

VIEW MAINTENANCE OF RDF STRUCTURES

Syed Muhammad Shehram Shah

201280660

This dissertation was submitted in part fulfilment of requirements for the degree of MSc

Advanced Computer Science

DEPT. OF COMPUTER AND INFORMATION SCIENCES

UNIVERSITY OF STRATHCLYDE

GLASGOW

SEPTEMBER 2013

i

DECLARATION

This dissertation is submitted in part fulfilment of the requirements for the degree of MSc.

Advanced Computer Science of the University of Strathclyde.

I declare that this dissertation embodies the results of my own work and that it has been

composed by myself. Following normal academic conventions, I have made due

acknowledgement to the work of others.

I give permission to the University of Strathclyde, Department of Computer and Information

Sciences, to provide copies of the dissertation, at cost, to those who may in the future

request a copy of the dissertation for private study or research.

I give permission to the University of Strathclyde, Department of Computer and Information

Sciences, to place a copy of the dissertation in a publicly available

archive.

(please tick) Yes [] No []

I declare that the word count for this dissertation (excluding title page, declaration, abstract,

acknowledgements, table of contents, list of illustrations, references and appendices is.

18,993.

I confirm that I wish this to be assessed as a Type 1 2 3 4 5

Dissertation (please circle)

Signature:

Date

ii

ABSTRACT

The Semantic Web is an extension of current Web technologies that aims to transform the

way the Web functions. The ultimate goal of the Semantic Web is data integration and

sharing of information on the Internet. Most of the present Web content is meant for

human consumption, computers are unable to understand the meaning of the content.

Semantic Web provides a complete framework for creating a new generation of Web

content that is also intelligible by machines. At the heart of the Semantic Web is the RDF

(Resource Description Framework) which has been recommended by W3C (World Wide

Web Consortium) as the new universal data format for information interchange on the

internet. RDF is a structured data format and solves the problems of existing data

representation formats. The current practice of updating RDF data involves regenerating the

underlying structure after modifications, which is expensive in terms of time and

computational resources. As more and more Web content is created using RDF, there is a

need for simple and efficient mechanisms to manage voluminous RDF structures.

This project aims to assess the performance of update operations on RDF structures through

views. Views are a powerful way to manipulate a section of data from the underlying

database. A view is subset of the underlying database, when changes are made to the

underlying database; the views also need to be updated. RDF statements are made up of

three components i.e. subject, predicate and object. In relational terms, RDF structures are

three dimensional databases. The goal of this project is to assess performance of view

maintenance of RDF structures i.e. to update RDF structures through views and measure

performance of insert and delete operations with respect to the size of the RDF structures.

A prototype application has been developed to measure the performance through

experiments. The results show that as size increases, the time of insert operations increases

proportionally where as for delete operations time remains stable.

iii

Acknowledgements

I would like to acknowledge the cooperation and guidance of the following people who

supported me during the course of this project:

I would first like to thank my supervisor, Dr. John Wilson, for his untiring support, guidance,

personal attention and encouragement throughout the project. His patience and faith in me

was a source of encouragement and enabled me to successfully overcome the most

challenging phases of this project.

Dr. John Levine, course director of the MSc. Advanced Computer Science program, for his

advice and support throughout my time at Strathclyde. His advice has been instrumental in

steering me through difficult times.

I would like to thank the Commonwealth Scholarship Commission and University of

Strathclyde for providing me the opportunity to undertake studies at this prestigious

university in this great country.

I would also like to thank the faculty and staff of Department of Computer and Information

Sciences, University of Strathclyde for their cooperation throughout my time at the

university.

Finally, I would like to thank my parents for their continuous encouragement and love. I

express gratitude to them for their care, understanding, and appreciation for my hard work

which has always been a source of strength for me.

Muhammad S. S. Syed

September 2013

iv

Table of Contents

1. INTRODUCTION AND RATIONALE..1

1.1 Research..2

1.2 Application Development..2

1.3 Experiments...3

1.4 Structure of Dissertation...3

2. LITERATURE REVIEW...5

2.1 The Semantic Web..5

2.2 Semantic Web Technologies...7

2.3 Size of RDF Collections..14

2.4 SPARQL/SPARUL..16

2.5 SPARQL Implementations..17

2.6 RDF Views..18

2.7 Relational Approach..20

2.8 Summary of Chapter...21

3. METHODOLOGY..22

3.1 Problem Description..22

3.1.1 Modelling Problems with XML..23

3.2 System Design...26

3.2.1 Requirements..26

3.2.2 Development Approach..27

3.2.3 Architecture...29

3.2.4 Jena..30

3.2.5 Model v/s Graph..32

3.2.6 Data...34

3.3 Detailed Design...36

3.4 Summary of Chapter...40

4. ANALYSIS...41

4.1 Testing Strategy...41

4.2 Evaluation..48

4.2.1 Experiment 1...49

v

4.2.2 Experiment 2...50

4.2.3 Experiment 3...51

4.2.4 Experiment 4...52

4.2.5 Experiment 5...54

4.2.6 Experiment 6...56

4.3 Summary of Results...57

5. CONCLUSIONS AND RECOMMENDATIONS...58

5.1 Conclusion...58

5.2 Limitations...62

5.3 Recommendations and Future Work..62

References...64

Appendix A - Code...67

Appendix B - User & System Guide...73

vi

List of Figures

Figure 1: Semantic Web Stack... 8

Figure 2: RDF Graph ... 10

Figure 3: View Maintenance .. 21

Figure 4: XML Representation # 1.. 23

Figure 5: XML Representation # 2.. 23

Figure 6: The basic Waterfall Model .. 27

Figure 7: Incremental Model ... 28

Figure 8: Block diagram of application ... 29

Figure 9: General Architecture of application .. 29

Figure 10: System Architecture in MVC paradigm.. 30

Figure 11: Jena Architecture showing all APIs .. 32

Figure 12: Three layers of operations in Jena .. 33

Figure 13: Retrieving data from RDF structure through Graph Interface 34

Figure 14: Retrieving data from RDF structure through Model Interface 34

Figure 15: Sample data from vCard Ontology .. 35

Figure 16: readFiles Method.. 36

Figure 17: Reading file 1 into Model 1 ... 36

Figure 18: Recording time for insert operations .. 37

Figure 19: Recording time for delete operations ... 38

Figure 20: Generating Time.txt .. 39

Figure 21: Regenerating modified RDF files ... 40

Figure 22: Scatter chart showing time for inserting and deleting one statement 50

Figure 23: Scatter plot showing time for inserting and deleting 100 statements 51

Figure 24: Graph showing time for update operations on three Models of same size 52

Figure 25: Scatter plot showing time for inserting and deleting 100 statements 53

Figure 26: Create Statement method .. 54

Figure 27: Scatter plot showing time for inserting one statement 55

Figure 28: Scatter plot showing time for creating one statement .. 55

Figure 29: Scatter plot showing time for inserting and deleting 100 statements in 4 Models

..56

vii

List of Tables

Table 1: Size of RDF collections ... 15

Table 2: Test case UNIT 01 .. 42

Table 3: Test case UNIT 02 .. 43

Table 4: Test case UNIT 03 .. 43

Table 5: Test case UNIT 04 .. 44

Table 6: Test case UNIT 05 .. 44

Table 7: Test case UNIT 06 .. 45

Table 8: Test case UNIT 07 .. 45

Table 9: Test case UNIT 08 .. 46

Table 10: Test case BB 01 .. 47

Table 11: Test case BB 02 .. 47

Table 12: Test case SYSTEM 01 .. 48

Table 13: Results of Experiment 1 ... 49

Table 14: Results of Experiment 2 ... 50

Table 15: Results of Experiment 3 ... 51

Table 16: Results of Experiment 4 ... 52

Table 17: Results of Experiment 5 ... 54

Table 18: Results of Experiment 6 ... 56

1

Chapter 1

Introduction and Rationale

The Web is full of data. The magnitude of the data spread across the Internet is enormous.

Human beings are not fully capable of processing this information manually without using

any assistive technologies. Interestingly, the massive volume of data created over the web is

also not understandable by machines. Computers can only interpret and process a fraction

of Web content (rendering information) limited only for end user presentation. The growth

of the Internet has led to creation of enormous number of documents and web pages. Some

estimates suggest that currently the Internet consists of at least 3.5 billion Web pages

(World Wide Web Size, 2013). The large size has come along with its set of problems. The

data on the Internet is difficult to manage and is often redundant due to its polymorphic

nature with no effective mechanisms to manage, share and organize data on the Internet;

and hence the Semantic Web was introduced.

The Semantic Web was proposed as a revolutionary new way for the Web to function. Most

of the data on the Internet today is meant for human consumption. A set of technologies

have been proposed to create a new generation of data that can also be understood (at

varying levels) by computers. It is achieved through RDF (Resource Description Framework)

and its associated technologies which create data that is more structured than existing

versions. Associated metadata is also generated alongside the main data, containing

information about the intended meaning and use of the subjected data, thereby making it

more meaningful to computers. The whole idea of the Semantic Web was to make the Web

more intelligent by adding meaning (logic) to it. This dissertation is based on Semantic Web

technologies and looks closely at updating RDF structures through views. The project is

based on three main components. The literature review gives an assessment of progress of

the Semantic Web and highlights core contributions. The software development component

aims to develop an application to update RDF structures (described in detail in section 1.2).

The last component of the dissertation involves evaluating performance of update

operations on RDF structures of various sizes.

2

1.1 Research

We start by describing the principles of the Semantic Web and explaining the way it intends

to change the Internet. This project involves a review of scientific publications to highlight

key contributions towards the development of the Semantic Web. We look into some of the

key research themes and application areas. We also shed light on some of the factors which

act as a bottle neck in widespread uptake of the technology. The foundation of the Semantic

Web is the RDF, proposed to be the new universal data representation format for the

Internet, replacing current technologies like XML and HTML. We discuss RDF data

representation format in detail and its advantages over traditional formats. Unlike existing

technologies, which have been widely used over the Internet, Semantic Web technologies

are relatively new and there is a dearth of skilled professionals to develop and maintain

Semantic Web data and applications. The main advantage of RDF and RDFS (RDF Schema) is

uniform representation format for creating structured data. This data can then be

integrated with other sets of related data created by different sources. One of the main

principles of the Semantic Web is universal data integration which is difficult to achieve with

current technologies. The problem with current Semantic Web applications is the

maintenance of the underlying data. The fact that the size of these collections runs into

billions of triples and is shared amongst several applications over the Internet presents a

challenge in the form of defining simple and efficient mechanisms for keeping this data up

to date.

1.2 Application Development

RDF data is represented in the form of triples. In Relational terms, RDF structures can be

referred to as three dimensional tables. RDF structures are typically extracted from a

relational database into the RDF graph. This is effectively a view (abstract) of the relational

database that has been materialized as a graph. This project involves development of a

prototype application that aims to maintain RDF views directly without the need to

regenerate underlying RDF structures. In the above context, the main research question is

 How View maintenance over an RDF collection perform and in particular, do

inserts and delete operations perform in the same way?

3

In order to find out the above, we develop an application that is designed to measure the

performance of update operations through views over RDF data and to analyse the impact

of size of data on update operations. The software development process was conducted in a

professional manner, focusing on all the four main stages (Analysis, Design, Code and Test)

of the development cycle. As the main objectives of the project were based on the

correctness of the application developed, it was important to ensure that the entire process

has been completed properly.

1.3 Experiments

Once the application was developed and validated, experiments were conducted in the

context of the main research question. The basic idea was to study view maintenance of

RDF files. View maintenance involves updating the View in line with changes made to the

database. Tests were run to evaluate the effectiveness of this technique and to study the

impact of RDF file size on performance of update operations. The report discusses the

experiments and the outcomes and reflects on them in the context of research.

1.4 Structure of Dissertation

The rest of the dissertation is presented as follows:

 Chapter 2 provides the background of the work done so far in the area of the

Semantic Web since the introduction of the concept. It pulls together significant

developments in the area and identifies major research themes. It also points out to

some of the bottle necks and discusses the proposed solutions.

 Chapter 3 provides an account of the development process of the application. It

contains sections about the general architecture, system development and data used

in the experiments. It explains the detailed design of the application and appreciates

the decisions made during the development activity based on the merits and

demerits of the options available.

 Chapter 4 focuses on two main areas; it starts by describes the testing of the

application and details the software verification process. The second section

describes the experiments and their outcomes. It also provides analysis about the

observations made from the experiments.

4

 Chapter 5 concludes the report with a set of observations made on the outcome of

experiments. It includes a brief account on the approach taken for implementing the

project. The recommendations also include directions for future work as an

extension of this project.

5

Chapter 2

Literature Review

This chapter introduces the concept of the Semantic Web as proposed by Tim Berners-Lee in

2001 and gives the motivation behind Semantic Web. It also explains how it intends to

change the Web. The word Semantics refers to the study of meaning, the term Semantic

Web can be rightly described as a web (Internet) that tries to understand the meaning of its

contents by focusing on the relationships with words and their attributed meaning. In other

words the Semantic Web aims to make sense of the data through metadata (data about

data) generated alongside the primary data. It is proposed that computers would be able to

process (partially, at varying levels) a new generation of Web content to understand the

meaning of data and its intended use. We pull together noteworthy research during the past

decade to identify major advancements and possible bottlenecks for widespread uptake of

this technology.

2.1 The Semantic Web

The Semantic Web was proposed as a revolutionary new way for the Web to function

(Berners-Lee, et al, 2001). The whole idea was to make the Web more intelligent by adding

meaning to it, essentially creating a very large integrated information system for the whole

world. The idea of the Semantic Web has two main objectives; the first one is to enable data

integration. The second one is to make data more intelligible for machines to enhance the

Web experience of users. The goals, to be performed through means of Semantic Web

applications, are interlinked in a manner that we cannot integrate data if machines do not

understand what it means. At the core of the Semantic Web is the Resource Description

Framework (RDF) which provides a mechanism to structure and represent data in a uniform

way. In order to be able to integrate data we need to have an agreed upon, easy to use

format for defining data. Additional metadata is generated alongside main data, containing

information about its intended meaning and use, thereby defining Semantics to govern its

use. The present generation of data on the Internet has been created by different entities

using various representation formats, understood primarily by humans. Applications are

only able to process a marginable part of it. The idea is to standardize content creation to

6

remove ambiguity by introducing a uniform data representation format and vocabulary to

create a new generation of Web Content and to also generate associated metadata along

with the data to define its Semantics. This metadata contains information about the

Semantics of data and can be used by applications to understand the data itself. Computers

will be then able to process the data content to perform tasks more efficiently. This way it

was envisioned the World Wide Web would become meaningful to machines.

