model is later used to categorise data which has not been

labelled beforehand. Having the focus on categorisation problems, super-

vised learning is also called classification and unsupervised learning is also

known as clustering (Suthaharan, 2015).

For categorisation problems the model tries to find an optimal mapping

between the information given by the data and a set of classes.

For a given set of data with k features the corresponding data domain

Dk can be represented by a k-dimensional vector space. Therefore the

mathematical model is a function f :

f : Dk → {1, ..., n} (2.1)

(a) Underfitting

(b) Optimal fitting

(c) Overfitting

Figure 2.1: Over-
,under- and optimal
fitting

The target set of this function is a set of labels for

n predefined categories (Suthaharan, 2015, chap.

1.3).

How well certain models perform on the individual

datasets can be calculated with different measures

such as accuracy, precision, sensitivity (Sutha-

haran, 2015, chap. 8.3), F1 (Sebastiani, 2005)

or the Receiver Operating Characteristic (ROC)

(Aphinyanaphongs et al., 2014) (see Section 2.1.4).

Common problems in machine learning are the

so called underfitting and overfitting (Cios et al.,

2007; Suthaharan, 2015): Figure 2.1 shows that a

model that underfits the data does not reflect its

variance accurately enough, this means that it has

a considerably large error on the data the model

was trained on. Overfitting on the other hand re-

sults in a too accurate classification of the data.

The error is low on the learning data, but when

applying the model to new data it will be unable to

cope with the variance in the samples (Kohavi and

John, 1997). The goal is to find an optimum be-

tween under- and overfitting, which balances miss-

classified samples in the training data against more

accuracy when classifying new data.

There are several learning algorithms that are ap-

4

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

plicable for classification problems, such as Support Vector Machines

(SVM), Decision Tree, Random Forest or Deep Learning (Suthaharan,

2015, chap. 1.3), some of them will be examined in the course of this

dissertation. Furthermore, there are several ways to train, validate and

test the resulting models, e.g. cross-validation. The concrete approaches

taken and other options will be discussed in Section 2.1.3.

Another important research field is the feature selection. The goal of this

is to find the subset of features from the data that leads to an optimal

classification of the dataset and reduces the runtime of the classifier as e.g.

30 features require less computations as 300. The different approaches can

be found in Section 2.1.2.

2.1.1 Data Scaling

Another crucial issue that arises with many datasets is the large variance

among equally important features.

The features of dataset usually have different units and can therefore vary

greatly in size. This disproportionality leads to the fact that learning al-

gorithms cannot weight the importance of features correctly.

To circumvent this problem it is important to scale the data. Determining

the optimal way for scaling the data cannot be decided uniformly, as it is

dependent on the individual data. The most common techniques are:

Normalising x̂ =
x− xmin

xmax − xmin
⇒ x̂ ∈ [0, 1] (2.2)

Standardising x̂ =
x− µ
σ

⇒ µ̂ = 0, σ̂ = 1 (2.3)

Centering x̂ = x− µ ⇒ µ̂ = 0 (2.4)

Where x denotes an element of a feature attribute, xmin and xmax are the

minimal and maximal value of the feature respectively, µ is the mean and σ

is the standard deviation of the original x. µ̂ and σ̂ are mean and standard

deviation of the newly calculated x̂

Normalisation scales all values of a feature proportionally into the interval

[0,1], whereas centering and standardising brings the mean to 0 and the

5

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

latter additionally makes the standard deviation of each feature 1.

2.1.2 Feature Selection

As we will see in Section 2.2 the most common approach to text classifica-

tion takes a set of 104 to 107 features (Blum and Langley, 1997) which are

used to train the classifier. However, research has shown that too many fea-

tures are not only computationally expensive, but can also deteriorate the

performance of the model (Langley and Iba, 1993; Blum and Langley, 1997;

Kohavi and John, 1997; Janecek et al., 2008). Here three approaches for

feature selection are going to be discussed: Filter, Wrapper and Principal

Component Analysis.

For the former two methods search algorithms have to test possible feature

subsets on how efficiently they predict the category, therefore these ap-

proaches belong to supervised methods. However, for k features this space

has a size of 2k which makes an exhaustive search too expensive. Heuristic

search algorithms are therefore essential for large feature sets (Kohavi and

John, 1997; Janecek et al., 2008).

Filter

When using the filter method irrelevant features are filtered out by only

relying on the training data. The importance of the individual features is

evaluated using a shared measure (e.g. Information Gain) and therefore

this approach is independent from any machine learning model (Blum and

Langley, 1997). There are several combinations of search and evaluation

measures possible. The ones being used in this dissertation will be further

explained in Section 3.2.2.

Wrapper

The wrapper method is based on the learning algorithm. The space of

feature subsets is evaluated by applying the learning algorithm and using

the accuracy of the model based on the training data and the feature subset.

Due to the computational expenses of this approach and depending on the

size of the feature set it becomes even more important to utilise an efficient

search algorithm.

6

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Principal Component Analysis

Principal Component Analysis (PCA) belongs to the methods of dimen-

sionality reduction. Its goal is to create a new feature space of linearly un-

correlated features, as they do not add any information (Jolliffe, 1972). In

Figure 2.2 one can see a simplification of a PCA: a 3-dimensional dataset

with features X, Y and Z is transformed into two dimensions: principal

component 1 and 2 (PC1, PC2).

(a) Data Points in 3-dimensional Space (b) The same data points transformed
to 2-dimensional space

Figure 2.2: Dimensionality Reduction with PCA

However, this approach does not extract the most valuable features (Guo

et al., 2002), but transforms the whole feature space Dk into a less dimen-

sional space Dm (m < k). The new features f̂i with i = 1, ..m are defined

as linear combinations of the original features fj with j = 1, ..k.

f̂i = αi · f1 + βi · f2 + ...+ ωi · fk (2.5)

To achieve this presentation of features a correlation matrix with dimen-

sions k × k is created which describes the pairwise correlation between all

features of the original set. From this matrix an ordered set of n (n ≥ m)

eigenvalues with corresponding eigenvectors is determined, in which the

eigenvectors are orthogonal to each other and define the new space. The

eigenvalues and -vectors are ordered in such a way that the first feature has

7

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

the highest variance for the dataset and each following feature decreases in

its variance. Therefore, choosing the first m features of this new space can

be enough to cover a large amount of variance from the original space. The

linear factors αi to ωi (1 ≤ i ≤ m) for each new feature are the entries of

the m resulting eigenvectors of the correlation matrix.(Suthaharan, 2015;

Cios et al., 2007)

It is important to note that this approach is purely based on the variance

of the dataset (Guo et al., 2002), it is therefore completely independent of

the label (unsupervised) (Witten et al., 2011). Due to the importance of

the variance of each feature, PCA can only be performed on scaled data.

For normalised data the correlation matrix is used, for centred data the

covariance matrix, and in case of normalisation by the standard deviation

(standardising), both matrices are equivalent.

Blum and Langley (1997) report that the wrapper methods produce a more

accurate subset of relevant features, as the filter method might use a dif-

ferent importance measure than the classification model. Hence, the result

of the wrapper method agrees more with the classification model due to

similar calculations. However, this also leads to the problem of overfitting

(Kohavi and John, 1997), because the subset of features is marked as rel-

evant based on the training data, but unseen data might relate well with

other features which were judged to be irrelevant. Another disadvantage

of the wrapper compared to the filter method are the high computational

costs (Langley and Iba, 1993) as the learning algorithm has to be called

for each feature subset considered. Guyon and Elisseeff (2003) claims, in a

more recent publication, that coarse search methods not only improve the

runtime of wrappers but also make the classifiers less prone to overfitting.

Filter and wrapper methods aim on removing superfluous features, how-

ever, if too many features are removed, because the subset is due to be really

small, important information can get lost. In this case, PCA can perform

better, as it keeps all features of the original set and therefore does not

lose much information by weighting the features differently. Nonetheless,

reducing the dimensionality of the data makes it harder or even impossible

to assess the importance of the original features (Janecek et al., 2008).

This dissertation will consider both, filtering and PCA, as feature selection

methods in order to compare their efficiency on the data. The wrapper

method is not going to be part of this due to its computational demands.

8

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.1.3 Validation

Having seen that supervised learning algorithms use a subset of the data

to evolve a mathematical model this section will talk about the validation

process of the model and different ratios for splitting the dataset. There

are other techniques which train the model on the whole dataset and use

a subset of the already seen data to measure how well the model performs

(Suthaharan, 2015). Here only the testing on unseen data will be consid-

ered, because the datasets are large enough to exclude a subset for testing

and because evaluation on already seen data does not reflect the same

capabilities as the performance of never seen samples does.

Train – Test

The most basic approach to validating a learning model is to train it on a

subset of data and to test it on the leftover samples. Splitting the data into

two disjunctive sets only raises one question: What ratio between testing

and training data should be chosen?

According to Suthaharan (2015, chap. 8) 80:20 or 70:30 are acceptable

choices. Witten et al. (2011, chap. 5.3) considers 75:25 as a common choice

and points out that particularly for classification problems it is important

that every category is represented by a sufficiently large amount of data

in both subsets. The process of equally distributing the categories over

the subsets is called stratification. Otherwise, the model might not have

enough or any information about a category and can therefore not make

any decision when coming across that category in the testing set (Witten

et al., 2011).

Train – Validate – Test

Another popular approach uses three disjunctive sets of the data, split by

a ratio of 60:20:20. Similarly to the previous one, the training data is used

to design the model and the testing set to judge its accuracy. However,

validating the model after training makes it possible to go back and train

a different model. Suthaharan (2015, chap. 8) explained the process as

follows: Imagine training two different learning algorithms M1 and M2 with

errors E1 and E2. The errors show how well the model classifies the training

data. Now both models are applied to the validation set with resulting

9

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

accuracies A1 and A2. Let’s say E1 < E2: if A1 > A2 the validation process

showed that M1 performed best on training and validation set. Otherwise,

if A1 < A2 then M2 performed better on the validation set than M1 which

contradicts the error values of the training phase. Therefore, new models

can be trained until the error of the training set agrees with the accuracy

of the validation phase. If this is achieved the final model can be tested on

the leftover data.

Cross – Validation

There are several versions of cross-validation including k-fold Cross-

Validation, Leave-One-Out and Leave-p-Out.

The Leave-p-Out cross-validation takes the set of instances and creates

pairs of sets of which one holds p-many and the other one holds the rest

of the samples. Therefore, the set pairs are disjunctive. When creating all

possible combinations of sets for n instances one has
(
n
k

)
many pairs. For

5 samples ν1...ν5 and p = 2, for example, the cross-validation is calculated

on
(
n
k

)
= 10 combinations.

The following set of pairs are created:

{ν3, ν4, ν5}{ν1, ν2} {ν2, ν4, ν5}{ν1, ν3} {ν2, ν3, ν5}{ν1, ν4}
{ν2, ν3, ν4}{ν1, ν5} {ν1, ν4, ν5}{ν2, ν3} {ν1, ν3, ν5}{ν2, ν4}
{ν1, ν3, ν4}{ν2, ν5} {ν1, ν2, ν5}{ν3, ν4} {ν1, ν2, ν4}{ν3, ν5}

{ν1, ν2, ν3}{ν4, ν5}

This approach is usually too computationally expensive, the Leave-One-

Out validation process, however, is less expensive as it takes the same

approach with k = 1 and has therefore
(
n
1

)
= nmany combinations. Besides

the costs of executing this validation method it has the advantage that no

random sampling is involved. Each instance of the data is used once for

testing and in all other cases as training. Therefore the validation result

does not change when repeating the process (Witten et al., 2011, chap.

5.4).

The k-fold Cross-Validation is less expensive and seems to be the most

popular one (Forman, 2003; Huang and Wang, 2006; Lewis et al., 2004;

Kohavi and John, 1997). Let’s consider a stratified 10-fold cross-validation:

The whole dataset is split into ten stratified subsets. In every fold one of

the subsets is used as a testing set and the rest as training data. Therefore

there are ten folds and each subset is used once as testing data and every

10

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

other time as training data.

The general approach stays the same as before: training data is used to

create a model and testing data to evaluate its accuracy. Hence, there are

ten resulting accuracies which are averaged to create an overall accuracy

of the model.

According to Witten et al. (2011, chap. 5.3) there have been extensive

studies on what validation methods show the best results and the 10-fold

cross-validation became the standard method as it has shown to be the most

efficient validation process on various datasets and with different learning

algorithms.

2.1.4 Evaluation

In order to judge how well the trained classifiers perform on new data we

need to introduce evaluation metrics. As only classification models are

discussed here numerical performance measures such as root mean-square

or mean absolute error etc. are going to be neglected.

Furthermore, there are two cases that have to be considered separately: the

binary and the multi-class categorisation. Different evaluation measures

have to be used for those cases.

Binary Classification

This type of classification deals with two distinct categories: one positive

and one negative towards some objective.

Using a confusion matrix several performance measures can be calculated.

The confusion matrix as seen in Figure 2.1 is a 2×2 matrix where the rows

define the actual classes and the columns the predicted classes. One class

is defined to be the positive class (yes) and the other one to be the negative

class (no).

Predicted Class
yes no

Class
yes true positive (TP) false negative (FN)
no false positive (FP) true negative (TN)

Table 2.1: Confusion Matrix 2× 2

Correctly classified instances are true positives, if they predict the positive

11

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

class correctly, or true negatives, if predicting the negative class correctly.

A false negative denotes an instance that is predicted to be negative but is

actually positive and a false positive instance was predicted to be positive

even though it is negative.

With this information several confusion-based performance measures can

be defined. The accuracy is defined by the proportionality between the

correctly classified samples and the overall number of classifications (Witten

et al., 2011).

accuracy =
TP + TN

TP + TN + FP + FN
(2.6)

However, one needs to be careful with this type of metric. When consid-

ering models that always predict the largest class of the training data, the

accuracy is high, even though the model has no predictive power. If the

positive class is the largest one then TP < FP , otherwise TN < FN . This

is described as the Accuracy Paradox (Zhu, 2007).

The precision returns the ratio of how many positive predicted samples are

actually positive.

precision =
TP

TP + FP
(2.7)

Contrasting that with the recall (or sensitivity (Suthaharan, 2015)) one can

calculate the ratio of how many samples of the positive class were predicted

correctly.

recall =
TP

TP + FN
(2.8)

These two measures are less sensitive to skewed classifications, however,

precision should be preferred in the case of expensive false positive results,

whereas recall performs better if false negatives are expensive. In the case

of perfect classification (FN=0=FP) precision and recall are 1.

Specificity measures how many times the negative class is correctly classi-

fied as negative. Cios et al. (2007) phrased it as ’the ability of a test to be

negative when the disease is not present’.

specificity =
TN

TN + FP
(2.9)

12

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

The F-measure, also known as F1, is calculated as the harmonic mean of

precision and recall (Cios et al., 2007).

F −measure =
2 · Precision ·Recall
Precision+Recall

(2.10)

One can conclude that a combination of precision and recall is a stable

measure when dealing with skewed classes as the accuracy paradox can

be avoided. To present an overall measure of precision and recall the F-

measure can be applied.

Multi-Class Classification

Having seen several performance measures for binary categorisation, all

based on the confusion matrix, we can now proceed to the classification of

multiple categories.

Fortunately, the previous techniques can be adopted. When dealing with n

categories, the confusion matrix has the same structure. The rows show all

categories and the columns the predicted categories, therefore the matrix

has dimensionality of n× n. Another way of representing the confusion

Predicted Class
yes no

Class
yes TP =

n∑
i=1

TPi FN =
n∑
i=1

FNi

no FP =
n∑
i=1

FPi TN =
n∑
i=1

TNi

Table 2.2: Aggregated Confusion Matrix over n classes

matrix for the multidimensional case is to aggregate over all categories

(Sebastiani, 2002) as shown in Table 2.2. Exemplary shown on precision

and recall, it is now possible to calculate them by averaging over the whole

set of categories, called microaveraging (Sebastiani, 2002).

precisionµ =

∑n
i=1 TPi∑n

i=1 TPi + FPi

(2.11)

recallµ =

∑n
i=1 TPi∑n

i=1 TPi + FNi

(2.12)

13

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Another way of calculating the average over TP, FP and FN is macroav-

eraging (Sebastiani, 2002). Precision and recall are calculated individually

for each category and are then summed up and divided by the number of

categories.

precisionM =

∑n
i=1 precisioni

n
(2.13)

recallM =

∑n
i=1 recalli
n

(2.14)

The µ indicates microaveraging and M macroaveraging.

Microaveraging is prone to putting more weight on categories with many

positive samples, however, which type of averaging performs the best can

not be decided generally, but is dependent on the dataset (Sebastiani, 2002).

Obviously, the same calculations can be applied to accuracy, specificity and

the F-measure.

2.2 Text categorisation

As previously mentioned, Sebastiani (2005, 2002) defines two main classes

of text categorisation: text clustering and text classification. The first one

deals with finding a structure of groups among the dataset, whereas the

latter is given a set of groups and each text needs to be assigned to its most

suitable one. Moreover, the task of text classification is subjective in a way

that human and machine might disagree on the classification of the data.

Text classification can be single-labelled meaning every document is as-

signed a single category, or multi-labelled in which case a document can

be assigned to several possible categories. This method has the advantage

of giving the user the possibility of a final decision to their own subjective

opinion as several texts can be closely related to multiple categories.

Several applications such as spam filtering, webpage classification, author-

ship attribution or genre classification can be decided with text classifica-

tions. Among the various machine learning algorithms that have been used

to build classifiers, Sebastiani (2005) claims the ones that proved most suc-

cessful in recent years are support vector machines (SVM) and boosting.

SVM is a type of classification model, boosting, however, combines the

decisions of a group of classifiers in order to achieve a better overall classi-

14

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

fication (Sebastiani, 2005). Lewis et al. (2004) agrees on the effectiveness

of SVM, but also points out that this approach might find a suboptimal

decision threshold for categories with low occurrences.

However, it remains a challenge to achieve high accuracy for all possible

contexts at once, as no algorithm is most effective on all applications (Har-

ish et al., 2012; Aphinyanaphongs et al., 2014). Moreover, the labelling

of the documents defines a bottleneck for every supervised classification

method as it has to be done manually.

To solve this problem Ha-Thuc and Renders (2011) developed a system to

hierarchically classify unlabelled data. As already mentioned, classifying

data manually is extremely expensive and slows the classification process

down. Additionally, it grows to be an inefficient approach as with larger

datasets the number of categories can exceed to thousands, of which each

needs to be represented by a sufficient amount of labelled documents. The

system solves this issue by using ontological knowledge and by searching

’pseudo-relevant documents on the Web’ (Ha-Thuc and Renders, 2011).

With the ontology it is possible to create a hierarchical model including

the context of ancestors among different classes.

Depending on the dataset this might be a necessary approach on solving

the bottleneck problem. However, such a concept exceeds the scope of this

Master’s thesis and therefore a domain with a small number of categories

will be chosen for research.

Lewis et al. (2004) compared the accuracy of SVM, k-Nearest Neighbours

(k-NN) and Rocchio-Style Prototype Classifier with each other on the

Reuters Corpus Vol. 1. Two variants of SVM were used. The first one

was trained for each category by using the default settings and the latter

tried to find optimal settings to improve results for unbalanced classes for

each category and was trained using a leave-one-out cross validation. Re-

sults show that the first SVM classifications achieve the best F1 values,

followed closely by the second SVM approach. k-NN and Rocchio-Style

did not achieve as good results, which underlines the statement made by

Sebastiani (2005).

Another study by Harish et al. (2012) compared results of k-NN, Rocchio-

Style and Linear Least Square Fit (LLSF) with each other. Throughout the

experiment k-NN achieved the best classification results, with Rocchio and

LLSF showing reasonable efficiency. Harish et al. (2012), however, state

15

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

that SVM methods can be used to improve upon the k-NN results. The

k-Nearest Neighbour method is a lazy learning method, because few cal-

culations are done during the training phase. During the classification the

distances to all training samples have to be calculated to find the k nearest

samples, which makes it a lazy learning method and therefore more sen-

sitive to noisy data as it only considers a few samples to make a decision

(Witten et al., 2011, chap. 4).

For classifying text corpora one has to develop an internal representation

for the learning algorithms. The most common approach represents each

text as a vector in which every position displays the existence of a word

(set of words). Similar techniques do not only acknowledge the existence

but also the frequency of words (bag of words) (Forman, 2003; Sebastiani,

2002). The representation usually has a large number of features due to

the number of unique words in the document. Therefore it is appropriate

to remove irrelevant features to optimise the prediction (Aphinyanaphongs

et al., 2014), as was discussed in Section 2.1.2. However, it needs to be

shown if feature selection plays an important role when using the Posit

toolset, as the number of features that can be extracted from the com-

puted quantitative data do not expand the runtime of the learning algo-

rithms drastically. As it is suggested in multiple papers (Aphinyanaphongs

et al., 2014; Forman, 2003; Joachims, 1998) feature selection can improve

the performance of classifiers. Therefore the dissertation will further anal-

yse the importance of certain features of the Posit tool to discuss their

influence on the classification.

Forman (2003), for example, points out that words with low frequencies can

be neglected as well as so called stopwords, such as ’a’ and ’or’. However,

for every approach one needs to bear in mind the possibly varying size of

documents as the occurrences need to be normalised over the size of text.

Aphinyanaphongs et al. (2014) suggest that the most suitable classification

performance metrics is the receiver operating characteristic (ROC), which

plots sensitivity against 1−specificity. The area under curve (AUC) can

then be used to differentiate between perfect classification (AUC=1), clas-

sification by chance (AUC=0.5) and inverse classification (AUC=0). The

advantage of this metric is its insensitivity to unbalanced categories.

In the field of computational linguistics n-grams are defined as a sequence

of characters or words of length n. The Posit tool makes it possible to ex-

16

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

tract word grams of length 2, 3 and 4 including their frequency. Statistical

features about word n-grams have been appropriated for text classification

by Peng and Schuurmans (2003). The n-gram language model is handled

in a similar way to a Näıve Bayes model. Each category is trained with

a language model and every document can be evaluated on each of those

models to decide to which it agrees the most. In this experimental paper

it was shown that statistical data of n-grams can be used for a chain aug-

mented Näıve Bayes classifier. An optimal size for n-grams can be found

to improve the classification of documents. This underlines the importance

of the Posit tool to quantify data about n-grams. It seems to be a source

for improving upon classification accuracy.

2.3 Quantitative Text Analysis

The most popular approach to text classification is representing each text

as a vector of word occurrences (set or bag of words) (Harish et al., 2012;

Forman, 2003; Cios et al., 2007; Sebastiani, 2002). One way of modelling

such a vector is denoting the occurrence of a word by setting the position

to 1 and otherwise to 0. There are other models which also include the

frequency of which a word appears in the text which can be of great im-

portance to the classification.

However, these approaches require a lot of computational time and opti-

misation, for example using feature selection (see Section 2.1.2).

Another approach, which enriches the representation of texts for machine

learning models is going to be discussed in this section and will be of

great importance for the rest of this dissertation. Instead of representing a

text with its words, the following tool calculates quantitative and statistical

values for a text which are suggested to be valuable for classification models.

The Posit Text Profiling Toolset (Weir, 2007, 2009) is based on Unix script-

ing and proved to be applicable to large text files, because interim results

are stored in temporary files, which makes the process more memory effi-

cient.

The features of the Posit tool can be split into three modules:

– The parts-of-speech (POS) Profiler develops statistics about the POS

characteristic in a given document. The parts-of-speech are further

17

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

distinguished into types and tokens, where types define the unique

occurrences of POS features.

These statistics include frequencies for parts-of-speech tokens and

types, type-token ratios, number of sentences and average sentence

and word length. Further information is gathered by aggregating the

data into subgroups, for example common nouns and proper nouns

or for the different verb tenses.

The most detailed statistic is the total frequency of each POS token

or type.

– The Vocabulary Profiler can extract the least common words in a

text compared to a reference frequency list. Using a statistical sig-

nificance measure on the frequency of words compared to a reference

frequency, this can then produce keywords for the text. The goal of

this procedure is to give the author feedback of the chosen vocab-

ulary. Moreover, the tool is able to determine n-gram frequencies.

This enables the user to compare word and n-gram frequencies of a

text with a reference frequency list.

– The Readability Profiler, which is under development, will use the

results of the previous modules and a collocation analysis to detect

the readability of the document. As for the Vocabulary Profiler,

the collocation frequency can be compared to an average collocation

frequency measure to rate readability among texts.

Additionally to these modules the tool offers the possibility to use POS

tagging on the documents. In order to understand the context for specific

keywords one can utilise the concordance option of the tool. This makes it

possible to find word spans around the desired keyword.

One can conclude that the Posit tool offers a thorough quantitative anal-

ysis of an arbitrarily large text corpus with highly customisable features.

The calculated variables can be further employed for research purposes on

textual classification.

Weir et al. (2016) applied the Posit tool on the data retrieved by the Ter-

rorism and Extremism Network Extractor (TENE) webcrawler. The vast

amount of online data makes automatic classification absolutely essential.

TENE was developed by the International CyberCrime Research Center

(ICCRC) at Simon Fraser University in Burnaby, British Columbia.

18

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

The basis of the classification process is the manual classification of the text

data into the categories ’pro-extremist’, ’neutral’ and ’anti-extremist’. The

conducted research was twofold: The group at ICCRC based the classifi-

cation on sentiment analysis. In order to apply this analysis POS tagging

was used to extract key nouns and their frequency distribution. Then Sen-

tiStregth was applied, which is a tool for analysing the sentiment of words

by assigning numbers to words according to their positive or negative con-

notation. As a result, the extracted keywords were labelled with positive

or negative values.

The researchers at the Computer and Information Science department at

the University of Strathclyde in Glasgow (UST) analysed the quantitative

syntactic features derived by the previously discussed Posit toolset in order

to enrich the information given by the text corpus.

The sentiment analysis approach achieved a correct classification of 80.51%

with a standard J48 decision-tree, whereas the Posit approach classified

91.4% of the webpages correctly with the same classifier. The best result

of 95.3% correctly classified texts was accomplished with a Random Forest

classification on basis of the Posit data.

