BOOKING SYSTEM FOR DEMONSTRATION CAMERAS

OLUKAYODE NICHOLAS AKINYOKUN

(201378586)

This dissertation was submitted in part fulfilment of requirements for the

degree of MSc Advanced Computer Science

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES
UNIVERSITY OF STRATHCLYDE

SEPTEMBER 2014

DECLARATION
This dissertation is submitted in part fulfiiment of the requirements for the degree of MSc of the

University of Strathclyde.

| declare that this dissertation embodies the results of my own work and that it has been composed by
myself. Following normal academic conventions, | have made due acknowledgement to the work of

others.

| declare that | have sought, and received, ethics approval via the Departmental Ethics Committee as

appropriate to my research.

| give permission to the University of Strathclyde, Department of Computer and Information Sciences, to
provide copies of the dissertation, at cost, to those who may in the future request a copy of the
dissertation for private study or research.

| give permission to the University of Strathclyde, Department of Computer and Information Sciences, to
place a copy of the dissertation in a publicly available archive.

(please tick) Yes [] No [|

| declare that the word count for this dissertation (excluding title page, declaration, abstract,

acknowledgements, table of contents, list of illustrations, references and appendices is 17700

| confirm that | wish this to be assessed asa Type 1 2 3 4 5

Dissertation (please circle)

Signature:

Date:

ABSTRACT

Fundamentally, booking systems are required to have the functionality to manage requests made by
different users to access certain resources within a timeslot, in a way that optimises the overall usage of
these resources and without conflicts in allocated timeslots. In order to effectively coordinate access to

these resources, there is always need to implement scheduling.

Currently, the two different approaches that have been explored by researchers to solve this problem of
finding optimal methods to allocate constrained resources are booking and queuing. Booking typically
allows a user to reserve a timeslot in advance and this has the advantage of providing the user with
guaranteed access at a known time. On the other hand, with queuing, when users makes a request to
access a resource, they are added to a queue and as soon as that resource becomes available, it is
allocated to the user at the front of the queue based on a First-Come, First-Served scheduling policy.
This helps to maximise resource utilisation because resources are allocated to waiting users as soon as
they become available. However, while these scheduling approaches and their various hybrids have
been implemented and described in resource scheduling research literatures, there has been no
justification for the most suitable approach to scheduling and most importantly, little is known about the

advantages and disadvantages of integrating both approaches.

To this end, this research aims to further investigate and explore how queue-based and booking-based
scheduling can be effectively integrated into a hybrid approach to improve resource utilisation in the
context of online booking systems, whilst considering the issues that may arise when a system uses both

approaches for scheduling.

The method used to achieve this involved the implementation of an experimental web-based booking
system that allow customers to book cameras for a particular timeslot. The system was primarily
evaluated by using load tests to determine the problems that resulted from integrating booking and
queuing. Based on the results of these tests, booking was found to be more efficient in optimising
resource usage and decreasing waiting times, although this depended on a number of factors such as

the scheduling algorithm, the number of concurrent users, and the usage duration of each virtual user.

ACKNOWLEDGEMENTS

First, | would like to thank my supervisor, Dr. John Wilson, for his support, guidance and encouragement

in the course of completing this research project.

In addition, | would like to thank the staff of the Department of Computer and Information Sciences,

University of Strathclyde for their support throughout my studies at the University.

CONTENTS

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1.

1.2,

1.3.

1.4.

1.5.

RESEAICN CONTEXE ... ettt ettt ettt ettt et ettt e ettt e e sttt e e st ee e e s aabbe e e e ebbeeeessaneaeeeaans 1
oY o1 1T TN B LTy ol 4 o) d o] o PR 2
RESEAICN QUESTIONS.c ittt et e s st e s e sabe e e e s saae e e s e atbeeeesanaes 2
I T ol s W O o JT=Tot 41T UUUPRROt 2
SErUCTUre Of DiSSEItatioN...ccciuuiiiiiieiiiie ettt ettt e e e s et e s ba e e sbeeesraeeeas 3

CHAPTER 2: LITERATURE REVIEW

2.1.

2.2.

2.2.1.

2.2.2.

2.2.3.

2.2.3.1.

2.2.4.

2.3.

2.4.

24.1.

2.4.2.

2.5.

1Yol o 1= Te (] 1T V-5 USRS 4
Practical Approaches t0 SChEAUIING.....ccovvvveveecririie e e e e e er e e e e e 4
2 ToTo) T 0= Yol a =T o =TS USRS 5
QUEUINE SCREMIE. ...ttt eeaeaeaaaaaeaas 6
PrIOFTY QUEUE....ceeeiieeieeiiee ittt ettt ettt ettt ettt ettt e e ettt e et e ee e e e et et e s e e et st e e eeeesessssessesensesnnnesnnnnnnnne 8
TYPES OF PriOrity QUUEUE......eceieeeeeeeeeeettieeee e e e e eeeecttre et e e e e eeeeeababeeeeeeeeeessabbereeeeeeesessssrareaeseeens 8
Combination of Booking and QUEUING......ccocceveveeieeeeecciiieeeee e e e esectrreeeeeeeeeeesirrrereeeeeesessnnnes 9
Slot Allotment AIGOrTERML.......uiiiiee e e e e e e e 10
Yol o [=Te (U] [Ta V= oo T ol T SRR 11
Non-preemptive Scheduling PoliCIES..........uuuiiiei i 11
Preemptive SChedUling POLICIES.uuviiiii ittt ee e e et e e e e e e e e e e araee e e e e e s e seaaens 12
Performance Evaluation of Scheduling Policies.........ccccceiiiieiciiieieeee e, 13

CHAPTER 3: SYSTEM DESIGN

3.1.

3.2

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.8.1.

3.8.2.

3.8.3.

3.8.4.

3.8.5.

3.9.

3.10.

3.10.1.

3.10.2.

FUNCLIONAI REOUITEIMENTS. . eiiiiiii i ettt e et e e ee et e e e e e e e e s sbrbraeeaeeeeeeesabtraraeaeaenas 15
Non-functional REQUIFEMENTS......cicceiiee et e e e e e e 16
Business Logic of the Booking FUNCLIONAIItY........vveviiiiiiiiiiiiieeeee et 16
Business Logic of the Queuing FUNCtioNality.......cccceeeiiiiciiiiiiiee e 16
(01T D1 =T = Vo PR 17
DeVElOPMENT APPIOGCN ... ittt e e e e e e sab b e e e e e e e eesesaabsbaeeeeeeesennsereaees 18
SYStEM ArChitECIUIE. ..o 19
SYSTEM DEVEIOPIMENT ... eiiiieiiiee ettt e e e e e e erebarreeeeeeesesstbbraeeeeaeeessrssssraeeeens 20
HyperText Markup Language (HTIML) 5....oooiiiie ettt et 20
Cascading STYIE SNEET (CSS) 3...uuuiiiiiiieiiiieitieee ettt e e e e et e e e e e e e e eesstrereeeeeeeesessens 20
J 1O TUT=] YT P PRt 21
HyperTexXt PreproCesSOr (PHP) ittt e e e eeeatareeeee e e e eeesaaaraaeee s 21
IVIYSQL et ees s ee s s e s s e e s eeeses e et neeeee e seeeeeseneeeeneeeeneeeeeaseeeeneseaneeeeneeees 21
DF = o TSI B LT 1 o 1SS 22
U Tl L A=Y = Lol B LTy F=d o DO RS 23
CUSTOMEI'S USEr INTEITACE. ... it e e e e aeaeees 24
Administrator’'s USer INTEIfaCe.....ccoui ittt e 27

CHAPTER 4: DETAILED DESIGN

4.1.

4.2,

BaCK-ENd DeVEIOPMENT.....ci ittt ettt eeset e e e e e e eeetbbreaeeeeeeeenbaraaeeesesseenssrseees 30

U SBE ClaSS e eineeeeeeeeee ettt ettt e e e et e e et e e e e ta e e s e s eaessesanasestan e esenaeeeesannsesannesesennaserennaeeeneen 30

vi

4.3. (2 ToTe] 4 o= 0] F- 11 PSP 33

4.3.1. TIMETOUNTX() MELNOM.....uuiiiiiii e e e e e e et aaeeeseeens 35
4.3.2. validateTime() MEthOd... ... e e e 37
4.3.3. val idateBooking() MEthO ...ttt asaesaaeaaareaes 38
4.3.4. scheduleBooking() MEethod..........cui i e e e e 39
4.4. QUEUE ClaSS..utieiiiiiiiee ittt e ettt e e ettt e e e st tee e e s abteeeseatteeeesasteeessaabteessasteeesasbeeeesenseaeesnnsaneens 41
4.4.1. HOW the Priority QUEUE WOTKS......uveeeeeeiiieiiireeeeeeeeeeeeirreeeeeeeeesserreseeeeeessssssrssessseesesensnnes 42
CHAPTER 5: VALIDATION

5.1. BT B =1 (=Y = PPN 49

CHAPTER 6: SYSTEM EVALUATION

6.1. Performance EValU@tioNn.........cooiiiiiiiiiiiie ettt st et e e e 53
6.1.1. o= To I =) A ST STPP 54
6.1.2. (oo I =T OSSP PRUPPPTUPPRUPPRON 55
6.1.3. SUMMATY OF RESUILS.....viiieieiiie ettt et e e st ee e s e sae e e e e sneeeessnnaeeesnnreeesanns 58
6.2. USEI EVAlUTION ...ttt ettt e ettt e e st e e s ettt e e st e e e e areeas 59
6.2.1. QUESTIONNAITE DESIZN..ccciiiiiiiiiiiiiiiiiieeeeee ettt et e e e et ee et et e e e e e e e e eeeseeeseeeeeeeeeeeeerenes 60
6.2.1.1. SYStEM USADility SCAl@...eiiiiiiiee ittt e atee e e 60
6.2.2. ANAIYSIS AN RESUIES...eiiiiiiiiiitieie et e e e e e e s b b e e e e e e e e s s ababaaeeeeeeseennssrenees 61
6.2.3. OBSEIVATIONS. ... ettt e e ettt e e e st et e e s e bt e e e e s bbe e e e snbe e e e e eanaeees bees 63

Vi

CHAPTER 7: CONCLUSION AND REFLECTIONS

7.1. (670 3 Yol [T o] o FH O TP RR ORI OPPR 64
7.2. g 0 1) =L o LSOO PP PPPP 65
7.3. LEAINING OULCOMES. .utuuiiii e e e e et e e e e e e e e ettt e e e e eeeeeetabaeeaeaeessessnanaaaaaans 65
7.4. SUEEESIONS TOr FULUINE WOTK .. oo i tiieieee ettt ettt e e e e e e are e e e e e e s e e snnraeaeeeeeeeas 65
20T =T T T =TSRRI 67
1Y oY 1= 3 o [T =3 SRR 71
Appendix A: System DOCUMENTATION.cicuiiii ittt e et e e s st e e e e sate e e e e saaeeeessnreeeesnns 71

APPENAIX AL REQUITEIMENTS. .1vtiiiieeiieiiiiireeeeeeeeieeiirrreeeeeeeesisitrbreeeeeeesessssrssseeeeeesessssrsseseseesssnssnses 71

Appendix A.2: Database SETUP....ccii i e e e e e e e s e e enrrees 71

ApPPENdixX A.3: CONFIBUIATION.uiiiiiiiii ittt e e e rer e e e e e e e e seabbareeeeeeeesssasasrsaeaeaeeeens 73
APPENAIX B: USEI GUILE...ciiiiiiiciiiiieee ettt e e e e e e e s e e bt eeeeae e e e s s s sbtaeeaesesseesnnsrtaneeeeeeeenansnrs eens 74

Appendix B.1: CUSTOMEr USEI GUIE.......ccuirieeeeeeeeiiiiiirreeeeeeeeeessirereeeeeeeessatsreseeeeeesesssssraseeeseennnns 76

Appendix B.2: Administrator USEr GUIdE.......coiveuuiirieiiee ettt ettt ee e steee e s e s s e e s enneee s 81
Appendix C: Use Case DIiagram........ccooiiiiiiiiiiiee e 86
FAY oY1= oo D D R @ T DT = - [o 1SR 88
Appendix E: RESUILS Of LOAA TeSES....cuiiiiiiiie ettt e e e e e et e e e e e s s e s sab e e e e e e e e essenstsneeeeeasssannns 89
PN o] o1 Yo I el = g =1 W T AV 7= o o] o PO U RPPRRt 91
Appendix G: Participant INformation SNEET.........cooceiviiiiic e e e e e e 92
Appendix H: User Evaluation QUESTIONNAITE.......ccuiiiiiiiee ettt e e ecerrreee e e e e e s eetbrareeeeeeesesnasrsaaeeeeseeens 94
Appendix |: Database AttriDULES......ccueeiiiiee e e e e e a e e e eeaan 96

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 3.7:

Figure 3.8:

Figure 3.9:

Figure 3.10:

Figure 3.11:

Figure 3.12:

Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:

LIST OF FIGURES

The booking system’s arChitECLUIE.......uvvviiiii i e e ree e 20
Overview of the database desigN.........cuuvveiii i 22
REEISTIatioN FOMMuucciiii i ee e e e e e e ettt a e e e e e e e eeeasbareees 23
(oY 4T o T o o o U UURURN 24
New booking form — (CUSTOMEI).....ccicuiiee ettt e et e e e e erre e e e e nreeeaeans 24
Manage booking table — (CUSTOME)..uuuiiiiiiiiiccciiiiieeee ettt eerrrree e e e e e e e e e earrreeeeeeees 25
(O TU T TU T o] o o PO TP PPPUPPTPR 26
DEMO COUNTAOWN TIMBI..ciiiiiiiiiiieiiteesiee ettt sttt et s et et e st e et e e s sateesbteesanneenans 26
L TR =g 1] o =T = S UURPRRN 27
New booking fOrm — (AMIN) ... eee et e e e e e e e e e enaaraeees 28
Manage booking table — (AAMIIN)....couiiiiiieeee e e e e e e e 28
Y T aF Tt U T =1 o] T 29
2o [o 1N L= T g =Y o T PSR 31
10ggleUserStatus MELNOM. sasanananesaannnannnnnnnns 31
checkAvai 1abi LTty MeEthOd.........oiiiieee e s 32
validateEmai lUsername Method........cccci i 32
UPAALESTALUS METNOM.uiiiiiiiiieeee e e e e e e e e e e e eatarraeeeeee s 33
SIgNIN and sTgNOUT MELNOU......ccooiiiiieeeieeeeeeeeeeeee e, 33
BOOKING FOrm PHP SCIIL... . an 34
=0 I 10T 0 g1 o o PSR 34

Figure 4.9:

Figure 4.10:

Figure 4.11:

Figure 4.12:

Figure 4.13:

Figure 4.14:

Figure 4.15:

Figure 4.16:

Figure 4.17:

Figure 4.18:

Figure 4.19:

Figure 4.20:

Figure 4.21:

Figure 4.22:

Figure 4.23:

Figure 4.24:

Figure 4.25:

Figure 6.1:

Figure 6.2:

Figure 6.3:

Figure 6.4:

Code snippet of the addBooking Method............ccceeviiiioiiiiii e, 35

TAIMETOUNTX MELNOU. ... e e e e ree e e s e reeeeeeenes 36
val idateTime MEthod.. ... e 37
val 1dateBooKing MEthOd..........uuuuiiiiiii e aan 38
Code snippet of scheduleBooking Method.........cccccoeveiiiiiiiiie e, 40
While LOOP fOr DOOKING.........uuiiiieeii ettt re e et e e e e e e e anrreeeee s 40
Restrictions on the qUEUING aPPrOaCh.......c..uvvieeiii i e e e e e e s eaaes 42
Code snippet of the queuing fOrm PHP SCriPt........cciiiiiiiiiiiieeiieec et eee e 43
P=Yo (o [N =Y U T=3 0 a =1 a0 Lo RN 43
PHP script handling countdoWn tiMEr.......ccceiiiiiieee e e e 44
While Loop fOr QUEUING @PPIrOaCN.......uvveiieiee ettt e e e e eeetarreeeee s e e e e e saarareeees 45
Lo gl LT =Y 411 o T USRS 45
QueuelpPTIMIZAtion MELhOd...........uiiiiii e annnnannnan 46
getESTImatedPoSTtioN METNOM........cuiiiiiieec e e 46
Estimated waiting time PHP SCIipt..... ..ot a7
getEstimatedWaitingTime MEthod. ..o 47
sSecondsTOTIME MELhOM....... ..o e e e e 48
Response time and Waiting time vs number of concurrent users — (booking)........cc......... 54
Throughput vs number of concurrent users — (boOoKINg)......cccvveeeciiiiiicieieecee e, 55
Response time and Waiting time vs number of concurrent users — (queuing)................... 56
Throughput vs number of concurrent users — (QUEUINE)......cceerveeriercieie e, 57

Figure 6.5:

Figure A.1:

Figure A.2:

Figure A.3:

Figure B.1:

Figure B.2:

Figure B.3:

Figure B.4:

Figure B.5:

Figure B.6:

Figure B.7:

Figure B.8:

Figure B.9:

Figure B.10:

Figure B.11:

Figure B.12:

Figure B.13:

Figure B.14:

Figure B.15:

Figure B.16:

User-friendliness of the system — (QUEUING)....ccveviriieirieeiieecieeeee e 63

IMPOrting the database.....u.eeiii i e et e e e s e e e eaas 72
Screenshot the database........ooo i 72
BT | o LY oF- [= [gL (=] ST 73
(oY ed=qT o T o] o I a VoYY A) (=] o VOSSR 74
Email verification fOrmM. ... e s e 75
I o TV oY e I =T o V- 11 FO PP 75
RESEE PASSWOIT FOIM..uuiiiiiiiiiiiiiciiteeee et e e et e e e e e e eseabbbaeeeeeeeeeenbabaaeeeeseenenns 76
CUStOMET SIAEDAI MENU....eiiiiiiieiiiee et e et e e eaes 76
The booking form for CUSTOMENS........uiiiiieice e 77
Booking Notification @Mail..........cooiiiiiiieiiiie e 78
List of available timesIOots......o..ui i e 78
Manage booking table — (CUSTOMEI).....cccrrreeeieee ittt e e e e s eararaeens 79
QUEUE fOrM fOr CUSTOMEIS....cuiiiiiiie ettt st e s e e e nee s 79
(DL g Yol oF T=dol o T gl ol U R o) o T=T o< R 80
Waiting list Page fOr CUSTOMIEIS......eiiiieiee e e e s rnaeee s 80
Customer’s account Update fOrmM..........ueeeeie i e e 81
Change PasSWOI fOIrM.. ittt e e e e e e seb e e e e e e s e s sabbbaaseeeeeeessssssssreaeseeennas 81
Administrator’s Sidebar MENU.........ciiiiiiii e 82
Administrator’s dashboard..........coocuuiiiiiiiiiiiie e 82

Xi

Figure B.17:

Figure B.18:

Figure B.19:

Figure B.20:

Figure B.21:

Figure C.1:

Figure D.1:

Figure H.1:

Figure H.2:

Administrator’'s booKing fOrmMi.........oooiiiii e 83
Manage booking table — (AdMIiNiSTrator)........ccceecciiiiiieie e e e 84
Manage Waiting liSt table.......ceevii i e e aeee s 84
Manage user account table.........cccoooiii e, 85
Account update form — (AdMIiNISErator).......cccciiiieere e 85
Use case diagram of the booking System...........uueeieiiiiicciee e 87
Class diagram of the bOOKING SYSTEM....ueiiiiiiiiiciiieiee e e e e ae e e e e 88
User evaluation qUESTIONNGITE.........ceviiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeteveeeeeeeeeeeveasaessssasessasssaessarenes 94
User evaluation questionnaire (CONtd.).......cccovveeeiieeiiiiiiiiieeeee e e 95

xii

LIST OF TABLES

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

Table 6.1:

Table B.1:

Table E.1:

Table E.2:

Table 1.1:

Table 1.2:

Table 1.3:

Table 1.4:

Table I.5:

Table 1.4:

Table 1.7

Result of testing timeToUNTX MEthOd.........coiiiiiiiiiiiiec et 50
Result of testing scheduleBookingmethod..........cccuevvivciiiieiiciiie e 50
Result of testing addBooking MEthOd..........cooviiiiiiiiiiieiiccieeeee e 50
Result of testing addQueue MEthOd.........ccceii i e 51
Result of testing cancelBooking Method........coooiiiiiiiiiiiiiiiec e 51
Responses to the System Usability Scale questionnaire.......ccccccceveevivveeeeeeeeeeecciirreeeeee e, 62
Login details for the different types Of USEIS........coovvuvvieiiieiiiiiiiiireeeee e e 74
Result of the load test on the booking algorithm..........ccccviiviiiiiiiiiiccee e, 89
Result of the load test on the queuing algorithm.........ccccoiviiiiiiei e, 90
Attributes of the USer table.........ooii i e 96
Attributes of the product category table......ccuieeeiiii e 96
Attributes of the Products table.........eeeiii i 97
Attributes of the Profile table. ... e 97
Attributes of the password reset table.......ccccuviieiieii e 98
Attributes of the QUEUE tabIE... ... ie e 98
Attributes of the booking table.........ccuiiiiiiiii e 99

Xiii

Chapter 1

Introduction

1.1 Research Context
Typically, booking systems must have the functionality to cope with requests made by users to access
certain resources within a specified timeslot. In order to effectively coordinate access to these resources

for optimum resource utilisation, there is need to implement scheduling (Pinedo, 2012).