As of now a majority of the content on the Internet is readable and intelligible by humans

only as this information is designed mostly for human consumption. Web 2.0 allows users to

share, create, process and manage information from different sources over the Web

(Buffaa, et al, 2011). Machines do not really understand content on the Web and cannot

process them completely. Currently, the Internet is a rich collection of disparate but similar

or even identical information. Often the same thing is represented in different forms; this

similarity is only recognizable by humans. Computer systems are unable to make the

correlation between the two apparently different objects. The most important characteristic

of the Web is its universality, which is a result of the decentralized way the Internet works.

Typically users work their way through the Web by jumping to and from Web pages using

hypertext links. One approach to solve this problem was the use of tags (folksonomies) to

relate concepts together. It was due to tagging that similar Web pages were able to relate to

each other which provide some level of interconnection of the content on the Web. Tagging

has been for long used as a means of linking information (from different sources) together

by identifying keywords or trigger words (Peters, 2009). Search engines are based on

complex algorithms about page rank and other characteristics but are fundamentally based

on tags. However this approach does provide a way of describing connections between Web

pages but isn’t a coherent mechanism to manage the Web and for grouping Web content.

The tags provide a sort of informal connection to other similar document and content on

the Web. Tagging has gained considerable success in online discussion forms or blogs, both

technical and non technical, where people can post questions and answers and use

keywords or tags to classify their work according to different themes. Tags are a form of

Web content produced that can be processed by machines. Search engines widely use these

tags and other similar features to return a collection of similar items to the user.

7

Efforts have been underway to further integrate the content on the Web using Semantic

Web technologies (Shadbolt, Hall & Berners-Lee, 2006). However there is one fundamental

obstacle towards this whole idea i.e. the way the Web has been brought into existence. The

content on the Web is largely diverse and inconsistent in nature. Apart from being available

in a range of different languages and formats, these documents are constructed and

organized in different forms. Web Content is available from highly structured to barely

structured format. Web systems have to deal with an asymmetric collection of data (in

terms of representation formats) and provide as much information as possible to the user.

Let us take the example of a search engine. A search engine is designed to return to the user

a set of results (a collection of documents and other form of Web content) that it assumes

to be relevant to the user (most likely to meet the user’s requirements). Search engines

work in a complex mechanism of recall and precision and return documents on the basis of

page rankings. The pages are indexed and then matched against user queries. The more

appropriate the pages are indexed the more likely they are to be returned to a user query.

This is an example of how computers can process information and make the overall net

experience easier for us. The Semantic Web aims to extend this concept and apply it over

the entire World Wide Web to achieve an Internet that is more intelligent and that aims to

support the user directly in performing specific tasks rather than just aiming to assist the

user in achieving its purpose.

2.2 Semantic Web Technologies

In order to make the World Wide Web more coherent we need to have certain mechanisms

in place to enable computers to create information that can be read (partially) by

computers. The Semantic Web framework provides a complete set of technologies to

transform the Internet as shown in Figure 1.

8

Figure1: Semantic Web Stack

The Semantic Web is an extension of current Web technologies. The above framework

provides a mechanism for data integration and sharing and is built on top of existing

technologies. The first step is knowledge representation i.e. to create knowledge based on a

common format and to give some structure to it. It involves defining common vocabulary to

describe concepts about a particular domain unambiguously. The second step is to create a

mechanism for information to be shared over the Internet (Semantic Web applications and

Ontologies) and the final step is to create inference rules on top of this data so computers

can process and reason with the information to discover data that has not been stated

explicitly. Knowledge Representation has its roots in Artificial Intelligence (Brooks, 1991). It

is based on common definition and understanding of concepts by everyone creating

information on the Web. This shared approach towards defining information on the Web

would automatically give it a structure. Having the information representation sorted out,

we can then create knowledge from data based on some facts and Figures using inference

rules on top. In traditional knowledge representation systems the ever growing size of

information makes it difficult to manage centrally. Such systems are limited in scope and are

able to cater to a certain problem domain (Berners-Lee, 2001). These systems (however

robust) are designed to answer a finite number of questions. There are also concerns about

the reliability of the system to answer certain type of questions. Such systems are highly

complex, i.e. the complexity increases with the effectiveness of the system. However every

system regardless how complex, is capable of answering a finite number of questions based

on the inference rules that govern the knowledge contained within the system. There

Existing Web Content in XML

RDF Model and Syntax

Ontology

Rules and Query

Logic and Proof for

reasoning

9

always will remain some questions that the system is not able to answer reliably or even

incapable of answering at all. Scientists name such kind of questions as paradoxes. Semantic

Web acknowledges the concept of paradoxes while promoting the idea of representing

information as expressively as possible. The basic motivation for that is the specification of

information in a uniform format will allow a clear understanding allows computers to

process this information and reason with it. The main challenge is to define a language that

allows for clear, unambiguous representation of data and associated metadata, so it can be

processed by machines.

There are a number of technologies that can be used to express content in a structured

machine readable format, for example Extensible Mark-up Language (XML) and RDF

(Resource Distribution Framework). XML allows users to create custom tags for representing

data. These tags can be processed using browsers and scripts. The underlying structure of all

XML documents is a tree. Although this structure does have a meaning i.e. XML but does not

give users the provision to describe the meaning of their data or structure. The tree

structure of XML documents is unintuitive and it is not suitable for the Semantic Web.

Although ID/IDREF provide the capability of extending it to provide graph like structures but

it does not solve ambiguity issues.

RDF is a semi structured data model to define data and is at the core of Semantic Web. It

has been proposed as the new universal data format for information interchange on the

Internet (Lassila & Swick, 1999), (W3C Recommendation, 2004). Data in RDF is represented

in the form of triples i.e. subject, predicate and object. A RDF triple contains information

about entities (subjects and objects) and the relationship between them (predicate). Every

component of a triple can be specified using XML tags, literals or URIs (Universal Resource

Identifier) which identifies uniquely a resource on the Internet. We can describe subject-

property-object using RDF in the following terms, the subject and object point to a resource

on the Web and properties can be described as attributes of resources. Every subject has an

object and has a relationship between them. In other words we can say that RDF describes

properties between two entities. By specifying information in the form of triples, we can

identify the stated information based on the URI or URL, hence making the description of

the triples to be available for access on the Web by everyone (Berners-Lee, 2001). This

allows us to define information in a form that can be easily used across the Web and does

10

not suffer from the ambiguity involved with XML. One of the main problems with XML was

the lack of standard convention for describing an object, leaving the possibility of similar

data to be described in multiple ways. Machines, unlike humans were not able to

understand the similarity between them. RDF solves two main problems of XML; it provides

a uniform format for creating data and also provides a more suitable architectural structure

in the form of a graph. Figure 2 shows a RDF triple represented in the form of a graph. The

subject is represented by a URI while the predicate is denoted as an arc and the object is

represented by a literal.

Figure 2: RDF Graph (Apache Software Foundation, 2011)

After having a uniform data representation format, we need a more advanced technology

that could provide a schema to the data we have created. RDF does provide us with a

structure to represent data in a form of triples but it does not allow us to define hierarchical

relationships between resources and linkages between a resource and another. It only

allows us to create a RDF triple. It however does not provide mechanisms to describe these

properties or the relationships between properties and other resources. Considering the

diverse, on the fly nature of RDF, use of this data is a challenge in the absence of a schema.

RDFS (Resource Description Framework Schema) complements RDF triples to tell us about

the meaning of information. This is the metadata that defines its Semantics. It borrows the

concept of inheritance from Object Oriented Paradigm (OOP). Inheritance is one of the

three main principles of OOP and is the concept of defining the hierarchical relationship

between two entities. It describes the relationship between classes used in RDF triples.

Using RDFS we can group related resources and also identify the relationship between

http://Somewhere/John

Smith

“John Smith”

Vcard:FN
Subject

Predicate

Object

11

them. We create classes and properties similar to object oriented paradigm but the main

difference is that these relationships apply to the classes rather than their instances. Each

property has a range and domain whose value is a resource. For e.g. the property eg:isfather

has domain identified by a resource eg:person1 and domain by a resource eg:person2. RDFS

is also referred to as RDF vocabulary description language (W3C, 2004). It provides a set of

standard vocabulary that is well represented and well understood by everyone thereby

allowing shared understanding of concepts in a domain thus removing any ambiguities.

Using RDFS we can create several layers of information by identifying relations between

resources and properties. The relationship between resources is defined through properties

between them and their values. However RDFS too has certain limitations. We cannot

define cardinality and the scope of properties between the resources nor can we restrict the

range of properties.

RDF and RDFS allow us to structure data and define hierarchical relationships regarding

elements of that data. It may work for data created by one source. However given the

universality of the World Wide Web, the same information can be specified quite differently

over the Internet i.e. the same concept has been defined using different identifiers. This

problem is solved by Ontologies. Ontologies have been defined as a formal specification of a

shared conceptualization (Gruber, 1994, Gruber 2009) and enable us to associate similar

pieces of information with each other. They are a means of specifying that two particular

terms point to the same thing or are the same thing. Ontologies provide a common

understanding of concepts. Information is described using classes, sub classes, properties

and relations in Ontologies. They also contain a set of inference rules, which govern the use

of information, to be used by machines to discover new information (not stated explicitly)

and make deductions about data based on these rules. Ontologies are created using the

OWL (Web Ontology Language) language, like XML and RDF it can be processed by a

computer program which manipulates information to deduce information that has not been

specified explicitly, effectively adding logic to the Web (McGuinness & Van Harmelen, 2004).

Users can create Ontologies of their information and use relations such as type-of, same-as,

subclassof to link to other Ontologies. Using Semantic Web technologies such as XML, RDF,

RDFS we can create Ontologies to define data and more importantly generate the metadata

that supplements the structured data for applications to process it while understanding the

12

Semantics. These technologies add logic to the Web and make it much more useful for the

user. After specifying a mechanism to structure information by describing its meaning,

specifying the rules that govern it and also allowing relations to be identified between

information across the Web, The next logical step is to create computer programs that can

process and understand the structure of the information, understand what the structure

means, indentify the relationship between entities and be able to make conclusions based

on some rules using Ontologies. Such types of computer program are known as agents.

Agents collect information from various sources over the Web, process it and exchange

information amongst other agents over the Web, therefore truly utilizing the capabilities of

Semantic Web (Berners-Lee, 2001). The Semantic Web can be utilized to answer questions

that require tremendous effort by humans who use bits and pieces of information available

over the Internet to create new knowledge. Adding meaning to the Web will make the

Internet experience more enriching for humans by allowing them easy access to a whole

new wealth of information (Shadbolt Et al, 2006).

This was the original vision of the Semantic Web however the current practice is somewhat

limited in terms of its application. There has not been widespread uptake of the technology

due to various reasons. Current implementations have been limited to specialized

application areas. Given the current state of things, the proposed integration of data on the

World Wide Web has not been achieved, atleast not on a universal level as originally

expected. There are examples of the use of Ontologies in the area of biology, medicine and

genomics. Efforts are underway to apply this approach to manage information in areas such

as social networking, search engines, geo-physical, metrological applications. Some progress

has been made in this direction by governments.

 An example of a Semantic Web search engine is Corese which uses Semantic Web

technologies to search through structured data (Corby et al, 2004).

 Several experimental Semantic Web projects have been the creation of Semantic

Wikis. A number of new Semantic Wikis have been developed by professionals

(Schaffert, 2006, Buffa, 2011) gives an indication of a new trend of research.

 The UK government has developed an Integrated Public Sector Vocabulary for

common use by stakeholders and also constituted the Office of Public Sector

13

Information which allows a treasure of information, gathered and created by the

government, be used by the public (Shadbolt et al, 2006).

 Another significant Semantic Web project is DBpedia (www.wiki.dbpedia.org) which

is part of the larger Wikipedia project. DBpedia aims to provide structured

information of all the knowledge created and collected for Wikipedia. Wikipedia has

proved to be a wildly popular platform for sharing of information between humans.

The DBpedia project aims to enable computers to process and understand

knowledge by representing the data in a more structured form. Users can access this

structured information repository using SPARQL (SPARQL Protocol and RDF Query

Language) and an endpoint.

 A major milestone in the path towards a widespread use of the Semantic Web was

the formation of Schema.org in 2011 to improve search engine performance. It is a

joint venture of major engines such as Google, Yahoo, Bing and Yandex to form a

common collection of tags to optimize the precision and recall search engine

performance. Google has been harnessing structure data to display intelligent

snippets (Starr, 2012). Other major players have been following suit including

commercial players such as Walmart and Amazon.

 Given the current state of information available on the Internet, traditional search

engines have complex algorithms to find useful Web pages due to the sheer number

of pages. In order to deal with this data in a more structured manner, some work has

been done to create Semantic Search Engines (SSE) that aim to link the Semantics of

the query with the Semantics of the indexed documents, allowing computers to

understand exactly what is required by the user (Renteria et al, 2010).

Despite these efforts and several others, the Semantic Web still falls short of expectations.

Progress towards the transformation of the World Wide Web into the Semantic Web has

been slow. International standardization organisations such as Internet Engineering Task

Force (IETF) and the World Wide Web Consortium (W3C) have worked to specify

mechanisms and standardize technologies such as RDF, RDFS, OWL, SPARQL, Rule

Interchange Format among others that allow meaning and concepts to be shared (Shadbolt

et al, 2006). Ontologies are at the top level of all Semantic Web technologies and allow

information to be created and distributed across systems. Keeping in line with the evolving

14

computing scenario which involves ubiquitous and pervasive computing, the Semantic Web

is being explored to enhance the mobile computing environment i.e. enabling machines to

understand the context and assist in completing tasks (Sheshagiri et al, 2004).

The Semantic Web aims to maximise the sharing and reuse of information. It focuses on

combining and integrating related knowledge created all over the world. Proper

implementation and utilization of Semantic Web will enable humans to add Semantics to

existing data (Berners-Lee et al, 2001). By combining the knowledge pool of the world we

would be able to save a lot of resources currently utilized to create information that is

already created by someone else but is unknown to the user or is in another form. Exploiting

its true potential depends on how widely this technology is taken. Current implementations

of this technology have allowed un-paralleled sharing of information amongst the users in

numerous areas as discussed above (Shadbolt et al, 2006). These projects have proved to be

an important demonstration of the power of the Semantic Web.