These results clearly show that the quantitative data performs better clas-

sifications, even though sentiment analysis might be considered as a more

suitable tool due to the emotional subject of the webpages. One reason

might be the insufficient data that was extracted for sentiment analysis, as

only nouns were considered whereas the Posit tool exploited a much richer

set of features.

For further research it would be interesting if an in-depth sentiment analysis

of several parts-of-speech can improve the classification results. Consider-

ing the Posit method it could be informative to analyse which features

extracted by Posit are the most important to classify a dataset as such.

Previous research conducted by Weir and Anagnostou (2007) applied the

same analysis of parts-of-speech as Posit to categorise newspaper articles.

The most frequently used words of three categories were considered to make

statements about the articles. The research detected a classification prob-

lem within the quantitative approach. When comparing the distribution of

parts-of-speech with the British National Corpus divergences were found.

It needs to be mentioned that it is not to expect that a general set of texts

has similarities to a specific set of documents as the newspapers. However,

19

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

this comparison showed variance in distribution of nouns, ’non-specified’

parts-of-speech and determiners. A re-examination revealed that the POS

tagging tool mistyped terms as too many words were wrongly classified as

nouns, not only due to weaknesses in the tool but also due to typographical

errors.

Undoubtedly, these issues caused by POS tagging influence the further

research based on the word frequencies. The quantitative data produced

must therefore be examined carefully in order to perform representative

research on text classification.

20

Chapter 3

Research Methods

The previous chapter dealt with text categorisation in general by discussing

how texts are appropriated in order to feed them into machine learning algo-

rithms. A more specific approach dealing with quantitative data extracted

from text corpora has been examined as well. The research suggested that

numeric data about the linguistics of a text has a large impact on clas-

sification efficiency of machine learning algorithms. The advantage of a

quantitative approach, opposed to a vector representation of the existence

of words in the text (bag of words), is that the number of features is much

lower. Instead of dealing with millions of features (Blum and Langley,

1997), the Posit tool extracts 27 distinct values. Furthermore, Posit allows

collection of frequency data about n-grams, which will be important for

this research. In combination with reference data concerning the natural

English language, it is possible to extract frequency ratios which could fur-

ther enrich the feature set.

Some important steps of the machine learning process were reviewed in

Section 2.1, including feature selection. This comes together now with the

need to analyse the importance of n-gram and other features of the Posit

output.

After settling on the aim of this research in the first section of this chapter,

the latter part will deal with the concrete preparation of the data and the

implementation of the experiments is going to be examined.

21

CHAPTER 3. RESEARCH METHODS

3.1 Approach

The Posit tool has served to create data from text for only one corpus

before: extremism data extracted from the World Wide Web (Weir et al.,

2016). In this research the effectiveness of the Posit features are going to

be further evaluated on the basis of three datasets with varying topics. In

the following ’Posit features’ will refer to the summary data generated by

Posit’s core functionality.

The aim of the experiments circles around the importance of feature sub-

sets. There are several constellations that can be evaluated: it will be of

interest to analyse if only a subset of the Posit features is sufficient to cre-

ate a well working machine learning model. This raises the question, if a

subset of most important features is dependent on the dataset or topic of

data or if that subset proves to be important among several corpora.

Moreover, using numeric values based on n-grams has, to our knowledge,

not previously been considered by other authors. The frequency data of

n-grams can be extracted using the Posit tool. Analysis should be per-

formed to see if one can take advantage of such values and if so, how much

more precision of the classification model can be achieved. It needs to be

considered if n-gram features work well on their own or if they, combined

with a subset of Posit features, improve the machine learning approach.

Another aim of this research is to find out if n-gram features influence the

importance of the Posit features. In combination with n-gram features,

previously less important Posit features could contribute to a better classi-

fication. Again, these facets need to be separately analysed on the different

datasets. Only then can one draw conclusions about the likeliness that im-

portant features are independent on the dataset or vary among them.

In order to evaluate how well each set of features performs several machine

learning models are going to be assessed. Depending on the used models,

option tuning can be performed to achieve better results.

These thoughts are going to be further elaborated and summarised in the

next section by defining hypotheses. It is important to maintain a consis-

tent experimental set-up to draw valid conclusions, which will be discussed

as well in this chapter.

22

CHAPTER 3. RESEARCH METHODS

3.1.1 Hypotheses

The foundation of an experimental research is to construct hypotheses on

the grounds of research questions. These will then be evaluated to prove

or disprove their statement. In the following section several theories con-

cerning feature subsets will be formulated.

n-gram Features

The first aspect that is going to be appointed is the contribution of n-gram

ratios to the classification model. The frequency of n-grams could contain

valuable information as sequences of words preserve more context than

individual words. n-grams with lower frequency than the average n-gram

in the natural language could therefore be of greater significance as they

point out distinct properties of a text.

Another theory involving n-grams is that there are vital Posit features

without which the classification model does not work well. This implies

that using only the features created from n-gram frequencies will not lead

to accurate predictions.

Hypotheses:

1. n-gram features improve the classification accuracy of machine learn-

ing algorithms independently of the data domain.

2. A feature created from low-frequency n-grams is more important than

a feature of high-frequency n-grams.

3. n-gram features alone are not sufficient for classification models to

perform well.

Subset of Features

It is likely that a subset of the Posit and n-gram features serves as a better

basis for classification models as some features are correlated, e.g. the

average sentence length is calculated as

average sentence length =
number of words

number of sentences
.

By selecting uncorrelated features it should therefore be possible to opti-

mise the performance of the classifier (Langley and Iba, 1993; Blum and

23

CHAPTER 3. RESEARCH METHODS

Langley, 1997; Kohavi and John, 1997; Janecek et al., 2008). To explore

this feature selection can be applied to the full set of Posit and n-gram

features.

Another aspect of feature selection that can be considered here is Principal

Component Analysis, which keeps all features, but creates new ones based

on linear combinations of the original features. Within each new feature

every old one is weighted by a factor. PCA creates features that are un-

correlated and therefore it is expected that this method would improve the

predictive power of the classifier.

4. Using a subset of Posit and n-gram features leads to better classifica-

tion results.

5. Using Principal Component Analysis improves the effectiveness of the

features and leads to better classification results.

3.1.2 Experimental Set-Up

Having defined the hypotheses that will be targeted it is now time to design

the experiments. Bearing in mind that only the variables of interest can

be altered and the rest of the environment must be stable, several steps of

the machine learning process are consistent among all experiments.

Data Preparation

Undoubtedly, the data must be preprocessed before any of the tests can be

conducted. Starting with the raw text data, firstly the Posit data has to be

generated including the n-gram frequencies. Once the data has been con-

verted into its numerical representation further preprocessing steps must

be taken. This includes cleaning out noise and dealing with missing values

as well as scaling the data (see Section 2.1.1). Furthermore, to have pre-

cisely the same data configuration one should conduct the studies on the

same training set. Therefore, the part of data splitting (see Section 2.1.3)

has to be done beforehand as well. Each data corpus will be split into 70%

training data and 30% testing data after scaling it using normalisation and

standardisation. As the sampling of the data is random it should not in-

fluence the outcome of the experiments, but if the machine learning model

is unstable the sampling can have a great impact on the experiments. A

more accurate approach would be to apply a k-fold cross validation. Due

24

CHAPTER 3. RESEARCH METHODS

to the computational costs and the number of experiments to be conducted

it is more feasible to perform a 70:30 sampling.

Experiments

For hypotheses 1 and 3 a selection of features can be done manually. Case 1

involves two settings: first the classification takes place based solely on the

Posit features and then including the n-gram ratios. The measures of the

used learning algorithm can then be compared for the different datasets.

Case 3 involves selecting only the n-gram features for classification. The

results can be compared with the evaluation of case 1 or assessed on their

own.

There are several ways to conduct experiments for hypothesis 2. The first

possibility is to manually select the Posit features and either one of the

n-gram features. Then the evaluation measure can be used as an indicator

if the low-frequency or the high-frequency feature was more valuable to the

classification.

Another possibility would be to use the full set of Posit and n-gram features

and then to apply the filter or wrapper methods discussed in Section 2.1.2.

Using those methods the features can either be ranked by importance or

a set of the most important ones will be returned. In the first case it is

clear how to assess the values of both n-gram features. In the latter case a

difference in importance can only be determined if either of the features is

not contained in the returned subset. If both or neither are included, then

no statement towards the hypotheses can be made. Another important

point to be mentioned is that the filter methods use different measures to

asses the benefit of including certain features than the final classification

algorithm might use. Therefore, even if a feature is predicted to be of

greater significance than others, the machine learning algorithm might not

be able to exploit the full range of profit. Consequently, it is necessary to

apply a classification model to evaluate the prediction performance of the

individual feature subsets.

After these considerations the first approach seems to offer clearer indica-

tions on how important each feature is, thus the second approach will not

be executed.

These thoughts about feature selection directly lead to examining hypoth-

esis 4 which suggests that features can be discarded from the classification

25

CHAPTER 3. RESEARCH METHODS

model to improve its accuracy. As discussed in Section 2.1.2 there are sev-

eral methods to choose from in order to search and evaluate possible subsets

of features. The resulting sets can then be further evaluated against each

other by applying learning algorithms and the achieved accuracies can also

be compared against the results of hypothesis 1.

The same holds for hypothesis 5. Principal Component Analysis can be

applied with different settings of covered variance. The resulting accuracy

of the PCA can be compared with the results of the feature selection in

hypotheses 4 and the accuracies achieved in hypothesis 1 when all features

were applied.

3.2 Implementation

After having defined the concepts of research to be conducted, this section

will deal with the concrete implementation.

All datasets were received as raw text files which had to be transformed into

numeric data. The first part of this section will deal with the preparation

of the data, followed by the individual machine learning procedures such as

getting to know the datasets, cleaning them, selecting features and finally

applying the classification models.

3.2.1 Data Preparation

In this case, having three different datasets available means being able to

to cope with three different inputs.

The DBpedia data was stored in two separate text files, one for training

with 560 000 texts and one for testing with 70 000 texts. Each file contained

one text per line.

The extremism dataset was split into three folders representing its cate-

gories positive, negative and neutral with an average of 6 400 texts in each

set. Every text was stored in its own file with additional information in

the first line.

The drug dataset was available in a similar configuration, the only differ-

ence being that the files were not stored per category but per crawl and

within that per domain. Each file only contained the text with no other

data. The full dataset included 1 245 410 files many of which had to be

discarded from the research for reasons discussed in Section 3.2.2.

26

CHAPTER 3. RESEARCH METHODS

In order to receive fast results it was important to split the large amount

of texts across several machines. For the first dataset the approach to

perform the transformation on subsets of lines was evident. A slightly

altered approach was used for the other corpora. The file names including

the folder names were stored to index files – each line containing the path

to one text file. Then the process of extracting the numeric data was

applied on subsets of lines in order to execute the transformation in parallel.

Each execution created one file including the numeric data of all text files

processed in that run. Finally, the resulting files were combined to one for

each dataset.

Posit

The Posit tool consists of several scripts computing the numeric data.

These numeric values are threefold in their meaning: first, statistics about

word count, number of characters and sentences are computed; second of

all, number of token types are aggregated; finally, the part-of-speech (POS)

types are returned. A full list of all values can be found in Table 3.1, as

one can see the word types for token and part-of-speech are equal.

The Posit tool also has the capability of extracting 2-, 3- and 4-grams and

their frequency in the text. An example of the bi-gram output can be seen

in Table 3.2. As this dissertation is of experimental nature only bi-grams

will be considered. The script executing these computations was modified

in such a way that it only created output for bi-grams. The core logic of

Statistics Token/POS Types

Total words (tokens) noun
Total unique words (types) verb
Type/Token Ratio adjective
Number of sentences preposition
Average sentence length possessive pronoun
Number of characters personal pronoun
Average word length determiner

adverb
particle
interjection

Table 3.1: Posit numeric output.

Posit was left untouched, however, a few adaptations had to be made. First

27

CHAPTER 3. RESEARCH METHODS

of all, when executing the Posit analysis a folder of results is created which

is not overwritten when executing the next file leading to wrong outputs

as previous intermediate results are included in new computations. As the

tool was being applied sequentially on multiple texts, the calling script

was embedded in a script which relocated the finished results and therefore

cleaned intermediate ones. Another change involving the sentence count

Number of occurrences Bi-gram

17 enterprise risk
9 synchrony financial
5 risk management
5 risk leader
5 email address
4 vp enterprise
3 your information
3 your email
3 use of

Table 3.2: Extract of Posit n-gram output.

was performed. After applying the tool on the first dataset, it became

apparent that the sentence count was one smaller than it should have been.

The script computing this count inserted new lines into the text in such a

way that each sentence was stored in a single line with the aim to count the

number of lines. However, after the last sentence no new line was inserted

which lead to the final count being one too few. The bash command awk

’1’ was inserted which automatically inserts a new line at the end of the

file if none is present.

Furthermore, many of the texts in the available datasets did not confirm

to common linguistic rules such as having a space after a full stop followed

by a capital letter. The script, however, only counted sentences if they

were succeeded by at least one space. After changing the script to accept

sentences followed by no space, the results of the Posit tool seemed to be

more appropriate to the datasets. It needs to be mentioned that other faults

are likely to occur due to this change, as e.g. web pages with capital letter

are counted as several sentences (WWW.TestPage.COM). For the time

being, errors like that have to be accepted when dealing with a large amount

of web data, because content on web pages is more likely to disregard

linguistic rules than other literature such as books or newspaper articles.

28

CHAPTER 3. RESEARCH METHODS

If the data is known to contain many instances that can not be split into

sentences correctly with this approach, one should consider improving the

Posit scripts to accomplish a better sentence count.

n-gram Reference Data

To broaden the set of features three 2-gram ratios are included in the re-

search. The frequency in which certain 2-grams appear in a text can be

calculated using the Posit tool. This, however, does not offer any informa-

tion about how common a 2-gram is in the natural language. The aim is

to create a value which gives an indication on how common 2-grams are

in a single text compared to the whole English language. Before any ra-

tios can be calculated a reference corpus is needed. The Google N-Gram

corpus (Michel et al., 2011) contains around 217 000 000 bi-grams and was

used for this dissertation. The 2-grams were stored in a database created

with SQLite instead of text files to make accessing them as fast as possible,

because requests have to be made for each text.

Based on Oakes (2003) it was chosen to calculate the expected value of

each 2-gram appearing in both, the text and the reference corpus and then

using their arithmetic mean. The expected value can be calculated using

the following formula:

expected value =
Row Total · Column Total

Overall Total
(3.1)

Where Row Total is calculated as the sum of occurrences of a single 2-gram

in the text and in the reference corpus, Column Total is defined as the sum

of 2-grams in the text or in the reference and Overall Total is the sum of

all row and column totals (see Table 3.3). The expected values of examples

’on the’ is 37.96 and of ’is she’ is 0.04, the mean is 19.

Bi-gram Text Reference Row Total Expected Value

on the 25 800328815 800328840 37.959717383
is she 13 849291 849304 0.040282617

Column Total 38 801178106 801178144

Table 3.3: Calculation of expected value.

In this manner, three ratios were calculated: overall, low-frequency and

high-frequency. For the low-frequency ratio only 2-grams with a lower

29

CHAPTER 3. RESEARCH METHODS

than average frequency in the reference corpus were considered for the

calculations and equivalently for the high-frequency ratio only 2-grams with

above average frequency. The overall ratio did not consider any differences

in frequencies.

File Format

Included in the process of preparing the data is the decision in which for-

mat the datasets should be stored. Most of the analysis was done with

the Weka tool and its Java API (Witten, Ian H and Frank and Hall, 2002).

Weka’s native file format is an Attribute Relation File Format (arff). It was

decided to transform the data to this format as it is compatible with other

programming languages such as R and Python. The data representation

in arff files is separated into two parts: the header and the data.

Included in the header is global information about the type of data being

stored. In arff files tags are used for notation such as @RELATION, @AT-

TRIBUTE and @DATA. The relation tag defines the name of the dataset

and the attributes define the name and data type of features. Types can be

numeric, nominal specification, string or dates. Nominal specifications are

sets of strings which can be used to define e.g. the set of categories. Rela-

tion and attributes are defined in the header. After the tag @DATA each

line describes one single instance where the attributes’ values are comma

separated in the order of definition in the header. An exemplary extract of

an arff file looks as follows:

As one can see in the example the attributes consist of the Posit features,

30

CHAPTER 3. RESEARCH METHODS

the n-gram ratios and the label. Additionally, an ID is introduced which

refers to the line of the index file in which the path to the text file is stored

or to the line in which the text was stored, depending on the dataset.

This ID serves only as an identification of texts for the preprocessing and

cleaning phase. Before feature selection and classification this attribute

must be removed.

Application

In Appendix B.1 one can find the concrete changes applied to the Posit tool.

The first code piece shows how the oldSummaryFolder and oldNgramFolder

were moved to a new location that contained all summary and n-gram

results for each text. The script can be executed on the current text file

with the options –sum or –ngram depending on which result folder should

be moved.

The second code fragment shows the script which counts the number of

sentences. The only change applied was that in the sed command after a

sentence delimiter (.?!) also zero spaces are accepted (\s*). Before, at least

one space had to follow the end of the sentence (\s+ \s*).

The next two code pieces show how the tool was executed. First the Posit

summary was created by calling pos all.sh on the text file and then the

script to move the results folder was executed. The same approach was

taken to create the n-gram data with the ngram.sh script.

Appendix B.2 shows how the arff files were created by calling the Posit tool

on every text.

The run method in file main is the start point of the process. The method

is called with six arguments. The first argument determines which type of

data is to be expected, the path defines where the data is stored, skip and

count define the subset of files to transform, the id is used to separate the

individual executions by naming the output files differently and relation is

a variable defining the name of the arff relation. If the Drug data is to be

transformed the construct method is called with the path to the data, the

id of the execution, the name of the relation and any additional features

and the class attributes. This constructor is then forwarded to the method

that reads the files of the drug dataset. The same approach is taken for

Extremism and DBpedia data, only the constructor is called with different

class categories and no additional features.

31

CHAPTER 3. RESEARCH METHODS

The file also contains an index method that is used to create the index files

for the Extremism and Drug data.

The reader file then handles the text files for the different datasets in sep-

arate methods. The DBpedia data was given in a csv file, therefore each

line is parsed starting at the skip index and processing as many files as

defined in the count variable. The category is read as the first element of

the csv lines. The text is only further processed if it was correctly encoded,

this means no ’?’ or other symbols dominate the text, and if it exceeds a

certain size, to prevent Posit to be applied to empty files. A log file handles

all files that are not further processes by saving the line number and the

reason of ignoring the text. Afterwards the text is given to the constructor

to apply the Posit tool.

The same principle is applied to the other datasets. The Extremism and

Drug index files were read line by line. The Extremism files were stored

in folders assigned to a category. Within these categories, the texts were

stored in zip files which had to be extracted internally. Again the size of

the file and the encoding were checked. The files also contained informa-

tion irrelevant to this research which was ignored. As the Drug data was

stored in separate folders as well index files were created for each folder.

However, the folders were too large to be processed at once which is why a

skip and count variable was introduced. As for the previous cases the size

of the text was checked as well as the encoding and any other irrelevant

lines were ignored. Moreover, only English language texts were accepted,

which was detected using the langdetect library.

The read index methods were used to create the index files for the datasets.

For the Extremism data the indices were created for each category sepa-

rately and for the Drug data the domain names were compared with a list of

pre-classified drug related or unrelated domains. Then the categories pos-

itive, negative and unknown were directly assigned to the text files within

the index files.

The constructor class manages the creation of several files: the text file, the

resulting arff file and a log file which stores information about unprocessed

texts. The class also contains a method called execute which calls the

Posit shell scripts that execute the Posit summary calculations and the

n-gram frequencies. Those results are processed by other classes and will

be discussed later. Once all results are gathered in arrays the data can

32

CHAPTER 3. RESEARCH METHODS

be processed by the util class that writes the attributes and the data to

temporary files. Whenever four new texts were processed the data was

stored in a data file in order to follow the progress. The class contains

other methods that handle writing, closing and removing temporary files.

The create arff class handles the management of the attributes and their

data values. The summary files are parsed in the util class and the results

are stored in dictionaries where the keys are the attribute names and the

values are the data. Three types of attributes are contained: the statistical

data, the token and the POS data. The attributes are sorted alphabetically

within their groups. The n-gram data is parsed in another method which

forwards the results to the ngram ratio class and returns the average, high

and low frequency ratios.

The util file handles the parsing of the summary data by successively storing

the statistical data, the tokens and the POS data in dictionaries. It also

manages writing the tags for the arff file including the attribute names and

the data types. Methods to write the data into files and to write the log

files are included as well as the execution of bash scripts.

The ngram class in file ngram index contains several dictionaries and the

column and row sums necessary for calculating the n-gram frequency ratios

as the row frequency multiplied with the column frequency and divided by

the total sum. A reference threshold value is set, which is defined as the

average frequency of 2-grams from the reference corpus. The column totals

are calculated for the above and below threshold frequencies by updating

the frequencies per column and by creating dictionaries which hold the

frequency of the n-gram of the text and of the reference corpus. The class

contains methods to search the database of the reference corpus and to

parse the n-gram files created by Posit which contain a n-gram and its

frequency in each line.

The ngram ratio file contains methods to calculate the final ratio using the

column and row frequency determined in the ngram class. These ratios

are created for high, low and overall values of the frequencies. If n-grams

are present in the text, but can not be found in the reference corpus, the

frequencies are ignored by setting it to -1. These ratios are calculated for

each individual n-gram which is why an average method is implemented

that determines the average frequency and ignores the negative values as

they mark non existing reference frequencies.

33

CHAPTER 3. RESEARCH METHODS

With the help of the database class the reference corpus was stored in a

more efficient format. The Google n-gram data was given in separate files

and is sorted alphabetically. Therefore a single database table was created

holding the n-grams as text and their frequency as an integer. By iterating

over each of those files every n-gram was added to the database. The

database management was handled using the sqlite3 library. In order to

find n-grams in the database the complete list of 2-grams in a text was

searched in the database using the command ’SELECT * FROM database

WHERE ngram IN (?,...,?)’ with as many question marks as n-grams in

the text. This command can handle up to 80 elements in the list. For

texts with more than 80 n-grams the command was split up in multiple

requests. A dictionary with keys for every n-gram is created that holds

the frequencies found. If a n-gram could not be found in the database

its value is -1. The class also contains a method avg freq to calculate the

average frequency over all 2-grams in the database in order to determine

the threshold value between high and low frequency n-grams.

3.2.2 Data Processing

There are multiple machine learning tools including R and Python with its

packages pandas and sklearn to only mention a few. However, this research

was done using the Weka graphical user interface as well as its Java API,

because the GUI offers an easy and quick way to get an overview of the

distribution of instances across the 30 features offered by the visualisation

interface. The API was utilised to implement the experiments and to print

the results into files. Before the implementation of the experiments is

presented it is important to get an image of the datasets. Afterwards,

details such as cleansing, feature selection and classification models can be

discussed.

The Datasets

In the following, three datasets are going to be presented. The source and

topic of each dataset varies which provides a broad range of texts and will

hopefully serve as proof that the Posit tool offers data which can be used

efficiently for text classification.

Firstly, general information about the three datasets will be given and then

34

CHAPTER 3. RESEARCH METHODS

some of the statistical data from the Posit features will be compared to get

a better image of what data is being analysed.

DBpedia The DBpedia data is a collection of Wikipedia articles ex-

tracted from DBpedia 2014. This corpus contains English texts covering 14

disjoint categories (Lehmann et al., 2015). Due to the large amount of data,

it was decided to only analyse four classes: Company, Educational Institu-

tion, Artist and Athlete which were equally spread over 180 000 instances.

After cleaning the data 179 972 instances were left.

Extremism This dataset has already been subjected to machine learn-

ing by Weir et al. (2016). The International CyberCrime Research Center

(ICCRC) at Simon Fraser University in Burnaby, British Columbia devel-

oped a Terrorism and Extremism Network Extractor web-crawler (TENE)

that searches the open web. Parts of the dataset extracted from TENE

were used here. Before cleaning the dataset included 19 326 texts. After

removing invalid files 18 464 remained. The whole data was pre-classified as

positive, negative or neutral with 6925, 4836, 6703 instances respectively.

Drug A dataset containing drug related texts from the dark web was

made available by ICCRC as well. The texts were gathered using the Dark

Crawler (Mercur IT Solutions, 2017) originally developed by ICCRC. Parts

of the data were manually classified by labelling the domains from which

the texts were extracted as positive or negative: 120 domains were found

to be drug related and 653 not drug related. Overall 1 245 410 texts were

included, after cleaning 798 684 instances remained of which 91 088 are

pre-classified.

As one can see in Table 3.4 the datasets show different distributions within

the features Total Words, Number of Sentences and Average Sentence

Length. The DBpedia set seems to contain mostly short texts as the mean

of the number of total words is 48 and the maximum 308. On the other

hand, the drug related data has an average of 1908 words in a text with a

maximum of 149 371 and the extremism related set has an average of 1801

and a maximum of 121 324 words. The statistical data for all features of

the three datasets can be found in Appendix A.

As one can see in Figure 3.1 the DBpedia data is nicely distributed with

35

CHAPTER 3. RESEARCH METHODS

(a) DBpedia data (b) Extremism data

(c) Drug data

Figure 3.1: Distribution of number of words for all datasets.

no extreme values, however, the extremism and drug data both show un-

usually large values which do not agree with the distribution of the rest

of the data. Especially the drug data shows several unrelated occurrences

over 60 000 words per text.

The number of sentences in a text also varies among those datasets. DB-

pedia contains on average 2.83 sentences, whereas the drug set contains

about 100 times more: 271.38. The extremism data is with an average of

58 sentences closer to the DBpedia data than to the drug data.

In Figure 3.2 one can find histograms about the distribution of the number

of sentences across the datasets. The maximum number of sentences for

the extremism data is 3356, but the plot shows, that only a small amount

of data includes that many sentences, as most of the data contains less

than 1000 sentences. The drug data, on the other hand, is spread out with

many samples around 5000 sentences per text and a few occurrences up to

the maximum of 11 382 sentences.