In essence, scheduling involves solving the problem of finding optimal methods to allocate some
resources to certain entities (Lombardi and Milano, 2012). The problem of resource scheduling is very
common, extending across different contexts such as communication bandwidth allocation, parallel
processing, transportation, timetabling, appointment scheduling, project management, production
scheduling, amongst others (Coley et al, 2012). In these contexts, there is always need to allocate
different resources in time to entities (such as people, machines, etc.) that need to use them in a way

that optimises the overall usage of the resources.

To address the problem of scheduling, a number of researchers such as Orduia and Garcia-Zubia,
(2011); Lowe and Orou, (2012) have investigated different approaches, notably booking and queuing to
schedule access to limited resources in the context of online booking systems. However, while these
scheduling approaches and their various extensions have been implemented, there has been no

justification for the most suitable approach to scheduling.

In view of this research gap, this project focuses on evaluating the different approaches to implement
scheduling in an online booking system and how these approaches can be effectively integrated to
significantly improve the utilisation level of resources and decrease the waiting time of users. The
project is made up of two main components: namely the software development component which
describes the requirements specification and development tools used to implement a web-based
booking system that allow customers to book demonstration cameras for a particular timeslot; and the
last component, which involves evaluating the performance of the approaches used to implement

scheduling in the booking system in order to determine the most suitable approach to scheduling.

1.2 Problem Description

Digital Barriers uses a number of demonstration video streams to demonstrate the technologies of its
Tactical Visual Intelligence (TVI) cameras to potential customers. In order to assess the capabilities of the
TVI cameras, customers need to book a timeslot so that they can take control of the PTZ (Pan, Tilt and

Zoom) functionality of their preferred TVI camera within a specified timeslot.

However, as the current customer video demonstration capabilities are saturated, customers are
required to compete against each other to gain exclusive access to these TVI cameras on an ad-hoc
basis. This has caused problems during customer demonstrations where multiple people have tried to
access the same camera and most importantly, it raises the question about how the usage of the

cameras can be further optimised.

To resolve these issues, this project aims to develop an experimental web-based booking system that
would allow potential customers to book one of the TVI cameras for a particular timeslot. During that

timeslot, the system would ensure that each customer have exclusive access to the TVI camera.

1.3 Research Questions
This research aims to answer the following research questions:
1. What practical approaches can be used for scheduling and how can these approaches be applied
in the context of an online booking system?
2. What functional requirements are suitable to demonstrate scheduling in a web-based booking
system?
3. How might these requirements be developed to provide a technical solution that will allow

customers book demonstration cameras for a particular timeslot.

1.4 Research Objectives
The objectives of carrying out this research are:
1. To understand the practical approaches that can be used for scheduling and how these
approaches can be applied and integrated in the context of an online booking system.
2. To implement these practical approaches in a web-based booking system, identify their strengths
and weaknesses and consequently, evaluate their performances to determine the most suitable

approach to scheduling.

1.5 Structure of Dissertation
The rest of this dissertation is made up of six chapters, each with a number of sub-sections arranged in a

logical and concise manner.

Chapter 2 provides a review of the research done so far with regards to scheduling in the context of
online booking systems, as well as the current methodologies and conflicting evidence. It pulls together

significant developments in this area and identifies major research themes.

In Chapter 3, the core components of the system architecture, including a high-level overview of the

Graphical User Interface design and the overall database design were presented.

Chapter 4 describes the detailed design of the booking system and the decisions that were made during
the software development process based on the relative merits and demerits of the alternatives

considered.

Chapter 5 presents an explanation of the testing strategies that were used to validate the booking

system.

Chapter 6 presents the outcomes of the performance and user evaluation of the booking system. It also
explains the performance improvements that could be achieved by using either booking or queuing for

scheduling.

Chapter 7 concludes the report with a set of observations made during the system development and

evaluation stages. It also include suggestions for future work.

Chapter 2

Literature Review

This chapter presents a review of existing research works in resource scheduling. It begins by describing
the practical approaches to scheduling in online booking systems and how these approaches can be
integrated to improve the utilisation of resources and decrease the waiting times of customers.
Afterward, an explanation of the types of scheduling policies was presented and finally, a list of metrics

commonly used in evaluating the performance of the scheduling schemes were highlighted.

2.1 Scheduling

Traditionally, scheduling has always been used where resource demand and resource availability is
predictable and constrained and consequently, there is need to allocate resources to users in an optimal
way (Pinedo, 2012). However, with online booking systems, both the resource demand (that is, request
for exclusive access to a resource) and the availability of the resource are typically less predictable

(Coley et al, 2012).

In these scenarios, while resource demand will always vary due to the fluctuations arising from when
users desire exclusive access to a resource and for how long that access is required, resource availability
varies due to both fluctuations in how long a resource will be used, as well as other issues that might
remove a resource from service (Lowe, 2012). Consequently, this inherent variation with resource
demand and availability in the context of online booking systems has led researchers to explore different
approaches to scheduling and what can be implemented practically to improve the utilisation of

resources and decrease the waiting times experienced by users (Lowe, 2013).

2.2 Practical Approaches to Scheduling

According to Lowe, (2012); Maiti et al, (2013), there are two fundamental approaches, notably booking
(otherwise known as calendar-booking) and queuing that can be used for resource scheduling in an
online booking system. In essence, given a collection of user requests to access a certain resource, the
main reason for implementing these schemes is to allow the system’s scheduling server process each
user’s request to access specific resources, subject to a scheduling policy, in such a way that optimises

the allocation and overall usage of each resource (Pinedo, 2012).

As highlighted by Ordufia and Garcia-Zubia, (2011); and Lowe, (2013), the choice of implementing either
gueuing or booking or a combination of both scheduling schemes in an online booking system depends
on a number of factors, namely: the scheduling algorithm, the number of expected concurrent users; the
number of available resources; the time each user needs to access the resource requested; and the

access guarantees that is provided to users.

In certain situations where there are few users waiting to access a resource simultaneously and the time
needed by a user to utilise that resource if granted access is relatively short, a booking scheme becomes
unsuitable. Consequently, it becomes necessary to use a variant of the queuing scheme called priority

queuing.

With this priority queue, user requests are assigned priority levels (such as high, medium, or low) as they
join the queue and a request with the highest priority is served before requests with lower priorities. In
cases where two requests have the same priority, they are served according to their order of arrival in

the queue.

2.2.1 Booking Scheme

In a booking scheme, users are able to select in advance a timeslot in which they would like to access the
resource and subsequently make a reservation that will provide guaranteed access to that resource.
They return to utilise the resource at the time specified on their reservation and are given exclusive

access to the resource requested (Ordufia and Garcia-Zubia, 2011).

Typically, booking schemes are more commonly used where the available resources are limited and the
demand from users is relatively high; thus, having a confirmed timeslot to utilise an already reserved

resource is desirable (Lowe, 2012).

As highlighted by Lowe and Orou, (2012), the basic logic for resource allocation based on the
implementation of a booking scheme occur as follows:
1. A user attempts to log into the system and is provided with a list of resources that can be
accessed.
2. The user selects a particular resource from this list and then is presented with the current status

of the resource and given the option to make a reservation that will provide guaranteed access

to the resource based on the time specified by the user, if the resource is currently not in use by
another user.

3. If the user decides to reserve the resource, a reservation web page will appear with the available
timeslots that can be booked. This page will also show the maximum allowed time a user can
utilise the selected resource.

4. Once the user selects a preferred timeslot to access the resource, the system verifies that the
particular timeslot has not been taken by another user before it stores the reservation in the
scheduling database. If the timeslot is available, the system prompts the user to make the
reservation. Thereafter, a confirmation message appears, and an automated email message
generated by the system is sent to the user with the resource reservation details.

5. The resource reservation page will then make a coloured highlighting of all timeslots that has

been reserved by users to access each resource.

In general, the main disadvantage of scheduling resources using a booking scheme is that users will
typically reserve a session to utilise a resource but will very commonly not make use of the whole
session. The unused component of the reservation made is then left unutilised, thereby resulting in

under-utilisation of resources (Lombardi and Milano, 2012).

2.2.2 Queuing Scheme

Queuing schemes, on the other hand are used when there is a relatively significant number of resources
and users can only be allocated just one of them, at any point in time. More specifically, Orduia and
Garcia-Zubia, (2011) highlighted that by using the queuing scheme to schedule access to resources, all
requests made by users to access a particular resource have to be placed sequentially in a queue in the
order that they arrived and then processed successively one after another on a first-come, first-served
basis. On the whole, users are only provided access to the first available resource that meets their

specific request (Lowe, 2013).

According to Lowe and Orou, (2012), resource scheduling and allocation to users based on the queuing
scheme occur as follows:
1. A user logs into a reservation system and is provided with the list of resources they have

permission to access.

2. The user selects a particular resource from the list of available resources and then is presented
with the current status of the resource and given the option to queue for access, if the resource
is currently in use by another user.

3. If the resource is currently in use and the user decides to queue to access the resource, the
request is placed in the queue by the system’s scheduling server. Consequently, the user is
presented with a screen that contains information indicating which resource they have
requested access to, an estimate of how long they have to wait in the queue before they can
access the resource, their current position in the queue, as well as the maximum time allowed
for them to access this resource when it becomes free.

4. When any resource becomes available from the ‘pool of resources’, the system’s scheduling
server will ‘scan’ through the queue looking for the next user’s request made to access the
resource based on a predefined scheduling policy such as the First-Come-First-Served policy. The
system will also make sure that the time requested by the user to access the resource will not
affect the next booking made for this resource by another user, if applicable. This allocation
strategy according to Lowe, (2012) ensures that a resource will only be allocated to a user in the
queue when there is a guarantee that they will have exclusive access to the resource based on
the duration they have specified.

5. Once the system finds a request in the queue that conforms to the conditions specified in (4), the

user that made such request is granted access to utilise the resource.

One significant advantage of implementing the queuing scheme in an online booking system, as
identified by Lowe, (2013) is that as soon as a resource becomes available, it will be allocated to a
waiting user in the system, thereby maximising resource utilisation, as compared to the booking
scheme. However, there is no guarantee that users will have access to the resources desired at the
specified time (Lowe, 2013). As a matter of fact, since the time each user will spend on the queue to
access a particular resource cannot be estimated accurately, there is no assurance that a user will
eventually get access to a resource, even after spending significant time on the waiting list. In addition

to this, other problems associated with the queuing scheme, as highlighted by Maiti, (2011) include:

1. Loss of priority in the queue due to a slow internet connection.
2. The queuing scheme is meant to work on a “first-come-first-served” basis. Consequently, there is

need for the system’s scheduling server to keep track and assign a priority level to the user

7

request that arrived first in the queue, as well as other requests that arrived later. However,
assigning and maintaining such priorities could be sometimes inefficient, especially when the

internet connection is slow and noisy.

2.2.3 Priority Queue
In priority queuing, user requests are assigned a priority as they join the queue and requests with higher

priority are processed before those with lower priority (Stanford, et al 2013).

Earlier works on queuing by Li et al, (2008) discusses a variant of queuing called priority queuing which
processes user requests for immediate access to a specified resource based on the user priority level,

with the request from users in the higher priority category being processed first.

This form of queuing was described and illustrated by the authors with the design and pilot
implementation of a scheduling system for shared online laboratory resources which allow users to
make reservations to conduct experiments within a timeslot. The scheduling system also included a
functionality to coordinate the reservations made by geographically dispersed users in a way that avoids
time conflicts caused by differences in time zones between the users. Although the system provides
integrated functionality for handling various priority levels in user requests, the system was not flexible

enough to accommodate scenarios wherein a user fails to utilise the reserved timeslot.

Similarly, the functionality of priority queuing was further analysed in a pilot study carried out by
Stanford, et al (2013). This study was based on the underlying assumptions that classes of users have
fixed priorities, and that no user from a low-priority class should be granted exclusive access to a
resource while there are requests to access that particular resource from users with higher priority in
the queue. From the works of Stanford et al (2013), priority queuing was presented as a significant

improvement to the basic queuing model.

2.2.3.1 Types of Priority Queue

In essence, there are two different types of priority queue: the non-preemptive priority queue and the
preemptive priority queue (Kihlwan, 2012). The non-preemptive and preemptive priority queues are
both extreme cases with respect to the preemption condition, as they “never” or “always” allow
preemption, respectively when a request to access a resource arrives in the queue from a user with a

higher priority during the service of the request from a lower priority user (Kihlwan, 2012).
8

More specifically, in the case of the preemptive priority queue, during the service of a user’s request,
the scheduling server “continuously” checks the queue for the presence of requests to access a resource
from users with higher priorities than the current user being serviced, to determine whether or not to
preempt the service of this user. If there exists a request from a user with higher priority in the queue,
the low priority request currently being processed will be preempted (Harchol-Balter, 2013). In many
practical situations, however, it may be counter-productive and undesirable to continuously review the
system state, as this can incur considerable processing time, especially when the information on the

queue is decentralised and distributed over a network (Kihlwan, 2012).

On the other hand, with non-preemptive priority queues, the scheduling server “never” reviews the
system state while processing a user’s request to access a particular resource. This implies that users
with high priorities will have to wait for some time until the service of a low priority user is completed.
As highlighted by Harchol-Balter (2013), this can lead to severe degradation of the quality of service
experienced by high-priority users, especially when the processing time of a low-priority user request is

relatively slow.

2.2.4 Combination of Booking and Queuing

For optimum utilisation of resources, an efficient scheduling scheme is essential. However, current
approaches to scheduling are typically based on either booking or queuing (Ordufia and Garcia-Zubia,
2011), though rarely both and each of these have advantages and disadvantages. In the light of this,
Lowe, (2013) emphasised that a scheme that merges these two approaches successfully can potentially

benefit from the advantages of both whilst compensating for their respective limitations.

By taking into account the benefits and shortcomings of the aforementioned approaches to resource
scheduling, several researchers have also explored the potentials of a hybrid approach that attempts to
integrate booking and queuing in an online booking system. One of the first to consider this approach
was Li, et al (2008), who discussed the functionality of a system that allow users to book resources
ahead of time, whilst still permitting queued users to have exclusive access to resources during periods
when there were no bookings. From a practical perspective, this approach seemed to ameliorate the
limitations of booking and queuing respectively, however, there was no suitable description of the
implementation of the system combining both booking and queuing neither was there any attempt

made to evaluate the resulting system.

Similarly, Maiti (2011) described another hybrid approach that was referred to as “slotted queuing”
which allowed a limited number of users to reserve a particular resource for the same timeslot, after
which the users will have to queue to utilise the resource one after the other within the reserved
timeslot. Again, a prototype implementation was described but there was no evaluation of the effect of
combining the two approaches on the system performance, neither was there an investigation into the

issues that may arise when a single resource is accessed by users through both approaches.

More recently, Lowe and Orou, (2012) implemented a hybrid approach similar to Li, et a/ (2008) and
Maiti (2011) in the context of managing access to remote laboratory resources. This time the
implications of merging booking and queuing to schedule resources were extensively discussed. In
essence, after a detailed analysis was carried out to assess the extent to which the booking and queuing
algorithms interacted when used for resource scheduling, it was found that there would often be
significant periods of time a number of users were waiting to gain exclusive access to a resource, but the
resources that were not currently in use at that particular moment were not allocated by the system
because there was a pending booking made by another user that has failed to show up. In order to
resolve this issue, Lowe, (2013) recommended some techniques that can be implemented to manage

resource utilisation effectively, namely:

1. If a user does not utilise a resource at the commencement of a reserved session, the reservation
should be immediately cancelled, leaving the entire timeslot available to a different user who
might want to use the resource.

2. The implementation of an allocation strategy that will allow the system’s scheduling server to
dynamically allocate a timeslot shorter than the default access time to queued users in
circumstances where this will optimise the utilisation of available resources. Overall, this will help
to reduce the size of queues, queue waiting lists, as well as the waiting times experienced by

users.

2.3 Slot Allotment Algorithm
In an online booking system, there is need to implement a slot allotment algorithm that will allocate
timeslots to users and subsequently, coordinate user requests to access specific resources during that

timeslot (Maiti and Tripathy, 2011).

10

Essentially, the slot allotment algorithm is designed to be interactive by giving the user a full picture of
the booking status of a particular resource for a couple of days (say n). To accomplish this, it uses a
calendar object to calculate all the days from the next day to the nth day, where n is an integer value
specified by the administrator. This calendar object is displayed in a tabular layout where the headers
represent the days and the rows represent the timeslots available in each day. The duration of these

timeslots is decided and set by the system administrator.

Inside each slot, the user requests are maintained by priority queuing and by keeping the maximum
number of reserved sessions in a slot limited to a small number, the queuing technique become more

effective in managing resource utilisation.

The system finds out if any booking has been made in each timeslot and then, it calculates the total
number of bookings. It is only when the number of bookings is not equal to the maximum number

allowed that a timeslot is made available for booking.

2.4 Scheduling Policies
In order to schedule resources in a way that optimises their overall usage, the scheduling server in an
online booking system must be implemented to follow a certain scheduling policy (Harchol-Balter,

2013).