2.3 Size of RDF Collections

In line with the objectives of our project, it was important to research the size of RDF

collections and how they are managed. A single RDF collection can range from several

hundred to billions of triples. A list of RDF collections and their size complied from RDF data

dumps available at the W3C website has been shown in Table 1. Such mushrooming growth

has raised concerns about performance issues of applications that rely on RDF content.

Large data collections based on RDF are difficult to maintain and update as current practices

mostly involve regenerating the entire data collection after modification operations. Some

of the initial applications that allowed retrieval and maintenance of RDF structures have

become increasingly troublesome with the increasing size of triples (Alexaki et al, 2001).

Languages such as SPARQL (SPARQL Protocol and RDF Query Language), RDFQL (RDF Query

Language) and RQL (RDF Query Language) among others have gained prominence as the

language of choice by researchers for querying RDF data. These languages are declarative

and are similar to SQL.

15

Table 1: Size of RDF collections (W3C RDF Dumps, 2013)

Project Name Approximate Size of Data Set

Data-gov Wiki 5+ billion triples

Billion triples Challenge Dataset 2010 3.2 billion triples

Bio2RDF 2.7 billion triples

Linked Sensor Data 1.7 billion triples

Billion triples Challenge Dataset 2009 1.14 billion triples

Billion triples Challenge Dataset 2008 1 billion triples

U.S. Census data 1 billion triples

UniProt 300+ million triples

DBpedia 247 million triples

World Bank Linked Data 160 million triples

Wikipedia 47 million triples

RKB Explorer Data 60 million triples

GovTrack.us 13 million triples

LinkedCT 9.8 million triples

TaxonConcept Knowledge Base 8.2 million triples

LinkedMDB 6.1 million triples

GeoSpecies Knowledge Base 1.9 million triples

U.S. SEC data 1.8 million triples

OpenCyc 1.6 million triples

Jamendo from DBtune.org 1.1 million triples

British Geological Survey (BGS) 840000 triples

Airport Data 754585 triples

BBC John Peel sessions from DBtune.org 277,000 triples

OSM Semantic Network 130,000 triples

Researchers have been exploring ways to improve performance of RDF queries. Some of

them have proposed entirely new languages to retrieve data from RDF structures, others

have proposed using parallel processing by partitioning extremely large files over several

machines, efficient query algorithms, join processing, indexing and to apply hashing

16

techniques for faster access of data as ways to enhance performance of queries (Chong,

2005,) (Neumann & Weikum, 2009). Similarly, efforts have been underway to benchmark

query performance in RDF structures (Neumann & Weikum, 2008). Performance

considerations have also been a major factor as more and more content on the Web in

proliferated by the RDF. The increasing size of RDF data also raises challenges for content

management and maintenance. One of the main reasons for this is the transformation of

more and more Web content into RDF which is expected to grow exponentially in the

coming years. Several search engines have designed mechanisms to process Semantic Web

(RDF) content as part of their normal searches. RDF data management systems have also

been introduced to allow for a proper way to edit, share and manage RDF data(Neumann &

Weikum, 2008).

2.4 SPARQL/SPARUL

SPARQL is a W3C recommendation for querying and manipulating RDF structures. It is a

declarative language (need to describe control and function step by step) with a structure

similar to SQL. Most Semantic Web applications use RDF query languages such as SPARQL to

retrieve data from triples. SPARQL provides a very robust set of features that allow us to

include options based on conjunctions, disjunctions and patterns in a query. It has four

different modes of operations that provide a variety of outputs. These are the SELECT form

used to extract data, another form is CONSTRUCT which can be used to construct a RDF

graph, the ASK statement is the most simplest of them all which returns a Boolean value

based on the query. The last one is DESCRIBE which is used to generate an RDF graph. The

most common of these is the SELECT statement which is used to query data. There have

been several experiments which evaluate the performance of SPARQL queries and several

options have been suggested to improve SPARQL performance (Chong et al., 2005),

(Neumann & Weikum, 2008), (Neumann & Weikum, 2009).

SPARQL can be used to perform a variety of functions on RDF data, its update language

SPARUL (SPARQL Update) can be used to update an RDF structure. We can use SPARUL to

describe, communicate and store changes to a remote RDF store (Seaborne et al, 2008). It is

an extension of SPARQL and provides the ability to modify an RDF document. Modification is

performed through add and delete operations. There is no mechanism to ‘alter’ a triple by

17

‘editing’ its components. W3C recommendation indentifies the main capabilities of SPARUL

as follows, insertion of triples to an existing RDF structure, deletion of triples from an

existing RDF structure, performing several (group) modification operations as a single task,

creating a new RDF structure and deleting an existing RDF structure from the database

(W3C SPARUL, 2008).

2.5 SPARQL Implementations

SPARQL has been used to develop applications to provide a framework for easy use and

maintenance of RDF structures. These are similar to the concept of RDMBS (Relational

Database Management Systems) and often referred to as RDF engines. (Neumann &

Weikum, 2008) developed an RDF engine called RDF: 3X (RDF Triple Express) to query and

manage RDF collections. It is proposed to be a fast and effective RDF data management

system. RDF: 3X is based on the RISC (Reduced Instruction Set Computing) paradigm,

designed to be light weight in terms of the application itself including the algorithms for

querying, manipulating and processing RDF content. It defines four major factors that affect

the development of efficient and effective RDF Engines. The first one is the flexibility that

the RDF does not restrict us with any schema constraints as schema is provided by RDFS. We

cannot use automated mechanisms for the physical data design of the application. The

second one is about the diversified nature of RDF content which also is a limitation in this

regard. Complex queries traversing multiple predicates in large RDF collections take a higher

toll on the performance as connections are made at the fine grain level i.e. the RDF triples

rather than the file. The nature of join condition varies from query to query. This poses a

challenge for the choice of query processing algorithms that may be used at the application

level as performance considerations attract more importance with the increasing size of RDF

collections. The third consideration for the development of any application is the possibility

of evaluating performance.

The performance of RDF: 3X is based on three key design parameters. As a first step towards

improving performance during execution of queries, the application builds indexes of the

collection on the basis of all possible permutations of RDF triple collection. Indexes are also

created by count aggregating existing indexes. To put simply, indexes in multiple

configurations are created and allow for faster access of the data. This removes the need of

18

an auto tuning wizard to handle the physical design tuning required to manipulate raw RDF

collections. These indexes can be compressed to keep the size to a minimum. The second

factor is an efficient query processor (RDF engine), as the exhaustive indexes created in the

first stage only need to be manipulated by using join conditions. Due to the robustness of

the indexes, the actual RDF triple collection does not need to be accessed for a majority of

queries. The third factor is the operation of the query operator, which is designed to

optimize queries and formulate execution plans (Neumann & Weikum, 2008).

Virtuoso is a very popular system that provides data management capabilities for data

based on a variety of formats such as relational, XML, object oriented databases, object

relational databases and even RDF databases. It provides data integration services as it can

work with external databases also. This approach fits well in terms of the Semantic Web as

data can be used from external sources (Erling & Mikhailov , 2007).

2.6 RDF Views

Views are a logical subset of data and have been extensively used on existing data

management systems based on XML, object oriented and relational format (Ceri & Widom ,

1991). It is a matured technology and is focused on the use of data rather than its storage

and management. It provides an extra layer of functionality on top of the database and

there has been extensive work regarding the creation and maintenance of views on

traditional data management systems. Researchers have been experimenting with

implementing views on RDF data and have proposed algorithms and techniques to optimize

data manipulation operations on RDF through views. However the main difference in

creating views on RDF data is that RDF is a schema free data format (schema is provided by

RDFS) where as XML, object oriented and relational databases adhere to a fixed schema. In

these databases the views are essentially stored queries and the output of these views is in

the form of a multi dimensional array where as this is not true for RDF.

W3C (World Wide Web Consortium) has recommended RDF as a language to be used for

creating Web content in terms of its goal of Web integration. In order to realize the vision of

the Semantic Web it is very important to be able to manipulate data to suit the

requirements of all the applications as different applications require data in different format

all varying in terms of detail, scope etc. Views provide an excellent way to utilize RDF data to

19

enable it to be used by applications. Views provide the flexibility and power to applications

to extract information from the Web and manipulate it according to their own

requirements. Security has always been a major concern when data comes from external

sources or when external parties require access to the data. The true potential of a database

can only be exploited if it provides the capability of creating views. This has been proved by

its widespread use in RDBMS (Relational Data Base Management Systems) and OOBDMS

(Object Oriented Database Management Systems). Views are an established technology and

serve multiple purposes such as presenting data in different formats without manipulating

the original data. Data is retrieved from views instead of the tables thereby restricting

access to the base tables thus providing another layer of security. Views also provide the

capability to control the level of access to the database, instead of providing access to the

complete table or database we can control the level of access by horizontally partitioning

the database. Views are a perfect way to present data in a customized form without

modifying any of the sources, they also allow for integrating data from multiple sources.

They are essential to utilizing the full potential of any database as they have significant

implications in terms of security and performance. The performance considerations

regarding large RDF databases have been discussed earlier in this report.

(Volz et al, 2002) introduced the concept of creating views on RDF data. Their work was

based on RQL (RDF Query Language) which is a declarative language for querying RDF

graphs. There have been several different applications such as Virtuoso (Erling & Mikhailov,

2007) and Triple Store that support the storage and maintenance of RDF databases. Data

can be retrieved from these data bases using SPARQL which is a powerful data retrieval

language designed to work with triples. It functions differently than standard RDBMS query

languages as its mode of operation is through graph traversal and based on predicates.

SPARQL has been specifically designed to work with RDF data.

View maintenance refers to updating of queries that make up the View after the underlying

data source has been modified. Maintaining RDF views is different from maintaining XML or

relational views, primarily because of the fundamental difference of the structure of the

databases. XML data is stored or represented in the form of a tree and has nodes, while

relational data is stored in the form of tables. However RDF data is represented in the form

of a graph. RDF data is completely different from XML and relational data hence RDF Views

20

need to be managed quite differently than existing practices. (Erling & Mikhailov, 2007) has

come up with a comprehensive approach towards creating, maintaining and updating

(insertion, deletion and modification operations on) RDF views. He has proposed a set of

algorithms for insertion maintenance, deletion maintenance including algorithms for

modifying triples and resources. These experiments were based on RDQL (RDF Data Query

Language). RDQL like SPARQL is a query language developed by Hewlett Packard (Seaborne,

2003) as part of efforts by industry and academia to develop a sustainable and robust

Semantic Web. This language has been used in a number of projects for manipulating RDF

databases. The syntax of this language is quite similar to SQL by following the SELECT-FROM-

WHERE structure. The mode of operation is graph traversal of the triples through pattern

matching.

2.7 Relational Approach

In Relational terms, RDF structures can be viewed as a large three dimensional table.

Another approach towards working with RDF databases is to transform the triples into a

relational database. Applications such as Virtuoso support storing RDF into tabular form.

This technique has been used widely during the initial stages of RDF structures (Chong et al.,

2005). It provides users with a way of working with RDF data due to the popularity of

RDMBS and relative expertise and skills of professionals. This approach too has its roots

from the transformation of XML data into the relational structure. An RDF triple has three

main components i.e. Subject-Predicate-Object also referred to as Resource-Property-Value.

The idea is to create views from the now created relational table and perform insertion,

deletion or modification as required by using existing mechanisms with respect to relational

views. In other words, the data can be updated through views. The addition of a new record

into the database through the view would effectively mean adding a new tuple into the

table and similarly other data manipulation operations. If the underlying database has been

modified then the view based on the database has to be modified as well. This process is

called view maintenance and is shown in Figure 3.

21

Before Modification

After Modification

Figure 3: View Maintenance

2.8 Summary of Chapter

The aim of the Semantic Web is to add Semantics to the Internet. The Semantic Web

framework provides a complete suite of technologies to interlink and integrate data. At the

lowest level this has been achieved by RDF. It has been recommended by W3C as a universal

data interchange format and is at the core of the Semantic Web. It overcomes all the

problems of existing data representation formats. The size of some of the RDF collections is

already in the number of billions of triples and it is expected to grow further. The need for

an efficient mechanism for management of large RDF structures has given rise to a number

of approaches towards maintaining and generating RDF data. RDF structures are typically

generated from a triple store (RDF engines). As data changes over time, these structures

need to be updated. One approach is to regenerate the entire file after modifications;

however this is inefficient and expensive (computationally) for large collections. We explore

the possibility of maintaining RDF structures directly through views without the need of

regenerating the complete structure.

View

V1

Database

DB

View

V1’

Database

DB’

22

Chapter 3

Methodology

This chapter presents the Methodology in three sections describing the overall problem, the

System Design including the software development process and the Detailed Design of the

application.

3.1 Problem Description

The Internet was created to allow sharing of information between people and entities. The

idea of the Internet was based on Internetworking of entities on the World Wide Web. Even

though the Internet has seen unprecedented growth during the last two and a half decades,

it still could not really provide a framework to integrate data as a whole. This is due to the

lack of a uniform mechanism in current Web technologies to standardise the interchange of

information. Ever since the advent of the Internet, technology has evolved to provide more

efficient ways to exchange information over the Web, the most noteworthy being the HTML

and XML. The most widely used data interchange format on the Internet today is XML,

which provides a standard for entities to exchange information between each other which

can be then used for further processing by applications on the respective host machines.

Java technologies such as JavaServer Pages (JSP) have also played a very important role in

making the Internet a very robust and resourceful platform for global commerce and

information interchange. The Internet has revolutionized the way people live and do things;

it has rendered physical distances and boundaries meaningless primarily due to the

versatility of Java technologies locally and on the Internet. However the mushrooming

growth of the Internet and the number of Web pages available has come along with its

problems. The enormous size of the Internet makes it difficult to manage the information

within it. The second main problem is that a considerable amount of Web content is

redundant due to the ambiguity in the representation mechanisms.