The values for average sentence length show that either the Posit calcu-

lations are not correct or the datasets contain many texts that are not

structured in sentences. The mean of DBpedia’s average sentence length is

36

CHAPTER 3. RESEARCH METHODS

(a) DBpedia data (b) Extremism data

(c) Drug data

Figure 3.2: Distribution of number of sentences for all datasets.

18.58, which should be a reasonable length, but the maximum is 201. For

the drug data the mean is 105.55 and the maximum is 66 894, which both

are unlikely to be actual sentences. The extremism data’s maximum is 5%

of the maximum of the drug data, which is still unreasonably high. The

average of 46 is still high, but closer to the DBpedia sentences.

In Figure 3.3 the distribution of the average sentence length is shown. As

before, the DBpedia data shows the most compressed plot with only a few

texts around 150. Most of the extremism values are located under 1000

with only one outlier at around 1200. Opposite to that is the drug data.

Most of the instances are gathered between 1 and 15 000, but some data

points can be found at up to 67 000.

This comparison also shows that the range of features within one dataset

varies too. For example in the DBpedia data the number of characters

ranges between 10 and 1926 with a variance of 129, whereas the number

of determiner types is in the interval from 0 to 7 with a variance of 0.75.

This leads some evaluation metrics to assume that the number of char-

acters feature has much more information, because the variance is much

higher. To avoid this problem all datasets were scaled with two techniques.

37

CHAPTER 3. RESEARCH METHODS

(a) DBpedia data

(b) Extremism data (c) Drug data

Figure 3.3: Distribution of average sentence length for all datasets.

Feature Dataset Min Max Mean Std Dev.

Total words
DBpedia 2 308 48.01 20.85
Drug 3 149 371 1908.46 3729.39
Extremism 2 121 324 1801.19 2880.69

Number of Sentences
DBpedia 1 28 2.83 1.49
Drug 1 11 382 271.38 1064.49
Extremism 1 3356 57.96 96.51

Average Sentence
Length

DBpedia 1.33 201 18.58 7.18
Drug 1.57 66 894 105.55 664.68
Extremism 1.61 3612 46.35 66.63

Table 3.4: Statistics of datasets compared

One version was normalised and the second was standardised (see Section

2.1.1) as it is not obvious which scaling technique works best on individual

datasets.

Considering the correlation of features one can take a look at Figure 3.4

which shows a grid-like structure for each of the datasets. Uncorrelated

features appear white in the figure and strongly correlating features are in

38

CHAPTER 3. RESEARCH METHODS

(a) DBpedia data

(b) Extremism data

(c) Drug data

Figure 3.4: Correlation maps for all datasets.

39

CHAPTER 3. RESEARCH METHODS

green, if they are positively correlated and in brown if negatively correlated.

One can see that the DBpedia data has more correlations within the feature

set as the extremism or drug data, because the latter sets have lighter

correlation maps. Furthermore, features such as number of characters and

sentences, total unique words and total words are correlated to each other.

The same behaviour can be found for personal and possessive pronouns and

the 2-gram ratios, where especially the overall and high frequency ratios are

correlated. Such correlations can have an impact on the machine learning

algorithms, but the feature selection processes that were applied can reduce

such behaviour.

Data Cleaning

The cleaning of data is an important process when using machine learning

algorithms (Witten et al., 2011). Invalid or missing data can drastically

reduce the models’ prediction accuracy and needs to be avoided. Fortu-

nately, the data created with the Posit tool does not return any missing

values, however, as mentioned earlier, the Posit tool returned zero values

for the feature Number of Sentences which lead to the conclusion that this

value was not computed correctly. A similar case were faulty results for

the 2-gram ratios which were -1. This indicated that no matches of 2-

grams between text and reference data were found showing that the text

was not correctly encoded or not in the English language. These erroneous

instances were corrected by checking the language and the encoding in the

preprocessing phase and computing the arff files again. This solved the

problem of these zero or -1 values, but still left noise in the data. This

noise, values that are inconsistent with the rest of the data, is harder to

detect. One feature appearing to have faulty values is the average sentence

length attribute. Even though the sentence count error in the Posit tool

was fixed, the average sentence length is far too large for many cases across

the three datasets as seen in Table 3.4. After analysing samples of data

it emerged that many texts do not consist of normal sentence structures,

but rather are a list of phrases. This might be due to the fact that the

web crawler extracted all text elements from web pages, including buttons,

fields, etc. and not only continuous text. The distribution of such values

in the average sentence length might appear unusual and definitely does

not agree with linguistics, however, such values can still be valuable for

40

CHAPTER 3. RESEARCH METHODS

categorisation as the extreme values might be more likely to appear in one

category than in the other. For this reason those values were not discarded

from the classification. Apart from these problems the implementation of

the transformation process did not allow texts that did not fulfil criteria

such as text size – a text must be at least 60 bytes, and proper encoding

– the texts were decoded to UTF-8. Some of the texts were previously

wrongly encoded and contained mostly punctuation characters such as ’?’

or spaces. Instances as such were ignored and not further processed.

Feature Selection

It was discussed previously that for high dimensional datasets it is impor-

tant to reduce the features to an optimal subset to improve the accuracy

and reduce the runtime of the classifier. This is not only necessary to

eliminate correlated attributes but also because some classification mod-

els exploit the proximity between points for their calculations and in high

dimensional space, the distance among instances becomes more uniform

(Janecek et al., 2008). The feature selection process was applied after scal-

ing the data, as differing ranges of features influences the calculations and

might therefore distort the importance of features. The experiments were

conducted on data that was normalised and standardised.

Of the three methods discussed in Section 2.1.2 Filter and PCA are going

to be implemented and analysed. The wrapper approach was abandoned

due to its computational runtime.

Filter methods The larger the set of features the more important it

is to choose a good search algorithm in order to find the optimal feature

subset. With k features the number of subsets grows exponentially to 2k,

therefore, an exhaustive search is not recommended for data with large k.

Two heuristic searches are offered in the Weka API: Greedy Stepwise and

Best First search, to be hereafter named GS and BS respectively.

GS is implemented as a steepest ascent Hill-Climber algorithm. By default

the implementation of this algorithm starts with an empty set of features

(forward search) and iteratively adds the best feature according to an eval-

uation metric. The algorithm terminates if it can not find a feature that

improves the current set. It is called steepest ascent, as this version of Hill-

Climbing takes into account the value of all successive nodes according to

41

CHAPTER 3. RESEARCH METHODS

the metric and does, therefore, not settle on the first feature that improves

the current subset. The implementation also includes a backtracking abil-

ity which, by default, can backtrack up to five times before the search is

terminated. The search offers three different search directions: forward,

backward and bi-directional, which allows adding and removing features to

optimise the sets effectiveness. The backward search starts with the full

set of features and removes one by one depending on how much value each

feature adds to the subset.

The implementation of BS is the Beam search, which is an optimised ver-

sion of a best-first search. It is a greedy stepwise algorithm as it does not

consider all possible features, but chooses the best option from a subset

of possible features. Thus it is a memory efficient implementation of best-

first, but does not always find the optimal solution.

GS and BS, being implemented as steepest ascent and beam search are

both versions of the best-first search concept. The difference is that GS

has three search directions: forward, backward and bi-directional, whereas

BS can only search forwards or backwards.

In spite of being listed as a search algorithm, the Ranker does not return

an optimal subset of features. It rather returns the list of features sorted by

their value according to the evaluation metric. The user can decide either

on a threshold down to which the ranked features should be listed, or on

the number of features to be kept.

The evaluation metric used for the search and ranking methods is a vital

part of feature selection. The Weka API offers the following attribute

evaluators: OneR, CfsSubset, Correlation, GainRatio and InfoGain.

OneR chooses the attribute with the minimum error (Holte, 1993), by

creating a rule that separates the data (Witten et al., 2011). CfsSubset

evaluates the predictive power for the subset while keeping the correlations

among this subset to a minimum (Hall, 1998). The Correlation attribute

evaluation considers the Pearson’s correlation between an attribute and the

category. The Pearsons’s correlation value is calculated as the covariance

between attribute and the category divided by the product of their standard

deviations (Guyon and Elisseeff, 2003):

Pearson(Class, Attribute) =
cov(Class, Attribute)

σClass · σAttribute

The category attribute is nominal in the datasets, in this case the evaluator

42

CHAPTER 3. RESEARCH METHODS

treats every nominal value as an indicator: when a class occurs it is treated

as 1, if not as 0. The overall correlation is then a weighted average over

the results per category.

To understand the information gain and gain ratio metrics one needs to de-

fine an entropy H(C) which measures the information content of C (Witten

et al., 2011). H(Class) returns the information value of the category fea-

ture and H(Class|Attribute) returns the expected value of information if

the ’Attribute’ is given.

Information gain calculates how much information is added when a feature

is included:.

InfoGain(Class, Attribute) = H(Class)−H(Class|Attribute).

Similarly to that, the gain ratio is calculated between a feature and the

category as the information gain divided by the information value of the

attribute:

GainR(Class, Attribute) =
H(Class)−H(Class|Attribute)

H(Attribute)

Six combinations between search methods and evaluation metrics are pos-

sible. GS and BS can only be combined with CfsSubset, because that is

the only metric that takes sets of features into account. All other metrics

can be combined with the Ranker method.

In order to compare the Ranker results with the feature subsets the highest

ranked features were selected. The threshold down to which features are

kept will be 80% of the rank of the best feature.

Principal Component Analysis To evaluate the last hypothesis from

Section 3.1.1 the Pincipal Component Analysis has to be used on the set

of features. It was mentioned earlier that the data has to be scaled before

PCA can be applied, as PCA uses the variance of features to decide on

their importance. If features have different scales, their variance can be

disproportionally different. Two scaling options are available: normalising

the data of each feature into the interval [0, 1] or standardising the data

such that the mean is zero and the standard deviation is one. Both options

were applied to the datasets as there is no one scaling method most efficient

for all datasets. Furthermore, when applying the PCA one needs to decide

43

CHAPTER 3. RESEARCH METHODS

how much of the overall variance in the dataset should be kept. If less

variance of the data is kept fewer new features are necessary to account for

that amount of variance. The default setting in Weka is 95% which was

kept during the experiments.

Classification Models

Several machine learning algorithms come into question when classifying

data. Four common implementations are going to be discussed in the fol-

lowing all of which are available in the Weka API: Näıve Bayes, Decision

Tree, k-Nearest Neighbours and Support Vector Machines.

Näıve Bayes This algorithm is a probability based classification method.

It works on the assumption that each features influences the probability of

an instance belonging to a certain category independent of other features.

It calculates the probability of a category k using conditional probabilities

and the Bayes’ theorem:

p(Ck|x) =
p(Ck) · p(x|Ck)

p(x)
(3.2)

where x = (x1, ...xn) is the vector containing all n features (Witten et al.,

2011, chap. 4).

Due to the assumption that features do not influence each other, this classi-

fier should work best on datasets where the best features have been selected

and therefore correlation is minimal.

The Weka implementation of the Näıve Bayes was set up with the kernel

density estimator instead of the default normal distribution. This option

was chosen, because the kernel estimator can deal better with non-Gaussian

class distributions. Therefore this version is expected to perform better

across all datasets.

Decision Tree This type of algorithm can be used for classification as

well as regression problems. During the training phase a tree is constructed

by starting at the root and choosing a feature which offers the best splitting

point of the data. The branches of the root represent every possible value

for this feature. Every node only contains instances following the branches

from the root to this node. In each of the child nodes this process is

44

CHAPTER 3. RESEARCH METHODS

repeated until all instances in a node belong to the same category (Witten

et al., 2011, chap. 4). The complete tree can then be pruned, which is a

procedure that removes nodes or parts of the tree that do not offer much

information towards the prediction. Pruning reduces the size of the tree and

its complexity and thus the accuracy of the classifier improves as overfitting

is less likely (Drazin, 2010).

The implementation chosed from Weka is the J48 decision tree with the

standard settings, which are pruning with a confidence factor of 0.25 and

at least two instances per leaf.

k-Nearest Neighbours In this method a new instance is classified by

calculating its distance to the instances of the training set. The new data

point is then labelled with the same class as the majority of its k-nearest

neighbours. Feature selection should play an important role here, because

proximities are more meaningful in less dimensional space (Cios et al., 2007;

Janecek et al., 2008). This algorithm falls into the set of lazy learning

algorithms as the calculations are postponed until classification. As this

model considers only k many other instances it is sensitive to noisy data

(Witten et al., 2011, chap. 4). For larger values of k this method is less

sensitive to noise, but the distinctiveness among the classes is reduced.

The implementation in Weka is called IBk (instance based). It was executed

with k=1 and k=3 using the LinearNNSearch of Weka combined with the

euclidean distance.

Support Vector Machines Originally, this algorithm is used for binary

classification problems only, but there exist variations applicable for multi-

class problems. In this case the classification can be done for all pairs of

categories or by splitting the classes in a way that one class competes with

the rest. For the binary problem, this method tries to find a small set of

instances on the border between classes, called support vectors. From these

vectors, a function is build to maximise the distance between them. This

function can have non-linear structures which results in multi-dimensional

decision boundaries (Olson and Delen, 2008; Witten et al., 2011, chap. 4).

The Support Vector Machines (SVM) implementation in Weka follows the

sequential minimal optimisation of Platt (1998) and is called SMO. It uses

the pairwise binary representation for multi-class problems. The default

settings were kept except for the scaling parameter. By default the classifier

45

CHAPTER 3. RESEARCH METHODS

works on the normalised data, but here it was chosen not to scale the data

within the algorithm, but before as for all other classifiers.

Application

In Appendix B.3 the application for executing the text classification is

shown. The implementation makes use of the Weka API (Witten, Ian H

and Frank and Hall, 2002).

The Execution class represents the starting point of the application. The

arguments include the data paths to the training and testing data, vari-

ables for the execution of centered or standardised PCA, which features

should be deleted and an argument to decide if Posit or n-gram features

are processed. The last variable is used to separate the produced files in

different folders. From this main method the Driver is called over its two

constructor methods.

The first constructor executes the PCA and feature selection. The training

and testing data are processed by the PrepareData class to create objects

compatible with the Weka API and to set the class attribute to the last

feature. Then files for the PCA and the feature selection are created and

both methods are executed.

The PCA transformed datasets are created by a method pca in the Se-

lectAttribute class. The returned data is classified using the five machine

learning methods.

The executeFilter method in the Driver class works on the already deter-

mined feature subsets. The inverse of the features of those sets are removed

from the training and testing data before the five classifiers are applied to

the data.

The other Driver constructor executes those five machine learning algo-

rithms on training and testing data as well. It is possible to call this

constructor with a list of features to delete before classifying the data. The

five algorithms are called over the RunClassifier class which deals with the

setting of options.

PrepareData is a class that manages the datasets. createInstances is a

method that transforms the data source into an object of instances and

sets the class attribute to the last feature in the list. cleanData is a method

that, if necessary, transforms any non-nominal categories to a nominal data

type, removes any features contained in a list or removes duplicates in the

46

CHAPTER 3. RESEARCH METHODS

dataset. The class contains methods to scale the data such as standardise,

normalise or center. A multiply method is included multiplying all feature

values with 1010 which is necessary for some filter methods. remove takes

a list of feature indices and removes either those attributes or all attributes

except for those in the list.

SelectAttributes is a class dealing with the feature selection methods dis-

cussed in this chapter: filter methods and PCA.

In method filterAttributes the filter methods are implemented which are

combinations of evaluator and search methods stored in two lists. When

iterating over those lists all possible combinations of filter methods are ap-

plied to the data set. The Weka class AttributeSelection can apply those

filter methods to the data and returns the array of feature indices that are

evaluated to be important. For the methods including the ranker search a

threshold value is calculated as 80% of the best rank. Every feature that

has a rank higher than this threshold is stored in a list. All gathered sub-

sets are then returned to the Driver class.

To execute the PCA the Weka internal Principal Components filter is ap-

plied to the training data in method pca. Then the training and testing

data is transformed using the new attributes and both datasets are returned

to the Driver class.

The RunClassifier class includes a method runClassifier that applies a

classifier to the training data and evaluates its accuracy on the testing

data. Important results, such as the confusion matrix and the precision

and recall are stored in the output files. For each machine learning model

used in this dissertation a method was implemented that creates an object

of the model and sets the preferred options.

47

48

Chapter 4

Analysis

After implementing all experiments and executing the analysis on all

datasets available with different feature sets there are now many results

that need to be discussed. To simplify the presentation of the results the

attributes will be described by their ID hereafter. The list of all attributes

and IDs can be found in Table 4.1. Identifier 0 - 26 originate from the Posit

summary data and attributes 27 - 29 are the 2-gram ratios calculated from

the 2-gram frequency.

ID Attributes

0 average sentence length
1 average word length
2 number of characters
3 number of sentences
4 total unique words (types)
5 total words (tokens)
6 type/token ratio
7 adjective types
8 adverb types
9 determiner types
10 interjection types
11 noun types
12 particle types
13 personal pronoun types
14 possessive pronoun types

ID Attributes

15 preposition types
16 verb types
17 adjectives
18 adverbs
19 determiners
20 interjections
21 nouns
22 particles
23 personal pronouns
24 possessive pronouns
25 prepositions
26 verbs
27 2-gram overall ratio
28 2-gram high freq ratio
29 2-gram low freq ratio

Table 4.1: Attributes with their ID

Furthermore, as there are six versions of filter methods they were named

S1 to S6 as can be seen in Table 4.2. The first four are combinations with

49

CHAPTER 4. ANALYSIS

the ranker method and S5 and S6 are greedy stepwise and best first search

respectively.

Search Evaluator Filter Method

Ranker

OneR S1
Correlation S2
Gain Ratio S3
Information Gain S4

Greedy Stepwise CFS subset S5
Best First CFS subset S6

Table 4.2: Filter Methods.

In the first section of this chapter the results of the experiments will be

presented for each of the five hypotheses. For each experimental setting

the precision and recall of the classifier was recorded. The values for preci-

sion and recall were calculated as explained in Section 2.1.4 and suggested

by Sebastiani (2002).

Subsequently, having gathered all results, it will be discussed how they

agree with the expectations formalised in hypotheses in Section 3.1.1. Fur-

thermore, statements about the efficiency of scaling techniques and machine

learning algorithms can be made considering all three datasets.

4.1 Results

The five classifiers that were used to evaluate the experiments are J48,

Näıve Bayes, k-Nearest Neighbours with k=1 and k=3 (kNN1, kNN3) and

SVM. The three datasets were either normalised or standardised before

classification.

In the following the results of the experiments will be presented for each

dataset. First, the five classifiers were used on both Posit features and

all features to see how the 2-gram ratios influence the classification results

as discussed in Hypothesis 1. Secondly, the Posit features were combined

with the low-frequency and then with the high-frequency 2-gram ratio (see

Hypothesis 2). Thirdly, the process was repeated on only the 2-gram ratios

(Hypothesis 3) to evaluate how well those data values can be classified.

Fourthly, the previously mentioned filter methods (see Table 4.2) and their

resulting subsets were evaluated. Lastly, the learning methods were applied

to new feature sets created by the PCA.

50

CHAPTER 4. ANALYSIS

4.1.1 Hypothesis 1

To asses the value of the 2-gram ratios combined with the Posit features

both feature sets were used for classification on the five machine learning

models. The data was used in two settings: normalised and standardised

to find out which offers better results. In all tables presenting the results

of this experiment the best F1 values for each machine learning model are

marked grey and the best overall result is marked green.

DBpedia

The results for the DBpedia data can be found in Table 4.3. It can be

easily spotted that the best classifications were achieved using standardised

data. For that dataset SVM delivered the best classification for the full

feature set on standardised data, which has a F1 value of 0.557. Overall

the standardised data lead to better predictions than the normalised data.

J48 and SVM turned out to be models with a worse predictive power on the

normalised data as their precision and recall values vary. When considering

the confusion matrix it becomes apparent that J48 did not predict the

Athlete class at all and SVM did not predict Artist nor Athlete. For all

other classifiers precision and recall are more balanced.

Alg. Scale
Posit Posit + 2-gram

Precision Recall F1 Precision Recall F1

J48
Norm 0.196 0.336 0.248 0.161 0.221 0.186
Std. 0.496 0.497 0.496 0.497 0.497 0.497

Näıve
Bayes

Norm 0.244 0.264 0.254 0.215 0.226 0.220
Std. 0.464 0.447 0.455 0.472 0.463 0.467

kNN1
Norm 0.244 0.239 0.241 0.322 0.280 0.300
Std. 0.465 0.466 0.465 0.469 0.469 0.469

kNN3
Norm 0.23 0.257 0.243 0.306 0.310 0.308
Std. 0.497 0.483 0.490 0.500 0.486 0.493

SVM
Norm 0.104 0.267 0.150 0.074 0.252 0.114
Std. 0.551 0.552 0.551 0.557 0.557 0.557

Table 4.3: Classification results for normalised and standardised DBpedia
data for Posit and Posit + 2-gram attributes.

51

CHAPTER 4. ANALYSIS

Extremism

The classifications of the extremism data showed the best results when

using the full set of Posit and 2-gram features with the exception of J48

and kNN3 which showed a 0.002 and 0.001 larger F1 value respectively when

using only Posit features. SVM is the only algorithm that performed better

on standardised than on normalised data. In total, the best classification

was achieved by kNN1 on the normalised data with the full feature set of

Posit and 2-gram values. All results can be found in Table 4.4

Alg. Scale
Posit Posit + 2-gram

Precision Recall F1 Precision Recall F1

J48
Norm 0.959 0.959 0.959 0.957 0.957 0.957
Std. 0.914 0.914 0.914 0.918 0.918 0.918

Näıve
Bayes

Norm 0.703 0.703 0.703 0.712 0.711 0.711
Std. 0.69 0.688 0.689 0.693 0.690 0.691

kNN1
Norm 0.964 0.964 0.964 0.965 0.965 0.965
Std. 0.912 0.913 0.912 0.912 0.912 0.912

kNN3
Norm 0.921 0.921 0.921 0.920 0.920 0.920
Std. 0.901 0.901 0.901 0.901 0.901 0.901

SVM
Norm 0.761 0.761 0.761 0.768 0.767 0.767
Std. 0.78 0.777 0.778 0.789 0.787 0.788

Table 4.4: Classification results for normalised and standardised Extremism
data for Posit and Posit + 2-gram attributes.

Drug

The Drug dataset accomplished the best results for the normalised data.

However, the distinction between the feature sets is not that clear. As one

can see in Table 4.5 for J48, kNN1 and kNN3 the results of both feature

sets on the normalised data are the same. Only Näıve Bayes performs bet-

ter on the Posit features with a F1 value increased by 0.36, than on the full

set of features. The best F-measure of 0.995 resulted from kNN1, closely

followed by J48 with an F-measure of 0.99.

The standardised dataset also shows differences between precision and re-

call for J48 on the Posit feature set, where mostly the negative class was

predicted.

52

CHAPTER 4. ANALYSIS

Alg. Scale
Posit Posit + 2-gram

Precision Recall F1 Precision Recall F1

J48
Norm 0.99 0.99 0.99 0.99 0.99 0.99
Std. 0.645 0.425 0.512 0.346 0.392 0.368

Näıve
Bayes

Norm 0.818 0.814 0.816 0.794 0.767 0.780
Std. 0.690 0.602 0.643 0.683 0.599 0.638

kNN1
Norm 0.995 0.995 0.995 0.995 0.995 0.995
Std. 0.465 0.421 0.442 0.463 0.419 0.440

kNN3
Norm 0.979 0.979 0.979 0.979 0.979 0.979
Std. 0.430 0.397 0.413 0.432 0.400 0.415

SVM
Norm 0.878 0.868 0.873 0.879 0.869 0.874
Std. 0.678 0.608 0.641 0.682 0.611 0.645

Table 4.5: Classification results for normalised and standardised Drug data
for Posit and Posit + 2-gram attributes.

4.1.2 Hypothesis 2

The aim of this hypothesis is to detect if there is a difference in efficiency

between the low and high frequency 2-gram ratio. It was suggested that

the low frequency ratio tend to be more important, because less frequent

word combinations might be more distinctive among different categories.

The best results per machine learning algorithm were marked grey and the

result of the most accurate classifier was marked green.

DBpedia

The results for this dataset show that the difference in the feature sets

did not have much impact on the classification as the results for Posit +

low frequency ratio are almost the same as for Posit + high frequency (see

Table 4.6). For normalised data the average for the low frequency ratio is

0.217 and for the feature set containing the high frequency ratio it is 0.216.

For the standardised data low and high frequency ratios achieved 0.552 and

0.555 respectively. Therefore, the standardised data served as a better ba-

sis for classification. Except for the standardised versions of Näıve Bayes,

kNN1, kNN3 and SVM all results are equal for the two feature subsets. For

those cases the high frequency ratio achieved slightly better results. The

overall best result was accomplised by SVM on standardised data which

had a result of 0.555 for the F1 value.

53

CHAPTER 4. ANALYSIS

When considering the classification results of the normalised data it stands

out that precision and recall have larger gaps between each other for the

same models. Taking a closer look at the confusion matrix shows that J48

and SVM mostly predicted categories Company and Educational Institu-

tion, but not Artist or Athlete, which influenced the recall to be higher

than the precision. For higher precision and recall values the differences

are negligible, showing a more stable model.

Alg. Scale
Posit + low freq. Posit + high freq.

Precision Recall F1 Precision Recall F1

J48
Norm 0.128 0.253 0.170 0.128 0.253 0.170
Std. 0.495 0.496 0.495 0.495 0.496 0.495

Näıve
Bayes

Norm 0.207 0.226 0.216 0.207 0.226 0.216
Std. 0.469 0.446 0.457 0.471 0.458 0.464

kNN1
Norm 0.271 0.277 0.274 0.271 0.277 0.274
Std. 0.465 0.466 0.465 0.467 0.468 0.467

kNN3
Norm 0.263 0.289 0.275 0.263 0.289 0.275
Std. 0.496 0.482 0.489 0.499 0.485 0.492

SVM
Norm 0.101 0.264 0.146 0.101 0.264 0.146
Std. 0.552 0.553 0.552 0.556 0.555 0.555

Table 4.6: Classification results for normalised and standardised DBpedia
data for Posit + low frequency 2-gram ratio and Posit + high frequency
2-gram attributes.