Accordingly, these scheduling policies can be categorised based on whether the policy is preemptive or
non-preemptive. A policy is preemptive if the processing of a user’s request to access a resource can be
stopped partway through its execution. On the other hand, a scheduling policy is considered non-
preemptive if a user’s request is always processed completely. Moreover, scheduling policies can be
differentiated further based on whether the policies assume knowledge of the duration specified by a

user to utilise a particular resource.

2.4.1 Non-preemptive Scheduling Policies
As highlighted by Harchol-Balter (2013), there are two types of non-preemptive scheduling policies,
namely:

1. Non-preemptive scheduling policies that do not make use of the duration specified by a user to

utilise a resource. Examples include:

11

a. First-Come-First-Served (FCFS): When the scheduling server becomes free, it chooses to
process the user request at the head of the queue. Although, this is a relatively simple
policy to implement (Harchol-Balter, 2013), waiting time depends on the arrival order of
requests made by users in the queue, and this can potentially increase the waiting times
experienced by users with requests that arrived much later.

b. Non-Preemptive Last-Come-First-Served (NLCFS): Every time the scheduling server
becomes free, it chooses the last user request that arrives in the queue and processes
that request. This implies that the user with the shortest waiting time on the queue is
served first.

c. RANDOM: When the server frees up, it chooses a random user request in the queue and

processes it.

2. Non-preemptive scheduling policies that makes use of the duration specified by a user to utilise a
resource. An example of this is the Shortest-Job-First (SJF) policy. With the Shortest-Job-First
(SJF) policy, whenever the scheduling server is free, it chooses to process the user’s request with

the smallest duration. By so doing, it achieves the best response time (Harchol-Balter, 2013).

2.4.2 Preemptive Scheduling Policies

According to Harchol-Balter (2013), there are two types of preemptive scheduling policies, namely:

1. Preemptive scheduling policies that do not make use of the duration specified by a user to utilise
a resource. A typical example is the Preemptive-Last-Come-First-Served (PLCFS) scheduling
policy.

In essence, with the Preemptive-Last-Come-First-Served policy, whenever a new user request to
access a resource enters the queue, it immediately pre-empts the request currently being
processed by the scheduling server. It is only when the new request has been completely
processed that the scheduling server resumes the processing of the preempted request.
Therefore, with this scheduling policy, each user request creates two preemptions — one when it

arrives on the queue and one when it has been completed processed by the scheduling server.

2. Preemptive policies that makes use of the duration specified by a user to utilise a resource. An

example is the Preemptive-Shortest-Job-First (PSJF) scheduling policy.

12

The Preemptive-Shortest-Job-First policy operates similarly to the Shortest-Job-First policy,
except that the size-based priorities are enforced pre-emptively (Harchol-Balter, 2013). Thus, at
any moment in time, the user request that is currently being processed by the scheduling server
is the request that has been specified by the user to utilise the resource if granted, within a short
period of time. A preemption only occurs when a new request arrives whose specified usage
time is smaller compared of the request being processed. In general, the Preemptive-Shortest-
Job-First scheduling policy minimises the average waiting time that users might experience in the

queue.

2.5 Performance Evaluation of Scheduling Schemes
According to Wei, et al (2012), the following metrics are commonly used in evaluating the performance

of the approaches used for scheduling, namely:

1. Waiting time. This refers to the time that elapses between when a user submits a request to
access a resource and when that request is processed by the scheduling server. Typically, the
average waiting time (usually in minutes) among all processed user requests is usually measured

to reflect the “efficiency’” of the approach used for scheduling.

2. Server utilisation rate. This represents the ratio of the utilised scheduling server CPU processing
time compared with the total CPU processing time available. Usually, this metric refers to an

average value over a specified period of time.

3. Response Time: The time it takes a request to fully load. From the time the request is initiated
until the time it is complete. This measure represents the average response time at a certain
minute of the test and it generally indicates the performance level of the entire system under

test (web server + DB).

By and large, despite the emerging research on scheduling schemes, and the growing recognition of the
importance of effective resource scheduling for the optimum utilisation of resources, there has not been
a detailed analysis of how the different practical approaches to scheduling discussed in previous sections

can improve user experiences and resource usage. To this end, there is need to further investigate how

13

queue-based and booking-based approaches to scheduling can be effectively integrated to improve and

effectively manage resource utilisation in the context of online booking systems.

In order to accomplish this, the next chapter goes on to describe the functional requirements and core
components of the system architecture, as well as a high level overview of the overall database design of
the booking system that will be developed to assess the performances of booking and queuing and the

benefits and issues that might arise when they are integrated in a single system.

14

Chapter 3

System Design

This section describes the functional requirements of the booking system, the system architecture, the
database design, as well as the methodology that has been used for the software development. It also
highlights the technologies that have been used in developing the application, with an explanation of

why they are appropriate.

3.1 Functional Requirements

Basically, the functional requirements is made up of the functions of the booking system. The short list
of functional requirements specified by Tony Jasnosz of Digital Barriers was reviewed and after careful
consideration of what can be realistically achieved within the time allocated to the project, the

requirements were refined. In general, the booking system would:

1. Allow users create an account and subsequently modify the account information, if required.

2. Allow a customer to book a surveillance camera for a 30-minute or 60-minute demonstration
between 9:00 AM and 5:00 PM.

3. Allow customers to amend and cancel existing bookings.

4. Allow customers to view a 30-minute or 60-minute demonstration between 9:00 AM and 5:00
PM.

5. Allow an administrator to book a camera on behalf of a customer. This booking would be
recorded automatically in the customer’s booking history.

6. Verify the email address of customers who have just created a new account.

7. List available timeslots in a day so that a customer can choose another timeslot, if the most
preferred timeslot has been booked by another customer.

8. Send booking confirmation emails to customers after each booking. These emails will include the
booking reference, the name of the customer, the reserved timeslot (e.g. 10:30 AM — 11:00 AM),
the date, as well as the name of the camera that has been booked.

9. Manage bookings made for a particular camera using priority queuing, in a way that seeks to

optimise the overall usage of the camera and also act fairly to the customers.

The use case diagram (shown in Appendix C) illustrates the functional requirements of the booking
system and the users (notably the administrator and customers) that will interact with it.

15

3.2 Non-Functional Requirements

The non-functional requirements highlight the characteristics of the booking system and these include:
1. Authentication of users (customers and the system administrator) at log in.
2. Implementation of a simple and intuitive user interface.
3. Scalability, as the booking system is experimental and therefore has been designed in a way that

would allow for changes to be incorporated easily.

3.3 Business Logic of the Booking Functionality
For a customer to make a booking, the customer have to first log into the system. Upon login, the
customer selects a camera, chooses a particular date and time he/she wants to access the camera, as

well as how long access to the camera is needed. Thereafter, the customer submits the booking.

Once the customer submits the booking, the system checks if the timeslot (that is, the date and time)
selected by the customer is available. In the context of this booking system, a timeslot is available when
it has not been booked by another customer. Moreover, if the timeslot is available, the system saves the
booking and sends an automated booking confirmation email containing the booking details to the
customer. This automated booking confirmation email will include the booking reference, the name of
the customer, the date of the demonstration, the start and end times of the demonstration, the booking
duration (which could be for 30 or 60 minutes), as well as the name and model of the camera that has

been booked by the customer.

On the other hand, if the timeslot selected by the customer is unavailable, the system will prompt the
customer to select another timeslot. If the customer agrees to choose another timeslot, the system
would generate a list of all reserved and available timeslots for the rest of that day. This is necessary to
allow the customer to make an informed decision regarding the best available time he/she would like to
have access to the camera. Once the customer selects the timeslot, the system saves the booking details

in the database and sends the customer an email confirming that the booking has been made.

3.4 Business Logic of the Queuing Functionality

In order to access a camera using the queuing approach, a customer will have to first log into the
system. Upon login, the customer selects a camera and then specifies how long he/she would like to
access the camera. This duration can either be for 30 or 60 minutes, respectively.

16

Once the customer submits the request, the system first checks if the timeslot selected by the customer
is available and then, it checks if the timeslot would not conflict with a timeslot that has been booked, as
a customer can only be granted access to a particular camera for the duration specified if there would
not be a conflict with already reserved timeslots. If these conditions evaluate to true, the system saves
the details and starts a countdown timer. This countdown timer has been implemented as an alternative

to a demonstration video stream due to some limitations that would be explained in the next chapter.

Moreover, if the timeslot selected by the customer has been booked by another customer, the system
will prompt the customer to join a queue. If the customer decides to join the queue, the system will
automatically the select the nearest available timeslot for the customer from the list of all timeslots
available for that day. In addition, the system will display how long the customer would have to wait on

the queue to access the camera and the number of customers on the queue.

As soon as the camera selected by the customer becomes available, the system will ‘scan’ through the
gueue looking for the next customer that has requested to access that camera, using a First-Come-First-
Served scheduling policy. Once the system finds that customer, the customer is granted access to utilise

the camera for the specified duration.

3.5 Class Diagram

The booking system is made up of four main classes namely, the user class, the product class, the
booking class and lastly, the queue class. While the user class handles basic system functionalities such
as the validation of email addresses, user login, password reset, and sending of notification emails etc.,
the booking and queue classes handle camera reservations made by each customer, respectively. All the

product class does is to list the available cameras in the booking form.

The class diagram (shown in Appendix D) depicts all these classes, as well as the relationship that exist
between each of them. Each class in the class diagram is drawn using three-part rectangles with the
class’s name at the top, attributes in the middle, and methods at the bottom. The attributes of a class
and their values define the state of each object that is created from the class, while the methods specify
how an object acts and reacts, in terms of state changes and interactions with other objects in the

booking system.

17

The class diagram also contains additional information regarding the visibility (that is, information
hiding) of attributes and methods in the booking system. More specifically, private attributes (indicated
with a —) are hidden from other classes while public methods (indicated with a +) are not hidden from

other classes in the Booking system.

When two or more classes share a relationship, a line is drawn between each class and labelled with the
name of the relationship. For example, the Customer and Booking classes are associated with one
another whenever a customer makes a booking. Thus, a line labelled “makes” connects the Customer

and Booking class, representing exactly how the two classes are related to each other.

In addition, these relationships have multiplicity, which indicates how an instance of a class can be
associated with the instances of other classes. Numbers are placed on the association path to denote
the minimum and maximum instances that can be related through the association in the format
“minimum number . . maximum number”. Moreover, the concept of Inheritance is shown with a solid
line and a hollow arrow pointing at the User superclass from the Customer and Administrator

subclasses.

3.6 Development Approach
The lterative and Incremental software development model has been used as the methodology to guide

the process of developing the booking system.

Essentially, Incremental development is an approach to agile software development, where various
parts of the system are developed in successive increments at different times, and then integrated as

they are completed to make up a complete, stable and robust system (Cockburn, 2008).

With lterative development, the software is developed incrementally through several iterations which
subsequently provides the opportunity to make necessary improvements on the system based on key
issues identified in previous deliverables (Cockburn, 2008). As highlighted by Sommerville, (2010), while

neither approach precedes, requires or implies the other, it is always best to integrate both.

In the light of this, it is important to emphasise that the Iterative and Incremental software development

model has been selected instead of the standard waterfall model because:

18

1. The processes of requirements specification, system design, programming, and testing are
interleaved, compared to the waterfall model where each phase has to be completed before the
next phase.

2. lterative and Incremental software development model offers the flexibility to incorporate
changes into the software requirements specification and the software functionality during the
development cycle, if necessary. This is not possible with the waterfall model since the functional
requirements have to be well understood and unlikely to change radically during system
development.

3. There is great support for code refactoring.

4. Continuous testing and refinement of the evolving system at the end of each iteration is easier.

5. lIssues identified from each increment can be resolved during the next iteration.

3.7 System Architecture
With regards to the fact that the booking system is a web application involving a client-server
architecture and requiring user interaction through a series of Graphical User Interfaces, the Model-

View-Controller architectural pattern was chosen and implemented as the system architecture.

The Model-View-Controller pattern is made up of the following components:

1. The View is the presentation layer. It is made of web pages that display information related to
the services available on the booking system. In addition, it allows data entry and manipulation
by the user.

2. The Controller coordinates the booking system’s functionality via the booking and queuing
algorithms implemented with PHP. It also handles event handling and transfers data entered by
each user between the View and Model.

3. The Model is made up of the MySQL database where information is stored and retrieved. This
information is then passed back to the Controller for processing, and later on to the user through

the View.

The schematic diagram of the booking system’s architecture is shown below:

19

Booking and D“g:';';e
— > Queuing 1
.| FrontEnd | PHP scripts |
Database
Server
Desktop Web Server
(PC or MAC)
View Controller Model

Figure 3.1: The booking system’s architecture

In general, the decision to implement the Model-View-Controller architecture for the booking system
made because it allows separation of concerns between the data and code, which consequently
provides benefits such as data integrity, reusability and maintainability. In addition, it makes it relatively
easier for any of the core modules of the booking system to be upgraded or replaced independently as

the system’s functional requirements changes.

3.8 System Development

The following technologies have been used to develop the booking system:

3.8.1 HyperText Markup Language (HTML) 5
This has been used to define the structure of the web pages. Essentially, HTML 5 was used because it
includes new markup and semantics that supports intelligent web forms and further enhances the

accessibility of web applications.

3.8.2 Cascading Style Sheet (CSS) 3
This is the style sheet language that has been used to describe the style, design, and presentation of the

web pages.

CSS 3 is split into logical and user-friendly modules, with the most important CSS 3 modules being
backgrounds and borders, text effects, animations, and layouts. These modules contain new features
and capabilities, as well as a set of customisable functions that allows for greater flexibility and control in

the specification of presentation semantics in the booking system.

20

In general, CSS 3 was selected because of the styling effects it generates in web browsers which further
enhances the content accessibility of web pages, whilst reducing the complexity and repetition in
formatting content. Consequently, this means reduced server requests and load times for the Booking

system.

3.8.3 jQuery

This cross-platform JavaScript library allows client-side scripts to interact with the user, control the
browser, communicate asynchronously, and alter the web content that is displayed. Its syntax is
designed to make it easier to manipulate Document Object Model (DOM) elements, create animations,
and handle events.

jQuery has been used in this booking system to implement CSS manipulations, AJAX calls, user input

validation and the countdown timer.

3.8.4 Hypertext Preprocessor (PHP)
In the booking system, object-oriented PHP has been used as the server-side scripting language to
generate dynamic and interactive web pages, execute the scheduling algorithms to process each

customer’s bookings, commits queries to the database, amongst others.

Essentially, PHP was chosen over ASP.NET because it has built-in support for the MySQL® Relational
Database Management System (RDBMS).

3.8.5 MysQL
In essence, MySQL database has been used to store user accounts and the bookings made by customers,
amongst others. The reasons for choosing MySQL over other Relational Database Management Systems
such as PostgreSQL include:
e The database administration be handled by phpMyAdmin.
e MySQLis easy to configure.
e |t includes multiple storage engines, allowing one to choose the one that is most effective (e.g.
InnoDB) for each table in the booking system.
e |t supports the mysqgli extension, which is a relational database driver used in the PHP
programming language to provide an interface with MySQL databases. This allows for object-

oriented programming and the use of prepared statements.

21

3.9 Database Design

The database stores all the relevant information such as user accounts, customer bookings, and product

information amongst others. It is made up of the following tables:

profile users
=) profile_id = user_id

booking
=
=) booking_id

ref_id

username
® turfrname product_id producis
oKen start_time & pid

token_status end_time product_categary.id

t|mestgmp duration =6—-h product_name)
unix_time booking_ref product:status

timestamp

status

type

product_category
lop & peid
3 username 3 username category_narme
fname password 7 queue_id

Iname: = user_type e—oe usemame o
phone 2 email product_id

company created booking_id

job_tile signad_in timestamp

country status

Figure 3.2: Overview of the database design

The purpose of each table in the database is given as follows:

1.

Users Table: This table keeps record of the basic information needed by each user (either a
customer or an administrator) with an existing account to log into the booking system.

Profile Table: This table keeps record of all other information provided by users during
registration.

Products Table: This table stores information about the cameras and hardware encoders
available for booking.

Products Category Table: This table stores basic information about the category that each
camera or hardware encoder belongs to.

Booking Table: This table stores the details of all bookings made by customers.

Queue Table: This table keeps record of the priority queue that is created dynamically once a
customer makes a booking.

Password Reset Table: This table stores the relevant information needed by customers to reset

their password.

A more detailed explanation of the function of each attribute in the database is available in Appendix I.

22

3.10 User Interface Design

Bootstrap has been used to design the User Interface of the booking system. This framework was
selected because it contains a set of style sheets that provides basic style definitions for all key HTML
components. In addition, it includes several jQuery plugins which provides additional User Interface
elements such as dialog boxes, tooltips, and date pickers, amongst others. All these features combined

helps to improve the usability of the booking system.

Moreover, as the system is meant to be used by the administrator and customers, the design of the User

Interface has been divided into two, to cater for the needs of each type of user.

In order to use the system, a user (which could either be an administrator or a customer) is required to

create an account by using the registration form. See Figure 3.3 for the registration form.

TVI Demo Booking System

First name Last name

@ United Kingdom H

== Back to Login

Figure 3.3: Registration form

After registration, the user proceeds to login into the system using the login form shown on the next
page:
23

TVI Demo Booking System

Faorgot your password?

Figure 3.4: Login form

Once a user submits the email address and password, the PHP script that processes the log in credentials
determines if the user is a customer or an administrator and then, based on the result of this evaluation,

it loads the appropriate sidebar for the user in the system’s home page.

By default, all new registered users are classified as customers. Therefore, in order for a user to become
an administrator, the ‘user_type’ attribute of the user would have to be changed in the database from
‘C’ which stands for customer to ‘A’ — an Administrator. Once an administrator is set, each user can then
be changed from being a customer to an administrator or vice versa in the “Manage Users” table of the

administrator’s section of the website.

3.10.1 Customer’s User Interface
This has been designed to allow customers to make bookings, view past and current bookings, amend

and cancel existing bookings, and if necessary update their account information.

In order to book a particular camera, a customer would have to fill in the booking form (shown below in
Figure 3.5). This form allows a customer to select the desired camera, the date of demonstration, the
preferred timeslot (e.g. 9:00 AM to 10:00 AM), as well as the duration of the demonstration — which

could either be for 30 minutes or 60 minutes.

24

New Booking

Product Category: —Choose One—

Product:

=] =]

—~Choose One--

Date:

Start Time: 09:00 AM |E|

Duration: 30 Minutes |z|

Book Now!

Figure 3.5: New booking form — (Customer)

Once a customer makes a booking, the booking is saved in the database. If at a later date, the customer
wishes to amend or cancel the booking, the customer would have to use the “Manage Booking” table to

effect these changes. See Figure 3.6 for the “Manage Booking” table.

Manage Booking

3 Records found

5 B records per page Search:
SN Product Date From To
1 TVI RDK-U 01-09-2014 9:00 AM 9:30 AM
2 TVI MC350 (Minicam) 01-09-2014 2:00 PM 3:00 PM
3 TV1 R500 (Tri-Star) 02-09-2014 3:00 PM 3:30 PM [Amend |

Figure 3.6: Manage booking table — (Customer)

Moreover, for a customer to use the queuing functionality, a customer would have to complete the

gueue form. See Figure 3.7 on the next page.