23

3.1.1 Modelling Problems with XML

XML is the most widely used data interchange format on the Web. It provides a standard

language for representing information and exchanging it between entities on the World

Wide Web, however its main drawback is its ambiguity. XML provides us with HTML like tags

to represent information in the form of a tree. The tree contains data as well as metadata

about the tree. However the metadata, represented in DTD (Document Type Definition) and

XML Schema, governs the items permitted in the tree but it does not contain any

information about its meaning. Applications can then manipulate the tree structure to

perform user specified tasks. Even though XML is a standard format, it does not describe a

uniform representation of similar entities, there is no standard way to define a piece of

information. It lacks mechanisms to define the meaning of its contents. XML tags are

represented arbitrarily in the tree with no meaning. Applications process the tree in their

different manner which also effects how its meaning is interpreted by the application. In

order to further explain the ambiguity associated with XML, let us take the example of a

piece of information about a horse race named ‘Grand National’ which was won by a horse

named ‘Thunder Bolt’. Based on as much information is available, the representation of the

above information in XML would be something of the sort shown in Figure 4.

Figure 4: XML Representation # 1

However, someone else may represent the same information as shown in Figure 5.

Figure 5: XML Representation # 2

The same information can be represented through two completely different XML formats.

There is no way to associate the intended meaning of the tags with XML. The metadata only

 <race name="Grand National">

 <winner> Thunder Bolt </winner>

 </race>

 <winner name=" Thunder Bolt ">

<race> Grand National</race>

</winner>

24

contains information for rendering (information about font size, colour and style) and other

necessary information for presentation or processing by the application. The lack of a

uniform structure for representing information on the Web has resulted in a lot of

redundant information being created.

The second disadvantage of XML is its tree structure just like its predecessor HTML. The tree

structure is not adequate for representing complex data. As data becomes more

complicated, the resulting tree becomes complex and unintuitive. The various components

of information about an entity are spread all over the tree which is a somewhat un-

integrated way of representing information. It is not possible to link together equivalent

nodes in separate trees using XML hence that is not optimal data integration. XML is

fundamentally a tree, although ID/IREF provides the capability of extending it to graph

structures but the underlying architecture remains same, by contrast the intention of RDF is

that it is a graph. RDF data is represented as a directed graph. The nodes in the graph are

resources identifiable through a URI. The arcs in the graph represent properties of

resources. At the other end of the arc are literal values or any other resource representing

the value of that property. The three components form the RDF triple in the form of subject-

predicate-object; each can be represented using a URI.

The idea of the Semantic Web envisages global data integration by allowing entities on the

Web to reuse and share information between one another. This is not possible within XML

due to the problems discussed above. A new data representation format was required to

address these shortcomings. RDF provides us with mechanisms to express information

without ambiguity and allows the intended meaning of information to be expressed

alongside (using RDF/S). It is designed specifically for creating Semantic Web content and

provides a uniform way of representing data and its metadata (using RDF/S) in a structured

manner that can be used by applications to understand the intended meaning of a piece of

information. Data is easy to create using RDF and there are no schema considerations at this

level. This paradigm is known as pay as you go (Nueman, 2008). Additional metadata can be

easily appended with the original payload. It allows linking up of information, enabling it to

evolve incrementally as new pieces of data are created or appended. The world is slowly but

steadily realizing the power and the creation of a significant amount of RDF data.

Researchers in the field of biology, medicine and physics have taken keen interest into the

25

use of RDF for building knowledge bases to allow sharing and exchange of information.

Other name worthy projects based on RDF are DBpedia and Freebase (Nueman, 2008). The

entire knowledge base of Wikipdea is also based on RDF content. RDF along with its

associated technologies like RDF/S and OWL (Web Ontology Language) provide a complete

framework for creating unambiguous Web content in a uniform manner. It has been

designed to be a universal machine readable Internet exchange format. Structured

information is encoded in the form of a graph using RDF. RDF has been discussed earlier in

detail in section 2.1. The Semantic Web functions over RDF structures and involves

extensive sharing and reusing of information between entities over the Web using

Ontologies. Ontologies are RDF/S and OWL structures that are formal representations of

concepts in a particular domain; they are potentially complete knowledge bases about a

domain and the relationship between its concepts. We can model relationships between

various domains using Ontologies.

The Internet in undergoing a transformation towards the Semantic Web and Web content is

being increasingly created in RDF format. The Semantic Web is designed to function in a

tightly integrated manner involving significant sharing and reuse of information between

Web applications. The newer generation of Web content is created in RDF/OWL. Semantic

Web technologies provide a complete framework for seamless interaction between

applications for information interchange. The size of RDF data created in some major

projects is enormous; The Data-gov Wiki project aims to convert all public U.S. government

data into Semantic Web format. At present the size of its data collections is approximately

7.3 Billion triples (Data-gov Wiki, 2010). Other similar projects too have the number of

triples in billions as shown earlier in Table 1.

In terms of relational databases, RDF collections can be described as three dimensional

tables. They are views of relational data. As information changes over time and needs to be

updated, it is necessary that all the applications that use that data have access to the

updated information in a timely manner. Currently these views are maintained by

regenerating the data after modification, this practice is inefficient in terms of time and

resources with significant implications on performance. It is important to explore the

possibility of defining a mechanism that allows for direct update of RDF structures through

views. In order words, to update RDF structures through a similar mechanism like view

26

maintenance. The primary aim of this project is to assess the possibility of maintaining RDF

structures through views and to analyse the effects of increasing file size of RDF data on

update operations. We also explore the various ways of handling RDF files in Jena and also

the options within the Jena toolkit to store and manipulate these files.

3.2 System Design

This section describes the overall software development process, the technologies used and

the design of the application. It explains the approach taken during subsequent stages of

the software development process and discusses the various options available to implement

features. Some insight has been provided about the decisions made during the design,

implementation and testing of the application based on their merits and de-merits.

3.2.1 Requirements

The application was developed in a professional manner with due diligence to Software

Engineering principles. Every effort was taken to apply best practices throughout the

development process. Initial requirements were elicited and refined before initiation of the

design process. The proposed application is of experimental nature and has been designed

in a manner to allow for changes to be incorporated easily.

The success of any software development project depends on the effort applied for

obtaining proper requirements. A project initiated on sound requirements is completed

smoothly within the estimated time and resources. As with any software development

exercise, the requirements engineering process for this project was completed and

requirements were reviewed and refined. The final set of requirements for the proposed

application is as follows

 The system should read in three RDF files and store them into in-memory models.

 All models should be separate from each other.

 Insert operations (100 statements) should be performed on each model.

 Delete operations (100 statements) should be performed on each model.

 Time should be calculated for the above mentioned operations and recorded

separately for each task for individual models.

27

 A separate time file should be created containing the time measurements including

measurements for time taken to insert/delete one statement into the models.

 The modified models should be written into three separate RDF files.

 Information regarding execution stage of the code and time measurements should

be displayed on the console.

3.2.2 Development Approach:

Various software development approaches could be applied for the development of the

prototype application. Two software development approaches were shortlisted based on

the nature of the project. The first option was to use the Waterfall model and the second

option was to use the (Evolutionary) Iterative Prototyping model. The Waterfall model

(shown in Figure 6) envisions conclusively progressing through each stage of the SDLC

(Software Development Life Cycle) process before moving on to the next phase in the

model. There is no mechanism for going back to modify the design once it has been

finalized. The only way to incorporate change in the original specification is to redo the

whole process. Since the nature of this project was experimental, and required frequent

modification in design and code, the Waterfall model was deemed unsuitable for this

project.

Figure 6: The basic Waterfall Model

The Incremental or the Evolutionary Prototyping model (shown in Figure 7) is based on the

iterative development of the software. It works in cycles until the desired level of

functionality in the application is achieved. Each cycle refines the existing code and adds

Requirements

Engineering

Analysis and

Design

Implementation

(coding)

Testing and

verification

28

new features to it. The iterative approach towards software development allows us to go

back to the initial stages of the SDLC and make changes as required which fits perfectly with

the requirements of application we are aiming to develop.

Figure 7: Incremental Model

After due consideration, Incremental or Evolutionary Prototyping methodology was chosen

for the development of this application. Since the project involved developing skills in Jena,

it was decided to proceed in a structured manner by step by step inclusion of functionality

to the code in each cycle, after testing and validation of new and existing code the feature

was expanded in line with the requirements. The end result of every cycle was a prototype,

a complete subsystem of the application. The next cycle would involve addition of a new

subsystem of the application to the code and so on.

There are 5 main subsystems of the application as follows,

1. Reading RDF files into Model

2. Insert Operations

3. Delete Operations

4. Generating Time.txt

5. Writing modified files externally

In terms of input-process-output the block diagram of the application is shown in Figure 8.

Requirements

Engineering
Implementation

(Coding)

Testing &

Evaluation

Analysis &

Design

29

Figure 8: Block diagram of application

3.2.3 Architecture

The application reads-in RDF files of three different sizes and stores each file into separate

in-memory models. The RDF files are then altered through insert and deletion operations

applied through Jena methods. For this experiment we have chosen three RDF files with

sizes of 1 MB, 5 MB and 10 MB respectively. The experiment proceeds with performing

various update operations on these models and calculates the time taken to complete a

task. The time is then recorded and analysed. The experiment and the analysis are discussed

in detail in section 4.2. The general architecture of the application is shown in Figure 9.

Figure 9: General Architecture of application

The application is based on a single class and makes use of the Jena libraries (discussed in

detail in the next section). Jena libraries are not part of the standard Java package and have

to be imported into the JVM. Eclipse Juno IDE has been used for developing the application.

Modified

RDF FILE 1

Modified RDF

FILE 2

Modified

RDF FILE 3

JENA CODE

Model

1

Model

2

Model

3

Time.txt

RDF FILE 3 RDF FILE 3 RDF FILE 3

Input

Reading RDF Files

into Models

Process

Insert Operations
Delete Operations
Time Calculation

Output

Modified RDF Files
Time.txt

30

JENA CODE

The code has been kept as simple as possible to allow for uncomplicated modification as

required. The system architecture in terms of the MVC (Model – View – Controller)

paradigm is represented in Figure 10. The model is the data i.e. RDF files loaded into the in-

memory models. Controller is Jena code that performs update operations on the RDF

structures and records time. The View is the modified RDF files and the Time file created

externally. The MVC approach for designing the application allows us to separate data, code

and the output (as the model, view and control are decoupled), and it will allow us to

modify the code (control) as per the needs of the tests to be performed during the

experiments.

Figure 10: System Architecture in MVC paradigm

3.2.4 Jena

Introduced in 2000 by HP labs in Bristol UK, Jena is an open source framework for

developing Semantic Web applications. In 2009 it was taken over by the Apache Software

Foundation which supports development of open source software projects (Apache Jena,

Model

View

Controller

Modified

RDF FILE 1

Modified RDF

FILE 2

Modified

RDF FILE 3

Model 1 Model 2 Model 3

Time.txt

RDF FILE 1

1-MB

RDF FILE 2

5-MB

RDF FILE 3

10-MB

31

2011). It is an extension of the Java language comprising of a set of libraries that allow

programmers to create applications based on the Semantic Web model. These applications

have the ability to interact with other Semantic Web applications and manipulate Semantic

Web content. It also provides an extensive mechanism to handle RDF data through various

data structures capable of storing and manipulating RDF structures. Application developers

have the flexibility to use built-in methods or SPARQL/SPARUL queries to manipulate data.

Jena provides various storage strategies (Graph, Model and OntModel) to store RDF

structures, based on in-memory constructs or external files. The Jena framework consists of

the following main components (Apache Jena, 2011).

 An RDF API that enables us to read, process and write RDF data in several formats

(Turtle, N-triples and XML).

 An ontology API that handles OWL and RDFS Ontologies.

 A SPARQL API to support SPARQL/SPARUL queries.

 A rule-based inference engine for reasoning with RDF and OWL data sources.

 Stores to allow large numbers of RDF triples to be handled efficiently.

Figure 11 shows Jena’s architecture. At the core of Jena is the RDF API which contains

classes, methods and other constructs to handle RDF Triples. Each component of the triple

can be represented using URLs, and each triple can be called a statement. The entire RDF

can be represented using the Graph, Model or OntModel constructs (explained in next

section). At the abstract level all RDF structures are stored as graphs. This API supports basic

insert or remove (triples) operations on the graph and identifies triples complying with a

particular pattern and even merges multiple graphs together. We can read in RDF files

through a URL or an external file. RDF formats of N3, Turtle, XML/RDF are supported for

both read and write operations. The Model interface consists of a range of methods that

can be used to manipulate the structure without using SPARUL queries. It stores the RDF

data into an in-memory model. We can use inbuilt methods of Model interface to perform a

query or update operation on the RDF. The Graph interface is much simpler and does not

provide additional features like the Model interface. The SPARQL API has been included in

the framework to allow for executing queries of RDF structures within the application or

using a front end for external sources. We can execute SPARQL and SPARUL queries directly

on the graph. Both interfaces provide different storage strategies and flexibility to

32

manipulate the RDF structure. The choice for using the Graph or the Model depends on the

programmer as the same function can be performed on the data using either one.

Additionally Jena provides the capability to store RDF files in a RDBMS, RDF database or in

memory. The Inference API supports inference capabilities i.e. the ability to discover

information, within the graph, that has not been stated explicitly. For example, if class C is a

sub-class of class B, and B a sub-class of A, then by implication C is a sub-class of A (Apache

Jena, 2011). We can use the Jena Inference Engine to discover this information and display it

in the form of triples. It consists of various built in rule sets to infer information from the

graph. However we can also use external reasoners based on Description Logic.

Figure 11: Jena Architecture showing all APIs (Apache Jena, 2011)

3.2.5 Model v/s Graph

Model and Graph are two interfaces in Jena that can be used to manipulate RDF files. They

both allow similar kinds of operations but the mechanisms are different as they both

operate at different levels. Virtually, Model and Graph form two layers of processing RDF

files in Jena. At the abstract level all RDF files are stored as graphs. A model can simply be

defined as a stateless wrapper around the graph with a set of convenience methods for

added functionality. It adds an additional layer of functionality over an RDF graph through a

range of methods and other constructs to simplify tasks. From an implementation point of

view Graph contains basic functions for adding and removing triples. We can use embedded

SPARUL queries on graphs. With Models we can use various methods to work with RDF Data

including modification operations. Jena has three layers of functions and each layer

complements the one below it, these are OntModel layer, Model Layer and Graph layer in

the order of top to bottom as shown in Figure 12.

SPARQL API RDF API Ontology API

Application Layer

Inference API

STORE API

33

Figure 12: Three layers of operations in Jena (Apache Jena, 2011)

The Graph is at the lowest level with respect to implementation of RDF specification, it

limits number of operations that can be performed on the RDF data using the Graph

interface. It is at the granular level and allows limited flexibility to manipulate RDF data.