Extremism

Throughout this dataset the results of precision and recall are the same

for both feature subsets. The normalised data returned better results than

the standardised data, except for SVM where the F1 value for standardised

data increased by 0.017. Furthermore, kNN1 achieved with 0.965 the best

F1 value closely followed by J48 with 0.955. The full comparison can be

found in Table 4.7

Drug

The Drug data behaves similarly to the Extremism data. The values of

precision and recall do not depend on the feature subset. The kNN1 algo-

rithm achieved the highest F1 value with 0.995 followed by J48 with 0.990.

54

CHAPTER 4. ANALYSIS

Alg. Scale
Posit + low freq. Posit + high freq.

Precision Recall F1 Precision Recall F1

J48
Norm 0.955 0.955 0.955 0.955 0.955 0.955
Std. 0.917 0.917 0.917 0.917 0.917 0.917

Näıve
Bayes

Norm 0.705 0.705 0.705 0.705 0.705 0.705
Std. 0.692 0.690 0.691 0.692 0.69 0.691

kNN1
Norm 0.965 0.965 0.965 0.965 0.965 0.965
Std. 0.913 0.913 0.913 0.913 0.913 0.913

kNN3
Norm 0.920 0.920 0.920 0.92 0.92 0.920
Std. 0.902 0.902 0.902 0.902 0.902 0.902

SVM
Norm 0.766 0.765 0.765 0.766 0.765 0.765
Std. 0.784 0.781 0.782 0.784 0.781 0.782

Table 4.7: Classification results for normalised and standardised Extremism
data for Posit + low frequency 2-gram ratio and Posit + high frequency
2-gram attributes.

Overall the normalised data performed better than the standardised data.

The best result for the standardised data is only 0.662 for SVM on both

feature subsets.

As for the DBpedia data, J48 and SVM show fluctuations between the pre-

cision and recall values of the standardised data. For both J48 models the

negative category was favoured, whereas for SVM the positive class was

predicted more often.

4.1.3 Hypothesis 3

The objective of this hypothesis was to find out how much valuable in-

formation is contained in the 2-gram features. It was expected that the

machine learning algorithms do not perform as well as if the Posit features

were included. For each algorithm the best F1 value was marked grey to

highlight any differences between standardised and normalised data. The

best result overall was marked green.

DBpedia

The F1 values for the five machine learning models are overall quite poor,

the highest being 0.364 for SVM applied to standardised data (see Table

4.9). The average performance over all classifiers applied to normalised data

55

CHAPTER 4. ANALYSIS

Alg. Scale
Posit + low freq. Posit + high freq.

Precision Recall F1 Precision Recall F1

J48
Norm 0.990 0.990 0.990 0.99 0.99 0.990
Std. 0.645 0.425 0.512 0.645 0.425 0.512

Näıve
Bayes

Norm 0.822 0.818 0.820 0.822 0.818 0.820
Std. 0.632 0.626 0.629 0.632 0.626 0.629

kNN1
Norm 0.995 0.995 0.995 0.995 0.995 0.995
Std. 0.463 0.419 0.440 0.463 0.419 0.440

kNN3
Norm 0.979 0.979 0.979 0.979 0.979 0.979
Std. 0.432 0.400 0.415 0.432 0.4 0.415

SVM
Norm 0.879 0.869 0.874 0.879 0.869 0.874
Std. 0.758 0.588 0.662 0.758 0.588 0.662

Table 4.8: Classification results for normalised and standardised Drug data
for Posit + low frequency 2-gram ratio and Posit + high frequency 2-gram
attributes.

is 0.184 and applied to standardised data is 0.351 which shows how little

information was contained in this feature set. Over the whole experiment

standardised data achieved higher results than the normalised data.

Algorithm Scale
2-gram Features

Precision Recall F1

J48
Norm 0.262 0.251 0.256
Std. 0.358 0.369 0.363

Näıve Bayes
Norm 0.173 0.236 0.200
Std. 0.320 0.351 0.335

kNN1
Norm 0.139 0.249 0.178
Std. 0.341 0.348 0.344

kNN3
Norm 0.141 0.268 0.185
Std. 0.343 0.351 0.347

SVM
Norm 0.063 0.251 0.101
Std. 0.372 0.357 0.364

Table 4.9: Classification results for normalised and standardised DBpedia
data only with the 2-gram features.

56

CHAPTER 4. ANALYSIS

Extremism

The results of the extremism data using only 2-gram features can be found

in Table 4.10. One can see that the F1 value is the highest for kNN1

(0.885) followed by J48 (0.812) both applied to normalised data . Ex-

cept for SVM, the normalised data accomplished better results than the

standardised data. On normalised data an average F1 value of 0.688 was

achieved and 0.627 on standardised data showing the scaling method did

not effect the outcome of the experiment much.

Algorithm Scale
2-gram Features

Precision Recall F1

J48
Norm 0.812 0.813 0.812
Std. 0.699 0.694 0.696

Näıve Bayes
Norm 0.539 0.54 0.539
Std. 0.518 0.512 0.515

kNN1
Norm 0.885 0.885 0.885
Std. 0.717 0.717 0.717

kNN3
Norm 0.775 0.775 0.775
Std. 0.697 0.695 0.696

SVM
Norm 0.431 0.423 0.427
Std. 0.491 0.529 0.509

Table 4.10: Classification results for normalised and standardised Extrem-
ism data only with the 2-gram features.

Drug

The best classification results using only the 2-gram ratios were accom-

plished on the Drug data, as one can see in Table 4.11. On average the

F1 value is 0.731 for normalised data and 0.589 for standardised data. For

Näıve Bayes the standardised data worked better, for SVM both worked

equally poorly. The rest of the algorithms performed better on normalised

data. The best result of 0.937 was recorded for kNN1 on normalised data,

followed by J48 with 0.875 and kNN3 with 0.874.

Whereas most precision and recall values are balanced, SVM on the stan-

dardised data shows a large gap between the higher recall (0.588) and the

lower precision (0.346). This is due to the fact that the SVM model did not

57

CHAPTER 4. ANALYSIS

predict the negative class at all, resulting in a perfect recall for the positive

class, but also leading to zero precision and recall for the negative class.

Algorithm Scale
2-gram Features

Precision Recall F1

J48
Norm 0.877 0.874 0.875
Std. 0.631 0.575 0.602

Näıve Bayes
Norm 0.494 0.581 0.534
Std. 0.661 0.65 0.655

kNN1
Norm 0.939 0.936 0.937
Std. 0.64 0.594 0.616

kNN3
Norm 0.875 0.873 0.874
Std. 0.649 0.622 0.635

SVM
Norm 0.346 0.588 0.436
Std. 0.346 0.588 0.436

Table 4.11: Classification results for normalised and standardised Drug
data only with the 2-gram features.

4.1.4 Hypothesis 4

Following on from Section 2.1.2 where feature selection was discussed, this

hypothesis revolves around analysing which feature subsets were the most

efficient. The five algorithms were applied to normalised and standardised

data as before.

For each dataset first the subsets found using the filter methods from

Table 4.2 will be presented, followed by the classification results of each

of those feature subsets.

For subsets S1 - S4 the ranker method was used which does not select a

subset but returns a sorted list of all features with decreasing importance

for the classification. In these experiments the subsets were created by

keeping only those features with a rank of more than 80% of the best fea-

ture. This results in small subsets if the rank decreases rapidly or in large

subsets if the importance does not vary a lot.

Grey cells mark the best results within a feature subset and green cells

mark the best classification overall.

58

CHAPTER 4. ANALYSIS

DBpedia

Looking at Table 4.12 it is easily noticeable that the subsets are equal for

normalised and standardised data. Furthermore, S2 and S4 (Correlation

and Information Gain) kept only one feature which is the Type/Token

Ratio. Every other subset includes at least one 2-gram ratio. The subset

sizes are 1, 4, 7 and 15.

Filter Method Scale Attribute Subset

S1
Norm

1, 4, 5, 6, 13, 14, 16, 23, 24, 25, 26, 27, 28
Std.

S2
Norm

6
Std.

S3
Norm

6, 13, 14, 23, 24, 27, 28
Std.

S4
Norm

6
Std.

S5
Norm

1, 6, 13, 23, 27, 28, 29
Std.

S6
Norm

1, 6, 23, 27
Std.

Table 4.12: Subset results for normalised and standardised DBpedia data

As mentioned before, S2 and S4 developed exactly the same feature subset,

which is why S4 is not included in Table 4.13. For this data the best

classifications were found by standardising the data. Except for feature

set S2 (and S4) SVM accomplished the best results. For S2 kNN1 and

kNN3 performed better. The best result was computed using subset S1 on

standardised data using SVM. However, this results is only 0.515 and 0.514

for precision and recall respectively.

Several unbalanced predictions can be spotted in Table 4.13 all occurring

for the normalised data. For subsets S1 to S4, J48 has a much larger

recall than precision, as does SVM on subsets S2 to S4. On subset S5

and S6 kNN1 and kNN3 have better precision values than recall. These

irregularities are induced by unbalanced predictions among the classes.

59

CHAPTER 4. ANALYSIS

Subset Algorithm
Normalised Standardised

Precision Recall Precision Recall

S1

J48 0.197 0.336 0.485 0.487
Näıve Bayes 0.200 0.216 0.478 0.469
kNN1 0.272 0.223 0.430 0.430
kNN3 0.285 0.271 0.465 0.454
SVM 0.206 0.241 0.515 0.514

S2 & S4

J48 0.063 0.252 0.384 0.390
Näıve Bayes 0.250 0.220 0.381 0.382
kNN1 0.177 0.209 0.392 0.396
kNN3 0.291 0.262 0.392 0.396
SVM 0.062 0.248 0.350 0.371

S3

J48 0.202 0.334 0.453 0.454
Näıve Bayes 0.203 0.219 0.407 0.403
kNN1 0.279 0.236 0.408 0.402
kNN3 0.277 0.304 0.427 0.416
SVM 0.174 0.279 0.458 0.452

S5

J48 0.363 0.305 0.478 0.479
Näıve Bayes 0.194 0.232 0.436 0.409
kNN1 0.361 0.253 0.411 0.410
kNN3 0.511 0.251 0.436 0.428
SVM 0.279 0.251 0.493 0.488

S6

J48 0.363 0.305 0.486 0.485
Näıve Bayes 0.194 0.19 0.432 0.412
kNN1 0.334 0.236 0.409 0.408
kNN3 0.262 0.238 0.435 0.429
SVM 0.313 0.258 0.489 0.484

Table 4.13: Classifier results for normalised and standardised DBpedia
data; for normalised and standardised data S2 and S4 are equal.

Extremism

For this dataset the subsets mostly vary between normalised and standard-

ised data. Most of the subsets only differ in one feature: for S1 the subset

for the standardised data included attribute 9 (determiner types); for S2

the set for normalised data includes feature 8 (adverb types); for Set 3 the

standardised setting includes attribute 28 (2-gram high freq ratio); for S4

the subsets are equal; for S5 the normalised data set includes features 6

and 12 (Type/Token Ratio and particle types); the feature sets for S6 are

equal. It should be pointed out that the elements 11 and 21 (nouns and

60

CHAPTER 4. ANALYSIS

noun types) are included in all twelve feature subsets.

S1 is by far the largest set including 25 and 26 features. The rest of the

subsets range between 3 and 9 elements. The list of all features for the

different settings can be seen in Table 4.14.

Filter Method Scale Attribute Subset

S1
Norm 0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 16, 17,

18, 19, 21, 23 , 24, 25, 26, 27, 28, 29
Std. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14,15, 16,

17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29

S2
Norm 8, 11, 13, 14, 18, 21, 23, 24
Std. 11, 13, 14, 18, 21, 23, 24

S3
Norm 1, 11, 21
Std. 1, 11, 21, 28

S4
Norm

1, 11, 21
Std.

S5
Norm 1, 6, 11, 12, 13, 18, 21, 27, 28
Std. 1, 11, 13, 18, 21, 27, 28

S6
Norm

1, 11, 13, 18, 21, 27, 28
Std.

Table 4.14: Subset results for normalised and standardised Extremism
data.

It is important to remember that even if the subsets of normalised and

standardised data are equal, the classification results can still differ. For

the normalised data S3 and S4 are equal and for the standardised data S5

and S6, which is why some results were left out of Table 4.15. Other than

for the DBpedia data, the extremism corpus was classified best when using

the normalised data. Throughout the experiment kNN1 performed best

closely followed by J48. Overall feature set S1 outperformed the rest with

0.968 precision and recall only marginally better than the results of J48 on

the same feature set (0.957 and 0.956).

Drug

As for the other datasets there is much resemblance between feature sub-

sets found for normalised and for standardised data. For this data however,

the subsets are exactly the same for both settings. Apart from S1 none of

61

CHAPTER 4. ANALYSIS

Subset Algorithm
Normalised Standardised

Precision Recall Precision Recall

S1

J48 0.957 0.956 0.917 0.917
Näıve Bayes 0.706 0.705 0.691 0.689
kNN1 0.968 0.968 0.913 0.913
kNN3 0.928 0.928 0.899 0.899
SVM 0.769 0.768 0.784 0.783

S2

J48 0.901 0.901 0.821 0.821
Näıve Bayes 0.644 0.646 0.645 0.646
kNN1 0.935 0.935 0.833 0.833
kNN3 0.861 0.862 0.818 0.818
SVM 0.597 0.581 0.622 0.621

S3

J48 0.904 0.905 0.857 0.858
Näıve Bayes 0.703 0.686 0.713 0.685
kNN1 0.929 0.929 0.831 0.832
kNN3 0.848 0.848 0.812 0.812
SVM 0.419 0.535 0.537 0.545

S4

J48 0.839 0.840
Näıve Bayes 0.704 0.680
kNN1 0.814 0.815
kNN3 0.796 0.795
SVM 0.545 0.552

S5

J48 0.939 0.938 0.880 0.880
Näıve Bayes 0.724 0.721 0.708 0.700
kNN1 0.947 0.947 0.844 0.845
kNN3 0.882 0.881 0.829 0.829
SVM 0.653 0.649 0.595 0.591

S6

J48 0.932 0.932
Näıve Bayes 0.706 0.702
kNN1 0.940 0.940
kNN3 0.872 0.872
SVM 0.616 0.596

Table 4.15: Classifier results for normalised and standardised Extremism
data; S4 is equivalent to S3 for normalised data and S6 is equivalent to S5
for standardised data.

the other sets include 2-gram features. S1 however, includes all of them

and is with 17 elements, the largest subset found. The other subsets range

between two and six elements and all of them include features 11 and 21

(nouns and noun types) as it was already pointed out for the Extremism

62

CHAPTER 4. ANALYSIS

data. Filter methods S5 and S6 found the same subsets of important fea-

tures.

Filter Method Scale Attribute Subset

S1
Norm 0, 1, 2, 3, 4, 5, 6, 11, 16, 17, 19, 21, 25, 26,

27, 28, 29Std.

S2
Norm

11, 21
Std.

S3
Norm

2, 11, 21
Std.

S4
Norm

2, 5, 11, 21
Std.

S5
Norm

0, 2, 4, 11, 21, 22
Std.

S6
Norm

0, 2, 4, 11, 21, 22
Std.

Table 4.16: Subset results for normalised and standardised Drug data.

The best results for the filtered feature subsets were found for the nor-

malised data. For all subsets the best classifications were achieved using a

k-Nearest Neighbour classifier with k=1. J48 and kNN3 also reached high

precision and recall values of over 0.95. The best classification was found

for the S1 feature set which reached a precision and recall of 0.994.

Even though normalised and standardised data worked on the same fea-

ture sets, the classifiers applied to standardised data were outperformed by

every model on the normalised data.

For the standardised data the classification models were evaluated to be

unstable across several feature subsets and several machine learning algo-

rithms. These unbalances are due to the fact that for most cases only one

of the two categories was predicted.

4.1.5 Hypothesis 5

A principal component analysis was applied to the normalised and stan-

dardised data and was executed in two settings: centered and standardised.

This means the normalised data was both centered and standardised and

standardised data was centered and kept standardised.

63

CHAPTER 4. ANALYSIS

Subset Algorithm
Normalised Standardised

Precision Recall Precision Recall

S1

J48 0.990 0.990 0.169 0.411
Näıve Bayes 0.783 0.727 0.751 0.637
kNN1 0.994 0.994 0.725 0.591
kNN3 0.978 0.978 0.737 0.591
SVM 0.867 0.853 0.723 0.591

S2

J48 0.950 0.949 0.169 0.412
Näıve Bayes 0.852 0.837 0.346 0.588
kNN1 0.969 0.969 0.169 0.412
kNN3 0.944 0.944 0.771 0.489
SVM 0.784 0.779 0.346 0.588

S3

J48 0.969 0.969 0.169 0.412
Näıve Bayes 0.842 0.827 0.346 0.588
kNN1 0.986 0.986 0.169 0.412
kNN3 0.953 0.953 0.169 0.412
SVM 0.799 0.795 0.346 0.588

S4

J48 0.978 0.978 0.169 0.412
Näıve Bayes 0.840 0.824 0.346 0.588
kNN1 0.988 0.988 0.169 0.412
kNN3 0.955 0.956 0.169 0.412
SVM 0.801 0.796 0.346 0.588

S5 & S6

J48 0.983 0.983 0.329 0.391
Näıve Bayes 0.823 0.816 0.758 0.589
kNN1 0.989 0.989 0.169 0.412
kNN3 0.960 0.960 0.169 0.412
SVM 0.835 0.826 0.737 0.600

Table 4.17: Classifier results for normalised and standardised Drug data;
S5 is equivalent to S6 for normalised and standardised data.

The number of features was reduced in every setting. For the DBpedia data

the features were reduced to ten for the normalised data on the centered

PCA and 13 for every other setting. The features of the Extremism set

were decreased to nine for the normalised and centered approach and 14

for the other settings. The Drug data shows the most extreme reduction

to only one feature for the standardised and centered PCA, seven for the

normalised and centered PCA and 13 for both standardised methods.

For this hypothesis it was chosen to also calculate the F-measure as preci-

sion and recall differ in some cases, such that the F1 value gives a clearer

64

CHAPTER 4. ANALYSIS

view on how well the classifiers performed. Grey cells mark the best re-

sults within a machine learning algorithm and green cells mark the best

classification overall.

DBpedia

The best values for the F-measure for each algorithm were highlighted in

Table 4.18. Throughout this experiment the DBpedia data was better

classified when standardised instead of normalised. The best classification

was performed by SVM, where centered and standardised PCA performed

with an F1 value of 0.5 equally well. The worst classification also resulted

from SVM applied to the normalised data with a value of 0.099 for centered

and 0.174 for standardised data. Overall the centered PCA achieved better

results as the standardised PCA, only for J48 and SVM the F-measure was

equal.

Throughout this experiment on normalised data the classifiers have little

predictive power as not all categories were predicted. Especially J48, kNN1

and SVM are unbalanced among the predicted classes leading to differences

in precision and recall.

Alg. Scale
Centered Standardised

Precision Recall F1 Precision Recall F1

J48
Norm 0.187 0.239 0.210 0.185 0.255 0.214
Std. 0.462 0.462 0.462 0.461 0.463 0.462

Näıve
Bayes

Norm 0.239 0.240 0.239 0.249 0.247 0.248
Std. 0.478 0.474 0.476 0.477 0.473 0.475

kNN1
Norm 0.178 0.235 0.203 0.146 0.251 0.185
Std. 0.449 0.449 0.449 0.445 0.445 0.445

kNN3
Norm 0.219 0.208 0.213 0.275 0.261 0.268
Std. 0.481 0.468 0.474 0.479 0.465 0.472

SVM
Norm 0.062 0.249 0.099 0.130 0.263 0.174
Std. 0.502 0.499 0.500 0.502 0.499 0.500

Table 4.18: PCA classification results for normalised and standardised DB-
pedia data.

65

CHAPTER 4. ANALYSIS

Extremism

For the extremism dataset the best results were accomplished by normal-

ising the data. Standardised and centered SVM is the only method that

achieved a better F1 value than its normalised counterpart. The best pre-

diction, F1 of 0.935, was delivered by kNN1 by normalising and standardis-

ing the data, whereas the worst prediction, F1 of 0.691, results from Näıve

Bayes by standardising and centering the data. Considering all algorithms,

k-Nearest Neighbour with k=1 achieved the highest F1 value with 0.957 for

normalised and standardised PCA. The full results can be found in Table

4.19.

Alg. Scale
Centered Standardised

Precision Recall F1 Precision Recall F1

J48
Norm 0.923 0.923 0.923 0.935 0.935 0.935
Std. 0.867 0.867 0.867 0.863 0.863 0.863

Näıve
Bayes

Norm 0.702 0.701 0.701 0.705 0.701 0.703
Std. 0.700 0.683 0.691 0.703 0.692 0.697

kNN1
Norm 0.956 0.956 0.956 0.957 0.957 0.957
Std. 0.878 0.879 0.878 0.873 0.874 0.873

kNN3
Norm 0.905 0.905 0.905 0.901 0.901 0.901
Std. 0.870 0.871 0.870 0.865 0.865 0.865

SVM
Norm 0.709 0.710 0.709 0.734 0.734 0.734
Std. 0.731 0.731 0.731 0.731 0.731 0.731

Table 4.19: PCA classification results for normalised and standardised Ex-
tremism data.

Drug

The classification results for the Drug data are presented in Table 4.20.

Over the whole experiment, the normalised data achieved the best F1 val-

ues. The standardised data achieved on average F1 values of only half the

size than for the normalised setting. The standardised PCA approach ac-

complished slightly higher accuracy than the centered one. However, the

best classification was a result of centered PCA on normalised data using

kNN1 (0.993).

For the standardised and centered approach all classifiers predicted only

66

CHAPTER 4. ANALYSIS

the positive class which resulted in large offsets between precision and re-

call.

Unfortunately, the the classification of the SVM on the standardised and

centered PCA did not finish in time to be presented in Table 4.20. None

of the previous Drug experiments showed good results for the standardised

SVM approach and moreover, for all other standardised and centered clas-

sifications only the positive class was predicted, leading to models with no

predictive power. Therefore it is likely that the missing results would not

display any valuable predictions.

Alg. Scale
Centered Standardised

Precision Recall F1 Precision Recall F1

J48
Norm 0.982 0.982 0.982 0.984 0.984 0.984
Std. 0.346 0.588 0.436 0.418 0.397 0.407

Näıve
Bayes

Norm 0.855 0.849 0.852 0.853 0.853 0.853
Std. 0.346 0.588 0.436 0.643 0.651 0.647

kNN1
Norm 0.993 0.993 0.993 0.99 0.99 0.990
Std. 0.346 0.588 0.436 0.343 0.323 0.333

kNN3
Norm 0.972 0.972 0.972 0.966 0.966 0.966
Std. 0.346 0.588 0.436 0.419 0.422 0.420

SVM
Norm 0.863 0.848 0.855 0.874 0.861 0.867
Std. 0.674 0.613 0.642

Table 4.20: PCA classification results for normalised and standardised Drug
data.

4.2 Discussion

Having gathered all outcomes of the experiments one can now analyse if

the results confirm the predictions from the hypotheses made in Section

3.1.1 or if the experiments contradict the expectations. Subsequently the

overall best results for each dataset will be discussed in connection with

the data scaling, choice of algorithm and the structure of the data.

4.2.1 Hypothesis 1

n-gram features improve the classification accuracy of machine learning

algorithms independently of the data domain.

67

CHAPTER 4. ANALYSIS

The best results for both feature sets and all datasets are presented again

in Table 4.21. For the DBpedia and Extremism data the 2-gram features

improved the classification. The DBpedia data was slightly better classi-

fied using the full set of features on the standardised data. The picture is

less clear for the Extremism data, where J48 and kNN3 gained marginally

higher F1 values when using only the Posit features. Nonetheless, the peak

F1 value was achieved by including the 2-gram ratios and applying kNN1.

Overall, one can conclude that the experiments on the DBpedia and Ex-

tremism data support the hypothesis.

The Drug data, on the other hand, turned out to contradict the expec-

tations. For this data the two feature sets have the same F1 measure for

almost all algorithms on the normalised data. One has to consider that the

F1 values were already so high that it is possible that a better classification

can not be achieved with the current data considering the pre-classified

data was labelled manually. The results for the standardised data were

much worse and will not be considered here as they would not be used for

classification purposes.

These results do not agree with the expectations stated before. As seen

in Figure 3.4c, the correlation of 2-gram features with other features was

smaller than for the other datasets which would imply that these values

add more information to the classification. However, the opposite appeared

to be true. The hypothesis tried to conclude that 2-gram ratios are mean-

ingful across all used datasets, which is only partly true. What crucial

factors influence the importance of 2-gram ratios remains unclear as the

Extremism and Drug datasets contradict each other.

Data Features Scale Alg. F1

DBpedia
Posit Std. SVM 0.551
Posit + 2-gram Std. SVM 0.557

Extremism
Posit Norm. J48 0.959
Posit + 2-gram Norm. kNN1 0.965

Drug
Posit Norm. kNN1 0.995
Posit + 2-gram Norm. kNN1 0.995

Table 4.21: Overall classification results for Hypothesis 1.

68

CHAPTER 4. ANALYSIS

4.2.2 Hypothesis 2

A feature created from low-frequency n-grams is more important than a

feature of high-frequency n-grams.

To evaluate this statement the Posit features were combined with both the

low frequency and the high frequency ratios to compare their classification

results. For the DBpedia data the F1 values clearly showed that the high

frequency values contributed more efficiently to the classification than the

low frequency feature did. For the normalised data, the classifications

performed equally poorly according to the F-measure. For the standardised

data, however, the separation is clear: the high frequency feature contained

more information.

The Extremism and Drug data performed equally well on both feature sets

independent of the algorithm or the type of scaling. The best results for

each dataset are summarised in Table 4.22. When comparing the results

Data Features Scale Alg. F1

DBpedia
Posit + low Std. J48 0.495
Posit + high Std. SVM 0.555

Extremism
Posit + low Norm. kNN1 0.965
Posit + high Norm. kNN1 0.965

Drug
Posit + low Norm. kNN1 0.995
Posit + high Norm. kNN1 0.995

Table 4.22: Overall classification results for Hypothesis 2.

in this table with the overall results of Hypothesis 1 (see Table 4.21) one

can notice that the DBpedia data was better classified using all 2-gram

ratios, whereas the Extremism and Drug data did not profit from using

all 2-gram ratios as either the low or high frequency feature was sufficient.