25

View Demonstration Stream

Product: —Choose One— E|

Duration: 30 Minutes E|

Figure 3.7: Queue form

This form allows the customer to specify the camera’s demonstration video stream he/she would like to
access and how long this access would be required. The major differences between the queue form and
the booking form is that the queue form does not allow a customer to select the date and start time of a
demonstration. These restrictions have been enforced in order to allow the system optimise the usage
of cameras allocated to customers. Thus, the date and start time of a demonstration would be

automatically determined using the Unix timestamp — to be described in the next chapter.

If the timeslot selected by the customer is available, a countdown timer would start counting down
based on the duration that has been selected by the customer. This timer has been implemented to
simulate the operation of a TVI demonstration video stream, as it was not possible to connect the
booking system’s backend to a TVI server that contains real demonstration video streams due to limited

support from Digital Barriers. See Figure 3.8 for the countdown timer.

View Demonstration Stream

Demaonstration video stream of TVI WMV (Polecat):

0 29 17

Hours Minutes Seconds

Stop Demo

Figure 3.8: Demo Countdown timer

26

On the other hand, if the timeslot selected by the customer has already been booked, the system would
prompt the customer to join the waiting list of customers expecting to access the same camera. As soon
as the customer joins the queue, the system will display how long the customer would have to wait on
the queue to gain access to the camera, as well as the total number of customers already on the queue.

See Figure 3.9 for a screenshot of the waiting list page.

View Demonstration Stream

Number of users on queue: 2

The next available timeslot starts in:

0 48 20

Hours Minutes Seconds

Would you like to join the queue?
o s
Figure 3.9: Waiting list page

See Appendix B.1 for more explanation and screenshots of the customer’s User Interface.

3.10.2 Administrator’s User Interface
The administrator’s User Interface is made up of all the features that the administrator would need to
manage the booking system such as booking a camera on behalf of a particular customer, managing

customer accounts, managing the waiting list for each camera, amongst others.

In order to allow an administrator to book cameras for customers, the booking form was slightly
modified to include a drop-down list that shows the name of all the customers that have created an

account in the system. See Figure 3.10 for the modified booking form.

27

New Booking

Product Category: _Choose One— E|
Product: ~Choose One— E|
Select Customer: —Choose One- E|
Date: elect Date

Start Time: 09:00 AM E|
Duration: 30 Minutes E|

Book Now!

Figure 3.10: New booking form — (Admin)

With this modification, all the administrator has to do to make a booking for a customer is to select the
name of the customer from the drop-down list and then fill in all the basic details normally requested
from customers such as the product, start time, date etc. This booking would be recorded automatically

in the customer’s booking history.

The administrator also have the capability to cancel the bookings that have been made by customers.
This can be achieved by clicking on the “Cancel” button in the “Manage Booking” table. See Figure 3.11

for the “Manage Booking” table.

Manage Booking

3 Records found

5 E| records per page Search:
SN Full Name Product Date From To
1 Jones Lazlow TVI RDK-U 02-09-2014 9:00 AM 10:00 AM
2 Percival Donald TVI WMV (Polecat) 01-09-2014 10:00 AM 10:30 AM
3 Phillips Trevor TVI MC350 (Minicam) 03-09-2014 11:00 AM 12:00 PM

Figure 3.11: Manage booking table — (Admin)
28

Moreover, the administrator is able to update and delete customer accounts. To accomplish any of

these, the administrator would have to choose the customer’s account from the list generated in the

“Manage Users” table and then, click on either the “Edit” link to update the account or the “Delete” link

to delete the account from the system. See Figure 3.12 for the “Manage Users” table.

List of Customers

13 Records found

5 |=|records per page

EDIT Full Name Email Address

EDIT = Lukens rickie lukens@life.invader.com
Rickie
Weston devin.weston@dwestholdings.com
Devin
Norris Jay jay.norris@lifelnvader.com

Figure 3.12: Manage users table.

346-555-0176

Search

Company

Life Invader Inc
Devin Weston
Holdings Inc

Life Invader Inc

Country

United States
United States Minor
QOutlying Islands

Azerbaijan

Status

Inactive

Inactive

Inactive

See Appendix B.2 for more explanation and screenshots of the administrator’s User Interface.

29

Delete

Delete

Delete

Delete

Chapter 4
Detailed Design

This section discusses the implementation of the booking system. It includes key decisions that were
made regarding the approaches used in developing the back-end of the system, some of the challenges

encountered, and how these challenges were overcome.

4.1 Back-End Development
The back-end of the booking system has been developed to conform to the principles of Object-Oriented
Programming instead of structured programming because of the benefits of inheritance, modularity and

code reuse.

In the light of this, all the functionalities of the system were implemented separately as reusable
methods in the user, booking and queue classes, respectively. The following sections contain a detailed

description of each of those classes and their main methods.

4.2 User Class
The user class contains all the methods that handle the basic functionalities of the booking system. In
order to access the booking system for the first time, a customer is required to create an account, as

described in the System Design chapter.

Once the customer submits the registration form, a PHP script embedded within the registration form

calls the addNew() method to process all the data supplied. See Figure 4.1 for the addNew() method.

30

function addNew()
{
sthis->togglelUserStatus() ;
sthis->password = $this->hashPassword($this->password);
gresult_wvalidate = sthia->validateEmailUsername () ;
if(sresult_validate =="") |
£1link = dbconnecti);
fquery = "insert into users (username, password, user type, email, status)
wvalues ('$this->username', "$this-»password', "fthis->user type', '$this->email', 'I")":
squery_result = mysgli_guery($link, $guery):
if (fquery result) |
fquery = mysgli_guery($link, "insert into profile (username, fname, lname, phone, company, Jjob_title, country)
wvalues ('$this->username', "s$this->fname', '$this->lname', 'sthis-»phone", '$this-»company', '#this->job_title',
'$this->country')");
self::sendMail ('registration');
s$result = "Successful";
lelze
{
gresult = "Failed";
}
dbdisconnect (§link) ;
return sresult;
}
}

Figure 4.1: addNew method

The first step in this data processing involves setting the customer’s status to ‘l - Inactive’ using the

toggleUserStatus() method, shown below.

functicn toggleUserStatus()
{
if{sthis->3tatus == "4A")
{
fthis-»status = "I';
lelse
{
fthis-»3tatus = "4';
!
1

Figure 4.2: toggleUserStatus method

Thereafter, the addNew() method calls the hashPassword()method to make an MD5 encryption of the
customer’s password. Although other cryptographic hash functions such as SHA-1 and SHA-256 could
have been used, MD5 was deemed appropriate because it was well suited to the needs of the booking
system. Moreover, since the primary objective of this research is to evaluate the efficiency of the
practical approaches to scheduling in an online booking system, it was resolved that the system had to
meet minimum security requirements, and consequently the fact that MD5 is susceptible to brute force

attack, amongst other vulnerabilities was downplayed.

31

After the password has been encrypted, the addNew()method calls the checkAvailability() and
validateEmai lUsername() methods (See Figure 4.3 and 4.4) to check if the customer’s username and
email address does not already exist in the database. If these validation checks are passed, the addNew()

method proceeds to save the new customer’s data in the database.

functicn checklvailability(svalue, Scolumn)

{
:link = dbconnect():
fquery = myagli query($link, "select * from users where fcolumn = '$value'™);
if{({squery) =& (my3gli_num rows (sgquery) > 0))

{

fresult true;
a

lels
{

sresult false;

}
dbdisconnect ($1ink) »
return sresult;

}

Figure 4.3: checkAvai lability method

functicon validateEmailUsername ()
{
fresult = "";
sresult = sthis->checkBvailability({fthiz->username, "username");
if{fresult == true)
{
sresult = "sfthis->username iz asscociated with another account™;
return sresult;
lelsze

fresult = sthis->checkRvailabkility({$thiz->email, "email"™);
if{fresult == true)

sresult = " fthis-»email is associated with another account™;
return sresult;

}

return sresult;

}

Figure 4.4: val idateEmai lUsername method

As soon as the data is stored in the database, the addNew() method automatically sends an account
activation email to the customer. It is important to send this email because it helps to verify the
customer’s email address. Once the customer clicks on the link embedded in the email, the

updateStatus() method (shown below) updates the customer’s status in the database to ‘A — Active’.
32

function update_ status($fstatus)
{
£link = dbconnect();
sqresult = mysgli query($link, "update users set status = '#status' where email = 'Sthis->email'");
dbdisconnect ($1ink) ;

}

Figure 4.5: updateStatus method

When the customer tries to log in, the login page form handler first creates a new user object before
calling the xTrim() method to sanitise the email address and password entered by the customer, to

prevent cross-site scripting.

After the customer’s email address and password (hereinafter referred to as login credentials) have
been sanitised, the login() method establishes a connection with the database in order to verify that
the customer’s login credentials exist in the users table of the database. If the customer’s login

credentials are found, a new session will be created.

Subsequently, the login() method will call the signIn() method (shown in figure 4.6) to assign a ‘1’
to the ‘signed_in’ attribute of the user object. This attribute has been included in the database to help
the administrator identify customers that are currently logged in to their accounts. Accordingly, once
customers log off their accounts, the signOut() method resets the ‘signed_in’ attribute’s value to ‘0’

See Figure 4.6 for the signOut() method. Finally, the customer will be directed to the home page.

functicon aigniIn{)

{

fthis-»gigned_in = 1;
£link = dbconnect();
fgresult = myagli_gquery($link, "update users set signed in = '$this->signed in’

where email = 'sthisz-»email'™);
dbdisconnect {($1link);

}

functicon signCut()
{
£link = dbconnect();
fgresult = myagli_query($link, "update users set signed in = 0
where username = '&this->username'"):
dbdisconnect (£1ink) ;

1

Figure 4.6: signln and signOut method

33

4.3 Booking Class
This is the most important class in the booking system as it contains the methods that allow customers
to make, amend and cancel bookings. In addition, it includes some methods that are used to enable the

gueuing functionality of the system.

In order to book a timeslot, a customer is required to complete an online booking form that allows
him/her to choose a date from a calendar, as well as the camera type and the most preferred timeslot,
which could be for 30 minutes or 60 minutes. Once the customer submits the booking form, a PHP script
embedded within the booking form creates a new booking object to hold the data entered by the
customer. This PHP script (shown in figure 4.7) proceeds to concatenate the date and time selected by
the customer before calling the timeToUnix() method (described in subsection 4.3.1) to convert the

concatenated date and time into a Unix timestamp.

sdummy = sxBooking-rbooking date.” ".sxBooking->booking time:
$xBooking->start_time = $xBooking->timeToUnix ($dummy, 'U");
#xBooking->duration = $xBooking-rbooking duration * &0;
$xBooking->EndTime () ;

#xBooking->username = & SESSICN['current_user']:

scheckIime = $xBooking->validateTime();
if{ ($xBooking->validateBooking({) == "0") &z (#checkTime['statusz'] == 1})

{

sresult = $xBooking-raddBooking (5 _SESSICH['current_user_email']);

if{#result == "Successful"™)
{
smegsage = "<div class="alert-success'> Booking Successiul, Booking Ref: #xBooking->booking ref</div>";:
lelse
{
smessage = "<div class="alert-warning'> Oops.. Invalid booking check your form and try again.</div>";

1
1

Figure 4.7: Booking form PHP script

Thereafter, the PHP script converts the duration selected by the customer to seconds, as this new value
is required by the EndTime() method to calculate when the customer’s timeslot will end. See Figure 4.8

for the EndTime() method.

public functicn EndTime ()
{

fthis-»end time = $this->start_time + $this->duration;
1

Figure 4.8: EndTime method

34

The next step involves calling the validateTime() method to check if the time selected by the
customer is valid. In essence, the booking system has been programmed to accept only timeslots in the

hours between 9:00AM and 5:00PM, as these are standard business hours.

If the time is valid, the PHP script proceeds to call the validateBooking() method to check whether
the timeslot selected by the customer is available. A timeslot is available when it has not been booked
by another customer. If the timeslot is available, the PHP script calls the addBooking() method (shown
below) to save the booking details in the database. Afterward, the addQueue(Omethod is called to add
the customer to a priority queue. The need to add the customer to a queue will be justified in section

441

public function addBooking (fuser email)

{

£link;

£link = dbconnect():

squery = "insert into booking (username, product_id, start_time, end_time, duration, type)
wvalues ('fthis->username’, '&this->product id', '"$this->start time', 'Sthis->end time’',

"¢this-»duration', 'éthis->type')™:
squery_result = mysgli_gquery(slink, squery);
if{$query result)
{

$this->booking_id = myagli_insert id($link):

$this->booking ref = self::encrypt(fthias->booking_id);

squerylpdateRef = my3agli_query($link, "update booking set booking ref = '$this-»booking_ref!
where booking id = '$this->booking id'"):

taQueus = new Queue();

txfueue = self::MakeQueue();

ftxfueue-radd{ueue () ;

Figure 4.9: Code snippet of the addBooking method

Upon successful completion of the booking, the sendMail() method is invoked to send a booking
confirmation email to the customer. However, if the timeslot is not available, the scheduleBooking()

method is called to display a list of other available timeslots for that day.

The following sub-sections contain detailed descriptions of the main methods that are used for booking,

notably timeTouUnix(), validateTime(), validateBooking(), and scheduleBooking().

4.3.1 timeToUnix() Method
Basically, the timeToUnix() method is used to convert a particular date and time to the Unix timestamp

and vice versa. The need to include this method in the booking class was motivated by the fact that the

35

booking system had to be capable of manipulating the dates and times selected by different customers
to avoid conflicts in the timeslots allocated to them — and this could only be achieved if it was possible to

convert the dates and times to integers.

There are different ways to convert dates and times to integers in PHP. One of such ways is to use the
PHP idate() function, which formats a local date and/or time as an integer. However, as this function
accepts just one character in the format parameter and may sometimes return fewer digits than
expected, a decision was made to convert the dates and times to the Unix timestamp. Besides, since the
Unix timestamp is an accurate integer, arithmetic operations such as the addition and/or subtraction of

two different dates for instance, will be easier to perform.

To convert a specific date and time to the Unix timestamp, a method from within the booking class has
to return a value and an argument indicated as ‘U’ to the timeToUnix() method (shown in figure 1.9).
Once this is done, the timeToUnix() method creates a new date object and then it converts the current

date and time to the Unix timestamp.

public functicn timeToUnix{&xdate, SreturnIype="T")

{
date_default_timezone_ set('Europe/London');
gresultc = "";
if{sreturnIype == 'H")

{

sresult = date('d-m-Y ", sxdate);
}elae
{

sdate = new DateTlime (sxdate);
fresult = &date->format('U");

return sresult;

1l
Figure 4.10 timeToUnix method

On the other hand, if a method wants the timeToUnix() method to convert an existing Unix timestamp
to human readable date, that method will return a value and an argument indicated as ‘H’. Once the
timeToUnix()method gets the argument, it will format the date using the PHP date() function and then
return a formatted string representing the date to the calling method. For the date() function to work

properly, the default time zone used by all date() and time() functions in the booking system had to be

36

set to a particular time zone — in this case, ‘Europe/London’. This is because the date() function is time

zone dependent.

4.3.2 validateTime() Method

The validateTime() method is used to check if the time selected by a customer is valid or not.

For this method to work properly, the opening time and closing time had to be defined as constants,
with values of ‘09:00:00’ and ‘17:00:00’ respectively. Once a customer selects a date from the calendar,
the validateTime() method concatenates the date with the predefined opening and closing times and
stores the new values in two variables (called $openingTime and $closingTime). The values in these
variables are then converted to the Unix timestamp, using the timeToUnix() method described above.

See figure 4.11 for the val idateTime() method.

public functicn wvalidateTime ()

{

fresult ="";
sresponse = arrav()s

f3electedDate = self::timeTolUnix($this->start_time, "H'):

selectedDate 17:00:00";
e

sclosingTime = &

fopeninglime = "sa3electedDate 09:00:007;
sclosingTimelnix = self::timeTolUnix ($closingTime, 'U");
fopeningTimelnix = self::timeTolnix(fopeninglime, 'U"):
snow = time();

scurrentDate = splitDateTlime ($now, 'date'):

if({#this->3tart_time < Sopeninglimelnix)
{

sresult = "selected time is too early™:
1

if({sthig-»start_time > fclosingTimelUnix)

——

Sresult = "we have closed for today™:

response['msg'] = $result;
f{#result == "")

el

|
=

fresponae['status’']
lelse|
Sresponse['status'] = 0;

}

return $reaponse;

1

Figure 4.11 val idateTime method

37

After this conversion, the PHP time() function is used to generate the current Unix timestamp. There are
different ways to generate the current Unix timestamp in PHP. One way to do this is to use the
S _SERVER['REQUEST_TIME'] variable which returns the Unix timestamp with microsecond precision at the
start of an HTTP request. Another method is to include ‘U’ as an argument in the format parameter
string of a date() function. However, since there is no need for microsecond precision in the booking

system and the date() function is time zone dependent, the time() function was chosen.

In general, to check if the time selected by the customer is valid (that is, not earlier than 9:00AM or later
than 05:00PM), the Unix values of the opening and closing times are compared with the customer’s start
time. If the time selected by the customer is valid, the validateTime() function returns a 1 and vice

versa.

4.3.3 validateBooking() Method
Every time a customer tries to make a booking, the system uses the validateBooking() method to
check the database to confirm whether the timeslot selected by the customer has not been booked by

another customer.

public functicn validateBooking() |
£link = dbconnect():

fresult = "";
fquery = "select * from booking where start_time <= "§this-»start_time’
gnd end time > '$this-»>start_time' and product id = '$this->product_id'™;

fgresult = mysgli_query($link, Squery):
dbdisconnect {$1ink) ;
if{&gresult)

{

if (my3gli_num rows ($gresult)

= "0")

sresult = "0";

return fresult;
lelse

(result = "1";

return sresult;

H

}

Figure 4.12 val idateBooking method

38

If the timeslot has not been booked, the method returns a ‘0’ and the addBooking() method is called to
save the booking in the database. However, if the timeslot has been booked, the validateBooking()

method returns a ‘1’ and calls the scheduleBooking() method, described in section 4.3.4

At the initial stage of development, the validateBooking()method was implemented by using a SQL
SELECT statement that compared the start and end times of bookings already stored in the database
with the current customer’s start and end times, to prevent the timeslots allocated to customers from
overlapping. However, after testing this method, it was discovered that the SQL statement was not
efficient enough to determine which timeslots were available and vice versa. Consequently, this allowed

different customers to book the same timeslot.

To resolve this issue, the product IDs were included in the SQL statement. This was a good choice as the
product IDs uniquely identified cameras that have been reserved and those that are currently available
in the database. With this solution, the validateBooking() method was able to prevent timeslots

allocated to customers from conflicting with each other.

4.3.4 scheduleBooking() Method
The scheduleBooking() method is responsible for generating the list of all the remaining timeslots
available in a day. In addition, it manages the scheduling processes of the cameras, including tracking

the status of each camera and assigning them to customers.

By default, the method takes a ‘B’ argument and works as the scheduler that handles customer
bookings. Moreover, in order to take advantage of code reusability, the method has also been
implemented as the scheduler that handles the priority queue, discussed later in section 4.4. In this case,

it takes a ‘Q’ argument.