However programmers can exploit the Graph to perform advanced operations using SPARQL

and SPARUL queries. It does provide us with a powerful way of working with graphs at the

lowest level. The Graph layer is also referred to as SPI (Service Provider Interface), its

classes, methods and interfaces are designed by Jena development team to be used for

enhancing Jena capabilities or to integrate Jena with other system components (Carroll et al,

2004).

The Model layer extends the core functionality of the Graph layer and provides a set of

methods to provide additional functions. The Model layer was introduced in the second

major upgrade to Jena, also referred to as Jena 2 (Carroll et al, 2004) in which the RDF

specification implementation was decoupled from application level functions through the

Model. Apart from providing additional methods, the Model layer provides the capability for

Reification which is representing an existing triple into four triples to convey i.e. to

represent the same information represented in one triple by a set of four triples known as

reification quad (Carroll et al, 2004). This allows us to uncover information that has not

been explicitly represented and express it in the form of triples. The third layer of

operations is the OntModel layer that works with the inference engine for reasoning which

is beyond the scope of this project.

 O
n

to
lo

gy

M
o

d
el

G
rap

h

OntModel

Model

Graph

34

To further explain the level of operation at the Model and Graph levels, an example is

shown which retrieves the VCARD.FN property of resource johnSmithURI. The same

operation is performed at the Graph and Model layers using their respective methods.

At the Graph level, a query would have to be created and stored in a query string. The query

string would be executed via the ARQ query engine and finally the results would be

displayed using the ResultSet class as shown in Figure 13.

Figure 13: Retrieving data from RDF structure through Graph Interface

At the Model layer, we can perform the same task by using methods provided by the Model

interface as shown in Figure 14.

Figure 14: Retrieving data from RDF structure through Model Interface

Hence, the Model interface is much simpler to use and it provides programmers the option

to create Semantic Web applications without needing to develop exceptional skills in

SPARQL/SPARUL to manipulate RDF data. Due to the simplicity of the Model interface and

the convenience provided by its methods to perform tasks easily, it was decided to use

Model interface in our application.

3.2.6 Data

The test data has been based around the vCard Ontology, VCARD specification (RFC6350)

has been mapped into RDF. It is a W3C working draft by the Semantic Web Interest Group

(W3C SWIG, 2006) for describing people and organisations (W3C VCARD-RDF, 2013). The

Resource vcard =
model.getResource(johnSmithURI);

Resource name = vcard.getProperty(VCARD.FN)
 .getResource();

String s2 = “SELECT ?a
 WHERE {
 johnSmithURI VCARD.FN ?a.
 } “;

Query query = QueryFactory.create(s2);
 QueryExecution qExe = QueryExecutionFactory.sparqlService(query);
 ResultSet results = qExe.execSelect();
 ResultSetFormatter.out(System.out, results, query) ;

35

goal of this document was to promote the use of vCard ontology in Semantic Web

applications to have a uniform way of representing people and organisations in line with

existing representation mechanisms of non Semantic Web applications. The original vCard

specification was developed my IETF (Internet Engineering Task Force). There have been

subsequent upgrades to the specification, and the most recent one was version 4

(RFC6350). Apart from RDF, this specification has also been represented in text based

descriptions and XML. A sample of the test data set is given in Figure 15. The vCard ontology

has a comprehensive set of classes, subclasses, properties and modifiers that provide

elaborate vocabulary to describe persons and organisations. This ontology can store

complete bio-data including work and home information.

Figure 15: Sample data from vCard Ontology

The vCard structure was used as the data source in the experiments since it provides a

simple and easily readable structure to input. Other datasets downloaded and analysed for

use in the experiments could not be read into the Jena models due to issues such as

incompatible encoding formats. For the experiments, the ontology was expanded by

creating new resources and property values. Three separate test data sets were created

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:vcard="http://www.w3.org/2006/vcard/ns#">

 <vcard:Individual rdf:about="http://example.com/me/corky" >
 <vcard:formattedName>Corky Crystal</vcard:formattedName>
 <vcard:nickName>Corks</vcard:nickName>
 <vcard:hasTelephone rdf:parseType="Resource">
 <vcard:telephone>tel:61755555555</vcard:telephone>
 <rdf:type
rdf:resource="http://www.w3.org/2013/vcard/ns#Home"/>
 <rdf:type
rdf:resource="http://www.w3.org/2013/vcard/ns#Voice"/>
 </vcard:hasTelephone>
 <vcard:email rdf:resource="mailto:corky@example.com"/>
 <vcard:hasAddress rdf:parseType="Resource">
 <vcard:streetAddress>111 Lake Drive</vcard:streetAddress>
 <vcard:locality>WonderCity</vcard:locality>
 <vcard:postalCode>5555</vcard:postalCode>
 <vcard:country>Australia</vcard:country>
 <rdf:type
rdf:resource="http://www.w3.org/2013/vcard/ns#Home"/>
 </vcard:hasAddress>
 </vcard:Individual>
</rdf:RDF>

36

with sizes of 1 MB, 5 MB and 10 MB. As the experiment is designed to study the time taken

to update RDF structures of various sizes, the content of these data sets are not the primary

focus of analysis.

3.3 Detailed Design:

The design of the application is highly modular and strictly adheres to principles of Object

Oriented Programming. Main aspects of functionality have been logically separated in

separate methods. A resource folder containing test data has been included in the class

path. The application does not have a graphical user interface; however information is

displayed on the console regarding various execution stages of the code. This section

explains the implementation of the features of the application in a sequential manner.

The application reads in three RDF files and stores each into instances of the model. The

readFiles method reads-in RDF files and stores it into in-memory models. Figure 16 shows

the readFiles method.

Figure 16: readFiles Method

All three test files are passed into the three separate models. An example of reading in the

first test file is shown in Figure 17 where the first file is being read into Model 1.

Figure 17: Reading file 1 into Model 1

void readFiles (String inputfilename, Model modelname) throws IOException
 {
 InputStream in = FileManager.get().open(inputfilename);
 if (in == null) {
 throw new IllegalArgumentException ("File: " +
inputfilename + " not found");
 }
 modelname.read(new InputStreamReader(in), "");
 in.close();
 }

UpdateRDF UpdateRDF1= new UpdateRDF();
Model model1 = ModelFactory.createDefaultModel();
UpdateRDF1.readFiles(inputFileName1,model1);
System.out.println("== File 1 Read ==");

37

After the files have been read into the models, insert and delete operations are performed

on the models and elapsed time is recorded for all the models. The same is repeated for

delete operations on all three models. For calculating time there were several options

available. The first one was to decide between elapsed time and CPU (Central Processing

Unit) time. CPU time records the time taken by a computers processor to complete a set of

instructions. It does not take into account time taken by any additional task such as an I/O

operation. As CPU time for every machine is subject to the threading mechanisms utilised by

different processors, it was decided to opt for elapsed time. Elapsed time is a simple

measurement of time taken for a process to complete.

Elapsed time can be calculated in numerous ways in a Java program. There are several

classes, such as System and Calender, which provide multiple methods for recording time. It

was decided to use the System class through which we can query system parameters of the

JVM (Java Virtual Machine) running on the host machine. The getCurrentTimeMillis()

method returns the time calculated in milliseconds. However after running some initial tests

using this method it was observed that the time readings were not precise enough due to

which nanoTime() method of System class has been used to calculate time. This method

returns highly precise time values in nanoseconds. Time is recorded before the loop starts

and after the iterations complete. It includes both the time for creating the Statement and

time to add/delete the statement into the model. Time for insert and delete operations is

recorded and displayed on the console and is also stored separately in the Time.txt file

which is generated externally. An example of insert operations along with the time

calculation is shown in Figure 18.

Figure 18: Recording time for insert operations

long startAddTime1 = System.nanoTime();
 for(int i=0; i<=100; i++)
 {
 Statement S1 =
ResourceFactory.createStatement(model1.createResource("http://somewhere
/ShehramShah/" + i),VCARD.FN,model1.createLiteral("Shehram Shah"));
 model1.add(S1);
 }
 long endAddTime1 = System.nanoTime();
 long TimeTakenAdd1=endAddTime1-startAddTime1;

38

Statements are added to the models using the model.add()method. A statement is created

using the createStatement method of ResourceFactory class and is passed as the argument

of this method. There are three arguments of this method, resource, property and value. As

we are inserting a completely new statement into the model, we are also creating a new

resource named ‘http://somewhere/ShehramShah/’ using the createResource method. The

statement to be added uses an existing property of the vCard ontology, VCARD.FN, which

represents the full name. The last argument of the method is the value of the property

which can either be another resource or literal. For this case we are specifying it as a literal

by the string ‘Shehram Shah’. As discussed earlier, the contents of the RDF files or contents

of the statements added into or removed from RDF files are not of interest with respect to

the nature of this project. Hence the insertion and removal operations have been simplified

by using a for loop. The createResource method creates only the subject of an RDF triple

where as the createStatement creates a complete RDF triple, referred to as a statement in

Jena when operating on the Model layer.

The delete operations are performed through the same mechanism as applied for the insert

operations. The model.remove() performs the inverse of the model.add() method. An

example of removing statements is shown in Figure 19.

Figure 19: Recording time for delete operations

The insert and delete operations could have been decoupled from the main code body by

creating separate methods but it was decided to keep this section of code in the main

method as it will be modified frequently for running tests on the data and any object or

method dependencies created as a result of modularising this function would have made it

complicated to change the code frequently.

long startDelTime1 = System.nanoTime();
 for(int i=0; i<=100; i++)
 {
model1.remove(model1.createResource("http://somewhere/ShehramShah/" +
i),VCARD.FN,model1.createLiteral("Shehram Shah"));
 }
 long endDelTime1 = System.nanoTime();
 long TimeTakenDel1=endDelTime1-startDelTime1;

39

The most important deliverable of the application is the time file, containing the time

measurements discussed earlier in details, which will be used for further analysis to assess

the possibility of modifying RDF structure through views. It was important that the file

produced is readable so it can be used for performing analysis. The file is written using the

FileWriter class. It could have also been done using the FileOutputStream class but as the

contents of the target file are characters rather than raw bytes, the FileWriter class has been

used. The object of FIleWriter has been casted in BufferedWritter to allow the use of

newline() method which is not provided by FileWriter. The output of the file can be fed into

macros in MS Excel for further manipulation and analysis. An extract of the code that

creates the Time file is shown in Figure 20.

Figure 20: Generating Time.txt

Finally the modified RDF structures still contained in the models are then written into

external files using the writeFiles method. Jena allows RDF to be displayed in several

formats; this method displays it in RDF/XML format. A separate file is created for all the

three models. For technical considerations of preserving the original test files so as to be

 File fileName4 = new File("C:/Users/DELL/Desktop/Time.txt");
 if (!fileName4.exists()) {
 fileName4.createNewFile();
 }
 BufferedWriter out4= new BufferedWriter(new FileWriter(
fileName4));
 try {
 out4.write("Time for Insert Operations");
 out4.newLine();
 out4.newLine();
 out4.write(String.valueOf(TimeTakenAdd1));
 out4.newLine();
 out4.write(String.valueOf(TimeTakenAdd2));
 out4.newLine();
 out4.write(String.valueOf(TimeTakenAdd3));
 out4.newLine();

 finally {
 try {
 out4.close();
 }
 catch (IOException closeException) {
 // ignore
 }
 }

40

able to use them for further tests, the modified RDF structures are not overwritten on the

original files. The writeFiles method is shown below in Figure 21.

Figure 21: Regenerating modified RDF files

3.4 Summary of Chapter

Having presented the overall development methodology used and discussion on detailed

design of the application, the next chapter goes on to describe the testing process to

validate the application and also the experiments conducted through this application to

assess performance of updating RDF structures through views.

void writeFiles (File fileName, Model model) throws IOException
 {
 if (!fileName.exists()) {
 fileName.createNewFile();
 }
 FileWriter out = new FileWriter(fileName);
 try {
 model.write(out, "RDF/XML-ABBREV");
 }
 finally {
 try {
 out.close();
 }
 catch (IOException closeException) {
 // ignore
 }
 }
 }

41

Chapter 4

Analysis

The main aim of the work represented in this dissertation is to measure the process of view

maintenance is materialized RDF views. This is to be accomplished through the application

as discussed in previous chapter. Before using the application, it is important to verify that

the application works as intended. This chapter describes the application verification and

evaluation process separately. The first section, Testing Strategy, describes the tests

performed to validate the application in the testing phase of the software development

process. The second section, Evaluation, describes in detail the experiments conducted

using the application and results obtained from these tests. The discussion provides analysis

and insights based on research and the outcome of the experiments.

4.1. Test Strategy

Testing is an integral part of the software development process. It is one of the most

important phases of the SDLC in which the correctness of the system is assessed. The testing

process involves auditing the application to ensure that it satisfies system requirements and

also to identify potential bugs. As with any software project, testing was conducted with

proper planning. The overall testing strategy was based on dynamic testing involving a

combination of white and black box tests at the unit, system and subsystem level. Unit tests

were applied to test the newly created piece of code. At the subsystem level, integration

tests were performed at the end of each cycle to ensure that new features work properly in

conjunction with existing code and fulfil collective objectives as intended. Functional tests

were carried out at the end of each cycle to ensure that the implemented functionality is

achieved as intended from the sections of code that account for the function. After finalising

the code, system tests were performed to verify that all modules of code work collectively

to fulfil overall system requirements. In line with the main objectives of the application,

testing was focused on three main aspects. The first one being the ability of the application

to read in RDF files and store it as in-memory models, the second area of interest was to

test its ability to modify these models and verify the correctness of mechanisms to calculate

and record time. The third important area of interest was to test the ability of the

application to regenerate the modified models as RDF files as these files would then be used

42

by Semantic Web applications. A template was standardized for creating test cases. Each

test case contained the details of the unit of code being tested, the feature it is being tested

for, the condition before execution of that code, the post execution condition, the expected

result, the actual result and finally the result of the test.

The unit tests were performed in a step by step manner by testing through the sequential

order of the flow of code. Micro level unit tests were performed for basic verification of

code, gradually increasing from low to medium level functional testing. A variety of triggers

(input and arguments for methods) were used during the testing. Initially the correct trigger

was passed to the code and results were recorded after which an incorrect trigger was

passed on the code. It allowed to verify that the code behaves as intended and to confirm

the implemented exception handling mechanism functions as designed. As this project is of

experimental nature and all the experiments were to be conducted under controlled

environment, extensive testing was not performed on the application to check for un-

expected inputs. However the blocks of code responsible for major features of the

application were thoroughly tested. Some of the tests uncovered bugs in the code which

were remedied and retested. Functional testing was applied on the finished code. Some of

the tests carried for validating the application are discussed below.