As a smaller feature set is always preferred this is valuable information.

Instead of using all three frequency ratios for the Extremism and Drug

datasets it seems enough to use only one, which can improve the runtime

of the classifier. For most of the settings the runtime of the classifiers does

not exceed five minutes, nevertheless, for the largest dataset (DBpedia) the

runtime of the SVM model increased to up to 14 hours.

69

CHAPTER 4. ANALYSIS

4.2.3 Hypothesis 3

n-gram features alone are not sufficient for classification models to perform

well.

This experiment was conducted in order to test how efficient the 2-gram

features are on their own. It was expected that the information content of

those features is not broad enough to receive a well working classifier, but

this view was partly discounted. Table 4.23 shows the summarised results

for the three datasets. It stands out that the DBpedia data only achieved

a maximum F1 value of 0.364 reinforcing the hypothesis. Contrary to that

are the classifications of the Extremism and Drug data, which accomplished

0.885 and 0.937 respectively. Especially the Drug classifications are there-

fore only slightly less accurate than for the Posit features or any of the

combinations with the 2-gram features. This surprising result shows how

important 2-gram data is for these types of datasets. Considering the re-

sults of hypothesis 1 it seems confusing that the full feature set of Posit

and 2-gram data did not improve the classification much, when only the

2-gram features form a solid base for classification models. One explana-

tion for this could be that the 2-gram ratios contain a similar amount of

information that simply leads to the same classifications. Therefore both

feature sets do not add any knowledge to each other. It is also likely that

the accuracies achieved are the highest possible, as the data gathered by

the web-crawlers was classified manually which is prone to introduce a

classification bias. Not all instances might be correctly labelled making it

impossible to achieve a perfect classifier. Therefore, F-measures of 0.995

and 0.965 for the Drug and Extremism data respectively, could be close to

the best feasible outcome that can be reached with the current data labels.

Keeping in mind that the DBpedia data was not classified well it needs to

be further investigated for what types of data 2-grams are meaningful.

Data Scale Alg. F1

DBpedia Std. SVM 0.364
Extremism Norm. kNN1 0.885
Drug Norm. kNN1 0.937

Table 4.23: Overall classification results for Hypothesis 3.

70

CHAPTER 4. ANALYSIS

4.2.4 Hypothesis 4

Using a subset of Posit and n-gram features leads to better classification

results.

This experiment was set up to evaluate if Weka included filter methods

have the ability to find a subset of features that can outperform any of

the previously tested subsets. The best features for all datasets were found

using the OneR evaluator combined with the Ranker search. The best 80%

of the features were used which resulted in a subset that includes most of the

Posit features (see Table 4.24). The subset for the DBpedia data included

the overall and high frequency features, whereas for the Extremism and

Drug data all 2-gram features were kept. These subsets are supported by

the results of the experiments for hypothesis 2, as for the DBpedia data

the high frequency feature was more valuable than the low frequency ratio.

The classification results for the DBpedia data could not be improved by the

filter method. With an F1 value 0.515 the classification was worse than for

any of the other feature combinations evaluated before. The filter method

did, however, succeed on the Extremism data. Also chosen by the OneR

measure, kNN1 improved the F1 value minimally to 0.968 compared to the

previous best results of 0.965 for all other feature settings. The feature set

achieving this classification excluded features involving interjections and

particles, but included all 2-gram features. Even though the improvement

is only a gain of 0.003, it shows that the set of features can be improved.

Further experiments could be applied in order to extract the most valuable

combination of features.

Data Features Scale Alg. F1

DBpedia
1, 4, 5, 6, 13, 14, 16, 23, 24, 25,
26, 27, 28

Std. SVM 0.515

Extremism
0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14,
15, 16, 17, 18, 19, 21, 23 , 24, 25,
26, 27, 28, 29

Norm. kNN1 0.968

Drug
0, 1, 2, 3, 4, 5, 6, 11, 16, 17, 19,
21, 25, 26, 27, 28, 29

Norm. kNN1 0.994

Table 4.24: Overall classification results for Hypothesis 4.

The classification of the Drug data did not improve any previous results.

71

CHAPTER 4. ANALYSIS

The best feature subset reached an F1 value of 0.994 close to the overall best

result of 0.995 that was achieved by the Posit and low or high frequency

values. The subset contained only 14 of the 27 Posit features and all three

2-gram features showing that the set works efficiently even though a lot of

data was excluded from the computations.

For Extremism and Drug data the successful techniques are similar. Both

were classified most accurately using the normalised data and the filter

method OneR combined with the Ranker search. The selected subsets have

many elements in common, but no distinct pattern of important features

could be determined.

The runtime of the SVM improved drastically for the feature subsets of

this experiment as it decreased to up to four hours instead of 14 hours for

hypothesis 1 and 2.

4.2.5 Hypothesis 5

Using Principal Component Analysis improves the effectiveness of the fea-

tures and leads to better classification results.

Throughout this experiment this theory could not be confirmed. For all

datasets the PCA based classifications were evaluated to be worse than any

of the previous experiments.

DBpedia had a F1 value of only 0.5, whereas the Posit and 2-gram features

achieved a score of 0.557. The filter method achieved an F1 value of 0.968,

whereas PCA only reached 0.957. The best classification for the Drug data

(0.995) was missed by just 0.002. The best results and their settings can

be found in Table 4.25.

Data PCA Type Scale Alg. F1

DBpedia
Centered Std. SVM 0.500
Standardised Std. SVM 0.500

Extremism
Centered Norm. kNN3 0.905
Standardised Norm. kNN1 0.957

Drug
Centered Norm. kNN1 0.993
Standardised Norm. J49 0.984

Table 4.25: Overall classification results for Hypothesis 5.

72

CHAPTER 4. ANALYSIS

4.2.6 Further Comments

When looking over all experiments, a pattern among the datasets becomes

apparent. For all experiments the DBpedia data was classified best using

SVM on standardised data. Only for the Posit + low frequency feature J48

served as a better classifier.

For hypothesis 1 to 4 the Extremism and Drug data were best classified with

kNN1 on normalised data with only one exception which was the classifica-

tion of the Extremism data using only Posit features, which was classified

best using J48. The PCA experiment shows a slightly different outcome.

Here the centered approach on Extremism data achieved the highest F1

value with kNN3 and the best result of the Drug data was reached by ap-

plying J48 to the standardised PCA.

Throughout all experiments the Näıve Bayes classifier did not achieve

higher precision and recall than any of the other classifiers. The Sup-

port Vector Machines showed good results on the DBpedia data, but not

on the other datasets. J48, which is the implementation of a Decision Tree

performed well on the Extremism and Drug data, as did kNN3. However,

in several experiments kNN1 outperformed both.

The reason why k-Nearest Neighbour performs better with k=1 than k=3

might be due to the fact that for k=1 the model is close to the training

data as it only includes the nearest data point in its calculations and has

therefore a low bias. However, the probability to model noise in the data

is high for the same reason. The predictions in the experiments might be

excellent, because the testing data is similar to the training data chosen.

These differences between DBpedia and the other text corpora show not all

text data can be classified using the same techniques. Nonetheless, it was

also observed that the two datasets extracted from the surface and dark

web show great resemblance when it comes to choosing a scaling method

or a machine learning algorithm.

Another important aspect are the unbalanced predicted categories for DB-

pedia and Drug data. Choosing unsuitable scaling and classification models

lead not only to low F1 values but also to unbalanced precision and recall

values. This gap between those two measures shows that when predicting

the categories some were neglected completely or only predicted in a few in-

stances. This effect did not influence the overall results of the experiments

as they only occurred for the worst classifications. Nevertheless, this shows

73

CHAPTER 4. ANALYSIS

how important both precision and recall are, as neither one of them alone

is enough to judge the effectiveness of a classification model.

The developed subsets for Extremism and Drug data in hypothesis 4 showed

that the features involving nouns were important to all evaluation tech-

niques. Considering this, nouns seem to be valuable throughout the surface

and dark web data which supports the approach of Weir et al. (2016) on

using the sentiment of nouns for classifications.

In Section 3.2.2 the distribution of the number of sentences and words and

of the average sentence length were shown in histograms. The distribution

of the DBpedia data differed from the rest of the datasets as that data

showed far less outliers. Even though the data was considered to include

less noise and far more reasonable values for length of sentences, the

classifications turned out to be less promising. With a F1 value of 0.557

and 55.67% correctly classified instances this data corpus was the hardest

to classify.

The other extreme was represented by the Drug data. The histograms

showed many instances not agreeing on the sentence length with the rest

of the dataset. Especially the average sentence length and the number

of sentences led to the conclusion that the data contains a high level of

noise. It was assumed that the text extracted from web pages includes

parts not structured in sentences such as buttons. Those non-sentence

texts were assumed to serve as a good basis for classification which seems

to be correct as the Drug data achieved the highest F1 value among all

datasets (99.5%). 99.47% of all instances were classified correctly which

is an astonishing result. The Extremism data also reached high accuracy

with 96.80% correctly classified instances.

Another difference between the two types of data was presented in

the heatmaps in Figure 3.4. Those maps showed the correlation be-

tween features. The DBpedia data has the most correlations between

features, whereas the Drug data showed the least correlations. This

might have influenced the classifications as well, as the features repre-

senting the DBpedia were more correlated and could not be used efficiently.

Overall, it has been shown that the Posit features were used efficiently on

the Extremism and Drug data. The DBpedia data did not produce as good

results, which does not necessarily mean that the Posit tool can not succeed

on this type of data. It has to be mentioned that classifying the DBpedia

74

CHAPTER 4. ANALYSIS

data was a harder task as there are not only more classes to predict, but the

classes are also not related to each other. For the DBpedia data it had to

be decided if an instance belonged to the category Company, Educational

Institution, Artist or Athlete, whereas for the other datasets it had to be

determined if a text was positive, negative or neutral towards extremism or

positive or negative towards drugs. This means for Extremism and Drug

data the categories evolved around only one objective: extremism or drugs,

whereas classifying DBpedia data involved four distinct topics. This should

make it harder to classify the DBpedia data and could be an explanation

for the poor classification accuracies.

The Posit and 2-gram features achieved F1 values of 0.968 and 0.995 for Ex-

tremism and Drug data respectively. Therefore one can conclude that those

feature sets are very effective on the surface and dark web data considered

for these experiments.

75

76

Chapter 5

Conclusion and Future Work

After conducting all experiments and discussing their results one can now

conclude if the objectives of this dissertation were achieved. Moreover,

several aspects can be pointed out that should be addressed by further

research as they could not be covered in the range of this dissertation.

5.1 Conclusion

The main interest of this dissertation was to explore the effectiveness of

the Posit and n-gram features on classification accuracy. As the Posit tool

has only been applied to the Extremism data before (Weir et al., 2016)

it was interesting to see how well the extracted features perform on other

datasets. The experiments on the Drug data support the assumptions that

Posit enriches the data and can be well appropriated for machine learning

as the evaluation measures were higher than 0.99.

Having conducted several experiments on three datasets including 2-gram

features it seems that those values have a limited impact on the overall

classification. Combined with the Posit features a minimal improvement

was achieved, however, on their own 2-gram features could develop a sur-

prisingly effective classifier. Due to the Posit features offering a strong

foundation for machine learning models, it was difficult to further improve

those results. For the DBpedia data the classification results could be en-

hanced by the 2-gram features as for this data there was a wider range

of possible improvement. It was shown that replacing some Posit features

with 2-gram ratios can slightly increase the classification accuracy. The

experiments showed that 2-gram ratios do not decrease the effectiveness of

77

CHAPTER 5. CONCLUSION AND FUTURE WORK

classification models, but how much more accuracy can be added by using

them depends on the dataset itself and on how valuable the Posit features

are. If Posit features already develop a very well working classifier, the

2-gram features do not have a great impact on the outcome.

It is still believed that feature selection is a beneficial tool to increase

the classifier’s performance, however, the importance of individual features

seems to be dependent on the dataset. For the Extremism and Drug data a

certain pattern across all feature subsets evolved: the noun and noun type

features were evaluated to be important for all subsets. In order to make

stronger statements one has to conduct more tests on feature subsets as

the decision to select only the features with at least 80% of the best rank

resulted in subsets too small to offer good classifications.

An assumption that can be made concerning the scaling technique of the

datasets is that the data collected by the web-crawlers showed better results

throughout all experiments when normalising the data instead of standar-

dising. This could be connected to the wide ranging distribution of several

sentence features in the crawling data in contrast to the DBpedia texts.

Moreover, the five machine learning models that were applied showed dif-

ferent levels of efficiency on the three datasets. For the DBpedia data

Support Vector Machines were most adequate, whereas on the other web

data they were outperformed by k-Nearest Neighbour which performed only

slightly better than J48.

5.2 Future Work

For future work it could be useful to further explore the predictive power

of n-gram ratios. The experiments conducted in this dissertation included

only bi-grams, however, longer word sequences could be meaningful for

classifications as they contain more context of the text and could therefore

lead to even better classifications.

Furthermore, as the 2-gram ratios were more efficient on the Extremism

and Drug corpora than on the Dbpedia data, it should be further explored

on what types of data 2-gram frequencies are important. The experiments

here do not fully conclude this as the DBpedia texts did not only differ

in topic, but also in the number of classes. One could conduct the same

experiments again with a different set-up of the DBpedia data. It would be

78

CHAPTER 5. CONCLUSION AND FUTURE WORK

interesting to see if the classifications improve when using one topic as the

positive class and a combination of the other topics as the negative class,

e.g. Athlete versus non-Athlete texts. The suggestion is that these classes

can achieve a higher classification score than the four categories used for

this dissertation.

This leads us to another aspect that could be further explored. When

discussing the distribution of the three datasets and their sentence related

features, it emerged that the web-crawling data included many texts with

abnormally long sentences. These texts were assumed to originate from

non-sentence texts on the web pages (e.g. buttons). One element that

could be implemented differently is the sentence count of the Posit tool.

The original implementation only counted sentences ended by a full stop

and at least one space. The variation used for the experiments also allowed

sentences followed by a full stop but no space, which in turn counted URLs

of web pages etc. as sentences. Further improvements could be made by

restricting the sentence count to not accept URLs.

Another way of approaching this issue would be to deal with the button-

type texts separately from the sentence-structured texts. This could be

achieved by analysing the extracted HTML data instead of the raw texts.

This would not only allow for new features, but also resolve the problem of

unrealistically long sentences. Therefore, the Extremism and Drug features

for average sentence length and number of sentences would include less

noise, as those instances can be treated differently as button information.

79

80

Appendix A

Statistics

The following three tables show the statistics over the three datasets. In-

cluded are minimum, maximum, mean and standard deviation of each fea-

ture.

81

APPENDIX A. STATISTICS

Feature Min Max Mean Std Dev.

Average sentence length 1.57 66894.00 105.54 664.68
Average word length 2.15 2434.71 8.21 20.10
Number of characters 27.00 944095.00 15344.84 32085.29
Number of sentences 1.00 11382.00 271.38 1064.49
Total unique words (types) 3.00 66895.00 616.76 1132.28
Total words (tokens) 3.00 149371.00 1908.46 3729.39
Type/Token Ratio 0.01 93.29 0.55 0.80
adjective types 0.00 182.00 10.27 12.81
adverb types 0.00 56.00 4.55 6.66
determiner types 0.00 15.00 3.26 2.52
interjection types 0.00 7.00 0.04 0.24
noun types 2.00 958.00 198.45 161.92
particle types 0.00 8.00 0.27 0.67
personal pronoun types 0.00 21.00 2.87 2.91
possessive pronoun types 0.00 21.00 2.87 2.91
preposition types 0.00 65.00 6.67 5.67
verb types 0.00 142.00 18.49 21.92
adjectives 0.00 418.00 44.86 44.64
adverbs 0.00 456.00 14.32 23.85
determiners 0.00 276.00 21.43 30.85
interjections 0.00 132.00 0.12 1.20
nouns 4.00 1948.00 707.94 554.06
particles 0.00 94.00 1.14 5.56
personal pronouns 0.00 286.00 13.45 24.80
possessive pronouns 0.00 286.00 13.45 24.80
prepositions 0.00 358.00 34.83 42.89
verbs 0.00 552.00 60.26 75.15
2-gram overall ratio 0.00 312.68 1.52 2.60
2-gram high freq ratio 0.00 903.85 1.64 6.69
2-gram low freq ratio 0.00 43.44 1.42 0.73

Table A.1: Drug Feature Statistics.

82

APPENDIX A. STATISTICS

Feature Min Max Mean Std Dev.

Average sentence length 1.33 201.00 18.57 7.18
Average word length 4.17 202.20 6.30 0.78
Number of characters 10.00 1926.00 300.63 129.01
Number of sentences 1.00 28.00 2.82 1.49
Total unique words (types) 2.00 196.00 38.14 14.58
Total words (tokens) 2.00 308.00 48.01 20.85
Type/Token Ratio 0.27 2.00 0.83 0.11
adjective types 0.00 20.00 3.17 2.08
adverb types 0.00 12.00 0.91 1.10
determiner types 0.00 7.00 2.04 0.75
interjection types 0.00 1.00 0.00 0.01
noun types 1.00 150.00 18.67 7.64
particle types 0.00 3.00 0.04 0.20
personal pronoun types 0.00 7.00 0.75 0.83
possessive pronoun types 0.00 7.00 0.75 0.83
preposition types 0.00 15.00 3.72 1.90
verb types 0.00 34.00 5.15 2.63
adjectives 0.00 74.00 6.78 4.63
adverbs 0.00 28.00 1.87 2.29
determiners 0.00 50.00 8.19 4.95
interjections 0.00 4.00 0.00 0.03
nouns 2.00 344.00 43.27 18.93
particles 0.00 6.00 0.08 0.41
personal pronouns 0.00 28.00 1.98 2.55
possessive pronouns 0.00 28.00 1.98 2.55
prepositions 0.00 88.00 11.77 7.02
verbs 0.00 86.00 11.99 6.21
2-gram overall ratio 0.00 2.00 1.04 0.05
2-gram high freq ratio 0.00 3.00 1.04 0.05
2-gram low freq ratio 0.00 6.00 1.02 0.14

Table A.2: DBpedia Feature Statistics.

83

APPENDIX A. STATISTICS

Feature Min Max Mean Std Dev.

Average sentence length 1.61 3612.00 46.35 66.63
Average word length 3.00 208.71 8.08 5.60
Number of characters 9.00 827255.00 13668.57 21936.16
Number of sentences 1.00 3356.00 57.96 96.51
Total unique words (types) 2.00 10600.00 664.26 622.62
Total words (tokens) 2.00 121324.00 1801.19 2880.69
Type/Token Ratio 0.01 1.50 0.48 0.14
adjective types 0.00 82.00 20.59 15.55
adverb types 0.00 51.00 7.14 7.29
determiner types 0.00 17.00 4.27 2.64
interjection types 0.00 4.00 0.08 0.29
noun types 2.00 606.00 266.68 137.40
particle types 0.00 9.00 0.76 1.19
personal pronoun types 0.00 22.00 4.49 4.22
possessive pronoun types 0.00 22.00 4.49 4.22
preposition types 0.00 49.00 12.07 6.07
verb types 0.00 140.00 39.54 29.54
adjectives 0.00 258.00 58.00 48.03
adverbs 0.00 178.00 19.87 22.57
determiners 0.00 334.00 53.51 50.03
interjections 0.00 318.00 0.36 3.29
nouns 4.00 1692.00 840.70 413.66
particles 0.00 98.00 2.26 4.63
personal pronouns 0.00 272.00 22.43 29.19
possessive pronouns 0.00 272.00 22.43 29.19
prepositions 0.00 320.00 92.11 61.26
verbs 0.00 926.00 122.67 111.38
2-gram overall ratio 0.00 14.93 1.31 0.33
2-gram high freq ratio 0.00 14.56 1.33 0.36
2-gram low freq ratio 0.00 16.09 1.25 0.33

Table A.3: Extremism Feature Statistics.

84

Appendix B

Implementation

B.1 Posit Changes

To move the results of the Posit tool for one text into a folder to gather all

n-gram and summary data the following script was written:

#ge t name o f data f i l e

name=$ (basename ”$1” ” . txt ”)

#crea t e new f i l e s t r u c t u r e f o r summary data and n−grams

r e s u l t s F o l d e r=/opt / p o s i t / r e s u l t

summary=$ r e s u l t s F o l d e r /summary $name

ngram=$ r e s u l t s F o l d e r /ngram $name

i f [−d ”$summary”] && [”$2” = ”−−sum”] ; then

rm −R $summary

f i

i f [−d ”$ngram”] && [”$2” = ”−−ngram”] ; then

rm −R $ngram

f i

oldSummaryFolder=$ (pwd) / r e s u l t s

oldNgramFolder=$ (pwd) /$name” ngram re su l t s ”

#rename r e s u l t s f o l d e r to new name

#echo $parent $ r e s u l t sFo l d e r

i f [”$2” = ”−−sum”] ; then

mv $oldSummaryFolder $summary

f i

i f [”$2” = ”−−ngram”] ; then

mv $oldNgramFolder $ngram

f i

85

APPENDIX B. IMPLEMENTATION

The method to count sentences had to be changed. Instead of at least one

space also zero spaces are not allowed:

t r ’\ r \n ’ ’ ’ | sed ’ s / \ ([. ? !] \) \ s *\ ([A−Z] \) /\1\n\2/g ’ | awk

’ 1 ’

The script to calculate the Posit summary data:

echo ’ s t a r t pos i t ’

p o s a l l . sh $1

echo ’ rename f o l d e r s ’

r ename re su l t s . sh $1 $2

The script to calculate the n-gram frequencies:

echo ’ s t a r t p o s i t ngram ’

ngram . sh $1

echo ’ rename f o l d e r s ’

r ename re su l t s . sh $1 $2

B.2 Applying Posit

The main executions are handled with the following code:

main

#!/ usr / b in /env python3

import sys

from con s t ruc to r import cons t ruc t

import reader . r eader as rd

#DBPEDIA: s k i p : how many l i n e s to sk ip , count : how many l i n e s

to analyse , id : unique run−i d
#EXTREMIST: s k i p / count : not used , path : to index f i l e , i d :

Category name (c a p i t a l i s e d)

def run (data , path , skip , count , id , r e l a t i o n) :

i f (data == ”−drug”) :

c r aw l s e t = path . s p l i t (’ / ’) [−1]

print (c r aw l s e t)

crea to r f o r Drug data

c r e a t o r = cons t ruc t (path , id , r e l a t i o n , [” c r aw l s e t ” ,

c rawlse t , ” Pos i t i v e , Negative , Unknown”])

rd . r e a d f i l e s d r u g (path , id , c r ea tor , skip , count)

86

APPENDIX B. IMPLEMENTATION

e l i f (data == ”−ext r ”) :

crea to r f o r Extremism data

c r e a t o r = cons t ruc t (path , id , r e l a t i o n , [None , None , ”

Pos i t i v e , Negative , Neutra l ”])

rd . r e a d f i l e s (path , id , c r e a t o r)

e l i f (data == ”−dbp”) :

crea to r f o r DBpedia data

c r e a t o r = cons t ruc t (path , id , r e l a t i o n , [None , None , ”

1 ,2 ,3 ,4 ”])

rd . t e x t i n l i n e s (skip , count , c r e a t o r)

def index (data , path , skip , count) :

crea t e the index f i l e s

i f (data == ”−ext r ”) :

rd . read index extrem (skip , count , path)

e l i f (data == ”drug”) :

rd . r ead index drug (path)

run (sys . argv [1] , sys . argv [2] , sys . argv [3] , sys . argv [4] , sys .

argv [5] , sys . argv [6])

reader

import csv

import re

from i t e r t o o l s import i s l i c e

from os . path import os , sys

from time import time

import z i p f i l e

import chardet

import c o l l e c t i o n s

import s t r i n g

import l angde t e c t

sys . path . append (’ . . ’)

import a r f f . u t i l as u t i l

import a r f f . c o n f i g as c f g

##==

read the t e x t from l i n e s in a f i l e

##==

def t e x t i n l i n e s (skip , count , c on s t ruc to r) :

87

APPENDIX B. IMPLEMENTATION

ca l c u l a t e the avg f requency f o r the n−gram r a t i o s l a t e r

on

#database = db . database ()

r e f f r e q = 2052 #database . a v g f r e q ()

sk ip = int (sk ip)

count = int (count)

with open(con s t ruc to r . data path , newl ine=’ ’) as f i l e :

a t t r = None

counter = 0

content = csv . reader (f i l e , d e l i m i t e r=’ , ’ , quotechar=’ ” ’

)

for l i n e in i s l i c e (content , skip , None) :

category = l i n e [0]

i f int (category) not in [1 , 2 , 3 , 4] :

u t i l . w r i t e l o g (con s t ruc to r . log path , [”wrong

category , counter : %s ” % (counter)])

counter += 1

continue

t ex t = l i n e [2] . s t r i p ()

print (t ex t [: 2 0 0])

i f not i sC l ean (t ext) :

u t i l . w r i t e l o g (con s t ruc to r . log path , [” t ex t

f i l e mostly ’ ? ’ , counter : %s ” % (counter)])

counter += 1

continue

i f sys . g e t s i z e o f (t ex t) < 59 :

u t i l . w r i t e l o g (con s t ruc to r . log path , [” f i l e too

small , counter : %s ” % (counter)])

counter += 1

continue

con s t ruc to r . r e a d t e x t (t ex t)

#make sure r e s u l t s f o l d e r i s empty

try :

print (”REMOVE” , c f g . r e s u l t s p a t h)

os . remove (c f g . r e s u l t s p a t h)

except OSError :

pass

attr , counter = cons t ruc to r . execute (category , (sk ip

+1) , counter , at t r , r e f f r e q)

i f counter == count :

break

con s t ruc to r . f i n i s h ()