39

public functicn scheduleBooking{stype = "B")

{
£link:
fresult ="";
£list[][] = array():
Z3tep = sthis->duration;
fxdate startTime = "05:00:00";

gxdate_endTime = " 05:00:00 BM";

gxdate = self::timeToUnix(sthis-»3tart_time, "H");
gfullDateTime3tart = sxdate.$xdate startTime;

£fullDateTimeEnd = sxdate.sxdate endTime;

sunixfullDateTimeStart = self::timeToUnix{sfullDateTimeStart, "U");
funixfulllateTimeEnd = self::timeTolUnix{$fulllateTimeEnd, "U");

scount = 0;

Figure 4.13: Code snippet of the scheduleBooking method

To implement the scheduleBooking()method, a multi-dimensional array had to be created first. This
array is essential because it is used to store the list of all the reserved and available timeslots for a

particular day.

After creating the array, the date selected by the customer was appended to the predefined start and
end times. The values resulting from this concatenation was then converted to the Unix timestamp using
the timeToUnix() method, as they will be used in the while loop to generate the list of available

timeslots.

The last step involves executing a while loop. More specifically, as long as the while loop test condition
evaluate to true, a list containing all the timeslots available for the rest of that day, as well as the ones
that have been reserved will be generated dynamically. In addition, the list also contains a new booking
object that was created because the initial booking object that was passed into the scheduleBooking()

method had already expired.

40

while{(sunixfullDateTimeStart < SunixfullDateTimeEnd)

{
scheckBookingTime = new Booking():
fcheckBookingTime->start time = SunixfulllateTimeStart;
fcheckBookingTime->product_id = #this->product_id;
s3tatus = ScheckBookingTime->validateBooking();
f(3tatuslime = &checkBookingTime->validateTime();

if{&statusTime['status'] == "1")

{
slist[Scount] [0] = date("d-m-Y g:ik", funixfullDateTimeStart);
£list[Scount] [1] = £3tatus;
slist[Scount] [Z2] = SunixfullDateTimeStart;

}

sunixfullDateTimeStart = sunixfullDateTimeStart + $step;
fcount ++;
}
!

return £list: }

Figure 4.14: While loop for booking

4.4 Queue Class
The queue class contains methods that support priority queuing, which has been implemented as an

alternative to booking in the booking system.

In order to include priority queuing in the booking system, some assumptions were made regarding the
business logic of the system after reviewing the requirements specification obtained from Digital
Barriers. The first assumption that was made is that the booking approach will be used by customers to
reserve timeslots and during these timeslots, a salesman will be required to demonstrate the capabilities
of a particular camera to them in person. On the other hand, the queuing approach will be used by
customers that want to view a demonstration video stream that would allow them to test the camera’s

functionalities by taking control of the PTZ (Pan, Tilt and Zoom) control of the camera remotely.

Based on these assumptions, the booking and queuing functionalities were initially implemented
separately such that a customer will have the choice to either book a timeslot or join the waiting list to
gain access to a specific camera’s demonstration video stream. However, after testing this, it was
discovered that the timeslots that had just been allocated to customers (using the queuing approach)

did not fit between timeslots that were booked earlier and this caused conflicting timeslots.

41

Thus, to overcome this challenge, the booking and queuing functionalities had to be integrated. The first
step towards achieving this was to normalise the booking and queuing tables in the database to ensure
that information about requests made by different customers to view demonstration video streams of
all cameras can be stored in the booking table. With these information, the scheduleBooking()
method was able to easily check the availability of cameras that have been requested by each customer

before granting access — to avoid conflicting timeslots.

In addition, the queuing functionality had to be programmed to accept only timeslots in the hours

between 9:00AM and 5:00PM on weekdays. The following code snippet shows how this restriction was

enforced.
ftimestamp = time();
sdw = date{ "w", Stimestamp);
if{édw == 0 or sdw == &)

{

$officeStatus = "CLOSED™;
}
stoday = timeToUnix{stimestamp, "H'");
stodavFullDateStart = $today.™ 09:00:00";
f$todayFullDateEnd = $today. ™ 17:00:007;
stodayFullDateStartlUnix = timeTolUnix ($todayFullDateStart, "'U");
fttodayFullDateEndlUnix = timeTolUnix ($todayFullDateEnd, "U");
if{{étimestamp < StodayFullDateStartUnix) cor (stimestamp > $todayFullDateEndlUnix))
{

fofficeitatus = "CLOSED";

}

Figure 4.15: Restrictions on the queuing approach

4.4.1 How the Priority Queue Works
Once a customer clicks on the ‘View Demo’ button in the queue form, a PHP script embedded in this

form creates a new booking object to hold the product and duration entered by the customer.

After this, the PHP script (shown in Figure 4.16) stores the current Unix timestamp obtained from the
PHP time() function in a variable, converts the duration selected by the customer to seconds and then it

calls the EndTime() method to calculate when the customer’s timeslot will end.

42

St=time ()

sxBooking->start_time = 5t;

sxBooking->duration = $xBooking-»booking duration * &0;
txBooking->EndTime () ;

s¥Booking->username = £ SESSICH['current user'];
scheckTime = $xBooking->validateTime();
1£{{sxBooking->validateBoocking () == "0")
{
sresult = sxBooking-raddBooking (5_3E3SICN['current user email']);
}
l3e

=

£list = sxBooking-»scheduleBooking("Q");
if{count (£1list) > 0)
{
£list = Trimbrray(slist);
if{(lempty{$1ist[1]))
{
sxBooking-»start_time = $1ist[l][2]:
txBooking->{ueueldptimization () ;

txjueue = new Queue();

swaitingTime = sxQueue->getEstimatedWaitingTime ($xBoocking-»start_time);

—y

fwaliting = $xQueue->getEstimatedPosition($xBooking-»atart_time, $xBooking->product id):
—

}

Figure 4.16: Code snippet of the queuing form PHP script

Now, with all these parameters, the PHP script proceeds to call the validateBooking() method to
check if the timeslot that will be allocated to the customer has not been booked (or queued for) by
another customer. If the timeslot is available, the PHP script calls the addBooking() method to save

details in the booking table, just like it is done when a customer books a timeslot.

In addition to this, immediately after the booking details have been saved in the booking table, a newly
created queue object calls on the addQueue() method (see Figure 4.17) to save the details in the queue
table. The addQueue() method helps to further ensure that the timeslots allocated to customers
through the queuing functionality do not coincide with the timeslots already reserved by customers who

made use of the booking functionality.

functicn addfueue ()
{
£link;
£link =dbconnect();
fgresult = my3sgli query($link, "insert into queue (username, product id, booking id)
walues ("sthis->username', 'Sthis->product_id"', "$this->booking id"}"™):
!

Figure 4.17: addQueue method

43

Afterward, a countdown timer which represents a demonstration video stream begins to countdown.
Due to the fact that there was limited support from Digital Barriers, it was not possible to interface the
booking system’s backend to the TVI server that contains the demonstration video stream. Therefore
this had to be simulated by using a jQuery countdown plugin developed by Wood, (2014) to count down
in hours, minutes and seconds, depending on the duration chosen by the customer. See Figure 4.18 for

the jQuery code snippet handling the countdown timer.

fresult = SxBoocking-raddBooking (5 _SESSICH['current user email']);
if{$result == "Successful")

f

fdemofctive = true;
fend_time = $xBooking-rend time;
$dt = new DateTime ("Efend time");

fend time = &Sdt->formet('Y¥, m, 4, H, i, 3"):
£3TRA = explode(', ', #end time);

£3TA[l] = &3TA[1]-1;

£3TA[1l] = "0".%3T&[1l]»

§3TA[3] = &3TA[3]+1;:

tmessage = "<div id="defaultCountdown'></div:";
>

<acript language="JavaScript"»
({function () {

var TimeDown = new Date();

TimeDown = new Date (<?php echoc "§sTA[O0]™.™, ™. "&sTA[1]"™."™, ™. "&sTA[Z]".",
. M"EsTA[3I]".", ". TesTR[4]": =):

S({"#defaultCountdown") .countdown ({until: TimeDown, format: "dHMS'}):

(" "#year").text (TimeDown.getFullY¥ear(})

b

<Lf3cript>

Figure 4.18: PHP script handling countdown timer

Moreover, if the timeslot is not available, the scheduleBooking() method’s code segment for handling
the queuing functionality (shown below in Figure 4.19) will generate a multi-dimensional array that
contains a list of all the reserved and available timeslots from the current time of the day till the closing

time.

44

if{stype == 'Q")
{
snow = time();
while{snow < sunixfullDateTlimeEnd)
{
scheckBookingTime = new Booking():
fcheckBookingTime->start_time = funixfullDateTimeStart;
fcheckBookingTime->product_id = $this-»product_id;
fcheckBookingTime->»start_time = fnow;
f3tatus = ScheckBookingTime->validateBooking():;
s3tatusTime = scheckBookingTime->validateTime () ;
if{&status == 0)

{

slist[scount] [0] = date('d-m-Y H:i:3"', Snow);
£list[$count] [1] = &£atatus;
slist[scount] [Z2] = &now;

!
tnow = (now + S3atep:
scount ++;

1

Figure 4.19: While loop for queuing approach

Since the queuing functionality is meant to automatically allocate a timeslot to each customer based on
the duration selected, the next step will involve calling the trimArray(Qmethod to remove the empty

arrays containing reserved timeslots from the list. See Figure 4.20 for the trimArray(Qmethod.

functicn Trimbrray($Ssourcelrray)
{
sdestination = arrav()r
foreach (§sourcelArray a3 Srow)
{
if{lempty({srow))
{

array_push(sdestination, Srow):

}

return sdestination;

Figure 4.20: TrimArray method

Once the empty arrays have been removed, the QueueOptimisation() method (shown in Figure 4.21)

will automatically select the closest available timeslot (if any) for the customer.

45

public functicn ueuelptimization()
{
£link ="";
£1ink = dbconnect():
fquery = "select max(end_time) &s end time from booking
where end_time <= $this->start_time and product_id = $this-»product_id";
ggresult = myagli guery($link, Squery);
if {sgresult)
{
fdummyirr = my3gli fetch assoc(fgresult);
fthis-»start_time = SdummyArr['end time'];
tthis->EndTime ()
}
}

Figure 4.21: QueueOptimisation method

Thereafter, the system calls the getEstimatedPosition() method to display the number of customers

currently on the queue (if applicable). See Figure 4.22 for the getEstimatedPosition method.

function getEstimatedPosition ($3tartTime, fproduct_id)
{
fresult = "";
fnow = time();
£link = "";
£link = dkconnect():
squery = "select count(*) as waiting from booking where
end time > "fnow' and start _time « '#startlime' and product id = 'fproduct_id'";
sgresult = myagli query(slink, sguery):;
if{sgresult)
{
gresult = (myagli fetch assoc(fgresult));
sresult = sresult['waiting']:
return sresult;
!
!

Figure 4.22: getEstimatedPosition method

Furthermore, the system calls the getEstimatedwaitingTime() method to display how long the
customer will have to wait on the queue if he/she decides to join the queue. In order to display an
accurate wait time, a jQuery code (shown below in Figure 4.23) similar to the one used to generate the

countdown timer described earlier was implemented.

46

txfueue = new Queue();
fwaitingTime = fxQueue->getEstimatedWaitingTime (sxBooking->start _time);
if{fwaitingTime)
{
if{fswaitingTime < 0){
header{"location: dqueuns.php™): 1}

f3tartTime = $xBooking-»start_time;
$dt = new DateTime ("EéstartTime");

fatartTime = &dt->format('¥, m, 4, H, i, a")r

£3Th = explode(',", s3tartlime);

£3TA[1l] = £8TA[1]-1:

£3TA[1l] = "0".&3TA[l]:

$3TA[3] = #a3TA[3]+1;

tmessage = "Next Available time is in $waitingTime

"
P

<div id="defaultlountdown'></div>
 Would vou like to join the dqueus?
s

<script language="JavaScript">
S{function () {
var TimeDown = new Date() ;s

TimeDown = new Date (<?php echc "£sTA[O]™.™, ™. "&sTA[l]".™, ™. ™"sgsTalz2]".",
"o "EEIRA[I]™.M, M. “ESTR[4]M: Y=)

({"#defaultCountdown') .countdown {({until: TimeDown, format: "dHMS'1);

(" "#vear').text (TimeDown.getFullYear ()),

bz

</f3cript>

Figure 4.23: Estimated waiting time PHP script

functicn getEstimatedWaitingTime ($startTime)
{
fresulc;
now = time();
fresultlime = S3tartTime - $now;
sresult = secondsTolime (SresultTime);
return Sresult:

Figure 4.24: getEstimatedWaitingTime method

After this, the estimated waiting time was calculated by simply converting the difference between the
current Unix timestamp and the start time of a customer to seconds using the

secondsToTime()method. See Figure 4.25 for the secondsToTime() method.

47

functicn secondsToTlime ($33)
{
gm = "": £h = "": &d mwa g "
£3 = £33 % a0;
if{{fleor({($33%3600) /a0)>0))
{
tm = floor{{$33%3a00)/fa0);
Zm = &m." minutes:";
!
if(floor((533 % E6400) J 3a00)>0)
{
th = floor{{$3s % 26400} J 3&800);:
$#h = $h."™ hoursz:";
!
if{(flocr ({533 % 2592000) J Bod00)>0)
{
£d = floor{{$3s % 2592000) / Be400);
$d = £d4. " days:":
!
if{(floor{sas / 2592000) >0)
{
sM = floor{$ss / 2592000);
(M = £M."™ months:™;
!
sresult = "M 54 fh sm $3 seconds™;
return Sfresult:
!

Figure 4.25: secondsToTime method

Finally, if the customer eventually decides to join the queue, the addBooking() and addQueue()

methods are invoked to save the details in the booking and queue tables, respectively.

The source code of the booking system have been included in a CD attached to this report. In general,
having discussed the detailed design of the booking system’s back-end, the next chapter goes on to

describe the testing process that was carried out to validate the booking system.

48

Chapter 5

Validation

This chapter describes the type of tests that were carried out to verify that the booking system conforms

to the functional requirements specified in the System Design chapter.

5.1 Test Strategy
Prior to testing the booking system, a test plan was created to identify the scope, approach, and
schedule of intended test activities. This test plan defined the series of tests that was conducted to

verify that the booking system satisfies the specified functional requirements.

After this, a decision was made to manually test the main methods the booking system uses for booking
and queuing using white-box testing techniques. It is important to note that although validation could
have been carried out with automated testing tools, manual testing was chosen because it is more
effective in identifying usability issues and trivial bugs that cannot be easily discovered by running
automated test scripts. Moreover, while white-box and black-box testing techniques are important and
can be used to identify different types of bugs in a software, white-box testing was deemed appropriate
and selected because it provides a degree of sophistication that is not available with black-box testing;
which is the opportunity to manipulate the internal logic and structure of the source code that makes up
a software to determine if the software works as expected rather than finding errors in the external

behaviour of the software.

In order to test the main methods of the booking system (which includes the timeToUnix(),
scheduleBooking(), addBooking(), addQueue() and cancelBooking() methods, respectively), test
cases were defined based on the specified functional requirements. Each test case contained the name
of the method being tested, the feature it is being tested for, the conditions before and after testing the
method, the expected result, as well as the actual result of the test. Afterward, each of these methods
were run with predetermined input values and checked to make sure that the actual outputs produced

are similar to the predicted outputs.

The first step towards testing the booking system was to ensure that the timeToUnix() method
can convert the dates and time entered by a customer to the Unix timestamp and vice versa. This test

case is called UNITO1 and is shown below in Table 5.1.

49

Test ID

UNIT 01

Unit to Test

Method: timeToUnix

Objective

To test if a specific date and time can be converted to the Unix timestamp

Pre-condition

Date and time exists in standard format

Post-condition

Date and time is converted to the Unix timestamp

Expected Result

Date and time is converted to the Unix timestamp

Actual Result

Success

Table 5.1: Result of testing timeToUnix method

The second unit test, UNIT 02 confirms if the scheduler can generate the list of timeslots available in a

particular day.

Test ID UNIT 02
Unit to Test Method: scheduleBooking
Objective To test if the list of available timeslots can be generated by the scheduler

Pre-condition

Available timeslots are not shown on the web page

Post-condition

Available timeslots are shown on the web page

Expected Result

Available timeslots are shown on the web page

Actual Result

Success

Table 5.2: Result of testing scheduleBooking method

The next logical step was to test whether the booking made by a customer is stored in the database

through the addBooking() method. This unit test, called UNIT 03 is shown in Table 5.3.

Test ID UNIT 03
Unit to Test Method: addBooking
Objective To test if a booking can be stored in the database

Pre-condition

Booking details does not exist in the database

Post-condition

Booking details are stored in the database

Expected Result

Booking details are stored in the database

Actual Result

Success

Table 5.3: Result of testing addBooking method

50

After verifying that the addBooking() method functions properly, the addQueue() method was tested

to check if the booking made by a customer will be added to the priority queue. The test case is shown

in Table 5.4
Test ID UNIT 04
Unit to Test Method: addQueue
Objective To test whether a new booking is added to the priority queue
Pre-condition Booking details are not included in the queue
Post-condition Booking details are included in the queue
Expected Result Booking details are included in the queue
Actual Result Success

Table 5.4: Result of testing addQueue method

The last unit test, shown in Table 5.5 checks whether bookings made by customers can be deleted from

the database using the cancelBooking() method.

Test ID UNIT 05

Unit to Test Method: cancelBooking

Objective To test whether a booking can be removed from the database
Pre-condition Booking details exist in the database

Post-condition Booking details does not exist in the database

Expected Result Booking details does not exist in the database

Actual Result Success

Table 5.5: Result of testing cancelBooking method

Based on the results of the unit tests conducted, it was discovered that all the test cases executed

achieved 100% method and statement coverage, respectively.

After these unit tests, integration tests were conducted. During the integration testing stage, all the
methods were combined and tested to evaluate the interaction between them. This was necessary to

ensure that the new methods work properly when they are integrated with existing methods and

51

conformed to the functional requirements of the system. Similarly, regression tests were carried out
throughout the development cycle to verify that new modifications (such as bug fixes or enhancements)

that have been made to the code did not introduce faults in any previously-working code.

In general, the results obtained from the series of white-box tests that were conducted have showed
that the booking system conforms to some of the functional requirements highlighted in the System
Design chapter. However, it is important to emphasise that due to time constraints, these tests are by
no means exhaustive. Moreover, if there were enough time allocated for the project, further tests would
have been carried out to rigorously verify the booking system. In addition, good software engineering
strategies, such as equivalence class partitioning and boundary value analysis would have been
employed for writing test cases that will increase the chances of uncovering as many bugs as possible in

the booking system.

52

Chapter 6

System Evaluation

This section discusses the evaluation of the booking system. It highlights the processes that have been

followed in assessing the system’s performance and usability.

6.1 Performance Evaluation
In order to identify an appropriate approach to scheduling in the booking system, the booking and
queuing algorithms of the system had to be evaluated against a set of performance criteria, notably

waiting time, response time, and throughput.

Here, the waiting time represents how long a customer’s request will have to wait in a queue before
being processed by the scheduler while the response time indicates the average time in milliseconds the
scheduler spends in processing a request for service. Similarly, the throughput represents the number of
requests that can be processed by the scheduler per unit of time. These parameters are essential, as the
primary objective of the research is to evaluate the efficiency of the practical approaches to resource

scheduling in online booking systems.