The first step towards testing the software was to ensure that the RDF files are properly

read into and stored into the in-memory model. Sample data was used during the low level

tests where as the actual experimental files were used for functional and system level tests.

This test case is named UNIT01 and is shown in Table 2. It tests whether the method

readFiles reads in RDF files into models.

Table 2: Test case UNIT 01

 Test ID UNIT 01

Unit Under Test Method: readFiles

Objective To test if file is read in and stored in model

Pre-Conditions Model does not exist

Post-Conditions Model is created

Expected Results Model is created and RDF file is read-in

Actual Results Success

43

The second unit test, UNIT 02, was designed to check the behaviour of the code incase the

file to be loaded into the models did not exist in the class path of the project. The test case

is shown in Table 3.

Table 3: Test case UNIT 02

Test ID UNIT 02

Unit Under Test Method: readFiles

Objective To test exception handling if file doesn’t exist

Pre-Conditions No error message on console

Post-Conditions Error message displayed on console

Expected Results Error message displayed on console

Actual Results Success

The second phase involved testing that the RDF statement is created using the

createStatement method. An RDF statement consists of three main parts, the subject,

predicate and the object. The process of inserting a statement involves creating a new

resource, using an existing property and creating a new object for that property. The

createStatement method has createResource and createLiteral methods nested within it and

it was important to ensure that the construct works smoothly and a correct RDF statement

has been created. For testing purposes, incorrect arguments were passed on to the method

along with valid ones. Table 4 represents the test case UNIT03 as discussed above.

Table 4: Test case UNIT 03

Test ID UNIT 03

Unit Under Test Method: createStatement

Objective To test whether a new statement is created

Pre-Conditions Statement does not exist

Post-Conditions Statement is created

Expected Results Statement is created

Actual Results Success

44

The next logical step was to test whether the statement is added to model through the

model.add method. The purpose of this method is to add a new statement to an existing

model. The statement can either be appended to an existing resource or could involve

creation of a new resource with corresponding predicates and objects. The statement

created earlier is inserted into the model which is then verified by checking the contents of

the model as there is no return type of this method. This unit test, named UNIT 04 is shown

in Table 5.

Table 5: Test case UNIT 04

Test ID UNIT 04

Unit Under Test Method: add

Objective

To test whether a new statement is inserted

in model

Pre-Conditions Statement does not exist in model

Post-Conditions Statement exists in model

Expected Results Targeted Statement is added

Actual Results Success

After verifying the statement insertion operation, we moved to the statement removal

process which is performed by the model.remove() method. The argument passed on to this

method is again a statement of the form discussed earlier. As with the model.add(), proper

execution was verified by checking the model’s contents. The test case UNIT 05 is shown in

Table 6.

Table 6: Test case UNIT 05

Test ID UNIT 05

Unit Under Test Method: remove

Objective

To test whether a statement is removed

from model

Pre-Conditions Statement exists in model

Post-Conditions Statement does not exist in model

Expected Results Targeted Statement is removed

Actual Results Success

45

Time was calculated for statement insertion and removal operations separately for all three

models. It was ensured that the logic applied for measuring time was correct and accurate.

Debugging was also used to test the code by commenting out various lines of code and

using pointers and multiple variables, recording time at the same instance and then

comparing the results obtained using the two ways. Special attention was given to the

accuracy of the methods used as well as the use of the appropriate data type to contain the

value of recorded time. The above test case, named UNIT 06 shown in Table 7 verifies the

time calculation mechanism and its display on console.

Table 7: Test case UNIT 06

Test ID UNIT 06

Unit Under Test Class: UpdateRDF

Objective To test time is calculated properly

Pre-Conditions Time is not displayed on console

Post-Conditions Time is displayed on console

Expected Results Accurate time is displayed on console

Actual Results Success

Table 8 shows test UNIT 07 which tests the creation of external file Time.txt and its contents

with proper formatting so they can be easily read in by a tool for analysis. It is shown in

Table 8.

Table 8: Test case UNIT 07

Test ID UNIT 07

Unit Under Test Class: UpdateRDF

Objective To test Time.txt is created properly

Pre-Conditions Time.txt is does not exist

Post-Conditions Time.txt exists with proper values

Expected Results Time.txt is created with correct values

Actual Results Success

46

The last unit test UNIT 08, shown in Table 9, checks that the method writeFiles regenerates

updated RDF files from the modified models correctly. This method specifies XML/RDF as

the representation style of the RDF structure.

Table 9: Test case UNIT 08

 Test ID UNIT 08

Unit Under Test Method: writeFiles

Objective

To test RDF files are created properly with

correct representation style

Pre-Conditions File does not exist

Post-Conditions File exists with proper format

Expected Results File is created with correct formatting

Actual Results Success

Most of the unit tests discussed above were performed on one model and have been

extended to include all three models as only the corresponding object name of the

concerned RDF file was changed to incorporate them into the experiment. After unit testing,

some level of black box testing was performed to ensure that the section of code being

tested is performing as intended.

The first functional test was to check whether the code reads in RDF files into models and

generates external RDF files without modifying the contents of the files; all three RDF files

selected for use in the experiments were used for this test. For the test, part of the code

performing the modification and responsible for calculating time was commented out. Test

case BB 01 shown in Table 10 describes the outcome of the above test scenario.

47

Table 10: Test case BB 01

Test ID BB 01

Unit Under Test Class: UpdateRDF

Objective

To test RDF files are read into the model and

regenerated externally

Pre-Conditions Models do not exist

Post-Conditions Models and File exist

Expected Results Files are created properly

Actual Results Success

The second black box test involved testing the complete functionality of the application by

loading the same RDF file (same size) into three separate models and performing

modification operations on them to ensure if similar results are obtained. This test case is

shown in Table 11.

Table 11: Test case BB 02

Test ID BB 02

Unit Under Test Class: UpdateRDF

Objective

To compare results of modification

operations on three models of same size

Pre-Conditions Models do not exist

Post-Conditions Models and File exist

Expected Results

Files should be created and time

measurements should be similar

Actual Results Success

System tests were performed at the end of the testing phases to verify the overall behaviour

of the system and ensuring that requirements are fulfilled. RDF files to be used for

experiments were used for conducting this test and time was measured for inserting one

statement and removing one statement from the models. The output on the console was

reviewed and time measurements displayed were compared to those in the external time

file. The outputs, both on the console and external files were verified for their correctness

48

and proper formatting. This test completes the testing phase of the software development

process. The test case is shown in Table 12.

Table 12: Test case SYSTEM 01

Test ID SYSTEM 01

Unit Under Test Class: UpdateRDF

Objective To test overall system function

Pre-Conditions Models do not exist, no external files

Post-Conditions Models and files exit

Expected Results

The software executes as intended with

delivery of proper outputs

Actual Results Success

As the developed application is of an experimental structure, and will be used under a

controlled environment, the applied testing strategy provides reasonable guarantees that

the application fulfils its overall objectives. The implementation mechanisms that perform

the functions have been verified for their correctness. The classes, methods and data

structures have been validated for their appropriateness in line with the technical

requirements of the project. The non functional attributes such as performance, reliability,

responsiveness of the application have been verified. From a project point of view, the

testing process has ensured that software engineering and OOP principles have been

adhered to throughout the software development cycle.

4.2. Evaluation

After validating the application, experiments were conducted in line with project objectives.

The primary goal was to assess view maintenance of materialized RDF data. Other objectives

included exploring different options available within Jena to manipulate RDF structures and

analyse the performance of update operations with respect to the size of RDF structures.

Three RDF files of sizes 1 MB, 5 MB and 10 MB were used in the experiments. The RDF

equivalent of a (relational) record is a statement. Unlike traditional data structures, in which

records can be modified directly by using the primary key, we cannot modify a RDF

statement directly. The only way to modify an RDF statement is to overwrite it. For example,

an RDF statement (ShehramShahURI, VCARD:FN, Shehram) has a property VCARD:FN whose

49

value needs to be changed from Shehram to Shehram Shah. We perform the required

modification through an insertion operation by simply adding a new statement to the model

with the same resource, same property but with the new value of the property. It will

replace the current triple corresponding to the same subject, predicate and object to

(Shehram Shah, VCARD:FN, Shehram Shah).

 A series of experiments were conducted to modify the experimental RDF structures using

insert and delete statements. The following sections describe the experiments and their

outcomes.

4.2.1 Experiment 1

The first experiment involved inserting and deleting one statement separately into the

models. Time was recorded for the insert and delete operations separately for all the three

models. Table 13 shows time values for creating and inserting one statement in three

models.

Table 13: Results of Experiment 1

Data Volume (MB) Insert (ns) Insert (sec) Delete (ns) Delete (sec)

1 46514 0.046514 18045 0.018045

5 17804 0.017804 17112 0.017112

10 19325 0.019325 17661 0.017661

Figure 22 shows the scatter chart plotted from the time recorded after the experiment. The

blue line represents time taken for insert operations while the red line represents time for

delete operations. Even though the first model is of the smallest size, it takes longer to

insert or delete statements from it.

50

Figure 22: Scatter chart showing time for inserting and deleting one statement

4.2.2 Experiment 2

The second experiment was designed to measure time for bulk update operations. Time was

recorded for inserting and deleting 100 statements in all three models. The time

measurements for Experiment 2 are given in Table 14.

Table 14: Results of Experiment 2

Data Volume (MB) Insert (ns) Insert (sec) Delete (ns) Delete (sec)

1 4359071 4.359071 1804523 1.804523

5 1655010 1.65501 1711263 1.711263

10 1750946 1.750946 1766148 1.766148

The results obtained from this experiment are similar to those of the first one. It always

takes longer to perform insert or delete operations on the first model and the size of file

does not have a significant impact on performance. The scatter plot shown in Figure 23

shows that time taken for deleting statements from the first model having size 1 MB is

slightly higher than that for second model having size 5 MB. It then increases slightly for the

third model whose size is double (10 MB) then that of model 2.

51

Figure 23: Scatter plot showing time for inserting and deleting 100 statements

4.2.3 Experiment 3

This experiment was conducted to confirm the observation made in the first two

experiments i.e. it always takes longer to modify the first model regardless of size. Therefore

all models were loaded with the same RDF file (size) and 100 statements were inserted and

deleted. The time recorded is displayed in Table 15.

Table 15: Results of Experiment 3

Model Insert (ns) Insert (sec) Delete (ns) Delete (sec)

1 95470743 95.47074 2189575 2.189575

2 1967536 1.967536 1920508 1.920508

3 1983791 1.983791 1979854 1.979854

The results confirm the previous observations. The size of the RDF does not have a major

impact on the operations. The results follow the same pattern as in previous experiments. It

is graphically represented in Figure 24.

52

Figure 24: Graph showing time for update operations on three Models of same size

4.2.4 Experiment 4

In this experiment we switched the size of the first and third model. Model 1 is now of 10

MB and Model 3 is now of 1 MB. Insert operations were performed in the same sequence

on all models (Model 1 to Model 3). Time recorded for inserting and deleting 100

statements into each model is shown in Table 16.

Table 16: Results of Experiment 4

Data Volume (MB) Insert (ns) Insert (sec) Delete (ns) Delete (sec)

10 6349188 6.349188 1207011 1.207011

5 2557256 2.557256 1190054 1.190054

1 2476045 2.476045 973641 0.973641

The results of this experiment confirm the conclusions of pervious experiments i.e. the first

model irrespective of size always takes the longer time as shown in Figure 25.

53

Figure 25: Scatter plot showing time for inserting and deleting 100 statements
(Note: As in Table 16, the 10 MB model was used before smaller models)

There was a clear pattern in results obtained from experiments 1 to 4 i.e. the time taken to

insert a statement or a bulk of statements in the first model is always higher than the time

taken to insert the same number of statements into the other two models. The size of the

model does not have a significant effect on performance. There was consistency in the

results of update and delete operations in all four experiments. There does not appear to be

a clear relationship between performance of update operations and file size. The first model

always takes longest to modify irrespective of size. The results were analysed from several

angles to find out a proper explanation for the longer time taken to update the first model.

After research to understand the underlying factors that can affect performance of a Java

program, it was learnt that the initial run of a piece of code takes longer because the classes

and other static blocks from the library have to be loaded into JVM. This process is often

referred to as warming up of the JVM, and is performed whenever a new class or method of

the Java API is executed. The second execution of the same code is always faster than the

first one. After executing the same code 10,000 times, JVM compiles the native code to

machine code which again significantly improves performance. Frequently executed blocks

of code are also placed in cache memory by JVM for faster access, which too is a factor for

varying performance of frequently executed sections of code. This observation was also

supported by analyzing the results gathered for the deletion operations in both models in

which the first model always takes longer as compared to others larger models however the

difference in values for the first model and the other two models were not so disparate.

54

4.2.5 Experiment 5

Further experiments were aimed at studying the factors which affect the efficiency of insert

operations as they take relatively longer then delete operations. A new RDF statement is

created using the createStatement method. As discussed earlier in section 3.3, the create

statement also has the createResource and createLiteral methods nested in it to create the

subject and object of the RDF statement as shown below in Figure 26.

Figure 26: Create Statement method

It was important to isolate the time taken for creating the statement from the total time

(statement creation and insertion) to find out the time utilized to only insert the statements

into the model. This was done by subtracting the values obtained in this experiment with

those obtained earlier. This experiment is designed to find out the time taken for only

inserting the statements into the models. The model.add() method in the code was

commented out and time was calculated for only creating the statements. The results are

shown in Table 17.

Table 17: Results of Experiment 5

Data Volume
(MB)

Total Time
(sec)

Time To Create
Statement (sec)

Time To Insert Without
Creating (sec)

1 4.651422 3.631358 1.020064

5 1.780427 1.140098 0.640329

10 1.932589 1.278874 0.653715

Figure 27 shows the relationship between time taken to insert values into the models minus

the time taken to create the statements. The chart plots time taken to insert a statement

into the model.

Statement S1 =

ResourceFactory.createStatement(model1.createResource("http://somewhere/S

hehramShah/" + i),VCARD.FN,model1.createLiteral("Shehram Shah"));

55

Figure 27: Scatter plot showing time for inserting one statement

The next test finds out the time taken for creating statements that are to be inserted into

the model. This test is continuation of the previous experiment; the difference is that it

focuses on time for creating the statement and not inserting them. The results are shown in

Figure 28.