88

APPENDIX B. IMPLEMENTATION

##==

read the t e x t from f i l e s in a f o l d e r

##==

def r e a d f i l e s (index path , category , c on s t ruc to r) :

r e f f r e q = 2052

with open(index path) as index :

a t t r = None

counter = 0

content = index . r e a d l i n e s () ;

for f i l e in content :

print (f i l e [: −1])

path = c fg . ex t r emi s t da ta + category + ’ . z ip ’

with z i p f i l e . Z ipF i l e (path) as z :

raw text = z . read (f i l e [: −1])

print (raw text [: 3 0])

#pr in t (sys . g e t s i z e o f (r aw t e x t))

i f sys . g e t s i z e o f (raw text) < 59 :

u t i l . w r i t e l o g (con s t ruc to r . log path , [”

counter : %s , f i l e : %s , f i l e too smal l ” %

(counter , f i l e [: −1])])

counter += 1

continue

conver t encod ing (raw text)

f i l e c o n t e n t = raw text . decode (”ISO−8859−1”) .

s p l i t (’ \n ’) #ut f−8
i f len (f i l e c o n t e n t) > 1 :

i f f i l e c o n t e n t [1] == ’ ’ :

u t i l . w r i t e l o g (con s t ruc to r . log path , [”

counter : %s , f i l e : %s , empty second

l i n e ” % (counter , f i l e [: −1])])

counter += 1

continue

t ex t = f i l e c o n t e n t [1] . s p l i t (’ \ t ’) [1] . s t r i p

()

else :

u t i l . w r i t e l o g (con s t ruc to r . log path , [”

counter : %s , f i l e : %s , empty f i l e or

wrong encoding ” % (counter , f i l e [: −1])])

counter += 1

continue

i f not i sC l ean (t ext) :

89

APPENDIX B. IMPLEMENTATION

u t i l . w r i t e l o g (con s t ruc to r . log path , [”

counter : %s , f i l e : %s , t ex t f i l e mostly

’ ? ’ ” % (counter , f i l e [: −1])])

counter += 1

continue

s u c c e s s = cons t ruc to r . r e a d t e x t (t ex t)

i f s u c c e s s == −1 :

u t i l . w r i t e l o g (con s t ruc to r . log path , [”

counter : %s , f i l e : %s , t ex t f i l e i s too

l a r g e ” % (counter , f i l e [: −1])])

counter += 1

continue

attr , counter = cons t ruc to r . execute (category ,

1 , counter , at t r , r e f f r e q)

con s t ruc to r . f i n i s h ()

##==

read the t e x t from f i l e s in a f o l d e r

##==

def r e a d f i l e s d r u g (index path , category , cons t ructor , sk ip =

0 , count = −1, a d d i t i o n a l L i n e = False) :

r e f f r e q = 2052

with open(index path) as index :

a t t r = None

content = index . r e a d l i n e s () ;

sk ip = int (sk ip)

count = int (count)

counter = sk ip+1

i f (count == −1) :

count = len (content)

for i in range (skip , sk ip+count) :

i f (i > len (content)−1) :

break

l i n e = content [i] . r s p l i t (’ ; ’ , 1)

f i l e = l i n e [0]

i f isinstance (category , int) :

category = l i n e [1] . r s t r i p ()

print (” Filename ” +f i l e)

crawl = f i l e . s p l i t (’ / ’) [0]

path = c fg . drug data + crawl + ’ . z ip ’

90

APPENDIX B. IMPLEMENTATION

with z i p f i l e . Z ipF i l e (path) as z :

raw text = z . read (f i l e)

print (raw text [: 4 0])

#pr in t (sys . g e t s i z e o f (r aw t e x t))

i f sys . g e t s i z e o f (raw text) < 59 :

u t i l . w r i t e l o g (con s t ruc to r . log path , [”

counter : %s , f i l e : %s , f i l e too smal l ” %

(counter , f i l e [: −1])])

counter += 1

continue

conver t encod ing (raw text)

f i l e c o n t e n t = raw text . decode (” utf−8”) . r e p l a c e

(u ’ \xa0 ’ , ’ ’)

i f a d d i t i o n a l L i n e :

f i l e c o n t e n t = f i l e c o n t e n t . s p l i t (’ \n ’) #

ut f−8ISO−8859−1
#pr in t (f i l e c o n t e n t)

i f len (f i l e c o n t e n t) > 1 :

i f f i l e c o n t e n t [1] == ’ ’ :

u t i l . w r i t e l o g (con s t ruc to r . log path

, [” counter : %s , f i l e : %s , empty

second l i n e ” % (counter , f i l e

[: −1])])

counter += 1

continue

t ex t = f i l e c o n t e n t [1] . s p l i t (’ \ t ’) [1] .

s t r i p ()

else :

u t i l . w r i t e l o g (con s t ruc to r . log path , [”

counter : %s , f i l e : %s , empty f i l e or

wrong encoding ” % (counter , f i l e

[: −1])])

counter += 1

continue

else :

t ex t = f i l e c o n t e n t

try :

i f not i sC l ean (t ext) :

u t i l . w r i t e l o g (con s t ruc to r . log path , [”

counter : %s , f i l e : %s , t ex t f i l e

mostly ’ ? ’ ” % (counter , f i l e [: −1])])

counter += 1

continue

91

APPENDIX B. IMPLEMENTATION

except :

u t i l . w r i t e l o g (con s t ruc to r . log path , [”

counter : %s , f i l e : %s , encoding wrong” %

(counter , f i l e [: −1])])

counter += 1

continue

i f (l angde t e c t . de t e c t (t ex t) == ’ en ’) :

try :

s u c c e s s = cons t ruc to r . r e a d t e x t (t ex t)

i f s u c c e s s == −1 :

u t i l . w r i t e l o g (con s t ruc to r . log path

, [” counter : %s , f i l e : %s , t ex t

f i l e i s too l a r g e ” % (counter ,

f i l e [: −1])])

counter += 1

continue

except UnicodeEncodeError :

u t i l . w r i t e l o g (con s t ruc to r . log path , [”

counter : %s , f i l e : %s , bad encoding ”

% (counter , f i l e [: −1])])

counter += 1

continue

else :

u t i l . w r i t e l o g (con s t ruc to r . log path , [”

counter : %s , f i l e : %s , wrong language ” %

(counter , f i l e [: −1])])

counter += 1

continue

attr , counter = cons t ruc to r . execute (category ,

1 , counter , at t r , r e f f r e q)

i f (count != −1 & counter == count) :

break

con s t ruc to r . f i n i s h ()

crea t e index f o r each f o l d e r , each l i n e in index i s name o f

f i l e to be parsed by p o s i t

l i n e numbers r ep r e s en t i d s

def read index extrem (skip , count , data path) :

with z i p f i l e . Z ipF i l e (data path) as z :

print (” unzipped ”)

f o l d e r d i c t = {}

92

APPENDIX B. IMPLEMENTATION

a lpha d i c = {}
for f i l ename in z . name l i s t () :

i f f i l ename . endswith (’ / ’) :

f o l d e r d i c t [f i l ename] = 0

a lpha d i c [f i l ename] = l i s t ()

f i l e p a t h = c fg . data + ’ICCRC/ index / ’ +

f i l ename [: −1] + ’ . txt ’

for f i l ename in z . name l i s t () :

i f not f i l ename . endswith (’ / ’) :

for k in f o l d e r d i c t . keys () :

i f k in f i l ename :

f o l d e r d i c t [k] += 1

f i l e p a t h = c fg . data + ’ICCRC/ index / ’ +

k [: −1] + ’ . txt ’

a l pha d i c [k] . append (f i l ename)

with open(c f g . data + ’ICCRC/ index /Temp−American ,

Americans , America . txt ’ , ’w+’) as tpc :

for f i l e in sorted (a l pha d i c [” Neutral /Temp−American

, Americans , America/”]) :

tpc . wr i t e (f i l e+’ \n ’)

print (f o l d e r d i c t)

def r ead index drug (data path) :

numb engl = 0

numb non engl = 0

pos cat , neg cat = readCategor i e s ()

print (len (pos ca t) , len (neg cat))

data name = os . path . s p l i t e x t (os . path . basename (data path))

[0]

print (data name)

with z i p f i l e . Z ipF i l e (data path) as z :

print (” unzipped ”)

f o l d e r d i c t = {}
a lpha d i c = {}
for f o l d e r in z . name l i s t () :

i f f o l d e r . endswith (’ / ’) :

f o l d e r d i c t [f o l d e r] = 0

a lpha d i c [f o l d e r] = l i s t ()

for f i l ename in z . name l i s t () :

i f not f i l ename . endswith (’ / ’) :

raw text = z . read (f i l ename) ;

raw text = raw text . decode (” utf−8”) . r e p l a c e (u ’ \

93

APPENDIX B. IMPLEMENTATION

xa0 ’ , ’ ’)

i f (sys . g e t s i z e o f (raw text) >= 59) :

try :

i f (l angde t e c t . de t e c t (raw text) == ’ en ’

) :

numb engl += 1

for k in f o l d e r d i c t . keys () :

i f k in f i l ename :

f o l d e r d i c t [k] += 1

f i l e p a t h = c fg . data + ’

drug/ index ’ + k + ’ . txt ’

a l pha d i c [k] . append (

f i l ename)

else :

numb non engl += 1

except l angde t e c t . l a n g d e t e c t e x c e p t i o n .

LangDetectException :

print (raw text)

i f not os . path . e x i s t s (c f g . data + ’ drug/ index ’) :

os . makedirs (c f g . data + ’ drug/ index ’)

with open(c f g . data + ’ drug/ index / ’+data name , ’w+’) as

tpc :

for k in a lpha d i c . keys () :

for f i l e in sorted (a l pha d i c [k]) :

category = ”Unknown”

domain path = f i l e . s p l i t (’ / ’)

i f len (domain path) >1:

domain = domain path [1]

i f domain in pos ca t :

category = ” P o s i t i v e ”

e l i f domain in neg cat :

category = ” Negative ”

tpc . wr i t e (f i l e + ’ ; ’ + category + ’ \n ’)

print (numb engl)

print (numb non engl)

def conver t encod ing (raw text) :

r e s u l t = chardet . de t e c t (raw text)

charenc = r e s u l t [’ encoding ’]

print (charenc)

def i sC l ean (t ext) :

common = c o l l e c t i o n s . Counter (t ex t) . most common (3)

94

APPENDIX B. IMPLEMENTATION

print (common)

i f (common [0] [0] in s t r i n g . punctuat ion) :

return False

return True

def r eadCategor i e s () :

drugs = set ()

non drugs = set ()

with open(c f g . drug data+” D r u g s i t e s ” , ’ r ’) as d :

content = d . r e a d l i n e s ()

for s i t e in content :

s i t e = s i t e . r e p l a c e (” http :// ” , ” ht tp ”)

s i t e = s i t e . r e p l a c e (’ onion :80 ’ , ’ on ion 80 ’)

drugs . add (s i t e . r s t r i p ())

with open(c f g . drug data+” non Drug s i t e s ” , ’ r ’) as nd :

content = nd . r e a d l i n e s ()

for s i t e in content :

s i t e = s i t e . r e p l a c e (” http :// ” , ” ht tp ”)

s i t e = s i t e . r e p l a c e (’ onion :80 ’ , ’ on ion 80 ’)

non drugs . add (s i t e . r s t r i p ())

return drugs , non drugs

constructor

#!/ usr / b in /env python3

from os . path import os , basename

import sys

import time

import c o n f i g as c f g

import c r e a t e a r f f as r ead index

import u t i l

class cons t ruc t :

’ ’ ’

c r ea t e the a r f f f i l e

s e t a l l tmp f i l e s in i n i t

’ ’ ’

def i n i t (s e l f , data , run id , r e l a t i o n , da ta id=None) :

s e l f . s t a r t t i m e = time . time ()

s e l f . data path = data

s e l f . name = os . path . s p l i t e x t (basename (data)) [0] + str (

run id)

s e l f . r e l a t i o n = r e l a t i o n

95

APPENDIX B. IMPLEMENTATION

s e l f . da ta id = data id

s e l f . tmp path = c fg . p o s i t pa th +’ / ’+ s e l f . name + ’ . txt ’

i f not os . path . e x i s t s (c f g . n e w r e s u l t s) :

os . makedirs (c f g . n e w r e s u l t s)

crea t e temporary f i l e s

s e l f . attr tmp path = c fg . n e w r e s u l t s + s e l f . name + ’

at t r tmp . txt ’

s e l f . data tmp path = c fg . n e w r e s u l t s + s e l f . name + ”

data tmp . txt ”

s e l f . a r f f p a t h = c fg . n e w r e s u l t s + s e l f . name + ”

summary . a r f f ”

s e l f . l og path = c fg . n e w r e s u l t s + s e l f . name + ” l o g ”

#make sure i t ’ s a new f i l e , o v e rwr i t e anyth ing prec ious

a = open(s e l f . a r f f p a t h , ”w”)

s e l f . l og = open(s e l f . log path , ”w+”)

a . c l o s e ()

s e l f . l og . c l o s e ()

try :

os . remove (s e l f . attr tmp path)

except OSError :

try :

os . remove (s e l f . data tmp path)

except OSError :

pass

s e l f . data tmp , s e l f . attr tmp = s e l f . o p e n f i l e s ()

def execute (s e l f , category , s t a r t , counter , at t r , r e f f r e q)

:

#make sure r e s u l t s f o l d e r i s empty

try :

print (”REMOVE” , c f g . r e s u l t s p a t h)

os . remove (c f g . r e s u l t s p a t h)

except OSError :

pass

#execu te the summary s c r i p t

u t i l . e x e c s h e l l (’ p o s i t . sh ’+ s e l f . tmp path + ’ −−sum ’ ,

60)

summary = c fg . n e w r e s u l t s +’ summary ’+ s e l f . name + c fg .

summary path

numeric , a t t r i b u t e s = read index . parse summary ([summary

])

numeric [0] . i n s e r t (0 , str (s t a r t + counter))

96

APPENDIX B. IMPLEMENTATION

#execu te the ngram s c r i p t

u t i l . e x e c s h e l l (’ pos i t ngram . sh ’+ s e l f . tmp path + ’ −−
ngram ’ , 60)

av g ra t i o s , h i g h r a t i o s , l o w r a t i o s , ngram attr=

read index . parse ngram (2 , s e l f . name , r e f f r e q)

a t t r i b u t e s = a t t r i b u t e s + ngram attr

numeric [0] = numeric [0] + [str (a v g r a t i o s [0]) , str (

h i g h r a t i o s [0]) , str (l o w r a t i o s [0])]

print (numeric [0] [− 5])

numeric [0] . append (category)

a t t r = u t i l . w r i t e a t t r (at t r , a t t r i b u t e s , s e l f .

attr tmp path , s e l f . r e l a t i o n , s e l f . da ta id)

u t i l . dump(s e l f . attr tmp path , s e l f . a r f f p a t h)

u t i l . wr i t e da ta (numeric [0] , s e l f . data tmp , counter ,

s e l f . da ta id)

counter += 1

print (” ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜COUNTER: ” , counter)

i f counter%4 == 0 :

u t i l . dump(s e l f . data tmp path , s e l f . a r f f p a t h)

s e l f . data tmp = open(s e l f . data tmp path , ”w”)

return att r , counter

def o p e n f i l e s (s e l f) :

data tmp = open(s e l f . data tmp path , ”w+”)

attr tmp = open(s e l f . attr tmp path , ”w+”)

print (data tmp . wr i t e (”@DATA” + os . l i n e s e p))

u t i l . w r i t e l o g (s e l f . log path , [s e l f . name , ” Star t time :

” + str (s e l f . s t a r t t i m e)])

return data tmp , attr tmp

’ ’ ’

Read the current t e x t i n t o a tmp f i l e .

r e tu rns −1 i f f i l e too large , 0 o therw i s e

’ ’ ’

def r e a d t e x t (s e l f , t ex t) :

with open(s e l f . tmp path , ’w+’) as tmp :

tmp . wr i t e (t ex t)

tmp . c l o s e ()

#pr in t (t e x t)

97

APPENDIX B. IMPLEMENTATION

f i l e S i z e = os . path . g e t s i z e (s e l f . tmp path)

print (’ f i l e s i z e : ’ , f i l e S i z e)

i f f i l e S i z e > 1000000:

return −1

return 0

def f i n i s h (s e l f) :

u t i l . dump(s e l f . data tmp path , s e l f . a r f f p a t h)

remove temporary f i l e s

os . remove (s e l f . attr tmp path)

os . remove (s e l f . data tmp path)

os . remove (s e l f . tmp path)

print (”−−− %s seconds −−−” % (time . time () − s e l f .

s t a r t t i m e))

u t i l . w r i t e l o g (s e l f . log path , [” F in i sh time : ” + str (

time . time) , ”Run time : %f seconds ” % (time . time () −
s e l f . s t a r t t i m e)])

To create arff files this code was implemented:

create arff

#!/ usr / b in /env python3

import os

import re

import sys

import c o n f i g as c f g

import u t i l

sys . path . append (’ . . ’)

import ngram . ngram index as ngram

import ngram . ngram rat io as r a t i o

def combine d ic t s (summary f i l e s) :

a t t r i b u t e s = None

data = l i s t ()

for f in summary f i l e s :

[summary , token , pos] = u t i l . parse (f)

keys = [key for (key , va lue) in sorted (summary . i tems ())

] + \
[key for (key , va lue) in sorted (token . i tems ())]

+ \

98

APPENDIX B. IMPLEMENTATION

[key for (key , va lue) in sorted (pos . i tems ())]

va lue s = [va lue for (key , va lue) in sorted (summary .

i tems ())] + \
[va lue for (key , va lue) in sorted (token . i tems ()

)] + \
[va lue for (key , va lue) in sorted (pos . i tems ())]

ge t a t t r i b u t e s from summary f i l e s and compare i f

they are equal , i f not STOP

i f a t t r i b u t e s i s not None :

a s s e r t a t t r i b u t e s == keys

i f a t t r i b u t e s != keys :

print (f)

raise ValueError (” the a t t r i b u t e s o f the summary

f i l e s are not the same : ” , \
a t t r i b u t e s , keys)

else :

a t t r i b u t e s = keys

data . append (va lue s)

return a t t r i b u t e s , data

take s a s e t o f summary f i l e s and c r ea t e s a l i s t o f a t t r i b u t e s

and numerical data f o r each summary

def parse summary (summary f i l e s) :

print (summary f i l e s)

a t t r i b u t e s , data = combine d ic t s (summary f i l e s)

return data , a t t r i b u t e s

i f ng ram f i l e i s None the methods searches f o r a l l ngram *

f o l d e r s in the r e s u l t f o l d e r

i f ng ram f i l e i s not None i t on ly works on the s p e c i f i c f i l e

def parse ngram (n , ngram f i l e , r e f t h r e s h o l d) :

d i r l i s t = os . l i s t d i r (c f g . n e w r e s u l t s)

f i l e s = []

for i in range (0 , len (d i r l i s t)) :

i f n g r a m f i l e i s None :

i f ((not re . match (’ ˆ . * \ . (txt | a r f f) $ ’ , d i r l i s t [i]))

and \
re . match (’ ˆ(ngram) .* $ ’ , d i r l i s t [i])) :

f i l e s . append (c f g . n e w r e s u l t s + d i r l i s t [i] + ”/

” + str (n) + ”−grams . txt ”)

else :

i f ((not re . match (’ ˆ . * \ . (txt | a r f f) $ ’ , d i r l i s t [i]))

99

APPENDIX B. IMPLEMENTATION

and \
re . match (’ ˆ(ngram ’ + n g r a m f i l e + ’) .* $ ’ ,

d i r l i s t [i])) :

f i l e s . append (c f g . n e w r e s u l t s + d i r l i s t [i] + ”/

” + str (n) + ”−grams . txt ”)

i f n g r a m f i l e i s not None :

a s s e r t len (f i l e s) == 1

ra t i o s f o r a l l f i l e s

av g ra t i o s , h i g h r a t i o s , l o w r a t i o s = [] , [] , []

for f in f i l e s :

print (f)

n gram = ngram . ngram (r e f t h r e s h o l d)

try :

n gram . search db (f)

avg , high , low = r a t i o . avg row column (n gram)

except IndexError :

avg , high , low = −1, −1, −1

pass

print (” low r a t i o : ” , low)

a v g r a t i o s . append (avg)

h i g h r a t i o s . append (high)

l o w r a t i o s . append (low)

return av g ra t i o s , h i g h r a t i o s , l o w r a t i o s , [’2−
g r a m o v e r a l l r a t i o ’ , ’2−g r a m h i g h f r e q r a t i o ’ , ’2−
g r a m l o w f r e q r a t i o ’]

util

#!/ usr / b in /env python3

import os

import re

import subproces s

parse summary . t x t i n t o s t r i n g o f a t t r i b u t e s and data

def parse (p o s i t) :

with open(p o s i t) as f :

content = f . r e a d l i n e s ()

content = [x . s t r i p () for x in content]

content . pop (0)

attr summary = {}
a t t r t o k e n = {}
a t t r p o s = {}

100

APPENDIX B. IMPLEMENTATION

typ = 0

for l i n e in content :

i f (re . match (’ ˆ\d+(\ .\d+) ? | i n f [\ t :] . + $ ’ , l i n e)) :

a r r = l i n e . s p l i t (” : ”)

i f (re . match (’ ˆ [i n f] $ ’ , a r r [0] . s t r i p ())) :

a r r [0] = str (−1)

i f typ == 0 :

attr summary [a r r [1] . s t r i p () . r e p l a c e (” ” , ” ”)]

= ar r [0] . s t r i p ()

e l i f typ == 1 :

a t t r t o k e n [a r r [1] . s t r i p () . r e p l a c e (” ” , ” ”)] =

ar r [0] . s t r i p ()

e l i f typ == 2 :

a t t r p o s [a r r [1] . s t r i p () . r e p l a c e (” ” , ” ”)] =

ar r [0] . s t r i p ()

i f typ == 0 and l i n e == ”” :

i f attr summary . get (” Number of sentences ”) == ”0” :

attr summary [” Ave rage s en t ence l eng th (ASL) ”] =

”−1”

e l i f typ == 0 and l i n e == ”NUMBER OF TOKEN TYPES” :

typ = 1

e l i f typ == 1 and l i n e == ”NUMBER OF POS TYPES” :

typ = 2

return [attr summary , a t t r token , a t t r p o s] ;

def dump(data path , a r f f f i l e) :

a r f f = ””

with open(data path , ” r ”) as data tmp :

for l i n e in data tmp :

a r f f+=l i n e

with open(a r f f f i l e , ”a”) as a :

a . wr i t e (a r f f)

wr i t e a t t r i b u t e s to temporary f i l e

def w r i t e a t t r (at t r , a t t r i b u t e s , a t t r path , r e l a t i o n , da ta id) :

with open(at t r path , ’w+’) as attr tmp :

i f a t t r i s not None :

i f a t t r i b u t e s != a t t r :

raise ValueError (” the a t t r i b u t e s o f the summary

f i l e s are not the same : ” , \
a t t r i b u t e s , a t t r)

else :

101

APPENDIX B. IMPLEMENTATION

a t t r = a t t r i b u t e s

attr tmp . wr i t e (”@RELATION \ t ” + r e l a t i o n + os .

l i n e s e p+ os . l i n e s e p)

i f data id [0] != None :

attr tmp . wr i t e (”@ATTRIBUTE \ t ” + data id [0] + ”

\ t STRING” + os . l i n e s e p)

attr tmp . wr i t e (”@ATTRIBUTE \ t ” + ”ID” + ”\ t NUMERIC

” + os . l i n e s e p)

for a in a t t r :

attr tmp . wr i t e (”@ATTRIBUTE \ t ” + a + ”\ t

NUMERIC” + os . l i n e s e p)

attr tmp . wr i t e (”@ATTRIBUTE \ t ca t ego ry \ t {” +

data id [2] + ”}” + os . l i n e s e p+ os . l i n e s e p)

return a t t r

#wr i t e numerical data to temporary f i l e

def wr i t e da ta (data , data tmp , counter , da ta id) :

i f data id [1] != None :

print (da ta id [1])

data . i n s e r t (0 , da ta id [1])

for j in range (0 , len (data)−1) :

data tmp . wr i t e (data [j] + ” , ”)

data tmp . wr i t e (data [−1] + os . l i n e s e p)

data tmp . t runcate ()

def w r i t e l o g (l o g f i l e , t e x t l i s t) :

with open(l o g f i l e , ”a”) as a :

for t in t e x t l i s t :

a . wr i t e (t + os . l i n e s e p)

command as s t r i n g , time i s t imeout g iven be f o r e k i l l i n g

proces s

def e x e c s h e l l (command , time) :

Process=subproces s . Popen (command , s h e l l=True)

try :

outs , e r r s = Process . communicate (t imeout=time)

except subproces s . TimeoutExpired :

Process . k i l l ()

outs , e r r s = Process . communicate ()

return −1

return 1

The n-gram ratios were calculated with the following code:

102

APPENDIX B. IMPLEMENTATION

ngram index

#!/ usr / b in /env python3

import sys

import database manager . database as db

from b l i n k e r . u t i l i t i e s import r e f e r e n c e

sys . path . append (’ . . ’)

index the n−grams f o r each n in the f i l e (case s e n s i t i v e)

seach b l o c kw i s e in the r e f e r ence f i l e s

class ngram :

#grams i s d i c t i ona r y o f ngrams in the curren t f i l e

def i n i t (s e l f , th r e sho ld) :

s e l f . r e f t h r e s h o l d = thre sho ld #th r e s ho l d o f low vs

h igh f r e q 2−grams

s e l f . grams = None #2−gram in t e x t wi th f requency

s e l f . r e f g rams = {} #2−gram from re f e r ence wi th

f r eqency

s e l f . g r a n d t o t a l = 0 #ov e r a l l f r e q o f t e x t + r e f

s e l f . h i g h t o t a l = 0 #high f r e q o f t e x t + r e f

s e l f . l o w t o t a l = 0 #low f r e q o f t e x t + r e f

s e l f . g ram high co l = 0 #t e x t f r e q o f h igh f r e q 2−
grams

s e l f . gram low col = 0 #t e x t f r e q o f low f r e q 2−grams

s e l f . r e f h i g h c o l = 0 # only h igh f r e q o v e r a l l

s e l f . r e f l o w c o l = 0 # only low f r e q o v e r a l l

s e l f . high row = {} # only row f r e q o f h igh f r e q

s e l f . low row = {} # only row f r e q o f low f r e q

def u p d a t e c o l t o t a l s (s e l f , d i c) :#, db) :

for k , v in d i c . i tems () :

i f v != −1:

gram value = s e l f . grams . get (k)