There are different load testing tools that can be used to measure and analyse the performance of the
booking system. An example is the Apache JMeter which is an open-source software that is designed to
load test different types of software — with a focus on web applications. In addition to the fact that the
JMeter can be used to test the performance of both static and dynamic resources such as ASP.NET, PHP
and Java files, etc., it can also be used to assess the overall performance of servers and networks under
different workloads. However, having considered the fact that JMeter is limited in terms of reporting
capabilities and that it does not perform all the actions supported by web browsers, such as executing
the JavaScript found in HTML pages, BlazeMeter was chosen as the appropriate load testing tool to

evaluate the performance of the booking system.

In essence, BlazeMeter is a cloud-based load testing platform that is used to perform load testing on
mobile applications and websites. It is capable of emulating hundreds of concurrent virtual users to
apply accurate workloads to any application. As BlazeMeter drives load against the application from load

generators in the cloud, it captures the waiting and response times, throughput and processor utilisation

53

rate, etc. of business processes and transactions to determine whether the application can meet

performance requirements.

Moreover, to determine the baseline performance of the algorithms that support the booking and
queuing functionalities of the system, two load tests had to be executed and in each of these load tests,
the number of concurrent virtual users trying to book or queue for a particular camera was set to 50.
The number of concurrent users was limited to 50 because the free subscription to BlazeMeter that was
used allows a developer to load test a website and/or mobile application with a maximum of 50

concurrent users.

6.1.1 Load Test 1

During the first load test, the booking functionality of the system was subjected to heavy workloads
generated by 50 virtual users trying to book a specific camera at the same time. Here, workload refers to
the stimulus applied to simulate a usage pattern and it includes the total number of concurrent users,
data volumes, and transaction volumes, along with the transaction mix. The result obtained from the

load test is presented in Appendix E.

Based on the results of this load test, it was discovered that as the number of users increase, the
response time also increases. This clearly shows that the number of users trying to make a booking at
the same time directly affects the speed at which each user is able to access and interact with the

booking system. This trend is shown in the graph below:

300
250
200

150
Response Time

Time
(milliseconds)

100 Waiting Time

50

0 5 10 15 20 25 30 35 40 45 50 55
Number of Concurrent Users

Figure 6.1: Response time and Waiting time vs number of concurrent users — (booking)
54

The response time peaks at 259.8 milliseconds when there are 50 concurrent users using the booking
system. In general, with response time being an important parameter that affects the user experience of
a website, a response time of 259.8 milliseconds was deemed appropriate, as this indicates that in ideal
scenarios each user will not have to wait for more than 259.8 milliseconds before the scheduler

processes their request.

Moreover, just like the response time of the booking functionality of the system has been observed to
increase with larger number of concurrent users, the waiting time and the throughput of the system also

increases in a similar way. See Figure 6.2 for the graph of throughput vs user load.

200

180

Juny
D
o

[N
S
o

[Eny
N
o

80

60

Throughput
(Requests per Second)
=
o

40

20

0 5 10 15 20 25 30 35 40 45 50 55
Number of Concurrent Users

Figure 6.2: Throughput vs number of concurrent users — (booking)

6.1.2 Load Test 2

In this second load test, the queuing functionality of the system was also subjected to the same amount
of workload generated by 50 virtual users, although this time the users were trying to queue to access a

specific camera for 30 minutes. The result obtained from this load test is presented in Appendix E.

From the results of this second load test, it was discovered that as the number of user increases, the

response time increases rapidly. This trend is depicted in the graph below:

55

4500

4000

3500

3000

2500

—@— Response Time

2000 —@— Waiting Time

Time
(milliseconds)

1500
1000

500

0 5 10 15 20 25 30 35 40 45 50 55
Number of Concurrent Users

Figure 6.3: Response time and Waiting time vs number of concurrent users — (queuing)

By observing this graph, the response time starts with a gentle rise and linear growth for low to medium
levels of workload. However, with an increase in the number of concurrent users trying to queue for the
same camera, the number of requests processed by the scheduler increases and as a result, this causes
the response times of the system to increase. The peak response time is 3693.87 milliseconds
(compared to 259.8 milliseconds for booking) and this is recorded when the number of users increases
to 50. At this point, there will be slight delays with regards to the time taken to receive full response

from the server.

Similarly, as the scheduler becomes busier due to an increase in the number of requests that needs to
be processed, the waiting time increases accordingly in a non-linear fashion. As a matter of fact, the
busier the scheduler is, the more dramatic the response time will increase. This abrupt increase in the

response time is caused by increases in the waiting time and this affects the user experience.

56

It is important to note that the sudden increase in response time for the queuing functionality can be
partly attributed to the fact that for a particular user to be able queue for a camera, the system must
first call the timeToUnix() method to convert the start and end times selected by the user to the Unix
timestamp. Thereafter, the validateBooking() method is called to check if the time selected by the
user has not been reserved by another user. If the time is available, the system calls the addBooking()
and addQueue() methods to save the details in the database and include the user on the queue,
respectively. After all these methods have been called, the system will now call the method that handles
the countdown timer, to simulate a demonstration video stream. Indeed, all these method invocation
adds to the time it takes the scheduler to process each user request and the response time is further

affected when there are more users trying to queue for a particular camera at the same time.

Moreover, based on the results of the second load test, the rapid increase in response time also causes

an increase in the throughput of the system. This trend is shown in the graph below:

450
400
350
300
250
200

150

Throughput
(Requests per second)

100

50

0 5 10 15 20 25 30 35 40 45 50 55

Number of Concurrent Users
Figure 6.4: Throughput vs number of concurrent users — (queuing)

From this graph, it was observed that as the user load is increased, the throughput increases accordingly
up until a certain point (when the number of users reaches 24) where the throughput levels out before
increasing abruptly again. Although throughput rate will vary depending upon the number of concurrent
users and the type of activity the user performs, the levelling out of the throughput indicates that the

scheduler has reached its capacity to process customer’s request, and is unable to scale further.

57

6.1.3 Summary of Results

Basically, booking and queuing have been implemented as two different and mutually exclusive
approaches to scheduling in the booking system. From the load testing that was carried out, it has been
discovered that booking is more efficient than queuing. This is because users are able to make bookings
within a predefined timeslot that could either be of 30- or 60-minute duration. In addition, the booking
functionality of the system is very scalable, as it can handle additional workload without adversely

affecting the system performance.

On the other hand, the queuing functionality has increased waiting and response times because users
are dynamically allocated a timeslot based on the remaining timeslots available for the rest of the day.
And because the system has to invoke some methods to check the availability of each timeslot to
accomplish this, this makes the queuing algorithm somewhat inefficient when compared to the booking

algorithm.

The result of this performance evaluation correlates with the empirical evidences presented in Orduna
and Garcia-Zubia, (2011); and Lowe, (2013). According to Ordufia and Garcia-Zubia, (2011); and Lowe,
(2013), the performance of the booking or queuing approach to scheduling depends mainly on a number
of factors such as the scheduling algorithm, the number of concurrent users, the number of available

resources, and the duration chosen by each user.

In the course of this performance evaluation, it has been observed that with the booking functionality,
as the number of concurrent user increases, the response time increases faster, compared to the waiting
time. On the contrary, if the queuing functionality is used and there are 15 concurrent users for example
waiting to access a particular camera for 30 minutes, then the last user on the queue will have to wait
for approximately 0.60 seconds, which is acceptable. However, if there are 50 concurrent users, then the
last user will have to wait for approximately 4.0 seconds. While this waiting time may not have a fairly
significant effect on the user experience, it can be inferred that when the number of concurrent users
increases above 50, the waiting and response times will increase significantly and consequently, the user
experience would be affected. This makes it evident that there can be complex interdependencies
between booking and queuing that can affect the optimisation of resource usage when they are

combined in a single system.

58

In general, both the booking and the queuing functionality of the system have been able to optimise the
overall usage of the cameras and all of the key performance indicator values (such as the values for
waiting time, response time and throughput) are within acceptable limits of the set performance
thresholds. It is also important to emphasise that the CPU utilisation rate of the application server never

exceeded 60 percent while performing the load tests.

6.2 User Evaluation
The primary aim of conducting user evaluation is to assess the usability of the booking system. To

achieve this, ethical approval of studies had to be obtained first.

After this approval was obtained, five MSc students from the Department of Computer and Information
Sciences (CIS) were recruited as participants via an email invitation (shown in Appendix F) to carry out
the evaluation. The decision to limit the sample size for the usability test to five people was made on the
basis of the findings and discussions in Turner et al (2006), which emphasised that most usability
problems are detected with the first three to five users, and subsequently testing with more users is
unlikely to reveal new usability issues. Moreover, given the importance of usability testing in software
development, participant selection was limited to students from the CIS Department because the
researcher believes that computer science students are more familiar with usability heuristics for user
interface design and consequently, would be able to identify any usability problems in the booking system

than other university students.

In line with the requirements of the University Ethics Committee, participants were advised prior to
evaluating the system that all data would be anonymised and that they have the right to withdraw from
the study at any time, without having to give a reason and without any consequences. They were also

advised on how the data collected would be stored, processed and destroyed.

After satisfying these requirements, each participant was given a participant information sheet that
contained a set of instructions (outlined in Appendix G) on how to use the booking system to perform
some tasks. On completion of the tasks outlined in the information sheet, the participants were asked to
fill out a questionnaire administered online through SurveyMonkey® (see Appendix H for the user

evaluation questionnaire).

59

6.2.1 Questionnaire Design

The questionnaire includes two standard demographic questions (about age and gender), two open-
ended questions about any problem encountered while a participant was using the system and any
suggestions that could improve the system, as well as ten questions from the System Usability Scale

(SUS), described in sub-section 6.2.1.1

In formulating the survey questions, the suitability of open- and close-ended questions were considered
and a decision was made to limit the use of open-ended questions. More specifically, while open-ended
questions give respondents the freedom to express their opinions, answers to open-ended questions are
difficult to code and analyse, compared to close-ended questions. In view of this, more close-ended
questions were included as they are particularly useful when trying to prove the statistical significance of
a survey’s results and most importantly, the fact that the responses obtained from close-ended

questions can be used to categorise respondents into groups makes it easier to compare the responses.

Furthermore, the demographic questions were included in the questionnaire to help determine what
factors may influence a participant’s answers and opinions and also to cross-tabulate and compare the

survey data across multiple demographics.

6.2.1.1 System Usability Scale
The System Usability Scale (SUS) is the most popular standardised usability questionnaire for measuring
the perceived usability of a system (Sauro and Lewis, 2011). It consists of ten Likert items on a five-point

scale ranging from Strongly Disagree to Strongly Agree.

The odd-numbered items are positively-worded while the even-numbered items are worded negatively.
This positive and negative wording helps to minimize acquiescence and extreme response biases. In
essence, while acquiescence bias occurs when respondents to a survey passively agree with all questions
in the questionnaire, extreme response bias occurs when respondents select only the most extreme
options or answers available (Vaerenbergh and Thomas, 2013). When these biases occur, the affected
responses often lead to errors while analysing the questionnaire data and these errors can have a large

impact on the validity of the survey.

It is important to note that while other questionnaires such as the Questionnaire for User Interaction
Satisfaction (QUIS) and the Computer System Usability Questionnaire (CUSQ) could have been used to

60

assess the booking system’s usability, the System Usability Scale was deemed appropriate and selected
because it measures both learnability and usability, yields more reliable results across sample sizes and
has been shown to detect differences in smaller sample sizes than other usability questionnaires (Sauro,
2011). After analysis, SUS questionnaire results yield a score between 0 and the 100th percentile and

this represents a composite measure of the overall usability of the system being studied.

6.2.2 Analysis and Results

Before the questionnaires were analysed, all responses to the negatively-worded questions had to be
reverse-scored with SPSS. Reverse-scoring the negatively-worded questions ensure that all of the
guestions — those that are originally negatively-worded and those that are positively-worded — are
consistent with each other, in terms of what an “agree” or “disagree” imply, for instance. After this was
done, the System Usability Scale score of each respondent was calculated using the scoring strategy

highlighted in Brooke, (2013).

Based on this scoring strategy, each item can have a score that ranges from 0 to 4. While the score
contribution of the positive worded items is obtained by subtracting 1 from the scale position, the score
contribution of the negatively worded items is obtained by subtracting 5 from the scale position. The

overall value of the SUS is then obtained by multiplying the sum of the scores by 2.5

With the entire sample size, all the completed questionnaires indicated that the usability of the booking
system was satisfactory and in general, the average SUS score obtained from these questionnaires after
converting the SUS score of each questionnaire to a percentile rank was a 68. See Table 6.1 for the

results of the usability study.

61

>3 18 2.0 2o |2
% | & $ el 2o | Z
S 3 a w PP g » o
h A a 3 & =
Likert Items a
0 0 0 3 2 5
| think that | would like to use the system frequently
3 1 0 1 0 5
| found the system unnecessarily complex
0 0 0 2 3 5
| thought the system was easy to use
| think that | would need the support of a technical person 3 2 0 0 0 g
to be able to use the system
| found the various functions in the system were well 0 1 1 3 0
integrated
1 2 2 0 0
| thought there was too much inconsistency in the system
| would imagine that most people would learn to use the 0 0 0 4 1
system very quickly
1 2 1 1 0
| found the system not very intuitive
0 0 0 3 2
| think the system response time is satisfactory
I needed to learn a lot of things before | could get going 3 2 0 0 0
with the system

Table 6.1: Responses to the System Usability Scale questionnaire

62

Overall, how would you rate the
user-friendliness of the system?

Answered: 5 Skipped: D

Very good Good Fair Poor Very poor

Figure 6.5: User-friendliness of the system

6.2.3 Observations

The feedback received from participants about the user interface design was positive. All participants
were able to navigate within the booking system, and most commented that the navigation choices are
logical and intuitive. In addition, the participants highlighted that information on the website was
presented in a simple and logical order. However, three participants emphasised that the information
density on the booking and queuing forms were relatively low and recommended that the additional

form fields should be added to these forms.

In general, results gathered from the survey shows that the booking system is responsive, easy to use
and has a consistent, clearly recognizable look and feel that will allow users to accomplish their tasks in a
reasonable amount of time without unnecessary cognitive load — although there are still some

improvements that can be made to the booking system to make it more user-friendly.

63

Chapter 7

Conclusion and Recommendations

This chapter concludes the dissertation by providing a summary of the project and the application
developed. In addition, it discusses how the objectives of the research, outlined in chapter 1 were
achieved. Finally, the chapter highlights the limitations on the project and some suggestions for future

work.

7.1 Conclusion

The purpose of this project has been to identify an appropriate methodological approach to implement
scheduling in an online booking system. To achieve this, the research involved reviewing existing works
related to scheduling in order to acquire comprehensive understanding of the practical approaches that

can be used to schedule resources in online booking systems.

From this background study, it was discovered that most of the scheduling systems typically supported
either booking or queuing, though rarely both, for scheduling access to resources. Moreover, as there
was no justification in the research literatures for using only booking or queuing for resource scheduling,
the possibilities of integrating both approaches to leverage their benefits in a booking system was

explored.

To achieve this, an experimental web-based booking system was developed. This booking system allows
customers to book cameras using the booking functionality and also included the queuing functionality
to allow a customer queue to access a particular camera demonstration video stream on an ad-hoc
basis. Based on the results obtained from the unit and integration tests performed, it was discovered
that both the booking and queuing functionalities of the system ensure that customers have exclusive
access to the cameras requested within the timeslots specified, in a way that optimises the overall usage
of each camera. In addition, usability testing was also performed to gather the data needed to evaluate

how usable the system is and if it contains the required functionality.

Finally, in order to determine the most suitable approach to scheduling, the performances of the
booking and queuing functionalities of the system were evaluated through load tests. Based on the

results of the load tests, the queuing functionality was found to be somewhat inefficient when there are

64

more concurrent users trying to access the same camera, compared to the booking functionality. This
makes the booking functionality more appropriate for scheduling in the context of this project.
However, with certain modifications to the queuing algorithm, the efficiency of the queuing functionality

could improve.

In general, the results of this research have shown that the booking and queuing approaches to
scheduling have their relative merits and demerits and that they are typically suited to different usage
scenarios. Moreover, the results have also highlighted that the choice (and performance) of any
scheduling approach depends on a number of factors which includes the scheduling algorithm, the

number of concurrent users, the available resources, and the usage duration of each user.

7.2 Limitations

In the course of developing the booking system, it was not possible to connect the booking system’s
backend to a TVI server that contains demonstration video streams. This is due to the fact that there was
limited support from Digital Barriers. Therefore, in order to implement the queuing functionality of the

system, a jQuery countdown timer had to be used to simulate the video stream.

7.3 Learning Outcomes
By completing this project, the researcher has been able to:
1. Acquire a comprehensive understanding of the practical approaches to scheduling in the context
of online booking systems.
2. ldentify an appropriate methodological approach to implement scheduling in an online booking
system, whilst considering the strengths and weaknesses of this approach.
3. Gain some relevant hands-on experience in using Structured Query Language (SQL) and

HyperText Preprocessor (PHP) to implement scheduling in a web application.

7.4 Suggestions for Future Work
Based on the limitations of the methods used in developing the booking system and the outcomes of

this project, the following suggestions have been made as recommendations for further work:

1. The first and most important issue that needs to be addressed is the encryption of the data that

is stored in the database. This is necessary to protect their confidentiality.

65

The booking algorithm of the system should be modified to limit the number of bookings that
can be made by each customer for a particular camera model in any 24-hour period. This would

help to further optimise the overall usage of the cameras.

There is need to have PHP test scripts that can be used to evaluate the performance of the

booking and queuing functionalities of the booking system, respectively.

The booking functionality of the system can be extended by including the rating of customers,
such that when a customer with a lower rating tries to make a booking at the same time as a
customer with higher rating, the system would dynamically give priority to the customer with

higher rating.

Due to time constraints, it was not possible to develop the mobile version of the booking system.
With regards to this, it would be helpful if another version of the booking system could be

developed and optimised for mobile devices and tablets.

Lastly, for the queuing functionality of the booking system to work as specified in the System

Design chapter, it would be necessary to connect the booking system’s back-end to a TVI server,

which contains the list of demonstration video streams that are specific to each camera.

66

References
1. Bangor, A., Kortum, P. and Miller, J. (2009): Determining what individual SUS scores mean:
Adding an adjective rating scale. Journal of Usability Studies, 4(3), pp.114-123. Available online:
http://www.usabilityprofessionals.org/upa_publications/jus/2009may/JUS_Bangor_May2009.pd
f. Last accessed 11 August 2013.

2. Brooke, J. (2013). SUS: A retrospective. Journal of Usability Studies, 8(2), pp.29-40. Available
online:http://www.upassoc.org/upa_publications/jus/2013february/JUS_Brooke February 2013
.pdf. Last accessed 10 August 2014.

3. Cockburn, A. (2008). Using both Incremental and Iterative development". CrossTalk: The Journal
of Defense Software Engineering, 21(5), pp. 27-30. Available online:
http://www.crosstalkonline.org/storage/issue-archives/2008/200805/200805-Cockburn.pdf. Last
accessed 26 July 2014.

4. Coley, C.T., Nessland, K.S., Leonhardt, T.F., Barry, C.J., Wilson M.F., and Nettuno, A.N. (2012).
Systems and methods for online scheduling of appointments and other resources. United States
Patent Number 008244566B1. Available online:
https://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US8244566.pdf
. Last accessed 7 July 2014.

5. Gallardo, A., Richter, T., Debicki, P., Bellido, L., Mateos, V., and Villagra, V. (2011). A rig booking
system for online laboratories. Proceedings of the 2011 IEEE Global Engineering Education
Conference (EDUCON), Amman, Jordan, 4-6 April, 2011. Available online:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5773206. Last accessed 10 July
2014, pp. 643-648.