Figure 28: Scatter plot showing time for creating one statement

This experiment shows that it takes longer to create a statement then to insert it as creating

a statement is a complex task involving multiple nested methods. Hence the longer duration

of the overall insert operation can be attributed to statement creation.

56

4.2.6 Experiment 6

In order to confirm the observations made from the previous experiments, it was important

to isolate the optimizing factor of JVM in order to get a correct measure of performance of

update operations and to assess the effect of increasing file size on update operations. For

this experiment, four models were used. Insert and delete operations were first performed

on a test model which allowed the JVM to be ‘warmed up’ after which time was recorded

for inserting and deleting 100 statements from three models of increasing file size similar to

a scenario as in experiment 1. The results of this experiment are shown in Table 18.

Table 18: Results of Experiment 6

Data Volume (MB) Insert (ns) Insert (sec) Delete (ns) Delete (sec)

1 1802277 1.802277 1997721 1.997721

5 1835297 1.835297 2061084 2.061084

10 1832620 1.83262 2299811 2.299811

Figure 29 confirms the two observations made earlier i.e. the initial run of insert operations

takes longer. The effect of this phenomenon has been negated in this experiment by

performing the insert and delete operations on a test Model. It also confirms that the size of

the RDF does not have a significant impact on update operations. This can be said true with

respect to the size of RDF files used in this experiment.

Figure 29: Scatter plot showing time for inserting and deleting 100 statements in 4 Models

57

4.3 Summary of Results:

From the above mentioned experiments we can summarize that every time a new code is

executed for the first time, it takes longer as the corresponding classes, methods and

constructors are loaded into the JVM. All subsequent executions of the same code are

always faster than the first one. It is much quicker to delete statements from the model

then to add them as inserting statements may also involve the creation of a completely new

subject, predicate and object or any combination of new values and existing components of

the triple in the model. The size of the RDF does not have a significant impact on the

performance of update operations.

58

Chapter 5

Conclusion and Recommendations

This chapter concludes the dissertation by providing a summary of the project and the

application developed. It also provides insights from analysis of the outcome of the

experiments. The discussion reflects on the motivation for carrying out this exercise in the

context of the Semantic Web and to explore various factors that come into play towards the

transformation of the World Wide Web into the Semantic Web. It also contains a brief

discussion on the limitations that were encountered while following the experimental

approach and finally some directions for future work in continuation of this contribution.

5.1 Conclusion:

The purpose of this project has been to discuss the idea of the Semantic Web and

understand the technologies and processes involved in realizing the vision of Tim Berners-

Lee. The research investigates the myths and facts about the Semantic Web by reviewing

scientific publications. It also identifies key contributions. The ultimate goal of the Semantic

Web is global data integration on the Internet. It is to be achieved by creating a new

generation of Web content, using RDF, which can be processed by machines to enable them

to understand the semantics of the data. It aims to utilize superior computational power of

machines to provide a richer and more useful Web experience to users. The Semantic Web

proposes to integrate data by streamlining representation mechanisms. A vast majority of

existing web content is only intelligible by humans. New mechanisms for creating data have

been centered on the idea of dual consumption, targeted for both man and machines.

Traditional technologies like XML, currently used to create information for the Internet are

ambiguous and its architectural structure (tree) is not suitable for the new requirements.

The same information is represented in numerous forms, resulting in redundancy. Other

factors such as the lack of a uniform system to represent information hamper data

integration.

The Semantic Web introduces with it a complete suite of technologies (Figure 1) to support

the transformation of the Internet. We discuss current technologies for exchanging

information over the Internet and their shortcomings. We also discuss Semantic Web

59

technologies such as RDF, RDF/S, OWL and other associated technologies like SPARQL and

SPARUL in the context of their role in the Web of the future. We study some specialized

applications of the Semantic Web and discuss their advantages over similar applications

based on traditional technologies. The foundations of the Semantic Web are based on RDF,

which has been recommended as the universal data interchange format for the Internet by

W3C. RDF data is represented in the form triples i.e. subject, predicate and object. Each part

of the triple can be identified using a URI which points to a resource on the web. This

removes the possibility of ambiguity and redundancy as all representations point to the

same URI. Applications based on the concept of the Semantic Web have shown markable

success and have clear advantages over traditional applications. RDF and its associated

technologies (RDFS, OWL) solve some of the fundamental problems for data integration by

providing a uniform vocabulary and representation structure thereby allowing data to be

shared and reused across the internet. Applications have the ability to combine and

manipulate multiple pieces of related data (defined in RDFS vocabulary) that have been

created by different users be treated as a single entity. The data integration process is

complex and as like any data it needs to be modified as time passes. Some large applications

have RDF data sets containing billions of triples. As industry and academia realize the true

potential of RDF, more and more applications are transitioning from legacy to RDF based

data structures; we need to have clear mechanisms that enable us to update the actual RDF

files that are fed into the applications. Researchers have proposed several RDF engines to

use and manage RDF data in an efficient manner using SPARQL and SPARUL. SPARUL is an

update to the SPARQL query language, this allows us to insert or delete triples in an existing

RDF structure. Our project is based on Jena, it is a Semantic Web tool kit based on Java for

developing Semantic Web applications and can manipulate Ontologies and RDF based data

structures.

From a relational point of view, RDF data structures can be seen as a three dimensional

table. They can be considered as materialized views of the relational table. As with RDBMS,

we also explore the possibility of updating RDF structures through views. In this project we

have focused exploiting Jena to modify RDF structures. A prototype application has been

developed to update RDF structures through views. The idea is based on the concept of

view maintenance for the advantages of views in terms of security, convenience in the use

60

and management of data. We experimented with taking sections of RDF structures of

different data sizes and performed modification operations on them. The experimental data

was based on the vCard ontology. Three datasets of sizes 1 MB, 5 MB and 10 MB were used

for measuring the performance of update operations. The three RDF files were read and

stored into three models respectively. Models are in-memory structures for storing RDF

contents in Jena. There were several alternatives to models with in Jena that can be used at

different levels of RDF data depending on the intended use. However models were deemed

as the most appropriate due to technical factors discussed earlier in detail. The application

was designed to read in RDF files and store each into separate models. Performance was

then measured for a range of modification operations applied on the models individually.

For measuring performance, elapsed time was decided over CPU time as CPU time varies

from machine to machine since CPU resources are distributed by the operating system

depending on the multi threading mechanism implemented. The JVM also performs some

degree of scheduling which also affects the value of CPU time. Whereas the elapsed time is

a simple value of time taken to complete one task based on clock time. Time duration was

recorded with nanosecond precision for all of the experiments. The basic aim of the

experiments was to analyse the impact of the size of RDF structures on update operations.

Initially experiments were conducted by inserting one statement into each model and time

taken to complete the task was recorded. The same was repeated for deleting one

statement from the models. In the second experiment we performed a bulk of insert and

delete operations (100 statements for both) into the models and recorded time for them.

Initial results showed that regardless of the size of RDF, the first model always took longer

to insert or delete statements. We also attempted to update three models of the same size

in Experiment 3. In this experiment the results were similar to the ones recorded earlier; it

always takes longer to update the first model irrespective of size. This trend was observed

for both, inserting one statement and inserting a bulk of statements. This was further

experimented by switching the file size i.e. the smaller file into the first model and the

largest file into the first model (Experiment 4) but the outcome was same. It was important

to investigate the reason for this observation. Further research uncovered that whenever a

new method is called, its classes, constructors and other static blocks are loaded into the

memory which takes some more time. Once loaded into the JVM, all subsequent executions

61

of the code will always be quicker than the first one. The above set of experiments showed

similar results and the actions of the optimiser dominate the time pattern.

Further experiments (Experiment 5), conducted on the basis of the outcome of these

experiments, focused on the closer analysis of the overall time taken for insert operations

by isolating the time taken to create a statement and the time taken to insert the

statement. The process of inserting a statement into the model involves creation of a new

statement. An RDF statement is made up three components, subject, predicate and object,

which are also created separately and combined to form a single statement. The statement

is then added it into the model. This process involves nesting of several methods within

each other which takes some time to execute. Hence time for insert operations was

calculated by subtracting time for creating a statement from time taken to perform the

complete operation (creation and insertion). These results were used to analyse the

relationship between the size of RDF and time of update operations.

A final set of experiments (Experiment 6) was carried out by ‘warming up’ the JVM and then

measuring performance. This showed that the time for insert operations increases with

model size over 1-10 MB whereas the time for delete operations remains stable (Figure 28).

Based on the outcome of the experiments and research, the observations can be

summarized as follows.

 The first time execution of a piece of code always takes longer as compared to

subsequent executions. This is attributed to the phenomenon known as JVM warm

up.

 It takes longer to insert statements into an RDF file then to delete one. This is

because the insertion operation involves first creating a statement and then

inserting it.

 The size of RDF structure does not have a significant impact on performance of

update operations.

 RDF structures can be easily updated using the view maintenance approach for

RDMS databases.

62

5.2 Limitations

This section discusses the limitations of the experimentation approach applied for the

project and describes some unexpected encounters during the development process.

 As Jena is not part of the standard Java package, its libraries need to be added

separately. Initially they were imported into Eclipse Indigo IDE using the

recommended method however it appeared that they were not compatible with

this version of the IDE as a basic Jena program did not execute and no error

message was displayed. After trouble shooting a different version of Eclipse IDE,

Eclipse Juno was used for the project.

 The test data was carefully chosen and prepared for the tests. While selecting the

data set, it was decided that RDF structures with simple data (uncomplicated

statements) and size according to the scope of the experiments will be chosen.

During the process of analyzing potential datasets, some datasets downloaded from

W3C repository could not be read into Jena. This was unexpected, the possible

reasons could be an incompatible encoding scheme or corrupted file. However the

vCard ontology was easily processed by Jena. It is uncomplicated and easy to read

and understand. Hence it was decided to further expand it for our project. The size

of the test files was expanded according to scope of the project.

 Another interesting point was regarding the behaviour of Jena code (inserting

statement, deleting statements). There is no way to find out if a piece of code has

been executed. The only way to confirm whether a statement has been inserted or

deleted is to manually check the contents of the file. No error was displayed if the

statement targeted to be deleted from the model did not exist.

Throughout the project, decisions were made according to the situation and in line with the

overall objectives.

5.3 Recommendations and Future Work:

The prototype application and the findings of this project can be used to further investigate

the possibility of maintaining RDF structures through views and measure performance with

respect to the size of RDF. This work can be used as a stepping stone for applications that

aim to modify RDF structures without using SPARUL (SPARQL Update). Our primary research

63

objective was to measure performance of view maintenance on RDF structures in general

and comparisons of insert and delete operations in particular. Experiments performed in the

above research context provide a detailed analysis of factors which impact performance.

The results of this project and other similar work done so far by academia can be used to

explore other options available for maintaining RDF structures. Based on our literature

review and outcomes of this project, following recommendations are made for future work.

 The use of Model class in Jena provides a promising direction to bridge the

knowledge gap between software engineers and domain experts which is one of the

reasons for slow uptake of Semantic Web technologies. It is much easier to modify

an RDF structure using methods of Model class as compared to designing SPARUL

(SPARQL Update) queries. We do not recommend the use of Jena’s capability over

SPARUL (SPARQL Update) based on performance criteria. However from an

implementation perspective, it is much easier for a programmer to use programming

constructs rather than to develop skills in a new query language for accomplishing

the task.

 More detailed experiments can be conducted by use of performance analysis tools

(profilers) to provide a deeper understanding of time taken to maintain RDF

structures. These tools can be first used to compare the performance of updating

RDF structures through models and also through SPARUL (SPARQL Update) to

identify the most efficient way of updating RDF. Apart from time, the computational

power utilized by either technique would also be a useful criterion.

 Diverse test data can be made part of the experiment by including larger RDF file

sizes (GBs) to conduct tests in greater detail.

 All the tests conducted in this project were performed on RDF files that were stored

locally on the machine, an attempt can be made at the possibility of developing an

application that can access and modify an RDF file remotely through the Internet.

64

References

Alexaki, S. et. Al. , (2001). On Storing Voluminous RDF Descriptions: The Case of Web Portal Catalogs.

WebDB, pp. 43-48

Apache Jena, (2011). What is Jena? . [online] Available at:

<http://jena.apache.org/about_jena/about.html> [Accessed 30 August 2013].

Apache Jena 2011. An Introduction to RDF and the Jena RDF API. [online] Available at:

<http://jena.apache.org/tutorials/rdf_api.html> [Accessed 30 August 2013].

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American, 284(5), pp.

28-37.

Brooks, R. A. (1991). Intelligence without representation. Artificial intelligence, 47(1), pp. 139-159.

Buffa, M.et. al. (2008). SweetWiki: A semantic wiki. Web Semantics: Science, Services and Agents on

the World Wide Web, 6(1), pp. 84-97.

Carroll, J. J. et. al. (2004). Jena: implementing the semantic web recommendations. In Proceedings of

the 13th international World Wide Web conference on Alternate track papers & posters. New York,

Monday May 17th to Thursday May 20th 2004, New York: ACM pp. 74-83.

Ceri, S., & Widom, J. (1991). Deriving production rules for incremental view maintenance.

In: VLDB(Very Large DataBase) Endowment, In Proceedings of the Seventeenth International

Conference on Very Large Data Bases. Barcelona, Tuesday September 3rd to Friday September 6th

1991, Barcelona:Citeseer. pp. 577-589

Chong, E. I. et. al. (2005). An efficient SQL-based RDF querying scheme. In: VLDB(Very Large

DataBase) Endowment, Proceedings of the 31st international conference on Very large Data Bases.

Trondheim,Norway August 30th -September 2nd 2005, New York:ACM.

Corby, O., Dieng-Kuntz, R. & Faron-Zucker, C. (2004). Querying the semantic web with corese search

engine. In ECAI (European Conference on Artificial Intelligence).Valencia, Sunday August 22nd to

Thursday August 27th 2004. Valencia: IOS Press. p. 705

Data-gov Wiki, (2010) [online] Available at: <http://data-gov.tw.rpi.edu/wiki> [Accessed 30 August

2013].

Erling, O., & Mikhailov, I. (2009). RDF Support in the Virtuoso DBMS. Networked Knowledge-

Networked Media ,221, pp. 7-24.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge

acquisition, 5(2), 199-220.