#ca l c u l a t e h igh and low f r e q data

i f v >= s e l f . r e f t h r e s h o l d :

s e l f . r e f h i g h c o l += v

s e l f . g ram high co l += gram value

s e l f . high row [k] = v + gram value

e l i f v < s e l f . r e f t h r e s h o l d :

s e l f . r e f l o w c o l += v

s e l f . gram low col += gram value

s e l f . low row [k] = v + gram value

103

APPENDIX B. IMPLEMENTATION

def c a l c h i g h t o t a l s (s e l f) :

s e l f . h i g h t o t a l = s e l f . r e f h i g h c o l + s e l f .

g ram high co l

def c a l c l o w t o t a l s (s e l f) :

s e l f . l o w t o t a l = s e l f . r e f l o w c o l + s e l f . gram low col

def c a l c g r a n d t o t a l s (s e l f) :

s e l f . g r a n d t o t a l = s e l f . h i g h t o t a l + s e l f . l o w t o t a l

def search db (s e l f , f i l e) :

#ngrams =

s e l f . parse ngrams (f i l e)

database = db . database ()

r e f = ”twogram . db”

r e f e r e n c e f r e q = database . g e t l i s t d a t a (r e f , s e l f . grams

. keys ())

s e l f . p r i n t r e f (r e f e r e n c e f r e q)

s e l f . u p d a t e c o l t o t a l s (r e f e r e n c e f r e q)

s e l f . c a l c h i g h t o t a l s ()

s e l f . c a l c l o w t o t a l s ()

s e l f . c a l c g r a n d t o t a l s () # c a l l a f t e r h igh / low t o t a l

s e l f . r e f g rams = r e f e r e n c e f r e q

def parse ngrams (s e l f , f i l e) :

with open(f i l e) as gram :

l i n e s = gram . r e a d l i n e s ()

l i n e s = [x . s t r i p () for x in l i n e s]

d i c = {}
for l in l i n e s :

l i n e = l . s p l i t (” ” ,1)

ngram = l i n e [1] . r e p l a c e (”\ t ” , ” ”)

d i c [ngram] = int (l i n e [0])

s e l f . grams = dic

def p r i n t r e f (s e l f , r e f e r e n c e) :

l = l i s t ()

for k , v in r e f e r e n c e . i tems () :

i f v != −1:

l . append (k)

print (l)

104

APPENDIX B. IMPLEMENTATION

ngram ratio

#!/ usr / b in /env python3

Create pos−n−grams o f t e x t f i l e

ca l c u l a t e number o f (occurences o f n−gram / t o t a l number o f

n−grams (>1))

def row co lumn rat io (ngram , n) :

t o t a l = ngram . high row . copy ()

t o t a l . update (ngram . low row)

a s s e r t len (t o t a l) == (len (ngram . high row) + len (ngram .

low row))

row = t o t a l . get (n)

i f row i s None :

return −1

c o l = ngram . gram high co l + ngram . gram low col

t o t a l = ngram . g r a n d t o t a l

return (row* c o l) / t o t a l

def h igh row co lumn rat io (ngram , n) :

row = ngram . high row . get (n)

i f row i s None :

return −1

c o l = ngram . gram high co l

t o t a l = ngram . h i g h t o t a l

return (row* c o l) / t o t a l

def l ow row co lumn rat io (ngram , n) :

row = ngram . low row . get (n)

i f row i s None :

return −1

c o l = ngram . gram low col

t o t a l = ngram . l o w t o t a l

return f loat ((row* c o l) / f loat (t o t a l))

def avg row column (ngram) :

r t s , h i gh r t s , l o w r t s = [] , [] , []

for n in ngram . grams :

#ca l c u l a t e row column ra t i o f o r each ngram

r t s . append (row co lumn rat io (ngram , n))

h i g h r t s . append (h igh row co lumn rat io (ngram , n))

l o w r t s . append (low row co lumn rat io (ngram , n))

return ca l c av g (r t s) , c a l c av g (h i g h r t s) , c a l c av g (l o w r t s)

105

APPENDIX B. IMPLEMENTATION

#ca l c u l a t e average o f row column r a t i o s

def ca l c av g (l i s s t) :

l ength = 0

summ = 0

for i in l i s s t :

i f i != −1:

l ength += 1

summ += i

i f l ength == 0 :

return 0

return (summ / f loat (l ength))

In order to handle the database management this code was implemented:

Database

#!/ usr / b in /env python3

import gz ip

import os

from os . path import basename

from path l i b import Path

import re

import sys

sys . path . append (’ . . ’)

import a r f f . c o n f i g as c f g

import s q l i t e 3 as l i t e

class database :

one databaser per index f i l e

path d e f i n e s the su b s e t o f . gz f o l d e r s

def c r ea t e db (s e l f , f o l d e r) :

path = c fg . n gram db + ”/” + f o l d e r

for f in os . l i s t d i r (path) :

i f not re . match (f , ”2gm. idx ”) :

name = os . path . s p l i t e x t (f) [0]

print (name)

db name = c fg . data + ”/ database /” + s e l f . scrub (name)

+ ” . db”

i f not Path (db name) . i s f i l e () :

ngram name = c fg . n gram db + ”/” + f o l d e r +”/”+

name + ” . gz”

106

APPENDIX B. IMPLEMENTATION

db = l i t e . connect (db name)

with db :

cur = db . cur so r ()

command = ”CREATE TABLE ”+ s e l f . scrub (name) +” (

ngram TEXT, f requency INT) ”

print (command)

cur . execute (command)

with gz ip .open(ngram name , ’ r ’) as ngrams :

for l i n e in ngrams :

l i n e = l i n e . decode (” utf−8”) . s t r i p ()

a r r = l i n e . s p l i t (’ \ t ’)

i f ar r [0] . r e p l a c e (” ” , ””) . isalnum () :

try :

command = ”INSERT INTO ”+ s e l f . scrub (name

) +” VALUES(\ ’ ”+ar r [0]+ ” \ ’ , ”+ar r [1]+ ”

) ”

cur . execute (command)

except IndexError :

print (arr , l i n e)

def open db (s e l f , db) :

conn = l i t e . connect (db)

Let rows re turned be o f d i c t / t u p l e type

conn . row fac to ry = l i t e .Row

print (”Openned database %s as %r ” % (db , conn))

return conn

one database f o r a l l 2−gram frequency data

def complete db (s e l f , f o l d e r) :

path = c fg . n gram db + ”/” + f o l d e r

db name = c fg . n gram db + ”/” + f o l d e r + ” . db”

print (db name)

i f not Path (db name) . i s f i l e () :

db = l i t e . connect (db name)

with db :

cur = db . cur so r ()

command = ”CREATE TABLE ”+ ”twograms” +” (ngram TEXT

PRIMARY KEY, f requency INT) ”

print (command)

cur . execute (command)

for f in os . l i s t d i r (path) :

i f not re . match (f , ”2gm. idx ”) :

print (f)

107

APPENDIX B. IMPLEMENTATION

ngram name = c fg . n gram db + ”/” + f o l d e r +”/”+ f

with gz ip .open(ngram name , ’ r ’) as ngrams :

for l i n e in ngrams :

l i n e = l i n e . decode (” utf−8”) . s t r i p ()

a r r = l i n e . s p l i t (’ \ t ’)

i f ar r [0] . r e p l a c e (” ” , ””) . isalnum () :

try :

command = ”INSERT INTO ”+ ”twograms” +”

VALUES(? , ?) ”

cur . execute (command , [a r r [0] , a r r [1]])

except IndexError :

print (arr , l i n e)

Returns f requency i f pa t t e rn was found in database , −1
o the rw i s e

def g e t l i s t d a t a (s e l f , db , pat t e rns) :

db = os . path . s p l i t e x t (db) [0]

con = l i t e . connect (c f g . n gram db + ”/”+db+” . db”)

#con = l i t e . connect (c f g . data + db +”.db ”)

print (c f g . data + db +” . db”)

pr in t (l i s t (pa t t e rn s) [: 5 0])

d i c = {k:−1 for k in pat t e rns }
pat = l i s t (pat t e rns)

with con :

cur = con . cur so r ()

p l a c eho ld e r= ’ ? ’

l i m i t = 80

while (len (pat) > 0) :

v a r l i s t = pat [0 : l i m i t]

pat = pat [l i m i t :]

p l a c e h o l d e r s= ’ , ’ . j o i n (p l a c eho ld e r for unused

in l i s t (v a r l i s t))

command = ”SELECT * FROM ”+db+ ” WHERE (ngram

IN (%s)) ; ” % p l a c e h o l d e r s

#pr in t (command)

cur . execute (command , l i s t (v a r l i s t))

rows = cur . f e t c h a l l ()

for row in rows :

d i c [row [0]] = row [1]

return d i c

108

APPENDIX B. IMPLEMENTATION

def avg f r eq (s e l f) :

print (” Ca l cu la t e avg f r e q e n c i e s o f database ”)

avg = 0

#db path = c f g . n gram db + ”twogram . db”

db path = c fg . data + ”twogram . db”

con = l i t e . connect (db path)

with con :

cur = con . cur so r ()

command = ”SELECT AVG(frequency) FROM ”+ os . path .

s p l i t e x t (basename (db path)) [0] +” ; ”

print (command)

cur . execute (command)

avg = cur . f e t chone () [0]

print (” th r e sho ld : ” , avg)

return avg

only keep alphanumerics in name , s t a r t i n g wi th l e t t e r

def scrub (table name) :

return ’ ’ . j o i n (chr for chr in table name i f chr . isalnum ()

) [1 :]

B.3 Applying Weka

Execute

package c l a s s i f y ;

public class Execute {

public stat ic void main (St r ing [] a rgs) {
St r ing d e l e t e = null ;

S t r ing type = null ;

i f (args . length <4)

d e l e t e = ”” ;

else i f (args . length >=4) {
type = args [3] ;

System . out . p r i n t l n (type) ;

i f (args . l ength > 4)

d e l e t e = args [4] ;

else

d e l e t e = ”” ;

}

109

APPENDIX B. IMPLEMENTATION

System . out . p r i n t l n (args [0] +” ”+ args [1] +” ”+ args [2] +” ”+

d e l e t e) ;

S t r ing t r a i n = args [0] ;

S t r ing t e s t = args [1] ;

boolean centered = fa l se ;

i f (args [2] . equa l s (”−C”)) {
centered = true ;

} else i f (args [2] . equa l s (”−S”)) {
centered = fa l se ;

} else {
System . e r r . p r i n t l n (”wrong input , ”+args [1]+ ” must be e i t h e r

−C f o r centered or −S f o r s tandard i s ed ”) ;

}

Driver run ;

try {
i f (d e l e t e . equa l s (””) && type == null)

run = new Driver (t ra in , t e s t , cente red) ;

else

run = new Driver (t ra in , t e s t , centered , de l e t e , type) ;

} catch (Exception e) {
e . pr intStackTrace () ;

}
}
}

Driver

package c l a s s i f y ;

import java . i o . F i l e ;

import java . i o . FileNotFoundException ;

import java . i o . IOException ;

import java . i o . RandomAccessFile ;

import java . n io . f i l e . F i l e s ;

import java . n io . f i l e . Path ;

import java . n io . f i l e . Paths ;

import java . n io . f i l e . StandardOpenOption ;

import java . u t i l . ArrayList ;

import java . u t i l . Arrays ;

import java . u t i l . L i s t ;

import java . u t i l .Map;

110

APPENDIX B. IMPLEMENTATION

import a t t r i b u t e S e l e c t i o n . S e l e c t A t t r i b u t e s ;

import u t i l s . PrepareData ;

import u t i l s . U t i l s ;

import weka . core . In s tance s ;

public class Driver {

private St r ing f i leName ;

private F i l e f ;

private Path pcaF i l e ;

private St r ing pcaFolder ;

private Path f i l t e r F i l e ;

private St r ing f i l t e r F o l d e r ;

private Path positNgramFile ;

private St r ing f o l d e r ;

private Path ngramFile ;

private St r ing ngramFolder ;

private St r ing content ;

private In s tance s data ;

private In s tance s t r a i n ;

private In s tance s t e s t ;

private St r ing pro jectPath = ” . / ” ;

public Driver (S t r ing trainData , S t r ing testData , boolean

centered) throws Exception {
/** Standard i se data , remove ID a t t r i b u t e and make ca tegory

a t t r i b u t e nominal */

t r a i n = PrepareData . c r e a t e I n s t a n c e s (tra inData) ;

t e s t = PrepareData . c r e a t e I n s t a n c e s (testData) ;

t r a i n = PrepareData . cleanData (t ra in , true , false , ””) ;

t e s t = PrepareData . cleanData (t e s t , true , false , ””) ;

S t r ing datase t = U t i l s . getFileName (tra inData) ;

c r e a t e F i l e s F i l t e r (dataset , centered , ” s e l e c t A t t r i b u t e ”) ;

L i s t<Ins tances> t r a i n t e s t = new ArrayList<Ins tances >(Arrays .

a s L i s t (t ra in , t e s t)) ;

/** PCA */

F i l e s . wr i t e (pcaFi le , (tra inData + (centered ? ”\ ncentered

data\n” : ”\ nstandard i sed data\n”)) . getBytes () ,

StandardOpenOption .APPEND) ;

executePCA (t r a i n t e s t , cente red) ;

/** FILTER */

111

APPENDIX B. IMPLEMENTATION

F i l e s . wr i t e (f i l t e r F i l e , (tra inData + (centered ? ”\ ncentered

data\n” : ”\ nstandard i sed data\n”)) . getBytes () ,

StandardOpenOption .APPEND) ;

e x e c u t e F i l t e r (t r a i n t e s t) ;

}

public Driver (S t r ing trainData , S t r ing testData , boolean

centered , S t r ing de l e t e , S t r ing type) throws Exception {

/** Standard i se data , remove ID a t t r i b u t e and make ca tegory

a t t r i b u t e nominal */

t r a i n = PrepareData . c r e a t e I n s t a n c e s (tra inData) ;

t e s t = PrepareData . c r e a t e I n s t a n c e s (testData) ;

t r a i n = PrepareData . cleanData (t ra in , true , false , d e l e t e) ;

t e s t = PrepareData . cleanData (t e s t , true , false , d e l e t e) ;

S t r ing datase t = U t i l s . getFileName (tra inData) ;

Path path = null ;

i f (type . equa l s (” p o s i t ”) | | type . equa l s (”ngram”)) {
createFi l e sPos i tNgram (dataset , type) ;

path = positNgramFile ;

}

/** Train the c l a s s i f i e r and eva l ua t e */

R u n C l a s s i f i e r . r u n C l a s s i f i e r (t ra in , t e s t , R u n C l a s s i f i e r .

bu i ldJ48 (”−C 0.25 −M 2” , path) ,

path) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (t ra in , t e s t , R u n C l a s s i f i e r .

bui ldNaiveBayes (”−K” , path) ,

path) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (t ra in , t e s t , R u n C l a s s i f i e r .

buildKNN (”” , path , 1) , path) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (t ra in , t e s t , R u n C l a s s i f i e r .

buildKNN (”” , path , 3) , path) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (t ra in , t e s t , R u n C l a s s i f i e r .

buildSVN (”” , path) , path) ;

}

private void executePCA (List<Ins tances> t r a i n t e s t S e t , boolean

centered) throws Exception {
List<Ins tances> t r a i n t e s t t r a n s f o r m e d = S e l e c t A t t r i b u t e s . pca

112

APPENDIX B. IMPLEMENTATION

(t r a i n t e s t S e t , pcaFi le , c ente red) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (t r a i n t e s t t r a n s f o r m e d . get (0) ,

t r a i n t e s t t r a n s f o r m e d . get (1) ,

R u n C l a s s i f i e r . bu i ldJ48 (”−C 0.25 −M 2” , pcaF i l e) , pcaF i l e) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (t r a i n t e s t t r a n s f o r m e d . get (0) ,

t r a i n t e s t t r a n s f o r m e d . get (1) ,

R u n C l a s s i f i e r . bui ldNaiveBayes (”−K” , pcaF i l e) , pcaF i l e) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (t r a i n t e s t t r a n s f o r m e d . get (0) ,

t r a i n t e s t t r a n s f o r m e d . get (1) ,

R u n C l a s s i f i e r . buildKNN (”” , pcaFi le , 1) , pcaF i l e) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (t r a i n t e s t t r a n s f o r m e d . get (0) ,

t r a i n t e s t t r a n s f o r m e d . get (1) ,

R u n C l a s s i f i e r . buildKNN (”” , pcaFi le , 3) , pcaF i l e) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (t r a i n t e s t t r a n s f o r m e d . get (0) ,

t r a i n t e s t t r a n s f o r m e d . get (1) ,

R u n C l a s s i f i e r . buildSVN (”” , pcaF i l e) , pcaF i l e) ;

}

private void e x e c u t e F i l t e r (L i s t<Ins tances> t r a i n t e s t) throws

Exception {
Map<Str ing , int []> attrKept = S e l e c t A t t r i b u t e s

. f i l t e r A t t r i b u t e s (new ArrayList<Ins tances >(Arrays . a s L i s t (

t r a i n t e s t . get (0))) , f i l t e r F i l e , f i l t e r F o l d e r) ;

/** f o r each a t t r i b u t e f i l t e r method eva l ua t e the su b s e t on a

J48 */

for (Map. Entry<Str ing , int []> entry : attrKept . entrySet ()) {
this . content = ”\n======\n” + entry . getKey () + ”\n======\n” ;

System . out . p r i n t l n (content) ;

F i l e s . wr i t e (f i l t e r F i l e , (content + ”\n”) . getBytes () ,

StandardOpenOption .APPEND) ;

/** Remove a l l a t t r i b u t e s but the su b s e t from the data */

this . content = ”\nSubset a t t r i b u t e s : ” ;

for (int j : entry . getValue ()) {
content += Str ing . valueOf (j) + ” ” + this . t r a i n . a t t r i b u t e (j

) . name () + ” , ” ;

}
System . out . p r i n t l n (this . content) ;

int [] t oDe l e te = Arrays . copyOf (entry . getValue () , entry .

getValue () . l ength + 1) ;

toDe l e te [toDe l e t e . l ength − 1] = t r a i n t e s t . get (0) . c l a s s I n d e x

113

APPENDIX B. IMPLEMENTATION

() ;

// i n v e r t the s e l e c t i o n o f a t t r i b u t e s

F i l e s . wr i t e (f i l t e r F i l e , (this . content + ”\n”) . getBytes () ,

StandardOpenOption .APPEND) ;

In s tance s new tra in = PrepareData . remove (t r a i n t e s t . get (0) ,

toDelete , true) ;

I n s t ance s new test = PrepareData . remove (t r a i n t e s t . get (1) ,

toDelete , true) ;

/** Train the c l a s s i f i e r and eva l ua t e */

R u n C l a s s i f i e r . r u n C l a s s i f i e r (new train , new test ,

R u n C l a s s i f i e r . bu i ldJ48 (”−C 0.25 −M 2” , f i l t e r F i l e) ,

f i l t e r F i l e) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (new train , new test ,

R u n C l a s s i f i e r . bui ldNaiveBayes (”−K” , f i l t e r F i l e) ,

f i l t e r F i l e) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (new train , new test ,

R u n C l a s s i f i e r . buildKNN (”” , f i l t e r F i l e , 1) , f i l t e r F i l e) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (new train , new test ,

R u n C l a s s i f i e r . buildKNN (”” , f i l t e r F i l e , 3) , f i l t e r F i l e) ;

R u n C l a s s i f i e r . r u n C l a s s i f i e r (new train , new test ,

R u n C l a s s i f i e r . buildSVN (”” , f i l t e r F i l e) , f i l t e r F i l e) ;

}
}

private void emptyFile (F i l e f) {
i f (f . e x i s t s ()) {
RandomAccessFile r a f ;

try {
r a f = new RandomAccessFile (f , ”rw”) ;

r a f . setLength (0) ;

r a f . c l o s e () ;

} catch (FileNotFoundException e) {
e . pr intStackTrace () ;

} catch (IOException e) {
e . pr intStackTrace () ;

}
}
}

private void c r e a t e F i l e s F i l t e r (S t r ing dataset , boolean

centered , S t r ing type) throws IOException {

114

APPENDIX B. IMPLEMENTATION

St r ing c = (centered ? ” c en t e r ed ” : ” s t anda rd i s ed ”) ;

pcaFolder = this . pro jectPath + type + ”/” + datase t + ”/pca/”

;

f i l t e r F o l d e r = this . pro jectPath + type + ”/” + datase t + ”/

f i l t e r /” ;

ArrayList<Str ing> f o l d e r s = new ArrayList<Str ing >(Arrays .

a s L i s t (this . pro jectPath + type + ”/” ,

this . pro jectPath + type + ”/” + dataset , pcaFolder ,

f i l t e r F o l d e r)) ;

for (S t r ing f o l d e r : f o l d e r s) {
F i l e f i l e = new F i l e (f o l d e r) ;

i f (! f i l e . e x i s t s ()) {
f i l e . mkdirs () ;

}
}
f i leName = pcaFolder + c + ” . txt ” ;

f = new F i l e (f i leName) ;

emptyFile (f) ;

f . c reateNewFi le () ;

pcaF i l e = Paths . get (f i leName) ;

f i leName = f i l t e r F o l d e r + c + ” . txt ” ;

f = new F i l e (f i leName) ;

emptyFile (f) ;

f . c reateNewFi le () ;

f i l t e r F i l e = Paths . get (f i leName) ;

}

private void createFi l e sPos i tNgram (St r ing dataset , S t r ing type

) throws IOException {
f o l d e r = this . pro jectPath + type + ”/” + datase t ;

F i l e f = new F i l e (f o l d e r) ;

i f (! f . e x i s t s ())

f . mkdirs () ;

f i leName = f o l d e r + ” . txt ” ;

f = new F i l e (f i leName) ;

emptyFile (f) ;

f . c reateNewFi le () ;

pos itNgramFile = Paths . get (f i leName) ;

}
}

PrepareData

115

APPENDIX B. IMPLEMENTATION

package u t i l s ;

import java . u t i l . Arrays ;

import weka . core . In s tance s ;

import weka . core . c onve r t e r s . Conver t e rUt i l s . DataSource ;

import weka . f i l t e r s . F i l t e r ;

import weka . f i l t e r s . unsuperv i sed . a t t r i b u t e . Center ;

import weka . f i l t e r s . unsuperv i sed . a t t r i b u t e . MathExpression ;

import weka . f i l t e r s . unsuperv i sed . a t t r i b u t e . Normalize ;

import weka . f i l t e r s . unsuperv i sed . a t t r i b u t e . NumericToNominal ;

import weka . f i l t e r s . unsuperv i sed . a t t r i b u t e . Remove ;

import weka . f i l t e r s . unsuperv i sed . a t t r i b u t e . Standard ize ;

import weka . f i l t e r s . unsuperv i sed . i n s t anc e . RemoveDuplicates ;

public class PrepareData {

public stat ic In s tance s c r e a t e I n s t a n c e s (S t r ing args) throws

Exception {
DataSource source = new DataSource (args) ;

In s t ance s data = source . getDataSet () ;

i f (data . c l a s s I n d e x () == −1)

data . s e tC la s s Index (data . numAttributes () − 1) ;

return data ;

}

public stat ic In s tance s cleanData (In s tance s data , boolean

toNominal , boolean removeDup , S t r ing toDe le te) throws

Exception {
i f (toNominal) {
/** change ca tegory a t t r i b u t e to nominal */

St r ing [] opt ions = weka . core . U t i l s . s p l i t O p t i o n s (”−R l a s t ”) ;

NumericToNominal convert = new NumericToNominal () ;

convert . se tOpt ions (opt ions) ;

convert . setInputFormat (data) ;

data = F i l t e r . u s e F i l t e r (data , convert) ;

}

i f (toDe l e te . l ength () > 0) {
a s s e r t ! data . isEmpty () ;

S t r ing opt i on sS t r = ”−R ” + toDe le te ;

System . out . p r i n t l n (op t i on sS t r) ;

S t r ing [] opt ions remove = weka . core . U t i l s . s p l i t O p t i o n s (

116

APPENDIX B. IMPLEMENTATION

opt i on sS t r) ;

Remove remove = new Remove () ;

remove . setOpt ions (opt ions remove) ;

remove . setInputFormat (data) ;

data = F i l t e r . u s e F i l t e r (data , remove) ;

}
i f (removeDup) {
RemoveDuplicates dup = new RemoveDuplicates () ;

dup . setInputFormat (data) ;

data = F i l t e r . u s e F i l t e r (data , dup) ;

}

return data ;

}

public stat ic In s tance s s t anda rd i s e (In s t ance s data) throws

Exception {
Standard ize standard = new Standard ize () ;

standard . setInputFormat (data) ;

return F i l t e r . u s e F i l t e r (data , standard) ;

}

public stat ic In s tance s normal i s e (In s tance s data) throws

Exception {
Normalize norm = new Normalize () ;

norm . setInputFormat (data) ;

return F i l t e r . u s e F i l t e r (data , norm) ;

}

public stat ic In s tance s c ente r (In s tance s data) throws

Exception {
Center c e n t e r F i l t e r = new Center () ;

c e n t e r F i l t e r . setInputFormat (data) ;

return F i l t e r . u s e F i l t e r (data , c e n t e r F i l t e r) ;

}

public stat ic In s tance s mult ip ly (In s tance s data , S t r ing m)

throws Exception {
MathExpression mult ip ly = new MathExpression () ;

mul t ip ly . s e tExpre s s i on (”A * ” + m) ;

mult ip ly . setInputFormat (data) ;

return F i l t e r . u s e F i l t e r (data , mul t ip ly) ;

}

117

APPENDIX B. IMPLEMENTATION

public stat ic In s tance s remove (In s tance s data , int [] rem ,

boolean i n v e r s e) throws Exception {
int [] t oDe l e te = rem . c l one () ;

for (int i =0; i<toDe l e te . l ength ; i++) {
toDe l e te [i] += 1 ;