6. Harchol-Balter, M. (2013). Performance modelling and design of computer systems: Queueing

theory in action. 1st Edition. New York: Cambridge University Press.

7. HP, (2010). An Introduction to load testing for web applications. Business whitepaper. Available
online: http://h20195.www2.hp.com/V2/GetPDF.aspx/4AA1-3944EEW.pdf. Last accessed 17 July
2014.

8. Kilhwan, K. (2012). T-preemptive priority queue and its application to the analysis of an

opportunistic spectrum access in cognitive radio networks. Journal of Computers and Operations

67

10.

11.

12.

13.

14.

Research, 39(7), pp. 1394-1401. Available online:
http://www.sciencedirect.com/science/article/pii/S0305054811002322#. Last accessed 8 July
2014.

Li, Y., Esche, S.K., and Chassapis, C. (2008). A scheduling system for shared online laboratory
resources, Proceedings of the 38th IEEE Frontiers in Education Conference (FIE 2008), New York,
USA, 22-25 October, 2008. Available online:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4720253. Last accessed 7 July 2014,
pp.T2B-1, T2B-6.

Lombardi, M. and Milano, M. (2012). Optimal methods for resource allocation and scheduling: A
Cross-Disciplinary Survey. International Journal of Constraints, 17(1), pp. 51-85. Available online:
http://link.springer.com/content/pdf/10.1007%2Fs10601-011-9115-6.pdf. Last accessed 7 July
2014.

Lowe, D. (2012). Impacts of scheduling algorithms on resource availability. Proceedings of the
Australian Society for Computers in Learning in Tertiary Education Refereed Conference Collection
(Ascilite 2012), Wellington, New Zealand, 25-28 November, 2012. Available online:
http://www.ascilite.org/conferences/Wellington12/2012/images/custom/lowe,_david_-

_impacts_of.pdf. Last accessed 8 July 2014, pp.575-579.

Lowe, D. and Orou, N. (2012). Interdependence of booking and queuing in remote laboratory
scheduling. Proceedings of the 9th International Conference on Remote Engineering and Virtual
Instrumentation (REV ~ 2012), Bilbao, Spain, 4 — 6 July, 2012. Available
online:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6293100&isnumber=629309
2. Last accessed 8 July 2014, pp.1-6.

Lowe, D. (2013). Integrating reservations and queuing in remote laboratory scheduling. IEEE
Transactions on Learning Technologies, 6(1), pp. 73-84. Available online:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6413147. Last accessed 23 August
2014.

Maiti, A. (2011). A hybrid algorithm for time scheduling in remotely triggered online laboratories.
Proceedings of the 2011 IEEE Global Engineering Education Conference (EDUCON), Amman,
Jordan, 4-6 April, 2011. Available

68

15.

16.

17.

18.

19.

20.

21.

online:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5773256. Last accessed 10
July 2014, pp. 921-926.

Maiti, A and Tripathy, B.K. (2011). An improved scheduling scheme for the management of online
laboratories. Proceedings of the 2011 IEEE Recent Advances in Intelligent Computational Systems
(RAICS) Conference, Trivandrum, India, 22-24 September, 2011. Available online:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6069394. Last accessed 11 July
2014, pp. 667-670.

Maiti, A. and Maiti, C.K. (2013). Development of remote laboratories using cloud architecture
with web instrumentation. Proceedings of the 10th International Conference on Remote
Engineering and Virtual Instrumentation (REV), Sydney, Australia, 6-8 February, 2013. Available
online at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6502902. Last accessed 8
July 2014, pp.1-4.

Maiti, A., Maxwell, A.D. and Kist, A.A. (2013). An overview of system architectures for remote
laboratories. Proceedings of the 2013 IEEE International Conference on Teaching, Assessment and
Learning for Engineering (TALE), Bali, Indonesia, 26-29 August, 2013. Available online:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6654520. Last accessed 5 July
2014, pp. 661-666.

Ordufia, P. and Garcia-Zubia, J. (2011). Scheduling schemes among Internet Laboratories
ecosystems. Proceedings of the 8th International Conference on Remote Engineering and Virtual
Instrumentation (REV 2011), Brasov, Romania, 28 June — 1 July, 2011. Available online:
http://www.morelab.deusto.es/publications/2011/pOrduna_rev2011b.pdf. Last accessed 24
August 2014, pp. 1-6.

Pinedo, M.L. (2012). Scheduling: theory, algorithms and systems. 4th Edition. New York:
Springer.

Sauro, J. (2011). A practical guide to the System Usability Scale: Background, benchmarks, and

best practices. 1st Edition. Denver, CO: Measuring Usability LLC.

Sauro, J. and Lewis, J.R. (2011). When designing usability questionnaires, does It hurt to be
positive? Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

Vancouver, Canada 7-12 May, 2011. Available online:

69

22.

23.

24.

25.

26.

27.

28.

http://www.measuringusability.com/papers/sauro_lewisCHI2011.pdf. Last accessed 14 August
2014, pp.2215-2224.

Sommerville, 1., (2010) Software engineering. 9th Edition. Boston: Pearson Education Inc.

Stanford, D.A., Taylor, P. and Ziedins, I. (2013). Waiting time distributions in the accumulating
priority queue. Queueing Systems: Theory and Applications (QUES), 76(203), pp. 1-34. Available
online: http://link.springer.com/content/pdf/10.1007%2Fs11134-013-9382-6.pdf. Last accessed
8 July 2014

Tullis, T.S. and Stetson, J.N. (2004). A comparison of questionnaires for assessing website
usability. Boston: Fidelity = Center for Applied Technology. Available: URL
http://home.comcast.net/~tomtullis/publications/UPA2004TullisStetson.pdf.Last accessed 16
August 2014,

Turner, C.W., Lewis, J.R., and Nielsen, J. (2006). ‘Determining usability test sample size’ in W.
Karwowski (ed.), International Encyclopedia of Ergonomics and Human Factors, Second Edition,
Volume 3, CRC Press, Boca Raton, USA, pp.3084-3088. Available online:
http://drjim.0catch.com/2006_DeterminingUsabilityTestSampleSize.pdf. Last accessed 18 August
2014.

Vaerenbergh, Y.V. and Thomas, T.D. (2013). Response styles in survey research: A literature
review of antecedents, consequences, and remedies. International Journal of Public Opinion
Research,25(2), pp.195-217. Available online:
http://ijpor.oxfordjournals.org/content/25/2/195.full.pdf Last accessed 19 August 2014.

Wei, T., Dongxu, R., Zhiling, L., and Narayan, D. (2012). Adaptive metric-aware job scheduling for
production supercomputers. Proceedings of the 2012 41st International Conference on Parallel
Processing Workshops (ICPPW), Pittsburgh, USA, 10-13 September, 2012. Available online:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6337469. Last accessed 9 July
2014, pp. 107-115.

Wood, K. (2014). jQuery Countdown v2.0.1. Australia: GitHub. Available: URL http://keith-

wood.name/countdown.html. Last accessed 18 August 2014.

70

Appendix A: System Documentation

This section describes the process of installing the booking system.

Appendix A.1: Requirements

Before the booking system can be installed, there is need to have a recent version of phpMyAdmin
installed to handle the administration of the MySQL database. Since phpMyAdmin makes use of a web
browser to perform database administration tasks, there is also need to have a web server (such as

Apache Tomcat) to install the phpMyAdmin’s files into.

Once the phpMyAdmin files have been installed, a web browser with cookies and JavaScript enabled will
be required to access the phpMyAdmin’s interface. In addition to this, there is need to have MySQL
version 5.5 or newer, as well as PHP version 5.3.0 or newer, with session support, the Standard PHP

Library (SPL) extension and JSON support.

The next step after these requirements have been met is to upload all the booking system files to the
root directory of the hosting provider. These files are enclosed in a sub-folder called “book-tvi-demo”

located in the installation folder of the CD attached to this report.

Appendix A.2: Database Setup
After uploading the system files to the hosting provider, the database have to be set up. This can be
achieved by importing the database dump file (book-tvi-demo-db.sql) — also included in the installation

folder of the CD, into phpMyAdmin.

Through phpMyAdmin, choose “book-tvi-demo-db.sqgl” from the installation folder as the file to import
and then click Go, as shown below in Figure A.1. The database has been pre-populated with the names

of some fictitious test users.

71

phpMyAdmin

1 Databases Q’ saL i Status 4 Processes |«4 Export et Import | ¢ Variables B Charsets #& Engines = More

S8 s 00 @
4 information_schema

Importing into the current server
4 iyb13184

File to Import:

File may be compressed (gzip, bzip2, zip) or uncompressed.
A compressed file’s name must end in .[format].[compression]. Example: .sql.zip

Browse your computer. i Browse.. ||bonk-tvl-demu-db.sql| (Max: 2,048KiB)

Character set of the file: | -3 E]

Partial Import:

¥ Allow the interruption of an import in case the script detects it is close to the PHP timeout limit. (This might be good way fo import large files, however if can break
transaclions.)

Number of rows to skip. starting from the first row. |0

Format:
[saL [=

Format-Specific Options:

SQAL compatibility mode: | NONE “

[# Do not use auTo_IncREMENT for zero values @
_ Go

Figure A.1: Importing the database

Once the database has been successfully imported into phpMyAdmin, it should look like the screenshot

shown below:

(' @ https//devweb2013.cis strath.ac.uk/phpmyadmin/index.php?db= iyb13184&token=73a2892521 be 342566567 c483e65634PMAURL: db=iyb13] + C"i ' Google P| ﬁ' E 4 # | =
phpMyAdmin
Browse 34 Structure | [SQL = 4 Search 3¢ Insert [& Export =} Import | ° Operations & Tracking
8300 6
‘ ' Showing rows 0 - 3 (~4 total &, Query took 0.0006 sec)
iyb13184 N
/= booking SELECT*
FROM “booking
|~ password_reset umo;{aung
=] products
=] product_categary [7]Profiling [Inline] [Edit] [Explain SQL] [Create PHP Code] [Refresh]
= profile
7] queue [39_ row(s) starting from row # |0 in| horizontal mode and repeat headers after | 100 | cells
B o (@) 5 ol g]
Sort by key: ‘ None :
(@eatetable | | + Options
—T— booking_id username product id start time end time duration booking_ref timestamp status type
B & Edit [/ Inline Edit 3¢ Copy @ Delste 322| @TrevarPhillips | § 1409650200 1409653800 3600 06807834 |2014-08-31 13.03:08 ACTVE B |
& Edit [/ Inline Edit ¢ Copy @ Delete 323 @Maﬁamadrazzo} si 1409749200;14097523005 3609‘40162266 |2014»08-31 13:03:35}ACWE‘B ‘
& Edit & Inline Edit 3 Copy @ Delete 324 | @dWeston ‘ 9‘ 1409644800 14095455005 1800 ‘ 31773658 iZU‘M—US-S‘I 13:07:40 ‘ ACTIVE ‘ B ‘
o Edt [/ Inline Ed. £ Copy © Delete 360 customert! 7 140396192 14049795 1800 20239322 20140831 154312 ACTVE Q
1 Check All/ Uncheck All With selected: 7 Change @ Delete [Export
I\Shuw:;‘l |3{} ‘ row(s) starting from row # |D ‘ in| harizontal Elmode and repeat headers after | 100 | cells

Figure A.2: Screenshot of the database
72

Appendix A.3: Configuration
Once the database has been set up, the next step is to configure the system files so that the right

parameters are used to access the database and web server.

The parameters that are used to connect to the database are found in the “helper.php” file (shown

below) located in the “model” sub-folder of the “book-tvi-demo” folder.

define ("HOST', 'devweb20l3.cisz.strath.ac.uk');
define {("USER", 'iybl13184");

define ("BAS3", '"Cognoscentils'):

define ("DENAME"', 'book-tvi-demo");

functicn dbconnect ()

{

£link = myagli connect (H0ST, USER, FASS);
if {Bmyagli_ping({$link) == true)
{
my3gli select db($link, LBNAME);
return $£1link;
!
1
functicn dbdisconnect ($1ink)
{
myagli close(£link);
!
function dbConnectionChecker (§1ink)
{
$result = Bmysgli_ping($link);
fresult? &result = true : sresult =false;
return f(result;

}

Figure A.3: Database parameters

These parameters include the server hostname, the username and password used to connect to the

database and lastly, the name of the MySQL database.

The process of installing the booking system is completed once these parameters have been set. To view
the booking system in your browser, use this base URL: ../book-tvi-demo/index.php. This should take
you to the Log In page. If you are not able to view the system there may be an error in the server or

database setup.

73

Appendix B: User Guide
This guide provides detailed information about how the booking system should be used by a user. The
guide is accompanied by screenshots and some instructions on what data to enter and how to progress

to successive pages within the system.

Given that there are two types of users (that is, customers and administrator) that can use the booking
system, the user guide has been separated into two different guides, one for the customer and the other
for the administrator. In order to allow these users to have easy access to the booking system, the

system has been hosted on the CIS Department’s web server. The URL is:

https://devweb2013.cis.strath.ac.uk/~iyb13184/book-tvi-demo/index.php#

Email Password
customer@tvidemo.com test123
admin@tvidemo.com test435

Table B.1: Login details for the different types of users

Before customers and the administrator can use the booking system’s functionalities, they are required
to login to the system. To log in to the system, the user must enter an email address and password and

then click Login, as shown in Figure B.1:

TVI Demo Booking System

Log In

& customer@tvidemo.com

Forgot your password?

Figure B.1: Logging into the system

74

If a user forgets the password, the user would have to click on the “Forgot Password” link below the
password field to change the password to a new one. More specifically, when the user clicks of the link,
a new form (shown below in Figure B.2) appears prompting the user to enter his/her email address in

order to proceed with the password reset process.

TVI Demo Booking System

Enter the e-mail address associated with your account,
then click Continue.

& olukayode.akinyokun.2013@uni.strath.ac.uk

== Back to Login

Figure B.2: Email verification form

Once the user clicks “Continue”, the system checks the database to confirm that the password exists and
thereafter it sends an email with a password reset link to the user. This link contains a token that expires

after 24 hours. See Figure B.3 for the email that contains the password reset link.

TVI Demo Booking System <no-reply@book-ty mark as read

Sat 30/08/2014 17:29

To: Olukayode Akinyokun;

Hello Micholas,

We received a request to reset the password associated with this email
address. If you made this request, please follow the instructions below:

Click on this link to reset your password using our secure server. The link will
expire in 24 hours.

If you did not request to have your password reset, you can safely ignare this
email. Rest assured your customer account is safe.

Thank You,
TVI Demo Trust Team

Figure B.3: Reset password email

75

When the user clicks on the link, the system redirects the user to a webpage (shown in Figure B.4) that
allows the user to create a new password. The link embedded in the email contains a token that is used

to verify that the message has not been received for more than 24 hours.

TVI Demo Booking System

Your new password must be 6 to 20 characters. Besides
letters, include at least a number or symbol ({@#$+%"~).

<< Back to Login

Figure B.4: Reset password form

Appendix B.1: Customer User Guide
Once a customer submits the email address and password, the system checks the database to confirm
that the customer’s account exists. If this condition evaluates to true, the system loads the sidebar menu

options meant for customers (see Figure B.5) and then, it goes on to display a booking form.

QUICK MENU

* New Booking

%k Manage Booking

View Demo
& Booking History

» Edit Profile

» Change Password

Figure B.5: Customer sidebar menu
For a customer to book a camera, the customer have to complete the booking form by specifying the

category of the desired camera, the desired camera itself, the date of demonstration, the time the

76

customer wants the demonstration to start, as well as the duration of the demonstration. See Figure B.6

for the booking form.

New Booking
Product Category: TVl Integrated Cameras E|
Product: TVI MC350 (Minicam) B
Date: 01-08-2014
Start Time: 11:00 AM E|
Duration: 60 Minutes E|

Book Now!

Figure B.6: The booking form for customers

Once the booking details have been saved in the database, the system sends an automated email to the
customer to confirm that the booking has been made. This email contains the booking reference, the
camera booked, date of demonstration, as well as the start and end times of the demonstration. See

Figure B.7 for an example of the booking confirmation email.

77

mark as re

TVI Demo Booking System <no-reply@book-t

5at 30,/08/2014 19:00

To: Olukayode Akinyokun;

Hello,

Thank you for making a booking with the TVI Demo Group. This email
confirms your booking.

Booking Reference: 05034970

TVI Product: TVI MC350 (Minicam)
Date: 01-09-2014

From: 11:.00 AM

To: 12:00 PM

Should you have any questions regarding this booking, please contact us.

Sincerely,
TVI Demo Customer Service Team

Figure B.7: Booking notification email

Under certain circumstances, the camera that a customer wants to book will not be available because
another customer has already booked the camera for use during the same timeslot that the new
customer wants. To solve this problem, the system would prompt the customer to select another

timeslot from a list of all reserved and available timeslots that has been generated by the scheduler. See

Figure B.8 for the list of available timeslots page.

Booking

<t

—

o

oy

A 8 4 H H H B
< z zEzEBzERzHNz
- w x M M A B3 B
e 3 8 S HHEHE
o =

-

=} i

e

(3]

i)

o

(]

£

=

@

o

o

.@ "

- [=] - = o=

& " = £ % & = = = =
rs] e < e e © §&a a @ a o
) =2 A -, A e e e 9
;] - & = = = = &N ;=
|

Figure B.8: List of available timeslots

78

Furthermore, the customer can manage all bookings that have been made by clicking on “Manage
Booking” in the sidebar. The “Manage Booking” link generates a table (as shown below) that lists all the
cameras that have been booked for demonstration at a later date, the date of the demonstration, as

well as the start and end times of the demonstration.

Manage Booking

2 Records found

5 E| records per page Search:
SN Product Date From To

1 TVI WMV (Polecat) 01-09-2014 11:00 AM 12:00 PM [Amend | cancel |
2 TVI MC350 (Minicam) 03-09-2014 1:00 PM 1:30 PM m

Figure B.9: Manage booking table — (customer)

For each booking listed in the table, there are two buttons (notably, the “Amend” and “Cancel” buttons)
that a customer can use to amend and cancel a booking, respectively. The “Booking History” link on the
sidebar functions in a similar like the “Manage Booking” link, although the only difference is the
“Booking History” table generates all the bookings that have been made by a customer in the past.

Aside from booking, a customer can also use the queuing functionality of the system to queue for access
to a particular camera. In order to do this, the customer will have to select the desired camera and

duration on the queue form, as shown below in Figure B.10.

View Demonstration Stream

Product: TVI MC350 (Minicam) B

Duration: 30 Minutes |Z|

Figure B.10: Queue form for customers

79

Once the system processes the queue form and determines that the product selected by the customer is
available for the entire length of the duration specified, a countdown timer (shown below) will set off.

The customer can choose to stop the countdown timer before the time elapses.

View Demonstration Stream

Demonstration video stream of TVI MC350 (Minicam):

0 59 40

Hours Minutes Seconds

Stop Demo

Figure B.11: Demo page for customers

On the other hand, if after processing the queue form, the system determines that the product and
timeslot that would be allocated to the customer has already been booked, the scheduler will
automatically select the nearest available timeslot for the customer and afterward, the system will
prompt the customer to join the waiting list (which is essentially a priority queue) of customers
expecting to access the same camera. If the customer decides to join the waiting list, the system would
display an estimate of how long the customer would have to wait on the queue before gaining access to
the desired camera. However, if the customer decides not to join the waiting list, the system will
redirect the customer back to the queue form. See Figure B.12 for the waiting list page that shows the

estimated wait time.