Gruber, T. (2009). Ontology. 1963 – 1965.

Lassila, O., Swick, R. (1999). Resource Description Framework (RDF) Model and Syntax Specification.

Available at: < http://www.w3.org/TR/REC-rdf-syntax/> [Accessed 30 August 2013].

65

McGuinness, D. L., & Van Harmelen, F. (2004). OWL web ontology language overview. W3C

recommendation, 10(2004-03), p. 10.

Neumann, T., & Weikum, G. (2009). Scalable join processing on very large RDF graphs. In: SIGMOD

(Special Interest Group on Management of Data) , In Proceedings of the 35th SIGMOD international

conference on Management of data . Providence, RI Monday June 29th to Thursday July 2nd 2009,

Providence, RI: ACM. pp. 627-640

Neumann, T., & Weikum, G. (2008). RDF-3X: a RISC-style engine for RDF. In: VLDB(Very Large

DataBase) Endowment, In Proceedings of the Thirty fourth International Conference on Very Large

Data Bases. Auckland, New Zealand Saturday August 23rd to Thursday August 28th 2008, Auckland:

ACM. pp. 647-659

Peters, I. (2009). Folksonomies: Indexing and Retrieval in the Web 2.0. Walter de Gruyter .

Renteria, W. et. a.l, (2010).. Exploring the Advances in Semantic Search Engines. Distributed

Computing and Artificial Intelligence,79, pp.647-85.

Schaffert, S. (2006). IkeWiki: A semantic wiki for collaborative knowledge management. In: WETICE

Enabling Technologies: 15th IEEE International Workshop on Infrastructure for Collaborative

Enterprises. Manchester, UK 26-28 June 2006. New York: IEEE.

Seaborne, A., et al. (2008). SPARQL/Update: A language for updating RDF graphs. W3C member

submission.

Seaborne, A., (2004). RDQL - A Query Language for RDF. [online] Available at:

<http://www.w3.org/Submission/RDQL/> [Accessed 30 August 2013].

Shadbolt, N., Hall, W., & Berners-Lee, T. (2006). The Semantic Web revisited. Intelligent Systems,

IEEE, 21(3), pp. 96-101.

Sheshagiri, M., Sadeh, N., & Gandon, F. (2004). Using Semantic Web services for context-aware

mobile applications. In: MobiSys 2004 Workshop on Context Awareness. Boston, USA 06-09 June

2004.

Starr, B. (2012). How Search & Social Engines Are Using Semantic Search. [online] Available at:

<http://searchengineland.com/semantic-search-what-is-it-how-are-major-search-and-social-

engines-use-it-part-1-133160> [Accessed 30 August 2013].

Volz, R., Oberle, D., & Studer, R. (2002). Towards views in the semantic web. In: DBFUSION, 2nd Int’l

Workshop on Databases, Documents and Information Fusion. Karlsruhe, Germany July 2002.

World Wide Web Consortium (W3C) Semantic Web interest group, (2006). Semantic Web Interest

Group . [online] Available at: <http://www.w3.org/2001/sw/interest/> [Accessed 30 August 2013].

World Wide Web Consortium (W3C) vCard Ontology, (2013). RDF vCard RFC6350 . [online] Available

at: < http://www.w3.org/TR/vcard-rdf/#RFC6350> [Accessed 30 August 2013].

World Wide Web Consortium (W3C)., (2004). RDF Vocabulary Description Language 1.0: RDF

Schema. [online] Available at: <http://www.w3.org/TR/rdf-schema/> [Accessed 30 August 2013].

66

World Wide Web Consortium (W3C)., (2013). DataSetRDFDumps. [online] Available at:

<http://www.w3.org/wiki/DataSetRDFDumps> [Accessed 30 August 2013].

World Wide Web Consortium (W3C).,(2008). SPARQL Update. [online] Available at:

< http://www.w3.org/Submission/SPARQL-Update/> [Accessed 30 August 2013].

World Wide Web Size.,(2013). The size of the World Wide Web (The Internet). [online] Available at:

< http://www.worldwidewebsize.com/> [Accessed 30 August 2013].

67

Appendix A – Code

The program listing of the application is as follows

package Project;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Calendar;
import java.util.Date;

import com.hp.hpl.jena.query.Query;
import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.query.QueryExecutionFactory;
import com.hp.hpl.jena.query.QueryFactory;
import com.hp.hpl.jena.query.ResultSet;
import com.hp.hpl.jena.query.ResultSetFormatter;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.rdf.model.ModelFactory;
import com.hp.hpl.jena.rdf.model.Resource;
import com.hp.hpl.jena.rdf.model.ResourceFactory;
import com.hp.hpl.jena.rdf.model.Statement;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.vocabulary.VCARD;

public class UpdateRDF {

 void readFiles(String inputfilename, Model modelname) throws IOException
 {
 InputStream in = FileManager.get().open(inputfilename);
 if (in == null) {
 throw new IllegalArgumentException ("File: " + inputfilename + " not found");
 }
 modelname.read(new InputStreamReader(in), "");
 in.close();
 }

 void writeFiles (File fileName, Model model) throws IOException
 {
 if (!fileName.exists()) {
 fileName.createNewFile();
 }
 FileWriter out = new FileWriter(fileName);
 try {
 model.write(out, "RDF/XML-ABBREV");

68

 }
 finally {
 try {
 out.close();
 }
 catch (IOException closeException) {
 // ignore
 }
 }
 }

 /**
 * @param args
 * @throws IOException
 */

 public static void main(String[] args) throws IOException {
 // TODO Auto-generated method stub

 final String inputFileName1 = "data1024.rdf";
 final String inputFileName2 = "data5120.rdf";
 final String inputFileName3 = "data10240.rdf";

 final File fileName1 = new File("C:/Users/DELL/Desktop/File1.txt");
 final File fileName2 = new File("C:/Users/DELL/Desktop/File2.txt");
 final File fileName3 = new File("C:/Users/DELL/Desktop/File3.txt");

 //reading files
 System.out.println("Reading Files...");

 //1 MB
 UpdateRDF UpdateRDF1= new UpdateRDF();
 Model model1 = ModelFactory.createDefaultModel();
 UpdateRDF1.readFiles(inputFileName1,model1);
 System.out.println("== File 1 Read ==");

 //5 MB
 UpdateRDF UpdateRDF2= new UpdateRDF();
 Model model2 = ModelFactory.createDefaultModel();
 UpdateRDF2.readFiles(inputFileName2,model2);
 System.out.println("== File 2 Read ==");

 //10 MB
 UpdateRDF UpdateRDF3= new UpdateRDF();
 Model model3 = ModelFactory.createDefaultModel();
 UpdateRDF3.readFiles(inputFileName3,model3);
 System.out.println("== File 3 Read ==");

 //Inserting 100 Statements in model 1
 System.out.println("\nInitiating Insert Operations on Model 1...");

69

 long startAddTime1 = System.nanoTime();
 for(int i=0; i<=100; i++)
 {
 Statement S1 =
ResourceFactory.createStatement(model1.createResource("http://somewhere/Model A/" + i
),VCARD.FN,model1.createLiteral("Model A"));
 model1.add(S1);
 }
 long endAddTime1 = System.nanoTime();
 long TimeTakenAdd1=endAddTime1-startAddTime1;

 System.out.println("== Insert Operations on Model 1 Completed ==\n");

 //Inserting 100 Statements in model 2
 System.out.println("Initiating Insert Operations on Model 2...");

 long startAddTime2 = System.nanoTime();
 for(int i=0; i<=100; i++)
 {
 Statement S2 =
ResourceFactory.createStatement(model2.createResource("http://somewhere/Model B/" + i
),VCARD.FN,model2.createLiteral("Model B"));
 model2.add(S2);
 }
 long endAddTime2 = System.nanoTime();
 long TimeTakenAdd2=endAddTime2-startAddTime2;

 System.out.println("== Insert Operations on Model 2 Completed ==\n");

 //Inserting 100 Statements in model 3
 System.out.println("Initiating Insert Operations on Model 3...");

 long startAddTime3 = System.nanoTime();
 for(int i=0; i<=100; i++)
 {
 Statement S3 =
ResourceFactory.createStatement(model3.createResource("http://somewhere/Model C/" + i
),VCARD.FN,model3.createLiteral("Model C"));
 model3.add(S3);
 }
 long endAddTime3 = System.nanoTime();
 long TimeTakenAdd3=endAddTime3-startAddTime3;

 System.out.println("== Insert Operations on Model 3 Completed ==\n");

 //Deleting 100 statements from model1
 System.out.println("Initiating Delete Operations on Model 1...");

 long startDelTime1 = System.nanoTime();
 for(int i=0; i<=100; i++)
 {

70

 model1.remove(model1.createResource("http://somewhere/Model A/" +
i),VCARD.FN,model1.createLiteral("Model A"));
 }
 long endDelTime1 = System.nanoTime();
 long TimeTakenDel1=endDelTime1-startDelTime1;

 System.out.println("== Delete Operations on Model 1 Completed ==\n");

 //Deleting 100 statements from model2
 System.out.println("== Initiating Delete Operations on Model 2 ==");

 long startDelTime2 = System.nanoTime();
 for(int i=0; i<=100; i++)
 {
 model2.remove(model2.createResource("http://somewhere/Model B/" +
i),VCARD.FN,model2.createLiteral("Model B"));
 }
 long endDelTime2 = System.nanoTime();
 long TimeTakenDel2=endDelTime2-startDelTime2;

 System.out.println("== Delete Operations on Model 2 Completed ==\n");

 //Deleting 100 statements from model3
 System.out.println("Initiating Delete Operations on Model 3...");

 long startDelTime3 = System.nanoTime();
 for(int i=0; i<=100; i++)
 {
 model3.remove(model3.createResource("http://somewhere/Model C/" +
i),VCARD.FN,model3.createLiteral("Model C"));
 }
 long endDelTime3 = System.nanoTime();
 long TimeTakenDel3=endDelTime3-startDelTime3;

 System.out.println("== Delete Operations on Model 3 Completed ==");

 //Display Insertion times for statements
 System.out.println("\nInsertion Opertation Elapsed Time\n");
 System.out.println("File1(1MB): "+ TimeTakenAdd1 + " Nanoseconds");
 System.out.println("File2(5MB): "+ TimeTakenAdd2 + " Nanoseconds");
 System.out.println("File3(10MB): "+ TimeTakenAdd3 + " Nanoseconds");

 //Display Deletion times for statements
 System.out.println("\nDeletion Operation Elapsed Time\n");
 System.out.println("File1(1MB): "+ TimeTakenDel1 + " Nanoseconds");
 System.out.println("File2(5MB): "+ TimeTakenDel2 + " Nanoseconds");
 System.out.println("File3(10MB): "+ TimeTakenDel3 + " Nanoseconds");

 //Display Average Insertion times for 1 statement
 System.out.println("\nAverage Insertion time for 1 Statement\n");
 System.out.println("File1(1MB): "+ TimeTakenAdd1/100 + " Nanoseconds");

71

 System.out.println("File2(5MB): "+ TimeTakenAdd2/100 + " Nanoseconds");
 System.out.println("File3(10MB): "+ TimeTakenAdd3/100 + " Nanoseconds");

 //Display Average Deletion time1 for 1 statement
 System.out.println("\nAverage Deletion time for 1 Statement\n");
 System.out.println("File1(1MB): "+ TimeTakenDel1/100 + " Nanoseconds");
 System.out.println("File2(5MB): "+ TimeTakenDel2/100 + " Nanoseconds");
 System.out.println("File3(10MB): "+ TimeTakenDel3/100 + " Nanoseconds");

 //Write time to external file
 File fileName4 = new File("C:/Users/DELL/Desktop/Time.txt");
 if (!fileName4.exists()) {
 fileName4.createNewFile();
 }

 BufferedWriter out4= new BufferedWriter(new FileWriter(fileName4));
 try {
 out4.write("Time for Insert Operations");
 out4.newLine();
 out4.newLine();
 out4.write(String.valueOf(TimeTakenAdd1));
 out4.newLine();
 out4.write(String.valueOf(TimeTakenAdd2));
 out4.newLine();
 out4.write(String.valueOf(TimeTakenAdd3));

 out4.newLine();
 out4.write("==");
 out4.newLine();
 out4.newLine();

 out4.write("Time for Remove Operations");
 out4.newLine();
 out4.newLine();
 out4.write(String.valueOf(TimeTakenDel1));
 out4.newLine();
 out4.write(String.valueOf(TimeTakenDel2));
 out4.newLine();
 out4.write(String.valueOf(TimeTakenDel3));

 out4.newLine();
 out4.write("==");
 out4.newLine();
 out4.newLine();

 out4.write("Average Time for Inserting One Statement");
 out4.newLine();
 out4.newLine();
 out4.write(String.valueOf(TimeTakenAdd1/100));
 out4.newLine();
 out4.write(String.valueOf(TimeTakenAdd2/100));

72

 out4.newLine();
 out4.write(String.valueOf(TimeTakenAdd3/100));

 out4.newLine();
 out4.write("==");
 out4.newLine();
 out4.newLine();

 out4.write("Average Time for Deleting One Statement");

 out4.newLine();
 out4.newLine();
 out4.write(String.valueOf(TimeTakenDel1/100));
 out4.newLine();
 out4.write(String.valueOf(TimeTakenDel2/100));
 out4.newLine();
 out4.write(String.valueOf(TimeTakenDel3/100));
 }
 finally {
 try {
 out4.close();
 }
 catch (IOException closeException) {
 // ignore
 }
 }

 System.out.println("\n== Time File Created ==");

 UpdateRDF1.writeFiles(fileName1,model1);
 System.out.println("\n== File1 Created ==");
 UpdateRDF2.writeFiles(fileName2,model2);
 System.out.println("== File2 Created ==");
 UpdateRDF3.writeFiles(fileName3,model3);
 System.out.println("== File3 Created ==");
 }

}

73

Appendix B – User & System Guide

1. Import Jena libraries into preferred IDE for Java.

2. Import test data sets into the project’s class path.

3. Modify code according to requirement of experiment.

4. Results can be viewed on console, a separate file ‘Time.txt’ is also created on

desktop which can be used for graphical analysis of data.

Sample output:

Time for Insert Operations

4401014
1642070
1802707
==

Time for Remove Operations

1749607
1573353
1634038
==

Average Time for Inserting One Statement

44010
16420
18027
==

Average Time for Deleting One Statement

17496
15733
16340