}
St r ing d e l e t e = ”−R ” ;

i f (i n v e r s e)

d e l e t e = ”−V ” + d e l e t e ;

S t r ing d = Arrays . t oS t r i ng (toDe le te) . r e p l a c e (” ” , ””) ;

d e l e t e += d . s ub s t r i n g (1 , d . l ength ()−1) ;

System . out . p r i n t l n (d e l e t e) ;

S t r ing [] opt ions remove = weka . core . U t i l s . s p l i t O p t i o n s (d e l e t e

) ;

Remove remove = new Remove () ;

remove . setOpt ions (opt ions remove) ;

remove . setInputFormat (data) ;

data = F i l t e r . u s e F i l t e r (data , remove) ;

i f (data . c l a s s I n d e x () == −1) {
data . s e tC la s s Index (data . numAttributes ()−1) ;

}
return data ;

}

}

SelectAttributes

package a t t r i b u t e S e l e c t i o n ;

import java . i o . F i l e ;

import java . n io . f i l e . F i l e s ;

import java . n io . f i l e . Path ;

import java . n io . f i l e . Paths ;

import java . n io . f i l e . StandardOpenOption ;

import java . u t i l . ArrayList ;

import java . u t i l . Arrays ;

import java . u t i l . C o l l e c t i o n ;

import java . u t i l . HashMap ;

import java . u t i l . I t e r a t o r ;

118

APPENDIX B. IMPLEMENTATION

import java . u t i l . L i s t ;

import java . u t i l .Map;

import graph . RankingGraph ;

import u t i l s . A t t r i b u t e U t i l ;

import u t i l s . DataSpl i t ;

import u t i l s . Pair ;

import u t i l s . PrepareData ;

import weka . a t t r i b u t e S e l e c t i o n . ASEvaluation ;

import weka . a t t r i b u t e S e l e c t i o n . ASSearch ;

import weka . a t t r i b u t e S e l e c t i o n . A t t r i b u t e S e l e c t i o n ;

import weka . a t t r i b u t e S e l e c t i o n . Be s tF i r s t ;

import weka . a t t r i b u t e S e l e c t i o n . CfsSubsetEval ;

import weka . a t t r i b u t e S e l e c t i o n . Cor r e l a t i onAtt r ibuteEva l ;

import weka . a t t r i b u t e S e l e c t i o n . GainRatioAttr ibuteEval ;

import weka . a t t r i b u t e S e l e c t i o n . GreedyStepwise ;

import weka . a t t r i b u t e S e l e c t i o n . In foGainAttr ibuteEval ;

import weka . a t t r i b u t e S e l e c t i o n . OneRAttributeEval ;

import weka . a t t r i b u t e S e l e c t i o n . PrincipalComponents ;

import weka . a t t r i b u t e S e l e c t i o n . Ranker ;

import weka . a t t r i b u t e S e l e c t i o n . WrapperSubsetEval ;

import weka . c l a s s i f i e r s . bayes . NaiveBayes ;

import weka . c l a s s i f i e r s . t r e e s . J48 ;

import weka . core . In s tance s ;

import weka . core . Se lectedTag ;

import weka . core . U t i l s ;

public class S e l e c t A t t r i b u t e s {

public stat ic Map<Str ing , int []> f i l t e r A t t r i b u t e s (Co l l e c t i on<

Ins tances> t r a i n i n g S e t s , Path f i l e , S t r ing f i l t e r F o l d e r)

throws Exception {
Map<Str ing , int []> at t rSubse t = new HashMap<>() ;

A t t r i b u t e S e l e c t i o n a t t s e l = new A t t r i b u t e S e l e c t i o n () ;

L i s t<Object> evalMethods = new ArrayList <>() ;

L i s t<Object> searchMethods = new ArrayList <>() ;

/** c r ea t e l i s t o f e va l ua t i on and search methods */

OneRAttributeEval oneREval = new OneRAttributeEval () ;

evalMethods . add (oneREval) ;

CfsSubsetEval c f sEva l = new CfsSubsetEval () ;

evalMethods . add (c f sEva l) ;

Cor r e l a t i onAtt r ibuteEva l corEval = new

Corre l a t i onAtt r ibuteEva l () ;

evalMethods . add (corEval) ;

119

APPENDIX B. IMPLEMENTATION

GainRatioAttr ibuteEval ga inRat ioEval = new

GainRatioAttr ibuteEval () ;

evalMethods . add (gainRat ioEval) ;

In foGainAttr ibuteEval ga in In foEva l = new

In foGainAttr ibuteEval () ;

evalMethods . add (ga in In foEva l) ;

GreedyStepwise greedySearch = new GreedyStepwise () ;

searchMethods . add (greedySearch) ;

Ranker rankSearch = new Ranker () ;

searchMethods . add (rankSearch) ;

Be s tF i r s t b e s tF i r s t S ea r ch = new Bes tF i r s t () ;

searchMethods . add (b e s t F i r s t S e a r c h) ;

Map<Str ing , L i s t<Pair<Str ing , Double>>> methodAvg = new

HashMap<>() ;

for (Object eva l : evalMethods) {
for (Object search : searchMethods) {
i f (((eva l instanceof CfsSubsetEval | | eva l instanceof

WrapperSubsetEval) && search instanceof Ranker)

| | ((eva l instanceof Corre l a t i onAtt r ibuteEva l | | eva l

instanceof GainRatioAttr ibuteEval

| | eva l instanceof In foGainAttr ibuteEval | | eva l

instanceof OneRAttributeEval)

&& ! (search instanceof Ranker))) {
continue ;

}
long startTime = System . cur rentT imeMi l l i s () ;

S t r ing [] evalName = eva l . t oS t r i ng () . s p l i t (” ”) ;

S t r ing [] searchName = search . t oS t r i ng () . s p l i t (” ”) ;

S t r ing method = (evalName [0] . tr im () + ” ” + evalName [1] .

tr im () + searchName [0] . tr im () + ” ”

+ searchName [1] . tr im ()) . r e p l a c e (” . ” , ””) . r e p l a c e A l l (”\\ s+

” , ””) ;

F i l e s . wr i t e (f i l e , (”\n ===============================\
nmethod : ” + method + ”\n”) . getBytes () ,

StandardOpenOption .APPEND) ;

i f (search instanceof GreedyStepwise) {
((GreedyStepwise) search) . setSearchBackwards (true) ;

} else i f (search instanceof Bes tF i r s t) {
((Be s tF i r s t) search) . se tOpt ions (weka . core . U t i l s .

s p l i t O p t i o n s (”−D 2 −N 5”)) ;

120

APPENDIX B. IMPLEMENTATION

}
a t t s e l = new A t t r i b u t e S e l e c t i o n () ;

a t t s e l . s e tEva luator ((ASEvaluation) eva l) ;

a t t s e l . s e tSearch ((ASSearch) search) ;

a t t s e l . setRanking (true) ;

I t e r a t o r <Ins tances> i t = t r a i n i n g S e t s . i t e r a t o r () ;

for (int i = 0 ; i < t r a i n i n g S e t s . s i z e () ; i++) {
F i l e s . wr i t e (f i l e , (”======== Training s e t number : ” +

St r ing . valueOf (i) + ”\n”) . getBytes () ,

StandardOpenOption .APPEND) ;

In s t ance s t r a i n = (In s tance s) i t . next () ;

i f (eva l instanceof GainRatioAttr ibuteEval | | eva l

instanceof In foGainAttr ibuteEval

| | eva l instanceof CfsSubsetEval)

t r a i n = PrepareData . mul t ip ly (t ra in , ”pow(10 ,10) ”) ;

try {
a t t s e l . S e l e c t A t t r i b u t e s (t r a i n) ;

} catch (I l l ega lArgumentExcept ion e) {
System . out . p r i n t l n (e . getMessage ()) ;

F i l e s . wr i t e (f i l e , (e . getMessage () + ”\n”) . getBytes () ,

StandardOpenOption .APPEND) ;

continue ;

}

// ob ta in the a t t r i b u t e i n d i c e s t ha t were s e l e c t e d

System . out . p r i n t l n (a t t s e l . t o R e s u l t s S t r i n g ()) ;

F i l e s . wr i t e (f i l e , (a t t s e l . t o R e s u l t s S t r i n g () + ”\n”) .

getBytes () ,

StandardOpenOption .APPEND) ;

int [] i n d i c e s = a t t s e l . s e l e c t e d A t t r i b u t e s () ;

System . out . p r i n t l n (U t i l s . arrayToStr ing (i n d i c e s)) ;

F i l e s . wr i t e (f i l e , (U t i l s . arrayToStr ing (i n d i c e s) + ”\n”) .

getBytes () , StandardOpenOption .APPEND) ;

i f (i n d i c e s . l ength < t r a i n . numAttributes ()) {
List<Str ing> names = new ArrayList <>() ;

for (int j : i n d i c e s) {
St r ing attrName = t r a i n . a t t r i b u t e (j) . name () ;

names . add (attrName) ;

}
at t rSubse t . put (method , i n d i c e s) ;

}

121

APPENDIX B. IMPLEMENTATION

try {
double [] [] ranking = a t t s e l . rankedAttr ibutes () ;

L i s t<Pair<Str ing , Double>> rank ings = new ArrayList <>() ;

Pair<Str ing , Double> rank = new Pair<Str ing , Double>() ;

double th r e sho ld = ranking [0] [1] * (double) 0 . 8 ;

L i s t<Integer> keptAttr = new ArrayList <>() ;

for (double [] r : ranking) {
i f (r [1] > th r e sho ld) {
keptAttr . add ((int) r [0]) ;

}
St r ing attrName = t r a i n . a t t r i b u t e ((int) r [0]) . name () ;

S t r ing weight = r [1] + ”\ t \ t ” + attrName ;

System . out . p r i n t l n (weight) ;

rank = new Pair<Str ing , Double>(attrName , r [1]) ;

rank ings . add (rank) ;

}
int [] tmp = new int [keptAttr . s i z e ()] ;

for (int j = 0 ; j < keptAttr . s i z e () ; j++)

tmp [j] = keptAttr . get (j) ;

a t t rSubse t . put (method , tmp) ;

} catch (Exception e) {
continue ;

}
F i l e s . wr i t e (f i l e , (S t r ing . valueOf (System . cur rentT imeMi l l i s

() − startTime) + ”\n”) . getBytes () ,

StandardOpenOption .APPEND) ;

}
}
}
return at t rSubse t ;

}

public stat ic List<Ins tances> pca (Lis t<Ins tances>

t r a i n t e s t S e t , Path pcaFi le , boolean centered) throws

Exception {
St r ing content = ”\n” ;

In s t ance s t r a i n = t r a i n t e s t S e t . get (0) ;

In s t ance s t e s t = t r a i n t e s t S e t . get (1) ;

PrincipalComponents pca = new PrincipalComponents () ;

pca . setCenterData (cente red) ;

pca . setMaximumAttributeNames (30) ;

pca . bu i ldEva luator (t r a i n) ;

122

APPENDIX B. IMPLEMENTATION

content = St r ing . valueOf (pca . getVarianceCovered ()) ;

F i l e s . wr i t e (pcaFi le , (content) . getBytes () , StandardOpenOption

.APPEND) ;

In s t ance s t r a i n t r a n s = pca . transformedData (t r a i n) ;

In s t ance s t e s t t r a n s = pca . transformedData (t e s t) ;

content = ”\ntransformed a t t r i b u t e s \n” ;

for (int j = 0 ; j < t r a i n t r a n s . numAttributes () ; j++) {
content += pca . eva lua t eAt t r ibu t e (j) + ” ” + j + ” ” +

t r a i n t r a n s . a t t r i b u t e (j) . name () + ”\n” ;

}
F i l e s . wr i t e (pcaFi le , (content) . getBytes () , StandardOpenOption

.APPEND) ;

content = ”\n\n======================\n” + pca . t oS t r i ng () ;

F i l e s . wr i t e (pcaFi le , (content) . getBytes () , StandardOpenOption

.APPEND) ;

return new ArrayList<Ins tances >(Arrays . a s L i s t (t r a i n t r a n s ,

t e s t t r a n s)) ;

}
}

RunClassifier

package c l a s s i f y ;

import java . n io . f i l e . F i l e s ;

import java . n io . f i l e . Path ;

import java . n io . f i l e . StandardOpenOption ;

import java . u t i l . Arrays ;

import java . u t i l . stream . C o l l e c t o r s ;

import weka . c l a s s i f i e r s . Evaluat ion ;

import weka . c l a s s i f i e r s . bayes . NaiveBayes ;

import weka . c l a s s i f i e r s . f u n c t i o n s . Mul t i l ayerPercept ron ;

import weka . c l a s s i f i e r s . f u n c t i o n s .SMO;

import weka . c l a s s i f i e r s . C l a s s i f i e r ;

import weka . c l a s s i f i e r s . l a zy . IBk ;

import weka . c l a s s i f i e r s . t r e e s . J48 ;

import weka . core . In s tance s ;

import weka . core . Se lectedTag ;

123

APPENDIX B. IMPLEMENTATION

public class R u n C l a s s i f i e r {
private stat ic St r ing content ;

public stat ic void r u n C l a s s i f i e r (In s tance s t ra in , In s tance s

t e s t , C l a s s i f i e r c l f , Path f i l e) throws Exception {
long startTime = System . cur rentT imeMi l l i s () ;

c l f . b u i l d C l a s s i f i e r (t r a i n) ;

Evaluat ion eva l = new Evaluat ion (t r a i n) ;

eva l . evaluateModel (c l f , t e s t) ;

content = eva l . toSummaryString (”\ nResults \n======\n” , true) ;

System . out . p r i n t l n (content) ;

F i l e s . wr i t e (f i l e , content . getBytes () , StandardOpenOption .

APPEND) ;

content = eva l . t o C l a s s D e t a i l s S t r i n g () ;

System . out . p r i n t l n (content) ;

F i l e s . wr i t e (f i l e , content . getBytes () , StandardOpenOption .

APPEND) ;

content = eva l . toMatr ixStr ing () ;

System . out . p r i n t l n (content) ;

F i l e s . wr i t e (f i l e , content . getBytes () , StandardOpenOption .

APPEND) ;

double roc = eva l . areaUnderROC (0) ;

content = ”\n Area Under ROC: \n” + Str ing . valueOf (roc) ;

F i l e s . wr i t e (f i l e , (content+”\n”) . getBytes () ,

StandardOpenOption .APPEND) ;

long endTime = System . cur r entT imeMi l l i s () ;

long totalTime = endTime − startTime ;

content = ”Time f o r t r a i n i n g + eva lua t i on : ” + St r ing . valueOf

(totalTime) + ”\n” ;

System . out . p r i n t l n (content) ;

F i l e s . wr i t e (f i l e , content . getBytes () , StandardOpenOption .

APPEND) ;

startTime = System . cur rentT imeMi l l i s () ;

}

public stat ic C l a s s i f i e r bui ldJ48 (St r ing opt ions , Path f i l e)

throws Exception {

124

APPENDIX B. IMPLEMENTATION

St r ing [] opt i ons J48 = weka . core . U t i l s . s p l i t O p t i o n s (opt ions) ;

content = ”==========================\n J48 ”

+ Arrays . a s L i s t (opt i ons J48) . stream () . c o l l e c t (C o l l e c t o r s .

j o i n i n g (” , ”)) ;

F i l e s . wr i t e (f i l e , (content + ”\n”) . getBytes () ,

StandardOpenOption .APPEND) ;

J48 t r e e = new J48 () ;

t r e e . se tOpt ions (opt i ons J48) ;

return t r e e ;

}

public stat ic C l a s s i f i e r bui ldNaiveBayes (S t r ing opt ions , Path

f i l e) throws Exception {
St r ing [] options NB = weka . core . U t i l s . s p l i t O p t i o n s (opt ions) ;

content = ”==========================\n Naive Bayes”

+ Arrays . a s L i s t (options NB) . stream () . c o l l e c t (C o l l e c t o r s .

j o i n i n g (” , ”)) ;

F i l e s . wr i t e (f i l e , (content + ”\n”) . getBytes () ,

StandardOpenOption .APPEND) ;

NaiveBayes nb = new NaiveBayes () ;

nb . setOpt ions (options NB) ;

return nb ;

}

public stat ic C l a s s i f i e r buildKNN (St r ing opt ions , Path f i l e ,

int k) throws Exception {
IBk ibk = new IBk () ;

ibk . setKNN(k) ;

S t r ing [] opt ions knn ;

i f (opt ions == ””)

opt ions knn = ibk . getOptions () ;

else

opt ions knn = weka . core . U t i l s . s p l i t O p t i o n s (opt ions) ;

content = ”==========================\n K−Nearest Neighbour ”

+ Arrays . a s L i s t (opt ions knn) . stream () . c o l l e c t (C o l l e c t o r s .

j o i n i n g (” , ”)) ;

F i l e s . wr i t e (f i l e , (content + ”\n”) . getBytes () ,

StandardOpenOption .APPEND) ;

return ibk ;

}

125

APPENDIX B. IMPLEMENTATION

public stat ic C l a s s i f i e r buildSVN (St r ing opt ions , Path f i l e)

throws Exception {
SMO svm = new SMO() ;

svm . s e tF i l t e rType (new SelectedTag (SMO.FILTER NONE, SMO.

TAGS FILTER)) ;

S t r ing [] op t i ons svn ;

i f (opt ions == ””)

opt i ons svn = svm . getOptions () ;

else

opt i ons svn = weka . core . U t i l s . s p l i t O p t i o n s (opt ions) ;

content = ”==========================\n Support Vector

Machine ”

+ Arrays . a s L i s t (opt i ons svn) . stream () . c o l l e c t (C o l l e c t o r s .

j o i n i n g (” , ”)) ;

F i l e s . wr i t e (f i l e , (content + ”\n”) . getBytes () ,

StandardOpenOption .APPEND) ;

return svm ;

}
}

126

Bibliography

Y. Aphinyanaphongs, L. D. Fu, Z. Li, E. R. Peskin, E. Efstathiadis, C. F.

Aliferis, and A. Statnikov. A comprehensive empirical comparison of

modern supervised classification and feature selection methods for text

categorization. Journal of the Association for Information Science and

Technology, 65(10):1964–1987, 2014. doi: 10.1002/asi.23110.

A. L. Blum and P. Langley. Selection of relevant features and examples

in machine learning. Artificial Intelligence, 97(1-2):245–271, 1997. ISSN

00043702. doi: 10.1016/S0004-3702(97)00063-5.

K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kurgan. Data Min-

ing: A Knowledge Discovery Approach. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2007.

S. Drazin. Decision Tree Analysis using Weka. Machine Learning-Project

II, University of Miami, pages 1–3, 2010.

S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning

algorithms and representations for text categorization. In Proceedings of

the 7th international Conference on Information and Knowledge Man-

agement (CIKM ’98), pages 148–155, 1998.

G. Forman. An Extensive Empirical Study of Feature Selection Metrics for

Text Classification. Journal of Machine Learning Research, 3:1289–1305,

2003. doi: 10.1162/153244303322753670.

Q. Guo, W. Wu, D. Massart, C. Boucon, and S. de Jong. Feature selection

in principal component analysis of analytical data. Chemometrics and

Intelligent Laboratory Systems, 61(1-2):123–132, 2002. doi: 10.1016/

S0169-7439(01)00203-9.

127

BIBLIOGRAPHY

I. Guyon and A. Elisseeff. An Introduction to Variable and Feature Selec-

tion. Journal of Machine Learning Research (JMLR), 3(3):1157–1182,

2003. doi: 10.1016/j.aca.2011.07.027.

V. Ha-Thuc and J.-M. Renders. Large-scale hierarchical text classification

without labelled data. Proceedings of the fourth ACM international con-

ference on Web search and data mining - WSDM ’11, page 685, 2011.

doi: 10.1145/1935826.1935919.

M. A. Hall. Correlation-based Feature Subset Selection for Machine Learn-

ing. PhD thesis, University of Waikato, Hamilton, New Zealand, 1998.

B. Harish, R. M. Hegde, N. Neeti, and M. Meghana. An Empirical Study on

Various Text Classifiers. Advanced Materials Research, pages 587–593,

2012. doi: 10.1109/MSR.2017.60.

R. C. Holte. Very Simple Classification Rules Perform Well on Most

Commonly Used Datasets. Machine Learning, 11(1):63–91, 1993. doi:

10.1023/A:1022631118932.

C. L. Huang and C. J. Wang. A GA-based feature selection and param-

eters optimization for support vector machines. Expert Systems with

Applications, 31(2):231–240, 2006. doi: 10.1016/j.eswa.2005.09.024.

Informatica LLC. Portio Research: Worldwide SMS Markets

2014-2017, 2017. URL https://now.informatica.com/en_

daas-portio-research_white-paper_2795.html?asset-id=

e74d6383a272c83765fb82f2d2981bdf#fbid=xHbEmWlN2bq.

A. Janecek, W. Gansterer, M. Demel, and G. Ecker. On the relationship

between feature selection and classification accuracy. In New Challenges

for Feature Selection in Data Mining and Knowledge Discovery, pages

90–105, 2008.

T. Joachims. Text Categorization with Support Vector Machines: Learn-

ing with Many Relevant Features. Proceedings of the 10th European

Conference on Machine Learning ECML ’98, pages 137–142, 1998. doi:

10.1007/BFb0026683.

I. T. Jolliffe. Discarding variables in a principal component analysis. I:

artificial data. Applied Statistics, 21(2):160–173, 1972.

128

https://now.informatica.com/en_daas-portio-research_white-paper_2795.html?asset-id=e74d6383a272c83765fb82f2d2981bdf#fbid=xHbEmWlN2bq
https://now.informatica.com/en_daas-portio-research_white-paper_2795.html?asset-id=e74d6383a272c83765fb82f2d2981bdf#fbid=xHbEmWlN2bq
https://now.informatica.com/en_daas-portio-research_white-paper_2795.html?asset-id=e74d6383a272c83765fb82f2d2981bdf#fbid=xHbEmWlN2bq

BIBLIOGRAPHY

R. Kohavi and G. H. John. Wrappers for feature subset selection. Arti-

ficial Intelligence, 97(1-2):273–324, 1997. doi: 10.1016/S0004-3702(97)

00043-X.

P. Langley and W. Iba. Average-case analysis of a nearest neighbor algo-

rithm. IJCAI’93: Proceedings of the 13th International Joint Conference

on Artificial Intelligence, 13:889–889, 1993.

J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,

S. Hellmann, M. Morsey, P. Van Kleef, S. Auer, et al. Dbpedia–a large-

scale, multilingual knowledge base extracted from wikipedia. Semantic

Web, 6(2):167–195, 2015.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A New Bench-

mark Collection for Text Categorization Research. Journal of Machine

Learning Research, 5:361–397, 2004. doi: 10.1145/122860.122861.

I. Mercur IT Solutions. The Dark Crawler — Exploring the dark corners

of the Internet. \url{http://thedarkcrawler.com}, 2017.

J. Michel, Y. Shen, and A. Aiden. Quantitative analysis of culture using

millions of Digitized Books. Science (New York, N.y.), 331(6014):176–

182, 2011. doi: :10.1126/science.1199644.

M. Oakes. Text Categorization: Automatic Discrimination between US and

UK English Using the Chi-square Text and High Ratio Pairs. Research

in Language, 1:143–156, 2003.

D. L. Olson and D. Delen. Advanced Data Mining Techniques. Springer

Publishing Company, Incorporated, 1st edition, 2008.

F. Peng and D. Schuurmans. Combining Naive Bayes and n-Gram Lan-

guage Models for Text Classification. Computer, pages 335–350, 2003.

doi: 10.1007/3-540-36618-0 24.

J. Platt. Sequential minimal optimization: A fast algorithm for training

support vector machines. In Advances in Kernel Methods - Support Vec-

tor Learning. MIT Press, 1998.

F. Sebastiani. Machine learning in automated text categorization. ACM

Comput. Surv., 34(1):1–47, Mar. 2002. doi: 10.1145/505282.505283.

129

BIBLIOGRAPHY

F. Sebastiani. Text categorization. In Encyclopedia of Database Technolo-

gies and Applications, pages 683–687. IGI Global, 2005.

S. Suthaharan. Machine Learning Models and Algorithms for Big Data

Classification: Thinking with Examples for Effective Learning. Springer

Publishing Company, Incorporated, 1st edition, 2015. ISBN 148997640X,

9781489976406.

G. R. Weir. Corpus profiling with the posit tools. In Proceedings of the 5th

Corpus Linguistics Conference. University of Liverpool, 2009.

G. R. Weir and N. K. Anagnostou. Exploring newspapers: a case study in

corpus analysis. Proceedings of ICTATLL 2007, pages 12–19, 2007.

G. R. S. Weir. The Posit Text Profiling Toolset. International Journal of

Hospitality Management, 2007.

G. R. S. Weir, E. Dos Santos, B. Cartwright, and R. Frank. Positing

the problem: Enhancing classification of extremist web content through

textual analysis. 2016 IEEE International Conference on Cybercrime

and Computer Forensic, ICCCF 2016, pages 67–69, 2016. doi: 10.1109/

ICCCF.2016.7740431.

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Practical

machine learning tools and techniques. Morgan Kaufmann, 2011.

E. Witten, Ian H and Frank and Hall. Data Mining: Practical Machine

Learning Tools and Techniques with Java Implementations. SIGMOD

Record, 31(1), 2002. doi: 0120884070,9780120884070.

X. Zhu. Knowledge Discovery and Data Mining: Challenges and Realities:

Challenges and Realities. Igi Global, 2007.

130

	Introduction
	Background and Literature Review
	Machine Learning
	Data Scaling
	Feature Selection
	Validation
	Evaluation

	Text categorisation
	Quantitative Text Analysis

	Research Methods
	Approach
	Hypotheses
	Experimental Set-Up

	Implementation
	Data Preparation
	Data Processing

	Analysis
	Results
	Hypothesis 1
	Hypothesis 2
	Hypothesis 3
	Hypothesis 4
	Hypothesis 5

	Discussion
	Hypothesis 1
	Hypothesis 2
	Hypothesis 3
	Hypothesis 4
	Hypothesis 5
	Further Comments

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix Statistics
	Appendix Implementation
	Posit Changes
	Applying Posit
	Applying Weka

	Bibliography