View Demonstration Stream

Number of users on queue: 1

The next available timeslot starts in:

0 58 3

Hours Minutes Seconds

Would you like to join the queue?
o s

Figure B.12: Waiting list page for customers

80

Moreover, apart from booking and queuing for cameras, customers can update their profile information
and change their passwords. These are achieved by clicking on the “Edit Profile” and “Change Password”
menus, respectively. See Figure B.13 and B.14 for the forms used for changing passwords and updating

customer’s profile information.

Update Account Information

Doe John C.

& customerii

= customer@tvidemo.com

Alpine Industries Ltd.
Il Manager

. +234-567-8766

@ Iceland
Save Details

Figure B.13: Customer’s account update form

Change Password

Figure B.14: Change password form

Appendix B.2: Administrator User Guide
For an administrator to use the booking system, the administrator has to login. Once the administrator

submits the email address and password, the system checks the database to confirm that the
81

administrator’s account exists. If this condition evaluates to true, the system loads the sidebar menu

options meant for the system administrator (see Figure B.15) and then, it goes on to display the

administrator’s dashboard (See Figure B.16)

QUICK MENU

Dashboard

%+ New Booking

& Manage Booking

%k Manage Waiting List
= Manage User Account
[aal] Reports

» Edit Profile

* Change Password

Figure B.15: Administrator sidebar menu

@DASHBOARD
August 2014
T W
Active customers Inactive n Total
customers customers

Today:

0 | Number of customers n Number of nTotaI
on queue bookings request

Figure B.16: Administrator dashboard

The administrator’s dashboard displays the total number of customer accounts (both active and

inactive) in the database, as well as the total number of bookings and customers on the queue in a day.

82

If the administrator wants to book a camera for a customer, the administrator have to complete a
modified version of the booking form which contains a drop-down list that shows all the registered
customers. In this form, the administrator specifies the category of the desired camera, the desired
camera itself, the customer, date of demonstration, the time the customer wants the demonstration to

start, as well as the duration of the demonstration. See Figure B.17 for the administrator’s booking form.

New Booking

Product Category: TVI Integrated Cameras E|

Product:

=]

TVI WMV (Polecat)

Select Customer: Phillips Trevor E|

Date:

01-09-2014
Start Time: 09:00 AM E|
Duration: 30 Minutes E|

Book Now!

Figure B.17: Administrator booking form

Once the booking details have been saved in the database, the system sends an automated email to the

customer selected by the administrator to confirm that the booking has been made.

If the administrator wants to cancel a booking that has been made by a customer, the administrator
clicks on the “Manage Booking” link on the sidebar. This link displays a table (shown below) that allows

the administrator to cancel an existing booking.

83

Manage Booking

3 Records found

5 E| records per page Search:
SN Full Name Product Date
1 Phillips Trevor TVI WMV (Polecat) 02-09-2014
2 Madrazo Martin TVI WMV (Polecat) 03-09-2014
3 Weston Devin TVI MC350 (Minicam) 02-09-2014

Figure B.18: Manage booking table — (Administrator)

From

10:30 AM

2:00 PM

S:00 AM

To

11:30 AM

3:00 PM

9:30 AM

Cancel
Cancel
Cancel

Besides making and cancelling bookings, the administrator can also remove the customers that are on

the waiting list for a particular camera. This is achieved by using the “Manage Waiting List” table, shown

below in Figure B.19
Manage Waiting List

2 Records found

5 E| records per page Search:
SN Full Name Product Date
1 Yetarian Simeon TVI RDK-U 31-08-2014
2 John C. Doe TVI WMV (Polecat) 31-08-2014

Figure B.19: Manage waiting list table

From

1:41 PM

1:41 PM

To

211 PM

2:41 PM

Cancel

Moreover, if the administrator wants to update or delete a customer’s account, the administrator will

have to click on the “Manage User Account” link on the sidebar menu. Upon clicking this link, a table

that contains all user accounts (both customer and administrator) that have been created on the system

is generated. From this table, the administrator can then proceed to click on the “EDIT” or “Delete” link

to update and delete user accounts respectively. See Figure B.20 for the “Manage User Account” table.

84

Manage User Account

10 Records found

5 H records per page

EDIT

EDIT

EDIT

EDIT

Full Name

Akinyokun
Nicholas

Lukens Rickie

Phillips Trevor

Search:
Email Address Phone
captain.nicholas@ymail.com 07035227990
rickie.lukens@life.invader.com 123-555-0160
trevor.phillips@lifelnvader.com 425-555-0170

Figure B.20: Manage user account table

Company

University of Strathclyde

Life Invader Inc.

Trevor Phillips Enterprises

Country

Nigeria

United States

Canada

Status

Active

Active

Active

Delete

Delete

Delete

If the administrator clicks on the “EDIT” link, a slightly modified version of the form customers use to

update their account is displayed. This form (shown below) includes new form fields that the

administrator can use to set the user type and status of a customer to “Administrator” and “Inactive”

respectively.

Update Account Information

Rickie

Lukens

@rickieLuck

rickie.lukens@life.invader.com

Life Invader Inc.

Software Developer

123-555-0160

United States

Customer

Active

Save Details

=] B]

Figure B.21: Account update form — (Administrator)

85

Appendix C: Use Case Diagram

This section contains the use case diagram of the booking system, as shown in Figure C.1. The labeled
stick figures on the diagram represent actors and they indicate the roles that a user can play while
interacting with the booking system. Similarly, the scheduling subsystem of the booking system has been

depicted by a rectangle with the <<actor>> notation.

The use cases are represented by an oval and a line drawn from an actor to a use case depicts an
association. This association typically represents two-way communication between a use case and the

actor that interacts with it.

86

walsisgns
Buinpayag

<=10J0= =

IOERHUIIPY

fojsH Aupoog
alEIalsg 57N

ananm
ajepdp) F7n

uijong
SIEplEAEIN

[IEDTE]
uDlEauop
puas zn

[IETE]

/1

\\\

UOIELLLDD
pusg LN

ajualalay
Auoog
BjelBUAg)7

Aupoog
aNpaYIs B LN

Auroog
aneg B LN

[IEUAT JBLUDISND
ERIEA LN

N3y
JawaEng
a8 gin

Tnoagy
JaWniEng
A28qunHAI018
SN

ananm
SBEUEN B L

sAuxoog
UBLNG
MAAELN

anang wor iz 1N

ouwagmaln LN

aunigd
alepdr B

Aupoog
puauy i

0jsau L
50043 5

Janpoid
198185 'FN

pInmssed
18884 £N

unoosy
eI LN

AnjsIH Bupoog
Ma3lhaln

Buo0g
189UED 8N

fupoog
B 3ep an

g Ao :9zn

/ JEDT)

wa)shs fujoog owaq AL

ing system

Use case diagram of the booki

Figure C.1

87

Class Diagram

Appendix D

This section contains the class diagram of the booking system, as shown in Figure D.1

Qawl fuepapaieluns Jiai+
015 AURIEAALLIOS 43R0 LUE+
DuosodpalewnsIan+
Juonezildoananb+

OIS TIBUIE a1

1= AumERAUID)+
Qafigananioai+
QananoayeLl+
Qananoppe+

Dawerdofbaleniai+
Qawepianpol g1ai+
fsnaobaeah+
fsnsnpoldiai+

W ppofaeanpold-
AU (smeIS1anpold-
Auuls [aweplanpold-

W pplanpodd-

L L HERAR EELUINSE- 1npold
fus aweUasn-
i azigananh-
I uosouanna-
w1 ppanpold-
WwipBugoog- | - fuayAupongaelaUsfi
i 1 pjanank- \ QAUHODFAINPaYIS+
“ QAuMoogalepl|eA+
ananp sl R) (1sAuroogei+
1 fOBuMoogaiued+
| i (BupoogApouL+
L DBl BlERIEA+
se e s i) QAUMOOAPRE+
(UM OLBLUIL+
f i duielsall aegiuyoog-
w | Wi uogeingfhuMoog-
sHo0q w1 ysdbuMoog-
suiof AU awewasn-
W e pus-
UL a e s-
W ppanpodd-
L plAuoog-
2l
fujoog
DpInsssedlasals AR
Daoldaepdns 2)
I RRITEE TR S— sayeLl
Dowagmats | o
- L
funys daguingauoyd-
Buus am L qol- y DIUNO2XGALI0ISN0Y 0| GUn+
fuLs Aqunoa- | ., CIUNoIIIAaLI0IEN 88 8P+

AuMS Auedwng-
fuLs aweusl-
fuuis aweuse|-

FETTTYE g

CIUNOIMIEWOISNOY 20|+

I0jRNSIILIpY

2

fOsnielSlasmab+
Qllewgsiepleas
Dadi lasmiafi+
QempUas+
Dinofo)+
fubal+

W sneguibo)-
fuls (ssalppy|eWa-
funls ;aweLasn-
AuLls plomssed-
Aus adilasn-

Wi pleoad-

W puasn-

1350

ing system

Class diagram of the booki

Figure D.1

88

Appendix E: Results of Load Tests
This section contains the load tests that were used to assess the performance of the booking and
gueuing functionality of the system. The processes that were followed in performing these tests have

been described in the Evaluation chapter.

Number of Users | Waiting Time (ms) | Response Time (ms) | Throughput (KB/s)
2 4.11 11.47 6
3 7.92 15.67 11
5 12.81 21.32 31
7 19.18 26 44
11 25.79 34.78 70
12 27.25 38.67 73
14 31.28 43.45 97
15 33.13 49.16 103
17 35.8 54.12 107
19 41.2 59.2 116
20 43 61 117
22 46.42 65.3 120
24 46.67 67.15 127
25 48 69.5 131
27 51.65 73.56 134
29 54.23 81.41 137
31 56.1 87.97 139
33 57.34 92.83 142
34 62.87 97.19 144
35 65.34 120.5 147
37 77.21 132.56 153
39 79.46 151.1 159
41 83.56 166 164
43 91.59 172.3 171
45 99.6 185.7 176
46 109.9 202.45 181
48 126.57 217.78 184
50 141.89 259.8 186

Table E.1: Result of the load test on the booking algorithm

89

Max Users | Waiting Time (ms) | Response Time (ms) | Throughput (KB/s)
2 42.28 20.48 7
3 145.76 68.67 13
5 193.11 97.94 32
7 214.87 196.52 49
11 301.11 302.86 62
12 393.79 352.32 73
14 503.98 412.1 85
15 601.23 438.33 92
17 734.75 601.96 104
19 901 857.34 118
20 1211.77 873.4 127
22 1302.84 1021.45 133
24 1466.02 1278.16 141
25 1578.31 1304.46 143
27 1760.11 1458.9 147
29 1823.3 1600 173
31 2004.35 1793.41 191
33 2152.56 1923.56 217
34 2431.19 2032.14 221
35 2675.4 2132.14 230
37 2800.92 2345.73 243
39 2917.56 2607.11 262
41 3127.17 2832.5 279
43 3417.63 3054.24 293
45 3701.24 3254.24 301
46 3793.11 3403.78 314
48 3867.9 3587.31 336
50 4012.14 3693.87 385

Table E.2: Result of the load test on the queuing algorithm

90

Appendix F: Email Invitation
This section presents the email invitation that was distributed to recruit participants for the booking

system user evaluation.

SEEKING PARTICIPANTS IN A USABILITY STUDY

Hello,
I am looking for participants to evaluate the usability of a web application 1 have

developed as part of my MSc research project.

The evaluation takes around 10 minutes to complete and will provide invaluable
feedback that can be used to improve the usability of the system.

IT you are interested in participating, your help would be much appreciated — please
click on the attached iInformation sheet to read the instructions on how to use the

system.

Moreover, please note that participation is voluntary and that you are free to
withdraw from the study at any time, without having to give a reason and without any

consequences.

Thanks,
Nicholas

91

Appendix G: Participant Information Sheet
This section presents the information contained in the participant information sheet that was used by

participants for assessing the usability of the system.

Participant Information Sheet

Researcher: Akinyokun Olukayode Nicholas

Researcher’s email: olukayode.akinyokun.2013@uni.strath.ac.uk

University: University of Strathclyde
Department: Department of Computer and Information Sciences
Title of Study: User Evaluation of TVl Demo Booking System

1.1 What the study will involve

The purpose of this evaluation is to assess the usability of a booking system,
developed as part of my MSc research project. The evaluation will take no longer than
10 minutes to complete and will involve following a set of instructions detailed

below on how to use the system to perform some tasks.

After performing these tasks, you will be asked to fill out a questionnaire. This
questionnaire is completely anonymous and all data gathered will be held

confidentially and erased on completion of the project.

Please note that you have the right to withdraw if you wish and that participation is

voluntary.

1.2 Instructions

1. Open your browser and go to:
https://devweb2013.cis.strath.ac.uk/~iyb13184/book-tvi-demo/index.php#

2. Log In
Proceed to login into the system with these credentials:

e Email: eval@tvidemo.com
e Password: testl23

3. Make a booking
e Upon login, you’ll see a form for making a new booking. Fill out all the

form fields (they are mandatory)

92

e Then, click the “Book Now!” button

4. Modify Booking

e Next, click on the “Manage Booking” menu on the sidebar. You will see a

record of the booking you have just made
e Click on the “Amend” button
e Change the date and time of the booking

e Click on the “Save” button to save these changes

5. Cancel Booking
e Click again on the “Manage Booking” menu

e This time, click on the “Cancel” button

6. Log out

Click on the “Log Out” button on the top-right corner of the screen.

Thank you for your time. Please click on this link to complete the questionnaire:

https://www.surveymonkey.com/s/YDKJIBNT

1.3 Ethics Approval

Ethical approval of studies has been obtained for this research project. |ITF
participants have any queries or concerns with regards to the ethics of this study,
they should contact the researcher. Should participants wish to raise any ethical
queries or concerns with a party other than the researcher, they should contact Prof.

lan Ruthven at: 1an.ruthven@strath.ac.uk

93

Appendix H: User Evaluation Questionnaire

This section contains a screenshot of the user evaluation questionnaire that was administered to participants.

1. Please indicate your gender?
Male

Female

2. Which category below includes your age?
18-24
25-34
35-44
45.54
) 55+

3. Please indicate the level of your agreement with the following statements.

Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree
| think that | would like to use the
system frequently

| found the system unnecessarily
complex

| thought the system was easy to use.

| think that | would need the support of a
technical person to be able to use the
system

| found the various functions in the
system were well integrated.

| thought there was too much
inconsistency in the system.

| would imagine that most people would
leamn to use the system very quickly.

| found the system not very intuitive.

| think the system response time is
satisfactory

| needed to learn a lot of things before |
could get going with the system

Figure H.1: User evaluation questionnaire

94

4. Overall, how would you rate the user-friendliness of the system?
() Very good
() Good
' Fair
) Poor

() Very poor

5. Did you encounter any problem while using the system?
) Yes.
() No.

If Yes, please state the nature of the problem?

| |

6. Do you have suggestions that could improve the system?

| |

Figure H.1: User evaluation questionnaire (contd.)

95

Appendix |: Database Attributes

This section describes the attributes that have been used in the database of the booking system.

Users Table
) This is the primary key that uniquely identifies each user account. It auto increments by 1

serid once a new account has been created.
username | This attribute constitutes the unique username chosen by each user during registration.
password This is the MD5 hash value of each user’s password.
user_type | This specifies the category of user; which can either be a customer or an administrator.

) This constitutes the email address of each user. The email address is verified once a user
email creates an account and subsequently, it is used alongside the password to log in
created This represents the date and time a user account was created.

user_status

This indicates whether a user’s account has been activated or not. It can either stores ‘A’
which means ‘Active’ when a user’s email address has been verified or ‘I’ which stands for

‘Inactive’ if the email address has not been verified.

signed_in

This attribute indicates whether a user is currently signed in to their account or not. It is a
Boolean data type and will hold only integers: 0 or 1, with 1 indicating that a user is

currently signed in while 0 indicates otherwise.

Table I.1: Attributes of the user table

Products Category Table

pcid

This is the primary key that uniquely identifies the category of cameras.

category_name | This attributes represents the name of each camera category

Table I.2: Attributes of the products category table

96

Products Table

pid This is the primary key that uniquely identifies each camera.

This attribute uniquely identifies a camera’s category; which could either be TVI
product_category_id
Integrated Cameras or TVI Hardware Encoders.

This is the name of each camera. An example is the Digital Barriers TVI MC350
product_name
‘Minicam’

product_status This attribute indicates whether a camera is available or not.

Table I.3: Attributes of the products table

Profile Table

This is the primary key that uniquely identifies each user’s profile. It auto increments by
profile_id

1 once a new account has been created.

This attribute constitutes the unique username chosen by each user. Here, it is used to
username

establish and enforce a link between the Users Table and the Profile Table.
fname This is the first name of each user.
Iname This is the last name of each user.
phone This constitutes a user’s telephone number.

company | Thisis the name of the company that a customer is affiliated to.

job_title This is the job title of a customer.

country This is the country that a customer’s company is located.

Table 1.4: Attributes of the profile table

97

Password Reset Table

ref_id This attribute is used as an alternate key to identify only one row in the table.

This attribute constitutes the unique username of each user. Here, it is used to
username

establish and enforce a link between this Table and the Password Reset Table.

This attribute is used to verify that the password reset link sent via email to a user is
token

valid and belongs to the user.

token_status

This attribute is used to check whether a token is valid or has already expired. In the
booking system, any token generated when a user requests to reset his/her

password automatically expires after 24 hours.

timestamp

This is the current system date and time returned by the MySQL NOW() function.

duration

This is total duration (in minutes) of the timeslot that has been booked by a user.

Table I.5: Attributes of the password reset table

Queue Table

queue_id This attribute uniquely identifies each user’s request on the priority queue.

This attribute constitutes the unique username chosen by each user. Here, it is used to
username

establish and enforce a link between the Users Table and the Queue Table.
product_id | This constitutes a unique identifier of the camera that has been requested.

This attribute uniquely identifies the bookings made by users. Here, it is used as a
booking_id

foreign key to link the Booking Table and the Queue Table.
timestamp | This is the current system date and time returned by the MySQL NOW() function.

Table 1.6: Attributes of the queue table

98

Booking Table

This is the primary key that uniquely identifies each booking made by users. It auto-
booking_id

increments by 1 for each new booking.

This attribute constitutes the unique username chosen by each user. Here, it is used
username

to establish and enforce a link between the Users Table and the Booking Table.

This attribute uniquely identifies each camera that has been booked. Here, it is used
product_id

to establish and enforce a link between the Products Table and the Booking Table.
start_time This is the time that a booking made by a user is scheduled to start.
end_time This is the time a user’s booking will end.
duration This is total duration (in minutes) of the timeslot that has been booked by a user.
booking_ref | This is a unique numeric string automatically assigned to each user’s booking.
timestamp | This is the current system date and time returned by the MySQL NOW() function.
status This attribute indicates whether a booking has not been cancelled.

This attribute indicates whether a camera has been reserved using the booking
type

functionality — (‘B’) or the queuing functionality - (‘Q’)

Table I.7: Attributes of the booking table

99

